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The Linux Programming Interface is the definitive guide 
to the Linux and UNIX programming interface—the 
interface employed by nearly every application that 
runs on a Linux or UNIX system. 

In this authoritative work, Linux programming 
expert Michael Kerrisk provides detailed descriptions 
of the system calls and library functions that you need 
in order to master the craft of system programming, 
and accompanies his explanations with clear, complete 
example programs. 

You’ll find descriptions of over 500 system calls 
and library functions, and more than 200 example pro-
grams, 88 tables, and 115 diagrams. You’ll learn how to:

f	Read and write files efficiently
f	Use signals, clocks, and timers
f	Create processes and execute programs

f	Write secure programs
f	Write multithreaded programs using POSIX threads
f	Build and use shared libraries
f	Perform interprocess communication using pipes, 

message queues, shared memory, and semaphores
f	Write network applications with the sockets API

While The Linux Programming Interface covers a wealth 
of Linux-specific features, including epoll, inotify, and 
the /proc file system, its emphasis on UNIX standards 
(POSIX.1-2001/SUSv3 and POSIX.1-2008/SUSv4) 
makes it equally valuable to programmers working on 
other UNIX platforms.

The Linux Programming Interface is the most com-
prehensive single-volume work on the Linux and UNIX 
programming interface, and a book that’s destined to 
become a new classic.
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P R E F A C E

Subject

In this book, I describe the Linux programming interface—the system calls, library
functions, and other low-level interfaces provided by Linux, a free implementation
of the UNIX operating system. These interfaces are used, directly or indirectly, by
every program that runs on Linux. They allow applications to perform tasks such as
file I/O, creating and deleting files and directories, creating new processes, executing
programs, setting timers, communicating between processes and threads on the
same computer, and communicating between processes residing on different
computers connected via a network. This set of low-level interfaces is sometimes
also known as the system programming interface.

Although I focus on Linux, I give careful attention to standards and portability
issues, and clearly distinguish the discussion of Linux-specific details from the dis-
cussion of features that are common to most UNIX implementations and standardized
by POSIX and the Single UNIX Specification. Thus, this book also provides a com-
prehensive description of the UNIX/POSIX programming interface and can be
used by programmers writing applications targeted at other UNIX systems or
intended to be portable across multiple systems.



Intended audience

This book is aimed primarily at the following audience:

programmers and software designers building applications for Linux, other
UNIX systems, or other POSIX-conformant systems;

programmers porting applications between Linux and other UNIX implemen-
tations or between Linux and other operating systems;

instructors and advanced students teaching or learning Linux or UNIX system
programming; and

system managers and “power users” wishing to gain a greater understanding of
the Linux/UNIX programming interface and of how various pieces of system
software are implemented.

I assume you have some prior programming experience, but no previous system
programming experience is required. I also assume you have a reading knowledge
of the C programming language, and know how to use the shell and common Linux
or UNIX commands. If you are new to Linux or UNIX, you will find it helpful to
read the programmer-oriented review of fundamental concepts of Linux and UNIX
systems in Chapter 2.

The standard tutorial reference for C is [Kernighan & Ritchie, 1988]. [Harbison
& Steele, 2002] goes into even more detail on C, and includes coverage of
changes introduced with the C99 standard. [van der Linden, 1994] is an alter-
native look at C that is both highly amusing and instructive. [Peek et al., 2001]
provides a good, brief introduction to using a UNIX system.

Throughout this book, indented small-font paragraphs like these are used
for asides containing rationale, implementation details, background informa-
tion, historical notes, and other topics that are ancillary to the main text.

Linux and UNIX

This book could have been purely about standard UNIX (that is, POSIX) system
programming because most features found on other UNIX implementations are
also present on Linux and vice versa. However, while writing portable applications
is a worthy goal, it is also important to describe Linux extensions to the standard
UNIX programming interface. One reason for this is the popularity of Linux.
Another is that the use of nonstandard extensions is sometimes essential, either for
performance reasons or to access functionality that is unavailable in the standard
UNIX programming interface. (All UNIX implementations provide nonstandard
extensions for these reasons.)

Therefore, while I’ve designed this book to be useful to programmers working
with all UNIX implementations, I also provide full coverage of programming fea-
tures that are specific to Linux. These features include: 

epoll, a mechanism for obtaining notification of file I/O events;

inotify, a mechanism for monitoring changes in files and directories;

capabilities, a mechanism for granting a process a subset of the powers of the
superuser; 
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extended attributes;

i-node flags;

the clone() system call;

the /proc file system; and

Linux-specific details of the implementation of file I/O, signals, timers,
threads, shared libraries, interprocess communication, and sockets.

Usage and organization

You can use this book in at least two ways:

As a tutorial introduction to the Linux/UNIX programming interface. You can
read the book linearly. Later chapters build on material presented in earlier
chapters, with forward references minimized as far as possible.

As a comprehensive reference to the Linux/UNIX programming interface. An
extensive index and frequent cross-references allow topics to be read in ran-
dom order.

I’ve grouped the chapters of this book into the following parts:

1. Background and concepts: history of UNIX, C, and Linux and overview of UNIX
standards (Chapter 1); a programmer-oriented introduction to Linux and
UNIX concepts (Chapter 2); and fundamental concepts for system program-
ming on Linux and UNIX (Chapter 3).

2. Fundamental features of the system programming interface: file I/O (Chapter 4 and
Chapter 5); processes (Chapter 6); memory allocation (Chapter 7); users and
groups (Chapter 8); process credentials (Chapter 9); time (Chapter 10); system
limits and options (Chapter 11); and retrieving system and process information
(Chapter 12).

3. More advanced features of the system programming interface: file I/O buffering
(Chapter 13); file systems (Chapter 14); file attributes (Chapter 15); extended
attributes (Chapter 16); access control lists (Chapter 17); directories and links
(Chapter 18); monitoring file events (Chapter 19); signals (Chapter 20 to Chap-
ter 22); and timers (Chapter 23).

4. Processes, programs, and threads: process creation, process termination, monitor-
ing child processes, and executing programs (Chapter 24 to Chapter 28); and
POSIX threads (Chapter 29 to Chapter 33).

5. Advanced process and program topics: process groups, sessions, and job control
(Chapter 34); process priorities and scheduling (Chapter 35); process
resources (Chapter 36); daemons (Chapter 37); writing secure privileged pro-
grams (Chapter 38); capabilities (Chapter 39); login accounting (Chapter 40);
and shared libraries (Chapter 41 and Chapter 42).

6. Interprocess communication (IPC): IPC overview (Chapter 43); pipes and FIFOs
(Chapter 44); System V IPC—message queues, semaphores, and shared mem-
ory (Chapter 45 to Chapter 48); memory mappings (Chapter 49); virtual memory
operations (Chapter 50); POSIX IPC—message queues, semaphores, and shared
memory (Chapter 51 to Chapter 54); and file locking (Chapter 55).
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7. Sockets and network programming: IPC and network programming with sockets
(Chapter 56 to Chapter 61).

8. Advanced I/O topics: terminals (Chapter 62); alternative I/O models (Chapter 63);
and pseudoterminals (Chapter 64).

Example programs

I illustrate the use of most of the interfaces described in this book with short, complete
programs, many of which are designed to allow you to easily experiment from the
command line to see just how various system calls and library functions work.
Consequently, this book contains a lot of example code—around 15,000 lines of C
source code and shell session logs.

Although reading and experimenting with the example programs is a useful
starting point, the most effective way to consolidate the concepts discussed in this
book is to write code, either modifying the example programs to try out your own
ideas or writing new programs.

All of the source code in this book is available for download from the book’s
web site. The source code distribution also includes many additional programs that
don’t appear in the book. The purpose and details of these programs are described
in comments in the source code. Makefiles are provided for building the programs,
and an accompanying README file gives further details about the programs.

The source code is freely redistributable and modifiable under the terms of the
GNU Affero General Public License (Affero GPL) version 3, a copy of which is pro-
vided in the source code distribution.

Exercises

Most chapters conclude with a set of exercises, some of which are suggestions for
various experiments using the provided example programs. Other exercises are
questions relating to concepts discussed in the chapter, and still others are suggestions
for programs you might write in order to consolidate your understanding of the
material. You’ll find solutions to selected exercises in Appendix F.

Standards and portability

Throughout this book, I’ve taken special care to consider portability issues. You’ll
find frequent references to relevant standards, especially the combined POSIX.1-2001
and Single UNIX Specification version 3 (SUSv3) standard. You’ll also find details
about changes in the recent revision of that standard, the combined POSIX.1-2008
and SUSv4 standard. (Because SUSv3 was a much larger revision, and it is the
UNIX standard that is in most widespread effect at the time of writing, discussions of
standards in the book are generally framed in terms of SUSv3, with notes on the dif-
ferences in SUSv4. However, you can assume that, except where noted, statements
about specifications in SUSv3 also hold true in SUSv4.)

For features that are not standardized, I indicate the range of differences on
other UNIX implementations. I also highlight those major features of Linux that
are implementation-specific, as well as minor differences between the implementa-
tion of system calls and library functions on Linux and other UNIX implementations.
Where a feature is not indicated as being Linux-specific, you can normally assume
that it is a standard feature that appears on most or all UNIX implementations.
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I’ve tested most of the example programs presented in this book (other than
those that exploit features that are noted as being Linux-specific) on some or all of
Solaris, FreeBSD, Mac OS X, Tru64 UNIX, and HP-UX. To improve portability to
some of these systems, the web site for this book provides alternative versions of
certain example programs with extra code that doesn’t appear in the book.

Linux kernel and C library versions

The primary focus of this book is on Linux 2.6.x, the kernel version in widest use at the
time of writing. Details for Linux 2.4 are also covered, and I’ve indicated where
features differ between Linux 2.4 and 2.6. Where new features appear in the Linux
2.6.x series, the exact kernel version number of their appearance (e.g., 2.6.34) is noted.

With respect to the C library, the main focus is on the GNU C library (glibc)
version 2. Where relevant, differences across glibc 2.x versions are noted.

As this book was heading to press, Linux kernel version 2.6.35 had just been
released, and glibc version 2.12 had been recently released. This book is current
with respect to both of these software versions. Changes that occur in the Linux
and glibc interfaces after publication of this book will be noted on the book’s
web site.

Using the programming interface from other languages

Although the example programs are written in C, you can use the interfaces described
in this book from other programming languages—for example, compiled languages
such as C++, Pascal, Modula, Ada, FORTRAN, D, and scripting languages such as
Perl, Python, and Ruby. (Java requires a different approach; see, for example,
[Rochkind, 2004].) Different techniques will be required to obtain the necessary
constant definitions and function declarations (except in the case of C++), and some
extra work may be needed to pass function arguments in the manner required by C
linkage conventions. Notwithstanding these differences, the essential concepts are
the same, and you’ll find the information in this book is applicable even if you are
working in another programming language.

About the author

I started using UNIX and C in 1987, when I spent several weeks sitting in front of an
HP Bobcat workstation with a copy of the first edition of Marc Rochkind’s Advanced
UNIX Programming and what ultimately became a very dog-eared printed copy of
the C shell manual page. My approach then was one that I still try to follow today,
and that I recommend to anyone approaching a new software technology: take the
time to read the documentation (if it exists) and write small (but increasingly large)
test programs until you become confident of your understanding of the software.
I’ve found that, in the long run, this kind of self-training more than pays for itself in
terms of saved time. Many of the programming examples in this book are constructed
in ways that encourage this learning approach.

I’ve primarily been a software engineer and designer. However, I’m also a passion-
ate teacher, and have spent several years teaching in both academic and commercial
environments. I’ve run many week-long courses teaching UNIX system programming,
and that experience informs the writing of this book.
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I’ve been using Linux for about half as long as I’ve been using UNIX, and, over
that time, my interest has increasingly centered on the boundary between the kernel
and user space: the Linux programming interface. This interest has drawn me into
a number of interrelated activities. I intermittently provide input and bug reports
for the POSIX/SUS standard; I carry out tests and design reviews of new user-space
interfaces added to the Linux kernel (and have helped find and fix many code and
design bugs in those interfaces); I’ve been a regular speaker at conferences on topics
related to interfaces and their documentation; and I’ve been invited on a number
of occasions to the annual Linux Kernel Developers Summit. The common thread
tying all of these activities together is my most visible contribution in the Linux
world: my work on the man-pages project (http://www.kernel.org/doc/man-pages/).

The man-pages project provides pages in sections 2, 3, 4, 5, and 7 of the Linux
manual pages. These are the manual pages describing the programming interfaces
provided by the Linux kernel and the GNU C library—the same topic area as this
book. I’ve been involved with man-pages for more than a decade. Since 2004, I’ve
been the project maintainer, a task that involves, in roughly equal measure, writing
documentation, reading kernel and library source code, and writing programs to
verify the details for documentation. (Documenting an interface is a great way to
find bugs in that interface.) I’ve also been the biggest contributor to man-pages—of
the approximately 900 pages in man-pages, I am the author of 140, and the coauthor
of another 125. So, even before you picked up this book, it’s quite likely you’ve
read some of my published work. I hope that you’ve found that work useful, and
that you’ll find this book even more so.
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H I S T O R Y  A N D  S T A N D A R D S

Linux is a member of the UNIX family of operating systems. In computing terms,
UNIX has a long history. The first part of this chapter provides a brief outline of
that history. We begin with a description of the origins of the UNIX system and the
C programming language, and then consider the two key currents that led to the
Linux system as it exists today: the GNU project and the development of the Linux
kernel.

One of the notable features of the UNIX system is that its development was not
controlled by a single vendor or organization. Rather, many groups, both commer-
cial and noncommercial, contributed to its evolution. This history resulted in many
innovative features being added to UNIX, but also had the negative consequence
that UNIX implementations diverged over time, so that writing applications that
worked on all UNIX implementations became increasingly difficult. This led to a
drive for standardization of UNIX implementations, which we discuss in the sec-
ond part of this chapter.

Two definitions of the term UNIX are in common use. One of these denotes
operating systems that have passed the official conformance tests for the Sin-
gle UNIX Specification and thus are officially granted the right to be branded
as “UNIX” by The Open Group (the holders of the UNIX trademark). At the
time of writing, none of the free UNIX implementations (e.g., Linux and
FreeBSD) has obtained this branding.



The other common meaning attached to the term UNIX denotes those
systems that look and behave like classical UNIX systems (i.e., the original Bell
Laboratories UNIX and its later principal offshoots, System V and BSD). By
this definition, Linux is generally considered to be a UNIX system (as are the
modern BSDs). Although we give close attention to the Single UNIX Specifica-
tion in this book, we’ll follow this second definition of UNIX, so that we’ll
often say things such as “Linux, like other UNIX implementations. . . .”

1.1 A Brief History of UNIX and C

The first UNIX implementation was developed in 1969 (the same year that Linus
Torvalds was born) by Ken Thompson at Bell Laboratories, a division of the tele-
phone corporation, AT&T. It was written in assembler for a Digital PDP-7 mini-
computer. The name UNIX was a pun on MULTICS (Multiplexed Information and
Computing Service), the name of an earlier operating system project in which AT&T
collaborated with Massachusetts Institute of Technology (MIT) and General Elec-
tric. (AT&T had by this time withdrawn from the project in frustration at its initial
failure to develop an economically useful system.) Thompson drew several ideas
for his new operating system from MULTICS, including a tree-structured file sys-
tem, a separate program for interpreting commands (the shell), and the notion of
files as unstructured streams of bytes.

In 1970, UNIX was rewritten in assembly language for a newly acquired Digital
PDP-11 minicomputer, then a new and powerful machine. Vestiges of this PDP-11
heritage can be found in various names still used on most UNIX implementations,
including Linux.

A short time later, Dennis Ritchie, one of Thompson’s colleagues at Bell Labo-
ratories and an early collaborator on UNIX, designed and implemented the C pro-
gramming language. This was an evolutionary process; C followed an earlier
interpreted language, B. B was initially implemented by Thompson and drew many
of its ideas from a still earlier programming language named BCPL. By 1973, C had
matured to a point where the UNIX kernel could be almost entirely rewritten in
the new language. UNIX thus became one of the earliest operating systems to be
written in a high-level language, a fact that made subsequent porting to other hard-
ware architectures possible.

The genesis of C explains why it, and its descendant C++, have come to be used
so widely as system programming languages today. Previous widely used languages
were designed with other purposes in mind: FORTRAN for mathematical tasks
performed by engineers and scientists; COBOL for commercial systems processing
streams of record-oriented data. C filled a hitherto empty niche, and unlike FOR-
TRAN and COBOL (which were designed by large committees), the design of C
arose from the ideas and needs of a few individuals working toward a single goal:
developing a high-level language for implementing the UNIX kernel and associated
software. Like the UNIX operating system itself, C was designed by professional
programmers for their own use. The resulting language was small, efficient, power-
ful, terse, modular, pragmatic, and coherent in its design.
2 Chapter 1



UNIX First through Sixth editions

Between 1969 and 1979, UNIX went through a number of releases, known as editions.
Essentially, these releases were snapshots of the evolving development version at
AT&T. [Salus, 1994] notes the following dates for the first six editions of UNIX:

First Edition, November 1971: By this time, UNIX was running on the PDP-11
and already had a FORTRAN compiler and versions of many programs still
used today, including ar, cat, chmod, chown, cp, dc, ed, find, ln, ls, mail, mkdir, mv,
rm, sh, su, and who.

Second Edition, June 1972: By this time, UNIX was installed on ten machines
within AT&T.

Third Edition, February 1973: This edition included a C compiler and the first
implementation of pipes.

Fourth Edition, November 1973: This was the first version to be almost totally
written in C.

Fifth Edition, June 1974: By this time, UNIX was installed on more than 50 systems.

Sixth Edition, May 1975: This was the first edition to be widely used outside
AT&T.

Over the period of these releases, the use and reputation of UNIX began to spread,
first within AT&T, and then beyond. An important contribution to this growing
awareness was the publication of a paper on UNIX in the widely read journal
Communications of the ACM ([Ritchie & Thompson, 1974]).

At this time, AT&T held a government-sanctioned monopoly on the US tele-
phone system. The terms of AT&T’s agreement with the US government prevented
it from selling software, which meant that it could not sell UNIX as a product.
Instead, beginning in 1974 with Fifth Edition, and especially with Sixth Edition,
AT&T licensed UNIX for use in universities for a nominal distribution fee. The
university distributions included documentation and the kernel source code (about
10,000 lines at the time).

AT&T’s release of UNIX into universities greatly contributed to the popularity
and use of the operating system, and by 1977, UNIX was running at some 500 sites,
including 125 universities in the United States and several other countries. UNIX
offered universities an interactive multiuser operating system that was cheap yet
powerful, at a time when commercial operating systems were very expensive. It also
gave university computer science departments the source code of a real operating
system, which they could modify and offer to their students to learn from and
experiment with. Some of these students, armed with UNIX knowledge, became
UNIX evangelists. Others went on to found or join the multitude of startup compa-
nies selling inexpensive computer workstations running the easily ported UNIX
operating system.

The birth of BSD and System V

January 1979 saw the release of Seventh Edition UNIX, which improved the reli-
ability of the system and provided an enhanced file system. This release also con-
tained a number of new tools, including awk, make, sed, tar, uucp, the Bourne shell,
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and a FORTRAN 77 compiler. The release of Seventh Edition is also significant
because, from this point, UNIX diverged into two important variants: BSD and Sys-
tem V, whose origins we now briefly describe.

Thompson spent the 1975/1976 academic year as a visiting professor at the
University of California at Berkeley, the university from which he had graduated.
There, he worked with several graduate students, adding many new features to
UNIX. (One of these students, Bill Joy, subsequently went on to cofound Sun
Microsystems, an early entry in the UNIX workstation market.) Over time, many
new tools and features were developed at Berkeley, including the C shell, the vi edi-
tor, an improved file system (the Berkeley Fast File System), sendmail, a Pascal com-
piler, and virtual memory management on the new Digital VAX architecture.

Under the name Berkeley Software Distribution (BSD), this version of UNIX,
including its source code, came to be widely distributed. The first full distribution
was 3BSD in December 1979. (Earlier releases from Berkeley—BSD and 2BSD—
were distributions of new tools produced at Berkeley, rather than complete UNIX
distributions.)

In 1983, the Computer Systems Research Group at the University of California at
Berkeley released 4.2BSD. This release was significant because it contained a com-
plete TCP/IP implementation, including the sockets application programming
interface (API) and a variety of networking tools. 4.2BSD and its predecessor
4.1BSD became widely distributed within universities around the world. They also
formed the basis for SunOS (first released in 1983), the UNIX variant sold by Sun.
Other significant BSD releases were 4.3BSD, in 1986, and the final release, 4.4BSD,
in 1993.

The very first ports of the UNIX system to hardware other than the PDP-11
occurred during 1977 and 1978, when Dennis Ritchie and Steve Johnson
ported it to the Interdata 8/32 and Richard Miller at the University of Wollon-
gong in Australia simultaneously ported it to the Interdata 7/32. The Berkeley
Digital VAX port was based on an earlier (1978) port by John Reiser and Tom
London. Known as 32V, this port was essentially the same as Seventh Edition
for the PDP-11, except for the larger address space and wider data types.

In the meantime, US antitrust legislation forced the breakup of AT&T (legal
maneuvers began in the mid-1970s, and the breakup became effective in 1982),
with the consequence that, since it no longer held a monopoly on the telephone
system, the company was permitted to market UNIX. This resulted in the release of
System III (three) in 1981. System III was produced by AT&T’s UNIX Support
Group (USG), which employed many hundreds of developers to enhance UNIX
and develop UNIX applications (notably, document preparation packages and soft-
ware development tools). The first release of System V (five) followed in 1983, and
a series of releases led to the definitive System V Release 4 (SVR4) in 1989, by
which time System V had incorporated many features from BSD, including net-
working facilities. System V was licensed to a variety of commercial vendors, who
used it as the basis of their UNIX implementations.

Thus, in addition to the various BSD distributions spreading through aca-
demia, by the late 1980s, UNIX was available in a range of commercial implementa-
tions on various hardware. These implementations included Sun’s SunOS and later
Solaris, Digital’s Ultrix and OSF/1 (nowadays, after a series of renamings and
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acquisitions, HP Tru64 UNIX), IBM’s AIX, Hewlett-Packard’s (HP’s) HP-UX,
NeXT’s NeXTStep, A/UX for the Apple Macintosh, and Microsoft and SCO’s
XENIX for the Intel x86-32 architecture. (Throughout this book, the Linux imple-
mentation for x86-32 is referred to as Linux/x86-32.) This situation was in sharp
contrast to the typical proprietary hardware/operating system scenarios of the
time, where each vendor produced one, or at most a few, proprietary computer
chip architectures, on which they sold their own proprietary operating system(s).
The proprietary nature of most vendor systems meant that purchasers were locked
into one vendor. Switching to another proprietary operating system and hardware
platform could become very expensive because of the need to port existing applica-
tions and retrain staff. This factor, coupled with the appearance of cheap single-
user UNIX workstations from a variety of vendors, made the portable UNIX system
increasingly attractive from a commercial perspective.

1.2 A Brief History of Linux

The term Linux is commonly used to refer to the entire UNIX-like operating sys-
tem of which the Linux kernel forms a part. However, this is something of a misno-
mer, since many of the key components contained within a typical commercial
Linux distribution actually originate from a project that predates the inception
of Linux by several years.

1.2.1 The GNU Project
In 1984, Richard Stallman, an exceptionally talented programmer who had been
working at MIT, set to work on creating a “free” UNIX implementation. Stallman’s
outlook was a moral one, and free was defined in a legal sense, rather than a finan-
cial sense (see http://www.gnu.org/philosophy/free-sw.html). Nevertheless, the legal
freedom that Stallman described carried with it the implicit consequence that soft-
ware such as operating systems would be available at no or very low cost.

Stallman militated against the legal restrictions placed on proprietary operat-
ing systems by computer vendors. These restrictions meant that purchasers of com-
puter software in general could not see the source code of the software they were
buying, and they certainly could not copy, change, or redistribute it. He pointed
out that such a framework encouraged programmers to compete with each other
and hoard their work, rather than to cooperate and share it.

In response, Stallman started the GNU project (a recursively defined acronym
for “GNU’s not UNIX”) to develop an entire, freely available, UNIX-like system,
consisting of a kernel and all associated software packages, and encouraged others
to join him. In 1985, Stallman founded the Free Software Foundation (FSF), a non-
profit organization to support the GNU project as well as the development of free
software in general.

When the GNU project was started, BSD was not free in the sense that Stall-
man meant. Use of BSD still required a license from AT&T, and users could
not freely modify and redistribute the AT&T code that formed part of BSD.

One of the important results of the GNU project was the development of the GNU
General Public License (GPL), the legal embodiment of Stallman’s notion of free
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software. Much of the software in a Linux distribution, including the kernel, is
licensed under the GPL or one of a number of similar licenses. Software licensed
under the GPL must be made available in source code form, and must be freely
redistributable under the terms of the GPL. Modifications to GPL-licensed soft-
ware are freely permitted, but any distribution of such modified software must also
be under the terms of the GPL. If the modified software is distributed in execut-
able form, the author must also allow any recipients the option of obtaining the
modified source for no more than the cost of distribution. The first version of the
GPL was released in 1989. The current version of the license, version 3, was
released in 2007. Version 2 of the license, released in 1991, remains in wide use,
and is the license used for the Linux kernel. (Discussions of various free software
licenses can be found in [St. Laurent, 2004] and [Rosen, 2005].)

The GNU project did not initially produce a working UNIX kernel, but did
produce a wide range of other programs. Since these programs were designed to
run on a UNIX-like operating system, they could be, and were, used on existing
UNIX implementations and, in some cases, even ported to other operating sys-
tems. Among the more well-known programs produced by the GNU project are the
Emacs text editor, GCC (originally the GNU C compiler, but now renamed the
GNU compiler collection, comprising compilers for C, C++, and other languages),
the bash shell, and glibc (the GNU C library).

By the early 1990s, the GNU project had produced a system that was virtually
complete, except for one important component: a working UNIX kernel. The GNU
project had started work on an ambitious kernel design, known as the GNU/HURD,
based on the Mach microkernel. However, the HURD was far from being in a form
that could be released. (At the time of writing, work continues on the HURD,
which currently runs only on the x86-32 architecture.)

Because a significant part of the program code that constitutes what is com-
monly known as the Linux system actually derives from the GNU project, Stall-
man prefers to use the term GNU/Linux to refer to the entire system. The
question of naming (Linux versus GNU/Linux) is the source of some debate
in the free software community. Since this book is primarily concerned with
the API of the Linux kernel, we’ll generally use the term Linux.

The stage was set. All that was required was a working kernel to go with the other-
wise complete UNIX system already produced by the GNU project.

1.2.2 The Linux Kernel
In 1991, Linus Torvalds, a Finnish student at the University of Helsinki, was
inspired to write an operating system for his Intel 80386 PC. In the course of his
studies, Torvalds had come into contact with Minix, a small UNIX-like operating
system kernel developed in the mid-1980s by Andrew Tanenbaum, a university pro-
fessor in Holland. Tanenbaum made Minix, complete with source code, available
as a tool for teaching operating system design in university courses. The Minix ker-
nel could be built and run on a 386 system. However, since its primary purpose was
as a teaching tool, it was designed to be largely independent of the hardware archi-
tecture, and it did not take full advantage of the 386 processor’s capabilities.
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Torvalds therefore started on a project to create an efficient, full-featured
UNIX kernel to run on the 386. Over a few months, Torvalds developed a basic
kernel that allowed him to compile and run various GNU programs. Then, on
October 5, 1991, Torvalds requested the help of other programmers, making the
following now much-quoted announcement of version 0.02 of his kernel in the
comp.os.minix Usenet newsgroup:

Do you pine for the nice days of Minix-1.1, when men were men
and wrote their own device drivers? Are you without a nice
project and just dying to cut your teeth on a OS you can try to
modify for your needs? Are you finding it frustrating when
everything works on Minix? No more all-nighters to get a nifty
program working? Then this post might be just for you. As I
mentioned a month ago, I’m working on a free version of a
Minix-look-alike for AT-386 computers. It has finally reached the
stage where it’s even usable (though may not be depending on
what you want), and I am willing to put out the sources for wider
distribution. It is just version 0.02 . . . but I’ve successfully run
bash, gcc, gnu-make, gnu-sed, compress, etc. under it.

Following a time-honored tradition of giving UNIX clones names ending with the
letter X, the kernel was (eventually) baptized Linux. Initially, Linux was placed
under a more restrictive license, but Torvalds soon made it available under the
GNU GPL.

The call for support proved effective. Other programmers joined Torvalds in
the development of Linux, adding various features, such as an improved file
system, networking support, device drivers, and multiprocessor support. By
March 1994, the developers were able to release version 1.0. Linux 1.2 appeared
in March 1995, Linux 2.0 in June 1996, Linux 2.2 in January 1999, and Linux 2.4 in
January 2001. Work on the 2.5 development kernel began in November 2001, and
led to the release of Linux 2.6 in December 2003.

An aside: the BSDs

It is worth noting that another free UNIX was already available for the x86-32 dur-
ing the early 1990s. Bill and Lynne Jolitz had developed a port of the already
mature BSD system for the x86-32, known as 386/BSD. This port was based on the
BSD Net/2 release ( June 1991), a version of the 4.3BSD source code in which all
remaining proprietary AT&T source code had either been replaced or, in the case
of six source code files that could not be trivially rewritten, removed. The Jolitzes
ported the Net/2 code to x86-32, rewrote the missing source files, and made the
first release (version 0.0) of 386/BSD in February 1992.

After an initial wave of success and popularity, work on 386/BSD lagged
for various reasons. In the face of an increasingly large backlog of patches, two
alternative development groups soon appeared, creating their own releases based
on 386/BSD: NetBSD, which emphasizes portability to a wide range of hardware
platforms, and FreeBSD, which emphasizes performance and is the most wide-
spread of the modern BSDs. The first NetBSD release was 0.8, in April 1993. The
first FreeBSD CD-ROM (version 1.0) appeared in December 1993. Another BSD,
OpenBSD, appeared in 1996 (as an initial version numbered 2.0) after forking
from the NetBSD project. OpenBSD emphasizes security. In mid-2003, a new BSD,
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DragonFly BSD, appeared after a split from FreeBSD 4.x. DragonFly BSD takes a
different approach from FreeBSD 5.x with respect to design for symmetric multi-
processing (SMP) architectures.

Probably no discussion of the BSDs in the early 1990s is complete without men-
tion of the lawsuits between UNIX System Laboratories (USL, the AT&T subsidiary
spun off to develop and market UNIX) and Berkeley. In early 1992, the company
Berkeley Software Design, Incorporated (BSDi, nowadays part of Wind River)
began distributing a commercially supported BSD UNIX, BSD/OS, based on the
Net/2 release and the Jolitzes’ 386/BSD additions. BSDi distributed binaries and
source code for $995 (US dollars), and advised potential customers to use their
telephone number 1-800-ITS-UNIX.

In April 1992, USL filed suit against BSDi in an attempt to prevent BSDi from
selling a product that USL claimed was still encumbered by proprietary USL source
code and trade secrets. USL also demanded that BSDi cease using the deceptive
telephone number. The suit was eventually widened to include a claim against the
University of California. The court ultimately dismissed all but two of USL’s claims,
and a countersuit by the University of California against USL ensued, in which the
university claimed that USL had not given due credit for the use of BSD code in
System V.

While these suits were pending, USL was acquired by Novell, whose CEO, the
late Ray Noorda, stated publicly that he would prefer to compete in the market-
place rather than in the court. Settlement was finally reached in January 1994, with
the University of California being required to remove 3 of the 18,000 files in the
Net/2 release, make some minor changes to a few other files, and add USL copy-
right notices to around 70 other files, which the university nevertheless could
continue to distribute freely. This modified system was released as 4.4BSD-Lite
in June 1994. (The last release from the university was 4.4BSD-Lite, Release 2 in
June 1995.) At this point, the terms of the legal settlement required BSDi,
FreeBSD, and NetBSD to replace their Net/2 base with the modified 4.4BSD-Lite
source code. As [McKusick et al., 1996] notes, although this caused some delay in
the development of the BSD derivatives, it also had the positive effect that these
systems resynchronized with the three years of development work done by the uni-
versity’s Computer Systems Research Group since the release of Net/2.

Linux kernel version numbers

Like most free software projects, Linux follows a release-early, release-often model,
so that new kernel revisions appear frequently (sometimes even daily). As the
Linux user base increased, the release model was adapted to decrease disruption to
existing users. Specifically, following the release of Linux 1.0, the kernel developers
adopted a kernel version numbering scheme with each release numbered x.y.z: x
representing a major version, y a minor version within that major version, and z a
revision of the minor version (minor improvements and bug fixes).

Under this model, two kernel versions were always under development: a stable
branch for use on production systems, which had an even minor version number,
and a more volatile development branch, which carried the next higher odd minor
version number. The theory—not always followed strictly in practice—was that all
new features should be added in the current development kernel series, while new
revisions in the stable kernel series should be restricted to minor improvements
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and bug fixes. When the current development branch was deemed suitable for
release, it became the new stable branch and was assigned an even minor version
number. For example, the 2.3.z development kernel branch resulted in the 2.4
stable kernel branch.

Following the 2.6 kernel release, the development model was changed. The
main motivation for this change arose from problems and frustrations caused by
the long intervals between stable kernel releases. (Nearly three years passed
between the release of Linux 2.4.0 and 2.6.0.) There have periodically been discus-
sions about fine-tuning this model, but the essential details have remained as follows:

There is no longer a separation between stable and development kernels. Each
new 2.6.z release can contain new features, and goes through a life cycle that
begins with the addition of new features, which are then stabilized over the
course of a number of candidate release versions. When a candidate version is
deemed sufficiently stable, it is released as kernel 2.6.z. Release cycles are typi-
cally about three months long.

Sometimes, a stable 2.6.z release may require minor patches to fix bugs or secu-
rity problems. If these fixes have a sufficiently high priority, and the patches
are deemed simple enough to be “obviously” correct, then, rather than waiting
for the next 2.6.z release, they are applied to create a release with a number of
the form 2.6.z.r, where r is a sequential number for a minor revision of this
2.6.z kernel.

Additional responsibility is shifted onto distribution vendors to ensure the sta-
bility of the kernel provided with a distribution.

Later chapters will sometimes note the kernel version in which a particular API
change (i.e., new or modified system call) occurred. Although, prior to the 2.6.z
series, most kernel changes occurred in the odd-numbered development branches,
we’ll generally refer to the following stable kernel version in which the change
appeared, since most application developers would normally be using a stable ker-
nel, rather than one of the development kernels. In many cases, the manual pages
note the precise development kernel in which a particular feature appeared or
changed.

For changes that appear in the 2.6.z kernel series, we note the precise kernel
version. When we say that a feature is new in kernel 2.6, without a z revision num-
ber, we mean a feature that was implemented in the 2.5 development kernel series
and first appeared in the stable kernel at version 2.6.0.

At the time of writing, the 2.4 stable Linux kernel is still supported by main-
tainers who incorporate essential patches and bug fixes, and periodically
release new revisions. This allows installed systems to continue to use 2.4 ker-
nels, rather than being forced to upgrade to a new kernel series (which may
entail significant work in some cases).

Ports to other hardware architectures

During the initial development of Linux, efficient implementation on the Intel
80386 was the primary goal, rather than portability to other processor architec-
tures. However, with the increasing popularity of Linux, ports to other processor
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architectures began to appear, starting with an early port to the Digital Alpha chip.
The list of hardware architectures to which Linux has been ported continues to grow
and includes x86-64, Motorola/IBM PowerPC and PowerPC64, Sun SPARC and
SPARC64 (UltraSPARC), MIPS, ARM (Acorn), IBM zSeries (formerly System/390),
Intel IA-64 (Itanium; see [Mosberger & Eranian, 2002]), Hitachi SuperH, HP
PA-RISC, and Motorola 68000.

Linux distributions

Precisely speaking, the term Linux refers just to the kernel developed by Linus Torvalds
and others. However, the term Linux is commonly used to mean the kernel, plus a
wide range of other software (tools and libraries) that together make a complete
operating system. In the very early days of Linux, the user was required to assemble
all of this software, create a file system, and correctly place and configure all of the
software on that file system. This demanded considerable time and expertise. As a
result, a market opened for Linux distributors, who created packages (distributions)
to automate most of the installation process, creating a file system and installing
the kernel and other required software.

The earliest distributions appeared in 1992, and included MCC Interim Linux
(Manchester Computing Centre, UK), TAMU (Texas A&M University), and SLS
(SoftLanding Linux System). The oldest surviving commercial distribution, Slackware,
appeared in 1993. The noncommercial Debian distribution appeared at around
the same time, and SUSE and Red Hat soon followed. The currently very popular
Ubuntu distribution first appeared in 2004. Nowadays, many distribution compa-
nies also employ programmers who actively contribute to existing free software
projects or initiate new projects.

1.3 Standardization

By the late 1980s, the wide variety of available UNIX implementations also had its
drawbacks. Some UNIX implementations were based on BSD, others were based
on System V, and some drew features from both variants. Furthermore, each com-
mercial vendor had added extra features to its own implementation. The conse-
quence was that moving software and people from one UNIX implementation to
another became steadily more difficult. This situation created strong pressure for
standardization of the C programming language and the UNIX system, so that
applications could more easily be ported from one system to another. We now look
at the resulting standards.

1.3.1 The C Programming Language
By the early 1980s, C had been in existence for ten years, and was implemented on
a wide variety of UNIX systems and on other operating systems. Minor differences
had arisen between the various implementations, in part because certain aspects of
how the language should function were not detailed in the existing de facto stan-
dard for C, Kernighan and Ritchie’s 1978 book, The C Programming Language. (The
older C syntax described in that book is sometimes called traditional C or K&R C.)
Furthermore, the appearance of C++ in 1985 highlighted certain improvements
and additions that could be made to C without breaking existing programs, notably
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function prototypes, structure assignment, type qualifiers (const and volatile), enu-
meration types, and the void keyword.

These factors created a drive for C standardization that culminated in 1989
with the approval of the American National Standards Institute (ANSI) C standard
(X3.159-1989), which was subsequently adopted in 1990 as an International Stan-
dards Organization (ISO) standard (ISO/IEC 9899:1990). As well as defining the
syntax and semantics of C, this standard described the operation of the standard C
library, which includes the stdio functions, string-handling functions, math func-
tions, various header files, and so on. This version of C is usually known as C89 or
(less commonly) ISO C90, and is fully described in the second (1988) edition of Ker-
nighan and Ritchie’s The C Programming Language.

A revision of the C standard was adopted by ISO in 1999 (ISO/IEC 9899:1999;
see http://www.open-std.org/jtc1/sc22/wg14/www/standards). This standard is usually
referred to as C99, and includes a range of changes to the language and its stan-
dard library. These changes include the addition of long long and Boolean data
types, C++-style (//) comments, restricted pointers, and variable-length arrays. (At
the time of writing, work is in progress on a further revision of the C standard,
informally named C1X. The new standard is expected to be ratified in 2011.)

The C standards are independent of the details of any operating system; that is,
they are not tied to the UNIX system. This means that C programs written using
only the standard C library should be portable to any computer and operating sys-
tem providing a C implementation.

Historically, C89 was often called ANSI C, and this term is sometimes still used
with that meaning. For example, gcc employs that meaning; its –ansi qualifier
means “support all ISO C90 programs.” However, we avoid this term because
it is now somewhat ambiguous. Since the ANSI committee adopted the C99
revision, properly speaking, ANSI C is now C99.

1.3.2 The First POSIX Standards
The term POSIX (an abbreviation of Portable Operating System Interface) refers to a
group of standards developed under the auspices of the Institute of Electrical and
Electronic Engineers (IEEE), specifically its Portable Application Standards Com-
mittee (PASC, http://www.pasc.org/). The goal of the PASC standards is to promote
application portability at the source code level.

The name POSIX was suggested by Richard Stallman. The final X appears
because the names of most UNIX variants end in X. The standard notes that
the name should be pronounced “pahz-icks,” like “positive.”

The most interesting of the POSIX standards for our purposes are the first POSIX
standard, referred to as POSIX.1 (or, more fully, POSIX 1003.1), and the subse-
quent POSIX.2 standard.

POSIX.1 and POSIX.2

POSIX.1 became an IEEE standard in 1988 and, with minor revisions, was adopted
as an ISO standard in 1990 (ISO/IEC 9945-1:1990). (The original POSIX standards
are not available online, but can be purchased from the IEEE at http://www.ieee.org/.)
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POSIX.1 was initially based on an earlier (1984) unofficial standard produced
by an association of UNIX vendors called /usr/group.

POSIX.1 documents an API for a set of services that should be made available to a
program by a conforming operating system. An operating system that does this can
be certified as POSIX.1 conformant.

POSIX.1 is based on the UNIX system call and the C library function API, but
it doesn’t require any particular implementation to be associated with this inter-
face. This means that the interface can be implemented by any operating system,
not specifically a UNIX operating system. In fact, some vendors have added APIs to
their proprietary operating systems that make them POSIX.1 conformant, while at
the same time leaving the underlying operating system largely unchanged.

A number of extensions to the original POSIX.1 standard were also important.
IEEE POSIX 1003.1b (POSIX.1b, formerly called POSIX.4 or POSIX 1003.4), rati-
fied in 1993, contains a range of realtime extensions to the base POSIX standard.
IEEE POSIX 1003.1c (POSIX.1c), ratified in 1995, is the definition of POSIX
threads. In 1996, a revised version of the POSIX.1 standard (ISO/IEC 9945-1:1996)
was produced, leaving the core text unchanged, but incorporating the realtime and
threads extensions. IEEE POSIX 1003.1g (POSIX.1g) defined the networking APIs,
including sockets. IEEE POSIX 1003.1d (POSIX.1d), ratified in 1999, and POSIX.1j,
ratified in 2000, defined additional realtime extensions to the POSIX base standard.

The POSIX.1b realtime extensions include file synchronization; asynchronous
I/O; process scheduling; high-precision clocks and timers; and interprocess
communication using semaphores, shared memory, and message queues. The
prefix POSIX is often applied to the three interprocess communication meth-
ods to distinguish them from the similar, but older, System V semaphores,
shared memory, and message queues.

A related standard, POSIX.2 (1992, ISO/IEC 9945-2:1993), standardized the
shell and various UNIX utilities, including the command-line interface of the C
compiler.

FIPS 151-1 and FIPS 151-2

FIPS is an abbreviation for Federal Information Processing Standard, the name of
a set of standards specified by the US government for the purchase of its computer
systems. In 1989, FIPS 151-1 was published. This standard was based on the 1988
IEEE POSIX.1 standard and the draft ANSI C standard. The main difference
between FIPS 151-1 and POSIX.1 (1988) was that the FIPS standard required some
features that POSIX.1 left as optional. Because the US government is a major pur-
chaser of computer systems, most computer vendors ensured that their UNIX sys-
tems conformed to the FIPS 151-1 version of POSIX.1.

FIPS 151-2 aligned with the 1990 ISO edition of POSIX.1, but was other-
wise unchanged. The now outdated FIPS 151-2 was withdrawn as a standard in
February 2000.
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1.3.3 X/Open Company and The Open Group
X/Open Company was a consortium formed by an international group of com-
puter vendors to adopt and adapt existing standards in order to produce a compre-
hensive, consistent set of open systems standards. It produced the X/Open
Portability Guide, a series of portability guides based on the POSIX standards. The
first important release of this guide was Issue 3 (XPG3) in 1989, followed by XPG4
in 1992. XPG4 was revised in 1994, which resulted in XPG4 version 2, a standard
that also incorporated important parts of AT&T’s System V Interface Definition
Issue 3, described in Section 1.3.7. This revision was also known as Spec 1170, with
1170 referring to the number of interfaces—functions, header files, and commands—
defined by the standard.

When Novell, which acquired the UNIX systems business from AT&T in early
1993, later divested itself of that business, it transferred the rights to the UNIX
trademark to X/Open. (The plan to make this transfer was announced in 1993, but
legal requirements delayed the transfer until early 1994.) XPG4 version 2 was sub-
sequently repackaged as the Single UNIX Specification (SUS, or sometimes SUSv1),
and is also known as UNIX 95. This repackaging included XPG4 version 2, the
X/Open Curses Issue 4 version 2 specification, and the X/Open Networking Ser-
vices (XNS) Issue 4 specification. Version 2 of the Single UNIX Specification
(SUSv2, http://www.unix.org/version2/online.html) appeared in 1997, and UNIX
implementations certified against this specification can call themselves UNIX 98.
(This standard is occasionally also referred to as XPG5.)

In 1996, X/Open merged with the Open Software Foundation (OSF) to form The
Open Group. Nearly every company or organization involved with the UNIX system
is now a member of The Open Group, which continues to develop API standards.

OSF was one of two vendor consortia formed during the UNIX wars of the late
1980s. Among others, OSF included Digital, IBM, HP, Apollo, Bull, Nixdorf,
and Siemens. OSF was formed primarily in response to the threat created by a
business alliance between AT&T (the originators of UNIX) and Sun (the most
powerful player in the UNIX workstation market). Consequently, AT&T, Sun,
and other companies formed the rival UNIX International consortium.

1.3.4 SUSv3 and POSIX.1-2001
Beginning in 1999, the IEEE, The Open Group, and the ISO/IEC Joint Technical
Committee 1 collaborated in the Austin Common Standards Revision Group (CSRG,
http://www.opengroup.org/austin/) with the aim of revising and consolidating the
POSIX standards and the Single UNIX Specification. (The Austin Group is so
named because its inaugural meeting was in Austin, Texas in September 1998.)
This resulted in the ratification of POSIX 1003.1-2001, sometimes just called
POSIX.1-2001, in December 2001 (subsequently approved as an ISO standard,
ISO/IEC 9945:2002).

POSIX 1003.1-2001 replaces SUSv2, POSIX.1, POSIX.2, and a raft of other ear-
lier POSIX standards. This standard is also known as the Single UNIX Specification
Version 3, and we’ll generally refer to it in the remainder of this book as SUSv3.
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The SUSv3 base specifications consists of around 3700 pages, divided into the
following four parts:

Base Definitions (XBD): This part contains definitions, terms, concepts, and
specifications of the contents of header files. A total of 84 header file specifica-
tions are provided.

System Interfaces (XSH): This part begins with various useful background infor-
mation. Its bulk consists of the specification of various functions (which are
implemented as either system calls or library functions on specific UNIX imple-
mentations). A total of 1123 system interfaces are included in this part.

Shell and Utilities (XCU): This specifies the operation of the shell and various
UNIX commands. A total of 160 utilities are specified in this part.

Rationale (XRAT): This part includes informative text and justifications relat-
ing to the earlier parts.

In addition, SUSv3 includes the X/Open CURSES Issue 4 Version 2 (XCURSES) spec-
ification, which specifies 372 functions and 3 header files for the curses screen-
handling API.

In all, 1742 interfaces are specified in SUSv3. By contrast, POSIX.1-1990 (with
FIPS 151-2) specified 199 interfaces, and POSIX.2-1992 specified 130 utilities.

SUSv3 is available online at http://www.unix.org/version3/online.html. UNIX
implementations certified against SUSv3 can call themselves UNIX 03.

There have been various minor fixes and improvements for problems discov-
ered since the ratification of the original SUSv3 text. These have resulted in the
appearance of Technical Corrigendum Number 1, whose improvements were incorpo-
rated in a 2003 revision of SUSv3, and Technical Corrigendum Number 2, whose
improvements were incorporated in a 2004 revision.

POSIX conformance, XSI conformance, and the XSI extension

Historically, the SUS (and XPG) standards deferred to the corresponding POSIX
standards and were structured as functional supersets of POSIX. As well as specify-
ing additional interfaces, the SUS standards made mandatory many of the inter-
faces and behaviors that were deemed optional in POSIX.

This distinction survives somewhat more subtly in POSIX 1003.1-2001, which
is both an IEEE standard and an Open Group Technical Standard (i.e., as noted
already, it is a consolidation of earlier POSIX and SUS standards). This document
defines two levels of conformance:

POSIX conformance: This defines a baseline of interfaces that a conforming
implementation must provide. It permits the implementation to provide other
optional interfaces.

X/Open System Interface (XSI) conformance: To be XSI conformant, an implemen-
tation must meet all of the requirements of POSIX conformance and also must
provide a number of interfaces and behaviors that are only optionally required
for POSIX conformance. An implementation must reach this level of conform-
ance in order to obtain the UNIX 03 branding from The Open Group.
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The additional interfaces and behaviors required for XSI conformance are collec-
tively known as the XSI extension. They include support for features such as threads,
mmap() and munmap(), the dlopen API, resource limits, pseudoterminals, System V
IPC, the syslog API, poll(), and login accounting.

In later chapters, when we talk about SUSv3 conformance, we mean XSI
conformance.

Because POSIX and SUSv3 are now part of the same document, the additional
interfaces and the selection of mandatory options required for SUSv3 are indi-
cated via the use of shading and margin markings within the document text.

Unspecified and weakly specified

Occasionally, we refer to an interface as being “unspecified” or “weakly specified”
within SUSv3.

By an unspecified interface, we mean one that is not defined at all in the formal
standard, although in a few cases there are background notes or rationale text that
mention the interface.

Saying that an interface is weakly specified is shorthand for saying that, while the
interface is included in the standard, important details are left unspecified (com-
monly because the committee members could not reach an agreement due to dif-
ferences in existing implementations).

When using interfaces that are unspecified or weakly specified, we have few
guarantees when porting applications to other UNIX implementations. Neverthe-
less, in a few cases, such an interface is quite consistent across implementations,
and where this is so, we generally note it as such.

LEGACY features

Sometimes, we note that SUSv3 marks a specified feature as LEGACY. This term
denotes a feature that is retained for compatibility with older applications, but
whose limitations mean that its use should be avoided in new applications. In many
cases, some other API exists that provides equivalent functionality.

1.3.5 SUSv4 and POSIX.1-2008
In 2008, the Austin group completed a revision of the combined POSIX.1 and
Single UNIX Specification. As with the preceding version of the standard, it con-
sists of a base specification coupled with an XSI extension. We’ll refer to this revi-
sion as SUSv4.

The changes in SUSv4 are less wide-ranging than those that occurred for
SUSv3. The most significant changes are as follows:

SUSv4 adds new specifications for a range of functions. Among the newly spec-
ified functions that we mention in this book are dirfd(), fdopendir(), fexecve(),
futimens(), mkdtemp(), psignal(), strsignal(), and utimensat(). Another range of
new file-related functions (e.g., openat(), described in Section 18.11) are ana-
logs of existing functions (e.g., open()), but differ in that they interpret relative
pathnames with respect to the directory referred to by an open file descriptor,
rather than relative to the process’s current working directory.
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Some functions specified as options in SUSv3 become a mandatory part of the
base standard in SUSv4. For example, a number of functions that were part of
the XSI extension in SUSv3 become part of the base standard in SUSv4.
Among the functions that become mandatory in SUSv4 are those in the dlopen
API (Section 42.1), the realtime signals API (Section 22.8), the POSIX sema-
phore API (Chapter 53), and the POSIX timers API (Section 23.6).

Some functions in SUSv3 are marked as obsolete in SUSv4. These include
asctime(), ctime(), ftw(), gettimeofday(), getitimer(), setitimer(), and siginterrupt().

Specifications of some functions that were marked as obsolete in SUSv3 are
removed in SUSv4. These functions include gethostbyname(), gethostbyaddr(), and
vfork().

Various details of existing specifications in SUSv3 are changed in SUSv4. For
example, various functions are added to the list of functions that are required
to be async-signal-safe (Table 21-1 on page 426).

In the remainder of this book, we note changes in SUSv4 where they are relevant to
the topic being discussed.

1.3.6 UNIX Standards Timeline
Figure 1-1 summarizes the relationships between the various standards described
in the preceding sections, and places the standards in chronological order. In this
diagram, the solid lines indicate direct descent between standards, and the dashed
arrows indicate cases where one standard influenced another standard, was incor-
porated as part of another standard, or simply deferred to another standard.

The situation with networking standards is somewhat complex. Standardiza-
tion efforts in this area began in the late 1980s with the formation of the POSIX
1003.12 committee to standardize the sockets API, the X/Open Transport Inter-
face (XTI) API (an alternative network programming API based on System V’s
Transport Layer Interface), and various associated APIs. The gestation of this stan-
dard occurred over several years, during which time POSIX 1003.12 was renamed
POSIX 1003.1g. It was ratified in 2000.

In parallel with the development of POSIX 1003.1g, X/Open was also develop-
ing its X/Open Networking Specification (XNS). The first version of this specifica-
tion, XNS Issue 4, was part of the first version of the Single UNIX Specification. It
was succeeded by XNS Issue 5, which formed part of SUSv2. XNS Issue 5 was essen-
tially the same as the then current (6.6) draft of POSIX.1g. This was followed by
XNS Issue 5.2, which differed from XNS Issue 5 and the ratified POSIX.1g stan-
dard in marking the XTI API as obsolete and in including coverage of Internet Pro-
tocol version 6 (IPv6), which was being designed in the mid-1990s). XNS Issue 5.2
formed the basis for the networking material included in SUSv3, and is thus now
superseded. For similar reasons, POSIX.1g was withdrawn as a standard soon after
it was ratified.
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Figure 1-1: Relationships between various UNIX and C standards
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BSD release (4.4BSD) and AT&T’s System V Release 4 (SVR4). The latter imple-
mentation standard was formalized by AT&T’s publication of the System V Inter-
face Definition (SVID). In 1989, AT&T published Issue 3 of the SVID, which
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defined the interface that a UNIX implementation must provide in order to be able
to call itself System V Release 4. (The SVID is available online at http://www.sco.com/
developers/devspecs/.)

Because the behavior of some system calls and library functions varies between
SVR4 and BSD, many UNIX implementations provide compatibility libraries
and conditional-compilation facilities that emulate the behavior of whichever
UNIX flavor is not used as the base for that particular implementation (see
Section 3.6.1). This eases the burden of porting an application from another
UNIX implementation.

1.3.8 Linux, Standards, and the Linux Standard Base
As a general goal, Linux (i.e., kernel, glibc, and tool) development aims to conform
to the various UNIX standards, especially POSIX and the Single UNIX Specifica-
tion. However, at the time of writing, no Linux distributions are branded as
“UNIX” by The Open Group. The problems are time and expense. Each vendor
distribution would need to undergo conformance testing to obtain this branding,
and it would need to repeat this testing with each new distribution release. Never-
theless, it is the de facto near-conformance to various standards that has enabled
Linux to be so successful in the UNIX market.

With most commercial UNIX implementations, the same company both devel-
ops and distributes the operating system. With Linux, things are different, in that
implementation is separate from distribution, and multiple organizations—both
commercial and noncommercial—handle Linux distribution.

Linus Torvalds doesn’t contribute to or endorse a particular Linux distribu-
tion. However, in terms of other individuals carrying out Linux development, the
situation is more complex. Many developers working on the Linux kernel and on
other free software projects are employed by various Linux distribution companies
or work for companies (such as IBM and HP) with a strong interest in Linux. While
these companies can influence the direction in which Linux moves by allocating
programmer hours to certain projects, none of them controls Linux as such. And,
of course, many of the other contributors to the Linux kernel and GNU projects
work voluntarily.

At the time of writing, Torvalds is employed as a fellow at the Linux Founda-
tion (http://www.linux-foundation.org/; formerly the Open Source Development
Laboratory, OSDL), a nonprofit consortium of commercial and noncommer-
cial organizations chartered to foster the growth of Linux.

Because there are multiple Linux distributors and because the kernel implement-
ers don’t control the contents of distributions, there is no “standard” commercial
Linux as such. Each Linux distributor’s kernel offering is typically based on a snap-
shot of the mainline (i.e., the Torvalds) kernel at a particular point in time, with a
number of patches applied.

These patches typically provide features that, to a greater or lesser extent, are
deemed commercially desirable, and thus able to provide competitive differentia-
tion in the marketplace. In some cases, these patches are later accepted into the
mainline kernel. In fact, some new kernel features were initially developed by a dis-
tribution company, and appeared in their distribution before eventually being
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integrated into the mainline. For example, version 3 of the Reiserfs journaling file
system was part of some Linux distributions long before it was accepted into the
mainline 2.4 kernel.

The upshot of the preceding points is that there are (mostly minor) differences
in the systems offered by the various Linux distribution companies. On a much
smaller scale, this is reminiscent of the splits in implementations that occurred in
the early years of UNIX. The Linux Standard Base (LSB) is an effort to ensure com-
patibility among the various Linux distributions. To do this, the LSB (http://
www.linux-foundation.org/en/LSB) develops and promotes a set of standards for
Linux systems with the aim of ensuring that binary applications (i.e., compiled pro-
grams) can run on any LSB-conformant system.

The binary portability promoted by the LSB contrasts with the source code
portability promoted by POSIX. Source code portability means that we can
write a C program and then successfully compile and run it on any POSIX-
conformant system. Binary compatibility is much more demanding and is gen-
erally not feasible across different hardware platforms. It allows us to compile
a program once for a given hardware platform, and then run that compiled
program on any conformant implementation running on that hardware plat-
form. Binary portability is an essential requirement for the commercial viabil-
ity of independent software vendor (ISV) applications built for Linux.

1.4 Summary

The UNIX system was first implemented in 1969 on a Digital PDP-7 minicomputer
by Ken Thompson at Bell Laboratories (part of AT&T). The operating system drew
many ideas, as well as its punned name, from the earlier MULTICS system. By
1973, UNIX had been moved to the PDP-11 mini-computer and rewritten in C, a
programming language designed and implemented at Bell Laboratories by Dennis
Ritchie. Legally prevented from selling UNIX, AT&T instead distributed the com-
plete system to universities for a nominal charge. This distribution included source
code, and became very popular within universities, since it provided a cheap oper-
ating system whose code could be studied and modified by computer science aca-
demics and students.

The University of California at Berkeley played a key role in the development
of the UNIX system. There, Ken Thompson and a number of graduate students
extended the operating system. By 1979, the University was producing its own
UNIX distribution, BSD. This distribution became widespread in academia and
formed the basis for several commercial implementations.

Meanwhile, the breakup of the AT&T monopoly permitted the company to sell
the UNIX system. This resulted in the other major variant of UNIX, System V,
which also formed the basis for several commercial implementations.

Two different currents led to the development of (GNU/) Linux. One of these
was the GNU project, founded by Richard Stallman. By the late 1980s, the GNU
project had produced an almost complete, freely distributable UNIX implementa-
tion. The one part lacking was a working kernel. In 1991, inspired by the Minix ker-
nel written by Andrew Tanenbaum, Linus Torvalds produced a working UNIX
kernel for the Intel x86-32 architecture. Torvalds invited other programmers to
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join him in improving the kernel. Many programmers did so, and, over time, Linux
was extended and ported to a wide variety of hardware architectures.

The portability problems that arose from the variations in UNIX and C imple-
mentations that existed by the late 1980s created a strong pressure for standardiza-
tion. The C language was standardized in 1989 (C89), and a revised standard was
produced in 1999 (C99). The first attempt to standardize the operating system
interface yielded POSIX.1, ratified as an IEEE standard in 1988, and as an ISO stan-
dard in 1990. During the 1990s, further standards were drafted, including various
versions of the Single UNIX Specification. In 2001, the combined POSIX 1003.1-2001
and SUSv3 standard was ratified. This standard consolidates and extends various
earlier POSIX standards and earlier versions of the Single UNIX Specification. In
2008, a less wide-ranging revision of the standard was completed, yielding the com-
bined POSIX 1003.1-2008 and SUSv4 standard.

Unlike most commercial UNIX implementations, Linux separates implementa-
tion from distribution. Consequently, there is no single “official” Linux distribu-
tion. Each Linux distributor’s offering consists of a snapshot of the current stable
kernel, with various patches applied. The LSB develops and promotes a set of stan-
dards for Linux systems with the aim of ensuring binary application compatibility
across Linux distributions, so that compiled applications should be able to run on
any LSB-conformant system running on the same hardware.

Further information

Further information about UNIX history and standards can be found in [Ritchie,
1984], [McKusick et al., 1996], [McKusick & Neville-Neil, 2005], [Libes & Ressler,
1989], [Garfinkel et al., 2003], [Stevens & Rago, 2005], [Stevens, 1999], [Quarter-
mann & Wilhelm, 1993], [Goodheart & Cox, 1994], and [McKusick, 1999].

[Salus, 1994] is a detailed history of UNIX, from which much of the informa-
tion at the beginning of this chapter was drawn. [Salus, 2008] provides a short his-
tory of Linux and other free software projects. Many details of the history of UNIX
can also be found in the online book History of UNIX, written by Ronda Hauben.
This book is available at http://www.dei.isep.ipp.pt/~acc/docs/unix.html. An extremely
detailed timeline showing the releases of various UNIX implementations can be
found at http://www.levenez.com/unix/.

[ Josey, 2004] provides an overview of the history of the UNIX system and the
development of SUSv3, guidance on how to use the specification, summary tables
of the interfaces in SUSv3, and migration guides for the transitions from SUSv2 to
SUSv3 and C89 to C99.

As well as providing software and documentation, the GNU web site (http://
www.gnu.org/) contains a number of philosophical papers on the subject of free
software. [Williams, 2002] is a biography of Richard Stallman.

Torvalds provides his own account of the development of Linux in [Torvalds &
Diamond, 2001].
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F U N D A M E N T A L  C O N C E P T S

This chapter introduces a range of concepts related to Linux system programming.
It is intended for readers who have worked primarily with other operating systems,
or who have only limited experience with Linux or another UNIX implementation.

2.1 The Core Operating System: The Kernel

The term operating system is commonly used with two different meanings:

To denote the entire package consisting of the central software managing a
computer’s resources and all of the accompanying standard software tools,
such as command-line interpreters, graphical user interfaces, file utilities, and
editors.

More narrowly, to refer to the central software that manages and allocates
computer resources (i.e., the CPU, RAM, and devices).

The term kernel is often used as a synonym for the second meaning, and it is with
this meaning of the term operating system that we are concerned in this book.

Although it is possible to run programs on a computer without a kernel, the
presence of a kernel greatly simplifies the writing and use of other programs, and
increases the power and flexibility available to programmers. The kernel does this
by providing a software layer to manage the limited resources of a computer.



The Linux kernel executable typically resides at the pathname /boot/vmlinuz,
or something similar. The derivation of this filename is historical. On early
UNIX implementations, the kernel was called unix. Later UNIX implementa-
tions, which implemented virtual memory, renamed the kernel as vmunix. On
Linux, the filename mirrors the system name, with the z replacing the final x to
signify that the kernel is a compressed executable.

Tasks performed by the kernel

Among other things, the kernel performs the following tasks:

Process scheduling: A computer has one or more central processing units
(CPUs), which execute the instructions of programs. Like other UNIX systems,
Linux is a preemptive multitasking operating system, Multitasking means that
multiple processes (i.e., running programs) can simultaneously reside in mem-
ory and each may receive use of the CPU(s). Preemptive means that the rules
governing which processes receive use of the CPU and for how long are deter-
mined by the kernel process scheduler (rather than by the processes them-
selves).

Memory management: While computer memories are enormous by the stan-
dards of a decade or two ago, the size of software has also correspondingly
grown, so that physical memory (RAM) remains a limited resource that the ker-
nel must share among processes in an equitable and efficient fashion. Like
most modern operating systems, Linux employs virtual memory management
(Section 6.4), a technique that confers two main advantages:

– Processes are isolated from one another and from the kernel, so that one
process can’t read or modify the memory of another process or the kernel.

– Only part of a process needs to be kept in memory, thereby lowering the
memory requirements of each process and allowing more processes to be
held in RAM simultaneously. This leads to better CPU utilization, since it
increases the likelihood that, at any moment in time, there is at least one
process that the CPU(s) can execute.

Provision of a file system: The kernel provides a file system on disk, allowing files
to be created, retrieved, updated, deleted, and so on.

Creation and termination of processes: The kernel can load a new program into
memory, providing it with the resources (e.g., CPU, memory, and access to
files) that it needs in order to run. Such an instance of a running program is
termed a process. Once a process has completed execution, the kernel ensures
that the resources it uses are freed for subsequent reuse by later programs.

Access to devices: The devices (mice, monitors, keyboards, disk and tape drives,
and so on) attached to a computer allow communication of information
between the computer and the outside world, permitting input, output, or
both. The kernel provides programs with an interface that standardizes and
simplifies access to devices, while at the same time arbitrating access by multiple
processes to each device.
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Networking: The kernel transmits and receives network messages (packets) on
behalf of user processes. This task includes routing of network packets to the
target system.

Provision of a system call application programming interface (API): Processes can
request the kernel to perform various tasks using kernel entry points known as
system calls. The Linux system call API is the primary topic of this book.
Section 3.1 details the steps that occur when a process performs a system call.

In addition to the above features, multiuser operating systems such as Linux gener-
ally provide users with the abstraction of a virtual private computer; that is, each user
can log on to the system and operate largely independently of other users. For
example, each user has their own disk storage space (home directory). In addition,
users can run programs, each of which gets a share of the CPU and operates in its
own virtual address space, and these programs can independently access devices
and transfer information over the network. The kernel resolves potential conflicts
in accessing hardware resources, so users and processes are generally unaware of
the conflicts.

Kernel mode and user mode

Modern processor architectures typically allow the CPU to operate in at least two
different modes: user mode and kernel mode (sometimes also referred to as supervisor
mode). Hardware instructions allow switching from one mode to the other. Corre-
spondingly, areas of virtual memory can be marked as being part of user space or
kernel space. When running in user mode, the CPU can access only memory that is
marked as being in user space; attempts to access memory in kernel space result in
a hardware exception. When running in kernel mode, the CPU can access both
user and kernel memory space.

Certain operations can be performed only while the processor is operating in
kernel mode. Examples include executing the halt instruction to stop the system,
accessing the memory-management hardware, and initiating device I/O opera-
tions. By taking advantage of this hardware design to place the operating system in
kernel space, operating system implementers can ensure that user processes are
not able to access the instructions and data structures of the kernel, or to perform
operations that would adversely affect the operation of the system.

Process versus kernel views of the system

In many everyday programming tasks, we are accustomed to thinking about pro-
gramming in a process-oriented way. However, when considering various topics
covered later in this book, it can be useful to reorient our perspective to consider
things from the kernel’s point of view. To make the contrast clear, we now consider
how things look first from a process viewpoint and then from a kernel viewpoint.

A running system typically has numerous processes. For a process, many things
happen asynchronously. An executing process doesn’t know when it will next time
out, which other processes will then be scheduled for the CPU (and in what order),
or when it will next be scheduled. The delivery of signals and the occurrence of
interprocess communication events are mediated by the kernel, and can occur at
any time for a process. Many things happen transparently for a process. A process
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doesn’t know where it is located in RAM or, in general, whether a particular part of
its memory space is currently resident in memory or held in the swap area (a
reserved area of disk space used to supplement the computer’s RAM). Similarly, a
process doesn’t know where on the disk drive the files it accesses are being held; it
simply refers to the files by name. A process operates in isolation; it can’t directly
communicate with another process. A process can’t itself create a new process or
even end its own existence. Finally, a process can’t communicate directly with the
input and output devices attached to the computer.

By contrast, a running system has one kernel that knows and controls every-
thing. The kernel facilitates the running of all processes on the system. The kernel
decides which process will next obtain access to the CPU, when it will do so, and for
how long. The kernel maintains data structures containing information about all
running processes and updates these structures as processes are created, change
state, and terminate. The kernel maintains all of the low-level data structures that
enable the filenames used by programs to be translated into physical locations on
the disk. The kernel also maintains data structures that map the virtual memory of
each process into the physical memory of the computer and the swap area(s) on
disk. All communication between processes is done via mechanisms provided by
the kernel. In response to requests from processes, the kernel creates new pro-
cesses and terminates existing processes. Lastly, the kernel (in particular, device
drivers) performs all direct communication with input and output devices, transfer-
ring information to and from user processes as required.

Later in this book we’ll say things such as “a process can create another pro-
cess,” “a process can create a pipe,” “a process can write data to a file,” and “a pro-
cess can terminate by calling exit().” Remember, however, that the kernel mediates
all such actions, and these statements are just shorthand for “a process can request
that the kernel create another process,” and so on.

Further information

Modern texts covering operating systems concepts and design, with particular ref-
erence to UNIX systems, include [Tanenbaum, 2007], [Tanenbaum & Woodhull,
2006], and [Vahalia, 1996], the last of these containing much detail on virtual mem-
ory architectures. [Goodheart & Cox, 1994] provide details on System V Release 4.
[Maxwell, 1999] provides an annotated listing of selected parts of the Linux 2.2.5
kernel. [Lions, 1996] is a detailed exposition of the Sixth Edition UNIX source
code that remains a useful introduction to UNIX operating system internals.
[Bovet & Cesati, 2005] describes the implementation of the Linux 2.6 kernel.

2.2 The Shell

A shell is a special-purpose program designed to read commands typed by a user
and execute appropriate programs in response to those commands. Such a pro-
gram is sometimes known as a command interpreter.

The term login shell is used to denote the process that is created to run a shell
when the user first logs in.
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Whereas on some operating systems the command interpreter is an integral
part of the kernel, on UNIX systems, the shell is a user process. Many different
shells exist, and different users (or, for that matter, a single user) on the same com-
puter can simultaneously use different shells. A number of important shells have
appeared over time:

Bourne shell (sh): This is the oldest of the widely used shells, and was written by
Steve Bourne. It was the standard shell for Seventh Edition UNIX. The Bourne
shell contains many of the features familiar in all shells: I/O redirection, pipe-
lines, filename generation (globbing), variables, manipulation of environment
variables, command substitution, background command execution, and func-
tions. All later UNIX implementations include the Bourne shell in addition to
any other shells they might provide.

C shell (csh): This shell was written by Bill Joy at the University of California at
Berkeley. The name derives from the resemblance of many of the flow-control
constructs of this shell to those of the C programming language. The C shell
provided several useful interactive features unavailable in the Bourne shell,
including command history, command-line editing, job control, and aliases.
The C shell was not backward compatible with the Bourne shell. Although the
standard interactive shell on BSD was the C shell, shell scripts (described in a
moment) were usually written for the Bourne shell, so as to be portable across
all UNIX implementations.

Korn shell (ksh): This shell was written as the successor to the Bourne shell by
David Korn at AT&T Bell Laboratories. While maintaining backward compati-
bility with the Bourne shell, it also incorporated interactive features similar to
those provided by the C shell.

Bourne again shell (bash): This shell is the GNU project’s reimplementation of
the Bourne shell. It supplies interactive features similar to those available
in the C and Korn shells. The principal authors of bash are Brian Fox and Chet
Ramey. Bash is probably the most widely used shell on Linux. (On Linux, the
Bourne shell, sh, is actually provided by bash emulating sh as closely as possible.)

POSIX.2-1992 specified a standard for the shell that was based on the then cur-
rent version of the Korn shell. Nowadays, the Korn shell and bash both con-
form to POSIX, but provide a number of extensions to the standard, and many
of these extensions differ between the two shells.

The shells are designed not merely for interactive use, but also for the interpretation
of shell scripts, which are text files containing shell commands. For this purpose,
each of the shells has the facilities typically associated with programming lan-
guages: variables, loop and conditional statements, I/O commands, and functions.

Each of the shells performs similar tasks, albeit with variations in syntax. Unless
referring to the operation of a specific shell, we typically refer to “the shell,” with
the understanding that all shells operate in the manner described. Most of the
examples in this book that require a shell use bash, but, unless otherwise noted, the
reader can assume these examples work the same way in other Bourne-type shells.
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2.3 Users and Groups

Each user on the system is uniquely identified, and users may belong to groups.

Users

Every user of the system has a unique login name (username) and a corresponding
numeric user ID (UID). For each user, these are defined by a line in the system
password file, /etc/passwd, which includes the following additional information:

Group ID: the numeric group ID of the first of the groups of which the user is a
member.

Home directory: the initial directory into which the user is placed after logging in.

Login shell: the name of the program to be executed to interpret user commands.

The password record may also include the user’s password, in encrypted form.
However, for security reasons, the password is often stored in the separate shadow
password file, which is readable only by privileged users.

Groups

For administrative purposes—in particular, for controlling access to files and other
system resources—it is useful to organize users into groups. For example, the people
in a team working on a single project, and thus sharing a common set of files,
might all be made members of the same group. In early UNIX implementations, a
user could be a member of only one group. BSD allowed a user to simultaneously
belong to multiple groups, an idea that was taken up by other UNIX implementa-
tions and the POSIX.1-1990 standard. Each group is identified by a single line in
the system group file, /etc/group, which includes the following information:

Group name: the (unique) name of the group.

Group ID (GID): the numeric ID associated with this group.

User list: a comma-separated list of login names of users who are members of
this group (and who are not otherwise identified as members of the group by
virtue of the group ID field of their password file record).

Superuser

One user, known as the superuser, has special privileges within the system. The
superuser account has user ID 0, and normally has the login name root. On typical
UNIX systems, the superuser bypasses all permission checks in the system. Thus,
for example, the superuser can access any file in the system, regardless of the per-
missions on that file, and can send signals to any user process in the system. The
system administrator uses the superuser account to perform various administrative
tasks on the system.
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2.4 Single Directory Hierarchy, Directories, Links, and Files

The kernel maintains a single hierarchical directory structure to organize all files in
the system. (This contrasts with operating systems such as Microsoft Windows,
where each disk device has its own directory hierarchy.) At the base of this hier-
archy is the root directory, named / (slash). All files and directories are children or
further removed descendants of the root directory. Figure 2-1 shows an example of
this hierarchical file structure.

Figure 2-1: Subset of the Linux single directory hierarchy

File types

Within the file system, each file is marked with a type, indicating what kind of file it
is. One of these file types denotes ordinary data files, which are usually called
regular or plain files to distinguish them from other file types. These other file types
include devices, pipes, sockets, directories, and symbolic links.

The term file is commonly used to denote a file of any type, not just a regular file.

Directories and links

A directory is a special file whose contents take the form of a table of filenames coupled
with references to the corresponding files. This filename-plus-reference association
is called a link, and files may have multiple links, and thus multiple names, in the
same or in different directories.

Directories may contain links both to files and to other directories. The links
between directories establish the directory hierarchy shown in Figure 2-1.

Every directory contains at least two entries: . (dot), which is a link to the direc-
tory itself, and .. (dot-dot), which is a link to its parent directory, the directory above
it in the hierarchy. Every directory, except the root directory, has a parent. For the
root directory, the dot-dot entry is a link to the root directory itself (thus, /..
equates to /).
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Symbolic links

Like a normal link, a symbolic link provides an alternative name for a file. But
whereas a normal link is a filename-plus-pointer entry in a directory list, a symbolic
link is a specially marked file containing the name of another file. (In other words,
a symbolic link has a filename-plus-pointer entry in a directory, and the file referred
to by the pointer contains a string that names another file.) This latter file is often
called the target of the symbolic link, and it is common to say that the symbolic link
“points” or “refers” to the target file. When a pathname is specified in a system call,
in most circumstances, the kernel automatically dereferences (or synonymously,
follows) each symbolic link in the pathname, replacing it with the filename to which
it points. This process may happen recursively if the target of a symbolic link is
itself a symbolic link. (The kernel imposes limits on the number of dereferences to
handle the possibility of circular chains of symbolic links.) If a symbolic link refers
to a file that doesn’t exist, it is said to be a dangling link.

Often hard link and soft link are used as alternative terms for normal and sym-
bolic links. The reasons for having two different types of links are explained in
Chapter 18.

Filenames

On most Linux file systems, filenames can be up to 255 characters long. Filenames
may contain any characters except slashes (/) and null characters (\0). However, it is
advisable to employ only letters and digits, and the . (period), _ (underscore), and
- (hyphen) characters. This 65-character set, [-._a-zA-Z0-9], is referred to in SUSv3
as the portable filename character set.

We should avoid the use of characters in filenames that are not in the portable
filename character set because those characters may have special meanings within
the shell, within regular expressions, or in other contexts. If a filename containing
characters with special meanings appears in such contexts, then these characters
must be escaped; that is, specially marked—typically with a preceding backslash (\)—
to indicate that they should not be interpreted with those special meanings. In con-
texts where no escape mechanism is available, the filename is not usable.

We should also avoid filenames beginning with a hyphen (-), since such file-
names may be mistaken for options when specified in a shell command.

Pathnames

A pathname is a string consisting of an optional initial slash (/) followed by a series
of filenames separated by slashes. All but the last of these component filenames
identifies a directory (or a symbolic link that resolves to a directory). The last com-
ponent of a pathname may identify any type of file, including a directory. The
series of component filenames preceding the final slash is sometimes referred to as
the directory part of a pathname, while the name following the final slash is some-
times referred to as the file or base part of the pathname.

A pathname is read from left to right; each filename resides in the directory
specified by the preceding part of the pathname. The string .. can be used any-
where in a pathname to refer to the parent of the location so far specified in the
pathname.
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A pathname describes the location of a file within the single directory hier-
archy, and is either absolute or relative:

An absolute pathname begins with a slash (/) and specifies the location of a file
with respect to the root directory. Examples of absolute pathnames for files in
Figure 2-1 are /home/mtk/.bashrc, /usr/include, and / (the pathname of the root
directory).

A relative pathname specifies the location of a file relative to a process’s current
working directory (see below), and is distinguished from an absolute pathname
by the absence of an initial slash. In Figure 2-1, from the directory usr, the file
types.h could be referenced using the relative pathname include/sys/types.h,
while from the directory avr, the file .bashrc could be accessed using the rela-
tive pathname ../mtk/.bashrc.

Current working directory

Each process has a current working directory (sometimes just referred to as the pro-
cess’s working directory or current directory). This is the process’s “current location”
within the single directory hierarchy, and it is from this directory that relative path-
names are interpreted for the process.

A process inherits its current working directory from its parent process. A
login shell has its initial current working directory set to the location named in the
home directory field of the user’s password file entry. The shell’s current working
directory can be changed with the cd command.

File ownership and permissions

Each file has an associated user ID and group ID that define the owner of the file
and the group to which it belongs. The ownership of a file is used to determine the
access rights available to users of the file.

For the purpose of accessing a file, the system divides users into three catego-
ries: the owner of the file (sometimes termed the user of the file), users who are
members of the group matching the file’s group ID ( group), and the rest of the
world (other). Three permission bits may be set for each of these categories of user
(making a total of nine permission bits): read permission allows the contents of the
file to be read; write permission allows modification of the contents of the file; and
execute permission allows execution of the file, which is either a program or a script
to be processed by some interpreter (usually, but not always, one of the shells).

These permissions may also be set on directories, although their meanings are
slightly different: read permission allows the contents of (i.e., the filenames in) the
directory to be listed; write permission allows the contents of the directory to be
changed (i.e., filenames can be added, removed, and changed); and execute (some-
times called search) permission allows access to files within the directory (subject to
the permissions on the files themselves).

2.5 File I/O Model

One of the distinguishing features of the I/O model on UNIX systems is the con-
cept of universality of I/O. This means that the same system calls (open(), read(),
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write(), close(), and so on) are used to perform I/O on all types of files, including
devices. (The kernel translates the application’s I/O requests into appropriate file-
system or device-driver operations that perform I/O on the target file or device.)
Thus, a program employing these system calls will work on any type of file.

The kernel essentially provides one file type: a sequential stream of bytes,
which, in the case of disk files, disks, and tape devices, can be randomly accessed
using the lseek() system call.

Many applications and libraries interpret the newline character (ASCII code 10
decimal, sometimes also known as linefeed) as terminating one line of text and com-
mencing another. UNIX systems have no end-of-file character; the end of a file is
detected by a read that returns no data.

File descriptors

The I/O system calls refer to open files using a file descriptor, a (usually small) non-
negative integer. A file descriptor is typically obtained by a call to open(), which
takes a pathname argument specifying a file upon which I/O is to be performed.

Normally, a process inherits three open file descriptors when it is started by
the shell: descriptor 0 is standard input, the file from which the process takes its
input; descriptor 1 is standard output, the file to which the process writes its output;
and descriptor 2 is standard error, the file to which the process writes error
messages and notification of exceptional or abnormal conditions. In an interactive
shell or program, these three descriptors are normally connected to the terminal.
In the stdio library, these descriptors correspond to the file streams stdin, stdout, and
stderr.

The stdio library

To perform file I/O, C programs typically employ I/O functions contained in the
standard C library. This set of functions, referred to as the stdio library, includes
fopen(), fclose(), scanf(), printf(), fgets(), fputs(), and so on. The stdio functions are
layered on top of the I/O system calls (open(), close(), read(), write(), and so on).

We assume that the reader is already familiar with the C standard I/O (stdio)
functions, and don’t cover them in this book. Further information on the stdio
library can be found in [Kernighan & Ritchie, 1988], [Harbison & Steele,
2002], [Plauger, 1992], and [Stevens & Rago, 2005].

2.6 Programs

Programs normally exist in two forms. The first form is source code, human-readable
text consisting of a series of statements written in a programming language such
as C. To be executed, source code must be converted to the second form: binary
machine-language instructions that the computer can understand. (This contrasts
with a script, which is a text file containing commands to be directly processed by a
program such as a shell or other command interpreter.) The two meanings of the
term program are normally considered synonymous, since the step of compiling
and linking converts source code into semantically equivalent binary machine code.
30 Chapter 2



Filters

A filter is the name often applied to a program that reads its input from stdin, per-
forms some transformation of that input, and writes the transformed data to stdout.
Examples of filters include cat, grep, tr, sort, wc, sed, and awk.

Command-line arguments

In C, programs can access the command-line arguments, the words that are supplied
on the command line when the program is run. To access the command-line argu-
ments, the main() function of the program is declared as follows:

int main(int argc, char *argv[])

The argc variable contains the total number of command-line arguments, and the
individual arguments are available as strings pointed to by members of the array
argv. The first of these strings, argv[0], identifies the name of the program itself.

2.7 Processes

Put most simply, a process is an instance of an executing program. When a program
is executed, the kernel loads the code of the program into virtual memory, allo-
cates space for program variables, and sets up kernel bookkeeping data structures
to record various information (such as process ID, termination status, user IDs, and
group IDs) about the process.

From a kernel point of view, processes are the entities among which the kernel
must share the various resources of the computer. For resources that are limited,
such as memory, the kernel initially allocates some amount of the resource to the
process, and adjusts this allocation over the lifetime of the process in response to
the demands of the process and the overall system demand for that resource.
When the process terminates, all such resources are released for reuse by other
processes. Other resources, such as the CPU and network bandwidth, are renew-
able, but must be shared equitably among all processes.

Process memory layout

A process is logically divided into the following parts, known as segments:

Text: the instructions of the program.

Data: the static variables used by the program.

Heap: an area from which programs can dynamically allocate extra memory.

Stack: a piece of memory that grows and shrinks as functions are called and
return and that is used to allocate storage for local variables and function call
linkage information.

Process creation and program execution

A process can create a new process using the fork() system call. The process that
calls fork() is referred to as the parent process, and the new process is referred to as
the child process. The kernel creates the child process by making a duplicate of the
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parent process. The child inherits copies of the parent’s data, stack, and heap seg-
ments, which it may then modify independently of the parent’s copies. (The pro-
gram text, which is placed in memory marked as read-only, is shared by the two
processes.)

The child process goes on either to execute a different set of functions in the
same code as the parent, or, frequently, to use the execve() system call to load and
execute an entirely new program. An execve() call destroys the existing text, data,
stack, and heap segments, replacing them with new segments based on the code of
the new program.

Several related C library functions are layered on top of execve(), each provid-
ing a slightly different interface to the same functionality. All of these functions
have names starting with the string exec, and where the differences don’t matter,
we’ll use the notation exec() to refer generally to these functions. Be aware, how-
ever, that there is no actual function with the name exec().

Commonly, we’ll use the verb to exec to describe the operation performed
execve() and the library functions layered on top of it.

Process ID and parent process ID

Each process has a unique integer process identifier (PID). Each process also has a
parent process identifier (PPID) attribute, which identifies the process that requested
the kernel to create this process.

Process termination and termination status

A process can terminate in one of two ways: by requesting its own termination
using the _exit() system call (or the related exit() library function), or by being killed
by the delivery of a signal. In either case, the process yields a termination status, a
small nonnegative integer value that is available for inspection by the parent pro-
cess using the wait() system call. In the case of a call to _exit(), the process explicitly
specifies its own termination status. If a process is killed by a signal, the termination
status is set according to the type of signal that caused the death of the process.
(Sometimes, we’ll refer to the argument passed to _exit() as the exit status of the pro-
cess, as distinct from the termination status, which is either the value passed to
_exit() or an indication of the signal that killed the process.)

By convention, a termination status of 0 indicates that the process succeeded,
and a nonzero status indicates that some error occurred. Most shells make the ter-
mination status of the last executed program available via a shell variable named $?.

Process user and group identifiers (credentials)

Each process has a number of associated user IDs (UIDs) and group IDs (GIDs).
These include:

Real user ID and real group ID: These identify the user and group to which the
process belongs. A new process inherits these IDs from its parent. A login shell
gets its real user ID and real group ID from the corresponding fields in the sys-
tem password file.
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Effective user ID and effective group ID: These two IDs (in conjunction with the
supplementary group IDs discussed in a moment) are used in determining the
permissions that the process has when accessing protected resources such as
files and interprocess communication objects. Typically, the process’s effective
IDs have the same values as the corresponding real IDs. Changing the effective IDs
is a mechanism that allows a process to assume the privileges of another user
or group, as described in a moment.

Supplementary group IDs: These IDs identify additional groups to which a pro-
cess belongs. A new process inherits its supplementary group IDs from its par-
ent. A login shell gets its supplementary group IDs from the system group file.

Privileged processes

Traditionally, on UNIX systems, a privileged process is one whose effective user ID is 0
(superuser). Such a process bypasses the permission restrictions normally applied
by the kernel. By contrast, the term unprivileged (or nonprivileged) is applied to pro-
cesses run by other users. Such processes have a nonzero effective user ID and
must abide by the permission rules enforced by the kernel.

A process may be privileged because it was created by another privileged pro-
cess—for example, by a login shell started by root (superuser). Another way a process
may become privileged is via the set-user-ID mechanism, which allows a process to
assume an effective user ID that is the same as the user ID of the program file that
it is executing.

Capabilities

Since kernel 2.2, Linux divides the privileges traditionally accorded to the super-
user into a set of distinct units called capabilities. Each privileged operation is asso-
ciated with a particular capability, and a process can perform an operation only if it
has the corresponding capability. A traditional superuser process (effective user ID
of 0) corresponds to a process with all capabilities enabled.

Granting a subset of capabilities to a process allows it to perform some of the
operations normally permitted to the superuser, while preventing it from perform-
ing others.

Capabilities are described in detail in Chapter 39. In the remainder of the
book, when noting that a particular operation can be performed only by a privi-
leged process, we’ll usually identify the specific capability in parentheses. Capabil-
ity names begin with the prefix CAP_, as in CAP_KILL.

The init process

When booting the system, the kernel creates a special process called init, the “parent
of all processes,” which is derived from the program file /sbin/init. All processes
on the system are created (using fork()) either by init or by one of its descendants.
The init process always has the process ID 1 and runs with superuser privileges. The
init process can’t be killed (not even by the superuser), and it terminates only when
the system is shut down. The main task of init is to create and monitor a range of
processes required by a running system. (For details, see the init(8) manual page.)
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Daemon processes

A daemon is a special-purpose process that is created and handled by the system
in the same way as other processes, but which is distinguished by the following
characteristics:

It is long-lived. A daemon process is often started at system boot and remains
in existence until the system is shut down.

It runs in the background, and has no controlling terminal from which it can
read input or to which it can write output.

Examples of daemon processes include syslogd, which records messages in the sys-
tem log, and httpd, which serves web pages via the Hypertext Transfer Protocol
(HTTP).

Environment list

Each process has an environment list, which is a set of environment variables that are
maintained within the user-space memory of the process. Each element of this list
consists of a name and an associated value. When a new process is created via
fork(), it inherits a copy of its parent’s environment. Thus, the environment pro-
vides a mechanism for a parent process to communicate information to a child pro-
cess. When a process replaces the program that it is running using exec(), the new
program either inherits the environment used by the old program or receives a
new environment specified as part of the exec() call.

Environment variables are created with the export command in most shells (or
the setenv command in the C shell), as in the following example:

$ export MYVAR='Hello world'

Whenever we present a shell session log showing interactive input and output,
the input text is always boldfaced. Sometimes, we include commentary in the
log in italic text, adding notes about the commands entered or the output
produced.

C programs can access the environment using an external variable (char **environ),
and various library functions allow a process to retrieve and modify values in its
environment.

Environment variables are used for a variety of purposes. For example, the
shell defines and uses a range of variables that can be accessed by scripts and pro-
grams executed from the shell. These include the variable HOME, which specifies the
pathname of the user’s login directory, and the variable PATH, which specifies a list
of directories that the shell should search when looking for programs correspond-
ing to commands entered by the user.

Resource limits

Each process consumes resources, such as open files, memory, and CPU time.
Using the setrlimit() system call, a process can establish upper limits on its consump-
tion of various resources. Each such resource limit has two associated values: a soft
limit, which limits the amount of the resource that the process may consume; and a
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hard limit, which is a ceiling on the value to which the soft limit may be adjusted. An
unprivileged process may change its soft limit for a particular resource to any value
in the range from zero up to the corresponding hard limit, but can only lower its
hard limit.

When a new process is created with fork(), it inherits copies of its parent’s
resource limit settings.

The resource limits of the shell can be adjusted using the ulimit command
(limit in the C shell). These limit settings are inherited by the child processes that
the shell creates to execute commands.

2.8 Memory Mappings

The mmap() system call creates a new memory mapping in the calling process’s virtual
address space.

Mappings fall into two categories:

A file mapping maps a region of a file into the calling process’s virtual memory.
Once mapped, the file’s contents can be accessed by operations on the bytes in
the corresponding memory region. The pages of the mapping are automati-
cally loaded from the file as required.

By contrast, an anonymous mapping doesn’t have a corresponding file. Instead,
the pages of the mapping are initialized to 0.

The memory in one process’s mapping may be shared with mappings in other pro-
cesses. This can occur either because two processes map the same region of a file
or because a child process created by fork() inherits a mapping from its parent.

When two or more processes share the same pages, each process may see the
changes made by other processes to the contents of the pages, depending on
whether the mapping is created as private or shared. When a mapping is private,
modifications to the contents of the mapping are not visible to other processes and
are not carried through to the underlying file. When a mapping is shared, modifica-
tions to the contents of the mapping are visible to other processes sharing the same
mapping and are carried through to the underlying file.

Memory mappings serve a variety of purposes, including initialization of a
process’s text segment from the corresponding segment of an executable file,
allocation of new (zero-filled) memory, file I/O (memory-mapped I/O), and inter-
process communication (via a shared mapping).

2.9 Static and Shared Libraries

An object library is a file containing the compiled object code for a (usually logically
related) set of functions that may be called from application programs. Placing
code for a set of functions in a single object library eases the tasks of program creation
and maintenance. Modern UNIX systems provide two types of object libraries:
static libraries and shared libraries.
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Static libraries

Static libraries (sometimes also known as archives) were the only type of library on
early UNIX systems. A static library is essentially a structured bundle of compiled
object modules. To use functions from a static library, we specify that library in the
link command used to build a program. After resolving the various function refer-
ences from the main program to the modules in the static library, the linker
extracts copies of the required object modules from the library and copies these
into the resulting executable file. We say that such a program is statically linked.

The fact that each statically linked program includes its own copy of the object
modules required from the library creates a number of disadvantages. One is that
the duplication of object code in different executable files wastes disk space. A cor-
responding waste of memory occurs when statically linked programs using the
same library function are executed at the same time; each program requires its own
copy of the function to reside in memory. Additionally, if a library function
requires modification, then, after recompiling that function and adding it to the
static library, all applications that need to use the updated function must be
relinked against the library.

Shared libraries

Shared libraries were designed to address the problems with static libraries.
If a program is linked against a shared library, then, instead of copying object

modules from the library into the executable, the linker just writes a record into
the executable to indicate that at run time the executable needs to use that shared
library. When the executable is loaded into memory at run time, a program called
the dynamic linker ensures that the shared libraries required by the executable are
found and loaded into memory, and performs run-time linking to resolve the func-
tion calls in the executable to the corresponding definitions in the shared libraries.
At run time, only a single copy of the code of the shared library needs to be resi-
dent in memory; all running programs can use that copy.

The fact that a shared library contains the sole compiled version of a function
saves disk space. It also greatly eases the job of ensuring that programs employ the
newest version of a function. Simply rebuilding the shared library with the new
function definition causes existing programs to automatically use the new defini-
tion when they are next executed.

2.10 Interprocess Communication and Synchronization

A running Linux system consists of numerous processes, many of which operate
independently of each other. Some processes, however, cooperate to achieve their
intended purposes, and these processes need methods of communicating with one
another and synchronizing their actions.

One way for processes to communicate is by reading and writing informa-
tion in disk files. However, for many applications, this is too slow and inflexible.
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Therefore, Linux, like all modern UNIX implementations, provides a rich set of mech-
anisms for interprocess communication (IPC), including the following:

signals, which are used to indicate that an event has occurred;

pipes (familiar to shell users as the | operator) and FIFOs, which can be used to
transfer data between processes;

sockets, which can be used to transfer data from one process to another, either
on the same host computer or on different hosts connected by a network;

file locking, which allows a process to lock regions of a file in order to prevent
other processes from reading or updating the file contents;

message queues, which are used to exchange messages (packets of data) between
processes;

semaphores, which are used to synchronize the actions of processes; and

shared memory, which allows two or more processes to share a piece of memory.
When one process changes the contents of the shared memory, all of the other
processes can immediately see the changes.

The wide variety of IPC mechanisms on UNIX systems, with sometimes overlapping
functionality, is in part due to their evolution under different variants of the UNIX
system and the requirements of various standards. For example, FIFOs and UNIX
domain sockets essentially perform the same function of allowing unrelated pro-
cesses on the same system to exchange data. Both exist in modern UNIX systems
because FIFOs came from System V, while sockets came from BSD.

2.11 Signals

Although we listed them as a method of IPC in the previous section, signals are
more usually employed in a wide range of other contexts, and so deserve a longer
discussion.

Signals are often described as “software interrupts.” The arrival of a signal
informs a process that some event or exceptional condition has occurred. There
are various types of signals, each of which identifies a different event or condition.
Each signal type is identified by a different integer, defined with symbolic names of
the form SIGxxxx.

Signals are sent to a process by the kernel, by another process (with suitable
permissions), or by the process itself. For example, the kernel may send a signal to
a process when one of the following occurs:

the user typed the interrupt character (usually Control-C) on the keyboard;

one of the process’s children has terminated;

a timer (alarm clock) set by the process has expired; or

the process attempted to access an invalid memory address.

Within the shell, the kill command can be used to send a signal to a process. The
kill() system call provides the same facility within programs.
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When a process receives a signal, it takes one of the following actions, depend-
ing on the signal:

it ignores the signal;

it is killed by the signal; or

it is suspended until later being resumed by receipt of a special-purpose signal.

For most signal types, instead of accepting the default signal action, a program can
choose to ignore the signal (useful if the default action for the signal is something
other than being ignored), or to establish a signal handler. A signal handler is a
programmer-defined function that is automatically invoked when the signal is
delivered to the process. This function performs some action appropriate to the
condition that generated the signal.

In the interval between the time it is generated and the time it is delivered, a
signal is said to be pending for a process. Normally, a pending signal is delivered as
soon as the receiving process is next scheduled to run, or immediately if the pro-
cess is already running. However, it is also possible to block a signal by adding it to
the process’s signal mask. If a signal is generated while it is blocked, it remains
pending until it is later unblocked (i.e., removed from the signal mask).

2.12 Threads

In modern UNIX implementations, each process can have multiple threads of exe-
cution. One way of envisaging threads is as a set of processes that share the same
virtual memory, as well as a range of other attributes. Each thread is executing the
same program code and shares the same data area and heap. However, each thread
has it own stack containing local variables and function call linkage information.

Threads can communicate with each other via the global variables that they
share. The threading API provides condition variables and mutexes, which are primi-
tives that enable the threads of a process to communicate and synchronize their
actions, in particular, their use of shared variables. Threads can also communicate
with one another using the IPC and synchronization mechanisms described in
Section 2.10.

The primary advantages of using threads are that they make it easy to share
data (via global variables) between cooperating threads and that some algorithms
transpose more naturally to a multithreaded implementation than to a multiprocess
implementation. Furthermore, a multithreaded application can transparently take
advantage of the possibilities for parallel processing on multiprocessor hardware.

2.13 Process Groups and Shell Job Control

Each program executed by the shell is started in a new process. For example, the
shell creates three processes to execute the following pipeline of commands (which
displays a list of files in the current working directory sorted by file size):

$ ls -l | sort -k5n | less
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All major shells, except the Bourne shell, provide an interactive feature called job
control, which allows the user to simultaneously execute and manipulate multiple
commands or pipelines. In job-control shells, all of the processes in a pipeline are
placed in a new process group or job. (In the simple case of a shell command line con-
taining a single command, a new process group containing just a single process is
created.) Each process in a process group has the same integer process group
identifier, which is the same as the process ID of one of the processes in the group,
termed the process group leader.

The kernel allows for various actions, notably the delivery of signals, to be per-
formed on all members of a process group. Job-control shells use this feature to
allow the user to suspend or resume all of the processes in a pipeline, as described
in the next section.

2.14 Sessions, Controlling Terminals, and Controlling Processes

A session is a collection of process groups ( jobs). All of the processes in a session
have the same session identifier. A session leader is the process that created the ses-
sion, and its process ID becomes the session ID.

Sessions are used mainly by job-control shells. All of the process groups cre-
ated by a job-control shell belong to the same session as the shell, which is the ses-
sion leader.

Sessions usually have an associated controlling terminal. The controlling termi-
nal is established when the session leader process first opens a terminal device. For
a session created by an interactive shell, this is the terminal at which the user
logged in. A terminal may be the controlling terminal of at most one session.

As a consequence of opening the controlling terminal, the session leader
becomes the controlling process for the terminal. The controlling process receives a
SIGHUP signal if a terminal disconnect occurs (e.g., if the terminal window is closed).

At any point in time, one process group in a session is the foreground process
group ( foreground job), which may read input from the terminal and send output to
it. If the user types the interrupt character (usually Control-C) or the suspend character
(usually Control-Z) on the controlling terminal, then the terminal driver sends a signal
that kills or suspends (i.e., stops) the foreground process group. A session can have
any number of background process groups (background jobs), which are created by ter-
minating a command with the ampersand (&) character.

Job-control shells provide commands for listing all jobs, sending signals to jobs,
and moving jobs between the foreground and background.

2.15 Pseudoterminals

A pseudoterminal is a pair of connected virtual devices, known as the master and
slave. This device pair provides an IPC channel allowing data to be transferred in
both directions between the two devices.

The key point about a pseudoterminal is that the slave device provides an interface
that behaves like a terminal, which makes it possible to connect a terminal-oriented
program to the slave device and then use another program connected to the mas-
ter device to drive the terminal-oriented program. Output written by the driver
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program undergoes the usual input processing performed by the terminal driver
(for example, in the default mode, a carriage return is mapped to a newline) and is
then passed as input to the terminal-oriented program connected to the slave. Any-
thing that the terminal-oriented program writes to the slave is passed (after per-
forming all of the usual terminal output processing) as input to the driver program.
In other words, the driver program is performing the function normally performed
by the user at a conventional terminal.

Pseudoterminals are used in a variety of applications, most notably in the
implementation of terminal windows provided under an X Window System login
and in applications providing network login services, such as telnet and ssh.

2.16 Date and Time

Two types of time are of interest to a process:

Real time is measured either from some standard point (calendar time) or from
some fixed point, typically the start, in the life of a process (elapsed or wall clock
time). On UNIX systems, calendar time is measured in seconds since midnight
on the morning of January 1, 1970, Universal Coordinated Time (usually
abbreviated UTC), and coordinated on the base point for timezones defined
by the longitudinal line passing through Greenwich, England. This date, which
is close to the birth of the UNIX system, is referred to as the Epoch.

Process time, also called CPU time, is the total amount of CPU time that a process
has used since starting. CPU time is further divided into system CPU time, the
time spent executing code in kernel mode (i.e., executing system calls and per-
forming other kernel services on behalf of the process), and user CPU time, the
time spent executing code in user mode (i.e., executing normal program code).

The time command displays the real time, the system CPU time, and user CPU time
taken to execute the processes in a pipeline.

2.17 Client-Server Architecture

At various points in this book, we discuss the design and implementation of client-
server applications.

A client-server application is one that is broken into two component processes:

a client, which asks the server to carry out some service by sending it a request
message; and

a server, which examines the client’s request, performs appropriate actions, and
then sends a response message back to the client.

Sometimes, the client and server may engage in an extended dialogue of requests
and responses.

Typically, the client application interacts with a user, while the server applica-
tion provides access to some shared resource. Commonly, there are multiple
instances of client processes communicating with one or a few instances of the
server process.
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The client and server may reside on the same host computer or on separate
hosts connected via a network. To communicate with one another, the client and
server use the IPC mechanisms discussed in Section 2.10.

Servers may implement a variety of services, such as:

providing access to a database or other shared information resource;

providing access to a remote file across a network;

encapsulating some business logic;

providing access to a shared hardware resource (e.g., a printer); or

serving web pages.

Encapsulating a service within a single server is useful for a number of reasons,
such as the following:

Efficiency: It may be cheaper to provide one instance of a resource (e.g., a
printer) that is managed by a server than to provide the same resource locally
on every computer.

Control, coordination, and security: By holding a resource (especially an informa-
tion resource) at a single location, the server can coordinate access to the
resource (e.g., so that two clients don’t simultaneously update the same piece
of information) or secure it so that it is made available to only selected clients.

Operation in a heterogeneous environment: In a network, the various clients, and
the server, can be running on different hardware and operating system
platforms.

2.18 Realtime

Realtime applications are those that need to respond in a timely fashion to input.
Frequently, such input comes from an external sensor or a specialized input device,
and output takes the form of controlling some external hardware. Examples of
applications with realtime response requirements include automated assembly
lines, bank ATMs, and aircraft navigation systems.

Although many realtime applications require rapid responses to input, the
defining factor is that the response is guaranteed to be delivered within a certain
deadline time after the triggering event.

The provision of realtime responsiveness, especially where short response
times are demanded, requires support from the underlying operating system. Most
operating systems don’t natively provide such support because the requirements of
realtime responsiveness can conflict with the requirements of multiuser time-
sharing operating systems. Traditional UNIX implementations are not realtime
operating systems, although realtime variants have been devised. Realtime variants
of Linux have also been created, and recent Linux kernels are moving toward full
native support for realtime applications.

POSIX.1b defined a number of extensions to POSIX.1 for the support of real-
time applications. These include asynchronous I/O, shared memory, memory-
mapped files, memory locking, realtime clocks and timers, alternative scheduling
policies, realtime signals, message queues, and semaphores. Even though they
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don’t strictly qualify as realtime, most UNIX implementations now support some
or all of these extensions. (During the course of this book, we describe those fea-
tures of POSIX.1b that are supported by Linux.)

In this book, we use the term real time to refer to the concept of calendar or
elapsed time, and the term realtime to denote an operating system or applica-
tion providing the type of responsiveness described in this section.

2.19 The /proc File System

Like several other UNIX implementations, Linux provides a /proc file system,
which consists of a set of directories and files mounted under the /proc directory.

The /proc file system is a virtual file system that provides an interface to kernel
data structures in a form that looks like files and directories on a file system. This
provides an easy mechanism for viewing and changing various system attributes. In
addition, a set of directories with names of the form /proc/PID, where PID is a pro-
cess ID, allows us to view information about each process running on the system.

The contents of /proc files are generally in human-readable text form and can
be parsed by shell scripts. A program can simply open and read from, or write to,
the desired file. In most cases, a process must be privileged to modify the contents
of files in the /proc directory.

As we describe various parts of the Linux programming interface, we’ll also
describe the relevant /proc files. Section 12.1 provides further general information
on this file system. The /proc file system is not specified by any standards, and the
details that we describe are Linux-specific.

2.20 Summary

In this chapter, we surveyed a range of fundamental concepts related to Linux sys-
tem programming. An understanding of these concepts should provide readers
with limited experience on Linux or UNIX with enough background to begin
learning system programming.
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S Y S T E M  P R O G R A M M I N G  
C O N C E P T S

This chapter covers various topics that are prerequisites for system programming.
We begin by introducing system calls and detailing the steps that occur during their
execution. We then consider library functions and how they differ from system calls,
and couple this with a description of the (GNU) C library.

Whenever we make a system call or call a library function, we should always
check the return status of the call in order to determine if it was successful. We
describe how to perform such checks, and present a set of functions that are used
in most of the example programs in this book to diagnose errors from system calls
and library functions.

We conclude by looking at various issues related to portable programming,
specifically the use of feature test macros and the standard system data types
defined by SUSv3.

3.1 System Calls

A system call is a controlled entry point into the kernel, allowing a process to
request that the kernel perform some action on the process’s behalf. The kernel
makes a range of services accessible to programs via the system call application
programming interface (API). These services include, for example, creating a



new process, performing I/O, and creating a pipe for interprocess communica-
tion. (The syscalls(2) manual page lists the Linux system calls.)

Before going into the details of how a system call works, we note some general
points:

A system call changes the processor state from user mode to kernel mode, so
that the CPU can access protected kernel memory.

The set of system calls is fixed. Each system call is identified by a unique number.
(This numbering scheme is not normally visible to programs, which identify
system calls by name.)

Each system call may have a set of arguments that specify information to be
transferred from user space (i.e., the process’s virtual address space) to kernel
space and vice versa.

From a programming point of view, invoking a system call looks much like calling a
C function. However, behind the scenes, many steps occur during the execution of
a system call. To illustrate this, we consider the steps in the order that they occur
on a specific hardware implementation, the x86-32. The steps are as follows:

1. The application program makes a system call by invoking a wrapper function
in the C library.

2. The wrapper function must make all of the system call arguments available to
the system call trap-handling routine (described shortly). These arguments are
passed to the wrapper via the stack, but the kernel expects them in specific reg-
isters. The wrapper function copies the arguments to these registers.

3. Since all system calls enter the kernel in the same way, the kernel needs some
method of identifying the system call. To permit this, the wrapper function
copies the system call number into a specific CPU register (%eax).

4. The wrapper function executes a trap machine instruction (int 0x80), which
causes the processor to switch from user mode to kernel mode and execute
code pointed to by location 0x80 (128 decimal) of the system’s trap vector.

More recent x86-32 architectures implement the sysenter instruction, which
provides a faster method of entering kernel mode than the conventional
int 0x80 trap instruction. The use of sysenter is supported in the 2.6 kernel and
from glibc 2.3.2 onward.

5. In response to the trap to location 0x80, the kernel invokes its system_call() rou-
tine (located in the assembler file arch/i386/entry.S) to handle the trap. This
handler:

a) Saves register values onto the kernel stack (Section 6.5).

b) Checks the validity of the system call number.

c) Invokes the appropriate system call service routine, which is found by
using the system call number to index a table of all system call service rou-
tines (the kernel variable sys_call_table). If the system call service routine
has any arguments, it first checks their validity; for example, it checks that
addresses point to valid locations in user memory. Then the service
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routine performs the required task, which may involve modifying values at
addresses specified in the given arguments and transferring data between
user memory and kernel memory (e.g., in I/O operations). Finally, the
service routine returns a result status to the system_call() routine.

d) Restores register values from the kernel stack and places the system call
return value on the stack.

e) Returns to the wrapper function, simultaneously returning the processor
to user mode.

6. If the return value of the system call service routine indicated an error, the
wrapper function sets the global variable errno (see Section 3.4) using this
value. The wrapper function then returns to the caller, providing an integer
return value indicating the success or failure of the system call.

On Linux, system call service routines follow a convention of returning a
nonnegative value to indicate success. In case of an error, the routine returns a
negative number, which is the negated value of one of the errno constants.
When a negative value is returned, the C library wrapper function negates it
(to make it positive), copies the result into errno, and returns –1 as the function
result of the wrapper to indicate an error to the calling program.

This convention relies on the assumption that system call service routines
don’t return negative values on success. However, for a few of these routines,
this assumption doesn’t hold. Normally, this is not a problem, since the range
of negated errno values doesn’t overlap with valid negative return values. How-
ever, this convention does cause a problem in one case: the F_GETOWN operation
of the fcntl() system call, which we describe in Section 63.3.

Figure 3-1 illustrates the above sequence using the example of the execve() system
call. On Linux/x86-32, execve() is system call number 11 (__NR_execve). Thus, in the
sys_call_table vector, entry 11 contains the address of sys_execve(), the service routine
for this system call. (On Linux, system call service routines typically have names of
the form sys_xyz(), where xyz() is the system call in question.)

The information given in the preceding paragraphs is more than we’ll usually
need to know for the remainder of this book. However, it illustrates the important
point that, even for a simple system call, quite a bit of work must be done, and thus
system calls have a small but appreciable overhead.

As an example of the overhead of making a system call, consider the getppid()
system call, which simply returns the process ID of the parent of the calling
process. On one of the author’s x86-32 systems running Linux 2.6.25, 10 million
calls to getppid() required approximately 2.2 seconds to complete. This amounts
to around 0.3 microseconds per call. By comparison, on the same system, 10 mil-
lion calls to a C function that simply returns an integer required 0.11 seconds, or
around one-twentieth of the time required for calls to getppid(). Of course, most
system calls have significantly more overhead than getppid().

Since, from the point of view of a C program, calling the C library wrapper func-
tion is synonymous with invoking the corresponding system call service routine, in
the remainder of this book, we use wording such as “invoking the system call xyz()”
to mean “calling the wrapper function that invokes the system call xyz().”
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Figure 3-1: Steps in the execution of a system call

Appendix A describes the strace command, which can be used to trace the system
calls made by a program, either for debugging purposes or simply to investigate
what a program is doing.

More information about the Linux system call mechanism can be found in
[Love, 2010], [Bovet & Cesati, 2005], and [Maxwell, 1999].

3.2 Library Functions

A library function is simply one of the multitude of functions that constitutes the
standard C library. (For brevity, when talking about a specific function in the rest of
the book we’ll often just write function rather than library function.) The purposes of
these functions are very diverse, including such tasks as opening a file, converting a
time to a human-readable format, and comparing two character strings.

Many library functions don’t make any use of system calls (e.g., the string-
manipulation functions). On the other hand, some library functions are layered on
top of system calls. For example, the fopen() library function uses the open() system
call to actually open a file. Often, library functions are designed to provide a more
caller-friendly interface than the underlying system call. For example, the printf()
function provides output formatting and data buffering, whereas the write() system
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call just outputs a block of bytes. Similarly, the malloc() and free() functions perform
various bookkeeping tasks that make them a much easier way to allocate and free
memory than the underlying brk() system call.

3.3 The Standard C Library; The GNU C Library (glibc)

There are different implementations of the standard C library on the various UNIX
implementations. The most commonly used implementation on Linux is the GNU
C library (glibc, http://www.gnu.org/software/libc/).

The principal developer and maintainer of the GNU C library was initially
Roland McGrath. Nowadays, this task is carried out by Ulrich Drepper.

Various other C libraries are available for Linux, including libraries with
smaller memory requirements for use in embedded device applications. Examples
include uClibc (http://www.uclibc.org/) and diet libc (http://www.fefe.de/dietlibc/).
In this book, we confine the discussion to glibc, since that is the C library used
by most applications developed on Linux.

Determining the version of glibc on the system

Sometimes, we need to determine the version of glibc on a system. From the shell,
we can do this by running the glibc shared library file as though it were an execut-
able program. When we run the library as an executable, it displays various text,
including its version number:

$ /lib/libc.so.6
GNU C Library stable release version 2.10.1, by Roland McGrath et al.
Copyright (C) 2009 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE.
Compiled by GNU CC version 4.4.0 20090506 (Red Hat 4.4.0-4).
Compiled on a Linux >>2.6.18-128.4.1.el5<< system on 2009-08-19.
Available extensions:
        The C stubs add-on version 2.1.2.
        crypt add-on version 2.1 by Michael Glad and others
        GNU Libidn by Simon Josefsson
        Native POSIX Threads Library by Ulrich Drepper et al
        BIND-8.2.3-T5B
        RT using linux kernel aio
For bug reporting instructions, please see:
<http://www.gnu.org/software/libc/bugs.html>.

In some Linux distributions, the GNU C library resides at a pathname other than
/lib/libc.so.6. One way of determining the location of the library is to run the ldd
(list dynamic dependencies) program against an executable linked dynamically
against glibc (most executables are linked in this manner). We can then inspect the
resulting library dependency list to find the location of the glibc shared library:

$ ldd myprog | grep libc
        libc.so.6 => /lib/tls/libc.so.6 (0x4004b000)
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There are two means by which an application program can determine the version
of the GNU C library present on the system: by testing constants or by calling a
library function. From version 2.0 onward, glibc defines two constants, __GLIBC__
and __GLIBC_MINOR__, that can be tested at compile time (in #ifdef statements). On a
system with glibc 2.12 installed, these constants would have the values 2 and 12.
However, these constants are of limited use in a program that is compiled on one
system but run on another system with a different glibc. To handle this possibility, a
program can call the gnu_get_libc_version() function to determine the version of
glibc available at run time.

The gnu_get_libc_version() function returns a pointer to a string, such as 2.12.

We can also obtain version information by using the confstr() function to
retrieve the value of the (glibc-specific) _CS_GNU_LIBC_VERSION configuration vari-
able. This call returns a string such as glibc 2.12.

3.4 Handling Errors from System Calls and Library Functions

Almost every system call and library function returns some type of status value indi-
cating whether the call succeeded or failed. This status value should always be
checked to see whether the call succeeded. If it did not, then appropriate action
should be taken—at the very least, the program should display an error message
warning that something unexpected occurred.

Although it is tempting to save typing time by excluding these checks (espe-
cially after seeing examples of UNIX and Linux programs where status values are
not checked), it is a false economy. Many hours of debugging time can be wasted
because a check was not made on the status return of a system call or library function
that “couldn’t possibly fail.”

A few system calls never fail. For example, getpid() always successfully returns
the ID of a process, and _exit() always terminates a process. It is not necessary
to check the return values from such system calls.

Handling system call errors

The manual page for each system call documents the possible return values of the
call, showing which value(s) indicate an error. Usually, an error is indicated by a
return of –1. Thus, a system call can be checked with code such as the following:

fd = open(pathname, flags, mode);       /* system call to open a file */
if (fd == -1) {
    /* Code to handle the error */
}
...

#include <gnu/libc-version.h>

const char *gnu_get_libc_version(void);

Returns pointer to null-terminated, statically allocated string
containing GNU C library version number
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if (close(fd) == -1) {
    /* Code to handle the error */
}

When a system call fails, it sets the global integer variable errno to a positive value
that identifies the specific error. Including the <errno.h> header file provides a dec-
laration of errno, as well as a set of constants for the various error numbers. All of
these symbolic names commence with E. The section headed ERRORS in each manual
page provides a list of possible errno values that can be returned by each system call.
Here is a simple example of the use of errno to diagnose a system call error:

cnt = read(fd, buf, numbytes);
if (cnt == -1) {
    if (errno == EINTR)
        fprintf(stderr, "read was interrupted by a signal\n");
    else {
        /* Some other error occurred */
    }
}

Successful system calls and library functions never reset errno to 0, so this variable
may have a nonzero value as a consequence of an error from a previous call. Further-
more, SUSv3 permits a successful function call to set errno to a nonzero value
(although few functions do this). Therefore, when checking for an error, we should
always first check if the function return value indicates an error, and only then
examine errno to determine the cause of the error.

A few system calls (e.g., getpriority()) can legitimately return –1 on success. To
determine whether an error occurs in such calls, we set errno to 0 before the call,
and then check it afterward. If the call returns –1 and errno is nonzero, an error
occurred. (A similar statement also applies to a few library functions.)

A common course of action after a failed system call is to print an error mes-
sage based on the errno value. The perror() and strerror() library functions are pro-
vided for this purpose.

The perror() function prints the string pointed to by its msg argument, followed
by a message corresponding to the current value of errno.

A simple way of handling errors from system calls would be as follows:

fd = open(pathname, flags, mode);
if (fd == -1) {
    perror("open");
    exit(EXIT_FAILURE);
}

The strerror() function returns the error string corresponding to the error number
given in its errnum argument.

#include <stdio.h>

void perror(const char *msg);
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The string returned by strerror() may be statically allocated, which means that it
could be overwritten by subsequent calls to strerror().

If errnum specifies an unrecognized error number, strerror() returns a string of
the form Unknown error nnn. On some other implementations, strerror() instead
returns NULL in this case.

Because perror() and strerror() functions are locale-sensitive (Section 10.4), error
descriptions are displayed in the local language.

Handling errors from library functions

The various library functions return different data types and different values to
indicate failure. (Check the manual page for each function.) For our purposes,
library functions can be divided into the following categories:

Some library functions return error information in exactly the same way as sys-
tem calls: a –1 return value, with errno indicating the specific error. An example
of such a function is remove(), which removes a file (using the unlink() system
call) or a directory (using the rmdir() system call). Errors from these functions
can be diagnosed in the same way as errors from system calls.

Some library functions return a value other than –1 on error, but nevertheless
set errno to indicate the specific error condition. For example, fopen() returns a
NULL pointer on error, and the setting of errno depends on which underlying sys-
tem call failed. The perror() and strerror() functions can be used to diagnose
these errors.

Other library functions don’t use errno at all. The method for determining the
existence and cause of errors depends on the particular function and is docu-
mented in the function’s manual page. For these functions, it is a mistake to
use errno, perror(), or strerror() to diagnose errors.

3.5 Notes on the Example Programs in This Book

In this section, we describe various conventions and features commonly employed
by the example programs presented in this book.

3.5.1 Command-Line Options and Arguments
Many of the example programs in this book rely on command-line options and
arguments to determine their behavior.

Traditional UNIX command-line options consist of an initial hyphen, a letter
that identifies the option, and an optional argument. (GNU utilities provide an
extended option syntax consisting of two initial hyphens, followed by a string
identifying the option and an optional argument.) To parse these options, we use
the standard getopt() library function (described in Appendix B).

#include <string.h>

char *strerror(int errnum);

Returns pointer to error string corresponding to errnum
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Each of our example programs that has a nontrivial command-line syntax pro-
vides a simple help facility for the user: if invoked with the ––help option, the pro-
gram displays a usage message that indicates the syntax for command-line options
and arguments.

3.5.2 Common Functions and Header Files
Most of the example programs include a header file containing commonly
required definitions, and they also use a set of common functions. We discuss the
header file and functions in this section.

Common header file

Listing 3-1 is the header file used by nearly every program in this book. This header
file includes various other header files used by many of the example programs,
defines a Boolean data type, and defines macros for calculating the minimum and
maximum of two numeric values. Using this header file allows us to make the
example programs a bit shorter.

Listing 3-1: Header file used by most example programs

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– lib/tlpi_hdr.h

#ifndef TLPI_HDR_H
#define TLPI_HDR_H      /* Prevent accidental double inclusion */

#include <sys/types.h>  /* Type definitions used by many programs */
#include <stdio.h>      /* Standard I/O functions */
#include <stdlib.h>     /* Prototypes of commonly used library functions,
                           plus EXIT_SUCCESS and EXIT_FAILURE constants */
#include <unistd.h>     /* Prototypes for many system calls */
#include <errno.h>      /* Declares errno and defines error constants */
#include <string.h>     /* Commonly used string-handling functions */

#include "get_num.h"    /* Declares our functions for handling numeric
                           arguments (getInt(), getLong()) */

#include "error_functions.h"  /* Declares our error-handling functions */

typedef enum { FALSE, TRUE } Boolean;

#define min(m,n) ((m) < (n) ? (m) : (n))
#define max(m,n) ((m) > (n) ? (m) : (n))

#endif

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– lib/tlpi_hdr.h

Error-diagnostic functions

To simplify error handling in our example programs, we use the error-diagnostic
functions whose declarations are shown in Listing 3-2.
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Listing 3-2: Declarations for common error-handling functions

––––––––––––––––––––––––––––––––––––––––––––––––––––– lib/error_functions.h

#ifndef ERROR_FUNCTIONS_H
#define ERROR_FUNCTIONS_H

void errMsg(const char *format, ...);

#ifdef __GNUC__

/* This macro stops 'gcc -Wall' complaining that "control reaches
       end of non-void function" if we use the following functions to
       terminate main() or some other non-void function. */

#define NORETURN __attribute__ ((__noreturn__))
#else
#define NORETURN
#endif

void errExit(const char *format, ...) NORETURN ;

void err_exit(const char *format, ...) NORETURN ;

void errExitEN(int errnum, const char *format, ...) NORETURN ;

void fatal(const char *format, ...) NORETURN ;

void usageErr(const char *format, ...) NORETURN ;

void cmdLineErr(const char *format, ...) NORETURN ;

#endif

––––––––––––––––––––––––––––––––––––––––––––––––––––– lib/error_functions.h

To diagnose errors from system calls and library functions, we use errMsg(),
errExit(), err_exit(), and errExitEN().

The errMsg() function prints a message on standard error. Its argument list is the
same as for printf(), except that a terminating newline character is automatically
appended to the output string. The errMsg() function prints the error text corre-
sponding to the current value of errno—this consists of the error name, such as
EPERM, plus the error description as returned by strerror()—followed by the formatted
output specified in the argument list.

The errExit() function operates like errMsg(), but also terminates the program,
either by calling exit() or, if the environment variable EF_DUMPCORE is defined with a

#include "tlpi_hdr.h"

void errMsg(const char *format, ...);
void errExit(const char *format, ...);
void err_exit(const char *format, ...);
void errExitEN(int errnum, const char *format, ...);
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nonempty string value, by calling abort() to produce a core dump file for use with
the debugger. (We explain core dump files in Section 22.1.)

The err_exit() function is similar to errExit(), but differs in two respects:

It doesn’t flush standard output before printing the error message.

It terminates the process by calling _exit() instead of exit(). This causes the pro-
cess to terminate without flushing stdio buffers or invoking exit handlers.

The details of these differences in the operation of err_exit() will become clearer in
Chapter 25, where we describe the differences between _exit() and exit(), and con-
sider the treatment of stdio buffers and exit handlers in a child created by fork(). For
now, we simply note that err_exit() is especially useful if we write a library function
that creates a child process that needs to terminate because of an error. This termi-
nation should occur without flushing the child’s copy of the parent’s (i.e., the call-
ing process’s) stdio buffers and without invoking exit handlers established by the
parent.

The errExitEN() function is the same as errExit(), except that instead of printing
the error text corresponding to the current value of errno, it prints the text corre-
sponding to the error number (thus, the EN suffix) given in the argument errnum.

Mainly, we use errExitEN() in programs that employ the POSIX threads API.
Unlike traditional UNIX system calls, which return –1 on error, the POSIX threads
functions diagnose an error by returning an error number (i.e., a positive number
of the type normally placed in errno) as their function result. (The POSIX threads
functions return 0 on success.)

We could diagnose errors from the POSIX threads functions using code such
as the following:

errno = pthread_create(&thread, NULL, func, &arg);
if (errno != 0)
    errExit("pthread_create");

However, this approach is inefficient because errno is defined in threaded pro-
grams as a macro that expands into a function call that returns a modifiable lvalue.
Thus, each use of errno results in a function call. The errExitEN() function allows us
to write a more efficient equivalent of the above code:

int s;

s = pthread_create(&thread, NULL, func, &arg);
if (s != 0)
    errExitEN(s, "pthread_create");

In C terminology, an lvalue is an expression referring to a region of stor-
age. The most common example of an lvalue is an identifier for a variable.
Some operators also yield lvalues. For example, if p is a pointer to a storage
area, then *p is an lvalue. Under the POSIX threads API, errno is redefined
to be a function that returns a pointer to a thread-specific storage area (see
Section 31.3).

To diagnose other types of errors, we use fatal(), usageErr(), and cmdLineErr().
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The fatal() function is used to diagnose general errors, including errors from
library functions that don’t set errno. Its argument list is the same as for printf(),
except that a terminating newline character is automatically appended to the out-
put string. It prints the formatted output on standard error and then terminates
the program as with errExit().

The usageErr() function is used to diagnose errors in command-line argument
usage. It takes an argument list in the style of printf() and prints the string Usage:
followed by the formatted output on standard error, and then terminates the pro-
gram by calling exit(). (Some of the example programs in this book provide their
own extended version of the usageErr() function, under the name usageError().)

The cmdLineErr() function is similar to usageErr(), but is intended for diagnosing
errors in the command-line arguments specified to a program.

The implementations of our error-diagnostic functions are shown in Listing 3-3.

Listing 3-3: Error-handling functions used by all programs

––––––––––––––––––––––––––––––––––––––––––––––––––––– lib/error_functions.c
#include <stdarg.h>
#include "error_functions.h"
#include "tlpi_hdr.h"
#include "ename.c.inc"          /* Defines ename and MAX_ENAME */

#ifdef __GNUC__
__attribute__ ((__noreturn__))
#endif
static void
terminate(Boolean useExit3)
{
    char *s;

    /* Dump core if EF_DUMPCORE environment variable is defined and
       is a nonempty string; otherwise call exit(3) or _exit(2),
       depending on the value of 'useExit3'. */

    s = getenv("EF_DUMPCORE");

    if (s != NULL && *s != '\0')
        abort();
    else if (useExit3)
        exit(EXIT_FAILURE);
    else
        _exit(EXIT_FAILURE);
}

#include "tlpi_hdr.h"

void fatal(const char *format, ...);
void usageErr(const char *format, ...);
void cmdLineErr(const char *format, ...);
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static void
outputError(Boolean useErr, int err, Boolean flushStdout,
        const char *format, va_list ap)
{
#define BUF_SIZE 500
    char buf[BUF_SIZE], userMsg[BUF_SIZE], errText[BUF_SIZE];

    vsnprintf(userMsg, BUF_SIZE, format, ap);

    if (useErr)
        snprintf(errText, BUF_SIZE, " [%s %s]",
                (err > 0 && err <= MAX_ENAME) ?
                ename[err] : "?UNKNOWN?", strerror(err));
    else
        snprintf(errText, BUF_SIZE, ":");

    snprintf(buf, BUF_SIZE, "ERROR%s %s\n", errText, userMsg);

    if (flushStdout)
        fflush(stdout);       /* Flush any pending stdout */
    fputs(buf, stderr);
    fflush(stderr);           /* In case stderr is not line-buffered */
}

void
errMsg(const char *format, ...)
{
    va_list argList;
    int savedErrno;

    savedErrno = errno;       /* In case we change it here */

    va_start(argList, format);
    outputError(TRUE, errno, TRUE, format, argList);
    va_end(argList);

    errno = savedErrno;
}

void
errExit(const char *format, ...)
{
    va_list argList;

    va_start(argList, format);
    outputError(TRUE, errno, TRUE, format, argList);
    va_end(argList);

    terminate(TRUE);
}
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void
err_exit(const char *format, ...)
{
    va_list argList;

    va_start(argList, format);
    outputError(TRUE, errno, FALSE, format, argList);
    va_end(argList);

    terminate(FALSE);
}

void
errExitEN(int errnum, const char *format, ...)
{
    va_list argList;

    va_start(argList, format);
    outputError(TRUE, errnum, TRUE, format, argList);
    va_end(argList);

    terminate(TRUE);
}

void
fatal(const char *format, ...)
{
    va_list argList;

    va_start(argList, format);
    outputError(FALSE, 0, TRUE, format, argList);
    va_end(argList);

    terminate(TRUE);
}

void
usageErr(const char *format, ...)
{
    va_list argList;

    fflush(stdout);           /* Flush any pending stdout */

    fprintf(stderr, "Usage: ");
    va_start(argList, format);
    vfprintf(stderr, format, argList);
    va_end(argList);

    fflush(stderr);           /* In case stderr is not line-buffered */
    exit(EXIT_FAILURE);
}
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void
cmdLineErr(const char *format, ...)
{
    va_list argList;

    fflush(stdout);           /* Flush any pending stdout */

    fprintf(stderr, "Command-line usage error: ");
    va_start(argList, format);
    vfprintf(stderr, format, argList);
    va_end(argList);

    fflush(stderr);           /* In case stderr is not line-buffered */
    exit(EXIT_FAILURE);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––– lib/error_functions.c

The file enames.c.inc included by Listing 3-3 is shown in Listing 3-4. This file defines
an array of strings, ename, that are the symbolic names corresponding to each
of the possible errno values. Our error-handling functions use this array to print out
the symbolic name corresponding to a particular error number. This is a
workaround to deal with the facts that, on the one hand, the string returned by
strerror() doesn’t identify the symbolic constant corresponding to its error message,
while, on the other hand, the manual pages describe errors using their symbolic
names. Printing out the symbolic name gives us an easy way of looking up the cause
of an error in the manual pages.

The content of the ename.c.inc file is architecture-specific, because errno values
vary somewhat from one Linux hardware architecture to another. The version
shown in Listing 3-4 is for a Linux 2.6/x86-32 system. This file was built using a
script (lib/Build_ename.sh) included in the source code distribution for this
book. This script can be used to build a version of ename.c.inc that should be
suitable for a specific hardware platform and kernel version.

Note that some of the strings in the ename array are empty. These correspond to
unused error values. Furthermore, some of the strings in ename consist of two error
names separate by a slash. These strings correspond to cases where two symbolic
error names have the same numeric value.

From the ename.c.inc file, we can see that the EAGAIN and EWOULDBLOCK errors
have the same value. (SUSv3 explicitly permits this, and the values of these
constants are the same on most, but not all, other UNIX systems.) These errors
are returned by a system call in circumstances in which it would normally
block (i.e., be forced to wait before completing), but the caller requested that
the system call return an error instead of blocking. EAGAIN originated on System V,
and it was the error returned for system calls performing I/O, semaphore
operations, message queue operations, and file locking ( fcntl()). EWOULDBLOCK
originated on BSD, and it was returned by file locking ( flock()) and socket-
related system calls.

Within SUSv3, EWOULDBLOCK is mentioned only in the specifications of vari-
ous interfaces related to sockets. For these interfaces, SUSv3 permits either
EAGAIN or EWOULDBLOCK to be returned by nonblocking calls. For all other non-
blocking calls, only the error EAGAIN is specified in SUSv3.
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Listing 3-4: Linux error names (x86-32 version)

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– lib/ename.c.inc
static char *ename[] = {
    /*   0 */ "",
    /*   1 */ "EPERM", "ENOENT", "ESRCH", "EINTR", "EIO", "ENXIO", "E2BIG",
    /*   8 */ "ENOEXEC", "EBADF", "ECHILD", "EAGAIN/EWOULDBLOCK", "ENOMEM",
    /*  13 */ "EACCES", "EFAULT", "ENOTBLK", "EBUSY", "EEXIST", "EXDEV",
    /*  19 */ "ENODEV", "ENOTDIR", "EISDIR", "EINVAL", "ENFILE", "EMFILE",
    /*  25 */ "ENOTTY", "ETXTBSY", "EFBIG", "ENOSPC", "ESPIPE", "EROFS",
    /*  31 */ "EMLINK", "EPIPE", "EDOM", "ERANGE", "EDEADLK/EDEADLOCK",
    /*  36 */ "ENAMETOOLONG", "ENOLCK", "ENOSYS", "ENOTEMPTY", "ELOOP", "",
    /*  42 */ "ENOMSG", "EIDRM", "ECHRNG", "EL2NSYNC", "EL3HLT", "EL3RST",
    /*  48 */ "ELNRNG", "EUNATCH", "ENOCSI", "EL2HLT", "EBADE", "EBADR",
    /*  54 */ "EXFULL", "ENOANO", "EBADRQC", "EBADSLT", "", "EBFONT", "ENOSTR",
    /*  61 */ "ENODATA", "ETIME", "ENOSR", "ENONET", "ENOPKG", "EREMOTE",
    /*  67 */ "ENOLINK", "EADV", "ESRMNT", "ECOMM", "EPROTO", "EMULTIHOP",
    /*  73 */ "EDOTDOT", "EBADMSG", "EOVERFLOW", "ENOTUNIQ", "EBADFD",
    /*  78 */ "EREMCHG", "ELIBACC", "ELIBBAD", "ELIBSCN", "ELIBMAX",
    /*  83 */ "ELIBEXEC", "EILSEQ", "ERESTART", "ESTRPIPE", "EUSERS",
    /*  88 */ "ENOTSOCK", "EDESTADDRREQ", "EMSGSIZE", "EPROTOTYPE",
    /*  92 */ "ENOPROTOOPT", "EPROTONOSUPPORT", "ESOCKTNOSUPPORT",
    /*  95 */ "EOPNOTSUPP/ENOTSUP", "EPFNOSUPPORT", "EAFNOSUPPORT",
    /*  98 */ "EADDRINUSE", "EADDRNOTAVAIL", "ENETDOWN", "ENETUNREACH",
    /* 102 */ "ENETRESET", "ECONNABORTED", "ECONNRESET", "ENOBUFS", "EISCONN",
    /* 107 */ "ENOTCONN", "ESHUTDOWN", "ETOOMANYREFS", "ETIMEDOUT",
    /* 111 */ "ECONNREFUSED", "EHOSTDOWN", "EHOSTUNREACH", "EALREADY",
    /* 115 */ "EINPROGRESS", "ESTALE", "EUCLEAN", "ENOTNAM", "ENAVAIL",
    /* 120 */ "EISNAM", "EREMOTEIO", "EDQUOT", "ENOMEDIUM", "EMEDIUMTYPE",
    /* 125 */ "ECANCELED", "ENOKEY", "EKEYEXPIRED", "EKEYREVOKED",
    /* 129 */ "EKEYREJECTED", "EOWNERDEAD", "ENOTRECOVERABLE", "ERFKILL"
};

#define MAX_ENAME 132

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– lib/ename.c.inc

Functions for parsing numeric command-line arguments

The header file in Listing 3-5 provides the declaration of two functions that we
frequently use for parsing integer command-line arguments: getInt() and getLong().
The primary advantage of using these functions instead of atoi(), atol(), and strtol()
is that they provide some basic validity checking of numeric arguments.

The getInt() and getLong() functions convert the string pointed to by arg to an int or a
long, respectively. If arg doesn’t contain a valid integer string (i.e., only digits and the
characters + and -), then these functions print an error message and terminate the
program.

#include "tlpi_hdr.h"

int getInt(const char *arg, int flags, const char *name);
long getLong(const char *arg, int flags, const char *name);

Both return arg converted to numeric form
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If the name argument is non-NULL, it should contain a string identifying the argu-
ment in arg. This string is included as part of any error message displayed by these
functions.

The flags argument provides some control over the operation of the getInt() and
getLong() functions. By default, these functions expect strings containing signed deci-
mal integers. By ORing (|) one or more of the GN_* constants defined in Listing 3-5
into flags, we can select alternative bases for conversion and restrict the range of the
number to being nonnegative or greater than 0.

The implementations of the getInt() and getLong() functions are provided in
Listing 3-6.

Although the flags argument allows us to enforce the range checks described in
the main text, in some cases, we don’t request such checks in our example pro-
grams, even though it might seem logical to do so. For example, in Listing 47-1,
we don’t check the init-value argument. This means that the user could specify a
negative number as the initial value for a semaphore, which would result in an
error (ERANGE) in the subsequent semctl() system call, because a semaphore can’t
have a negative value. Omitting range checks in such cases allows us to experi-
ment not just with the correct use of system calls and library functions, but also
to see what happens when invalid arguments are supplied. Real-world applica-
tions would usually impose stronger checks on their command-line arguments.

Listing 3-5: Header file for get_num.c
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– lib/get_num.h

#ifndef GET_NUM_H
#define GET_NUM_H

#define GN_NONNEG       01      /* Value must be >= 0 */
#define GN_GT_0         02      /* Value must be > 0 */

                                /* By default, integers are decimal */
#define GN_ANY_BASE   0100      /* Can use any base - like strtol(3) */
#define GN_BASE_8     0200      /* Value is expressed in octal */
#define GN_BASE_16    0400      /* Value is expressed in hexadecimal */

long getLong(const char *arg, int flags, const char *name);

int getInt(const char *arg, int flags, const char *name);

#endif

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– lib/get_num.h

Listing 3-6: Functions for parsing numeric command-line arguments

–––––––––––––––––––––––––––––––––––––––––––––––––––––– lib/get_num.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <errno.h>
#include "get_num.h"
Sys tem Programming Concepts 59



static void
gnFail(const char *fname, const char *msg, const char *arg, const char *name)
{
    fprintf(stderr, "%s error", fname);
    if (name != NULL)
        fprintf(stderr, " (in %s)", name);
    fprintf(stderr, ": %s\n", msg);
    if (arg != NULL && *arg != '\0')
        fprintf(stderr, "        offending text: %s\n", arg);

    exit(EXIT_FAILURE);
}

static long
getNum(const char *fname, const char *arg, int flags, const char *name)
{
    long res;
    char *endptr;
    int base;

    if (arg == NULL || *arg == '\0')
        gnFail(fname, "null or empty string", arg, name);

    base = (flags & GN_ANY_BASE) ? 0 : (flags & GN_BASE_8) ? 8 :
                        (flags & GN_BASE_16) ? 16 : 10;

    errno = 0;
    res = strtol(arg, &endptr, base);
    if (errno != 0)
        gnFail(fname, "strtol() failed", arg, name);

    if (*endptr != '\0')
        gnFail(fname, "nonnumeric characters", arg, name);

    if ((flags & GN_NONNEG) && res < 0)
        gnFail(fname, "negative value not allowed", arg, name);

    if ((flags & GN_GT_0) && res <= 0)
        gnFail(fname, "value must be > 0", arg, name);

    return res;
}

long
getLong(const char *arg, int flags, const char *name)
{
    return getNum("getLong", arg, flags, name);
}

int
getInt(const char *arg, int flags, const char *name)
{
    long res;

    res = getNum("getInt", arg, flags, name);
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    if (res > INT_MAX || res < INT_MIN)
        gnFail("getInt", "integer out of range", arg, name);

    return (int) res;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– lib/get_num.c

3.6 Portability Issues

In this section, we consider the topic of writing portable system programs. We
introduce feature test macros and the standard system data types defined by
SUSv3, and then look at some other portability issues.

3.6.1 Feature Test Macros
Various standards govern the behavior of the system call and library function APIs
(see Section 1.3). Some of these standards are defined by standards bodies such
The Open Group (Single UNIX Specification), while others are defined by the two
historically important UNIX implementations: BSD and System V Release 4 (and
the associated System V Interface Definition).

Sometimes, when writing a portable application, we may want the various
header files to expose only the definitions (constants, function prototypes, and so
on) that follow a particular standard. To do this, we define one or more of the
feature test macros listed below when compiling a program. One way that we can do
this is by defining the macro in the program source code before including any
header files:

#define _BSD_SOURCE 1

Alternatively, we can use the –D option to the C compiler:

$ cc -D_BSD_SOURCE prog.c

The term feature test macro may seem confusing, but it makes sense if we look at
things from the perspective of the implementation. The implementation
decides which of the features available in each header it should make visible, by
testing (with #if) which values the application has defined for these macros.

The following feature test macros are specified by the relevant standards, and con-
sequently their usage is portable to all systems that support these standards:

_POSIX_SOURCE

If defined (with any value), expose definitions conforming to POSIX.1-1990
and ISO C (1990). This macro is superseded by _POSIX_C_SOURCE.

_POSIX_C_SOURCE

If defined with the value 1, this has the same effect as _POSIX_SOURCE. If
defined with a value greater than or equal to 199309, also expose defini-
tions for POSIX.1b (realtime). If defined with a value greater than or equal
to 199506, also expose definitions for POSIX.1c (threads). If defined with
the value 200112, also expose definitions for the POSIX.1-2001 base speci-
fication (i.e., the XSI extension is excluded). (Prior to version 2.3.3, the
Sys tem Programming Concepts 61



glibc headers don’t interpret the value 200112 for _POSIX_C_SOURCE.) If
defined with the value 200809, also expose definitions for the POSIX.1-2008
base specification. (Prior to version 2.10, the glibc headers don’t interpret
the value 200809 for _POSIX_C_SOURCE.)

_XOPEN_SOURCE

If defined (with any value), expose POSIX.1, POSIX.2, and X/Open
(XPG4) definitions. If defined with the value 500 or greater, also expose
SUSv2 (UNIX 98 and XPG5) extensions. Setting to 600 or greater addition-
ally exposes SUSv3 XSI (UNIX 03) extensions and C99 extensions. (Prior to
version 2.2, the glibc headers don’t interpret the value 600 for _XOPEN_SOURCE.)
Setting to 700 or greater also exposes SUSv4 XSI extensions. (Prior to ver-
sion 2.10, the glibc headers don’t interpret the value 700 for _XOPEN_SOURCE.)
The values 500, 600, and 700 for _XOPEN_SOURCE were chosen because SUSv2,
SUSv3, and SUSv4 are Issues 5, 6, and 7, respectively, of the X/Open
specifications.

The following feature test macros listed are glibc-specific:

_BSD_SOURCE

If defined (with any value), expose BSD definitions. Defining this macro
also defines _POSIX_C_SOURCE with the value 199506. Explicitly setting just
this macro causes BSD definitions to be favored in a few cases where stan-
dards conflict.

_SVID_SOURCE

If defined (with any value), expose System V Interface Definition (SVID)
definitions.

_GNU_SOURCE

If defined (with any value), expose all of the definitions provided by setting
all of the preceding macros, as well as various GNU extensions.

When the GNU C compiler is invoked without special options, _POSIX_SOURCE,
_POSIX_C_SOURCE=200809 (200112 with glibc versions 2.5 to 2.9, or 199506 with glibc
versions earlier than 2.4), _BSD_SOURCE, and _SVID_SOURCE are defined by default.

If individual macros are defined, or the compiler is invoked in one of its stan-
dard modes (e.g., cc –ansi or cc –std=c99), then only the requested definitions are
supplied. There is one exception: if _POSIX_C_SOURCE is not otherwise defined, and
the compiler is not invoked in one of its standard modes, then _POSIX_C_SOURCE is
defined with the value 200809 (200112 with glibc versions 2.4 to 2.9, or 199506 with
glibc versions earlier than 2.4).

Defining multiple macros is additive, so that we could, for example, use the
following cc command to explicitly select the same macro settings as are provided
by default:

$ cc -D_POSIX_SOURCE -D_POSIX_C_SOURCE=199506 \
                -D_BSD_SOURCE -D_SVID_SOURCE prog.c

The <features.h> header file and the feature_test_macros(7) manual page provide further
information on precisely what values are assigned to each of the feature test macros.
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_POSIX_C_SOURCE, _XOPEN_SOURCE, and POSIX.1/SUS

Only the _POSIX_C_SOURCE and _XOPEN_SOURCE feature test macros are specified in
POSIX.1-2001/SUSv3, which requires that these macros be defined with the values
200112 and 600, respectively, in conforming applications. Defining _POSIX_C_SOURCE
as 200112 provides conformance to the POSIX.1-2001 base specification (i.e.,
POSIX conformance, excluding the XSI extension). Defining _XOPEN_SOURCE as 600 pro-
vides conformance to SUSv3 (i.e., XSI conformance, the base specification plus the
XSI extension). Analogous statements apply for POSIX.1-2008/SUSv4, which
require that the two macros be defined with the values 200809 and 700.

SUSv3 specifies that setting _XOPEN_SOURCE to 600 should supply all of the features
that are enabled if _POSIX_C_SOURCE is set to 200112. Thus, an application needs to
define only _XOPEN_SOURCE for SUSv3 (i.e., XSI) conformance. SUSv4 makes an analo-
gous specification that setting _XOPEN_SOURCE to 700 should supply all of the features
that are enabled if _POSIX_C_SOURCE is set to 200809.

Feature test macros in function prototypes and source code examples

The manual pages describe which feature test macro(s) must be defined in order to
make a particular constant definition or function declaration visible from a header file.

All of the source code examples in this book are written so that they will com-
pile using either the default GNU C compiler options or the following options:

$ cc -std=c99 -D_XOPEN_SOURCE=600

The prototype of each function shown in this book indicates any feature test
macro(s) that must be defined in order to employ that function in a program com-
piled with either the default compiler options or the options in the cc just shown.
The manual pages provide more precise descriptions of the feature test macro(s)
required to expose the declaration of each function.

3.6.2 System Data Types
Various implementation data types are represented using standard C types, for
example, process IDs, user IDs, and file offsets. Although it would be possible to
use the C fundamental types such as int and long to declare variables storing such
information, this reduces portability across UNIX systems, for the following reasons:

The sizes of these fundamental types vary across UNIX implementations (e.g.,
a long may be 4 bytes on one system and 8 bytes on another), or sometimes
even in different compilation environments on the same implementation.
Furthermore, different implementations may use different types to represent
the same information. For example, a process ID might be an int on one sys-
tem but a long on another.

Even on a single UNIX implementation, the types used to represent informa-
tion may differ between releases of the implementation. Notable examples on
Linux are user and group IDs. On Linux 2.2 and earlier, these values were rep-
resented in 16 bits. On Linux 2.4 and later, they are 32-bit values.

To avoid such portability problems, SUSv3 specifies various standard system data
types, and requires an implementation to define and use these types appropriately.
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Each of these types is defined using the C typedef feature. For example, the pid_t
data type is intended for representing process IDs, and on Linux/x86-32 this type
is defined as follows:

typedef int pid_t;

Most of the standard system data types have names ending in _t. Many of them are
declared in the header file <sys/types.h>, although a few are defined in other
header files.

An application should employ these type definitions to portably declare the
variables it uses. For example, the following declaration would allow an application
to correctly represent process IDs on any SUSv3-conformant system:

pid_t mypid;

Table 3-1 lists some of the system data types we’ll encounter in this book. For certain
types in this table, SUSv3 requires that the type be implemented as an arithmetic
type. This means that the implementation may choose the underlying type as either
an integer or a floating-point (real or complex) type.

Table 3-1: Selected system data types

Data type SUSv3 type requirement Description

blkcnt_t signed integer File block count (Section 15.1)
blksize_t signed integer File block size (Section 15.1)
cc_t unsigned integer Terminal special character (Section 62.4)
clock_t integer or real-floating System time in clock ticks (Section 10.7)
clockid_t an arithmetic type Clock identifier for POSIX.1b clock and timer 

functions (Section 23.6)
comp_t not in SUSv3 Compressed clock ticks (Section 28.1)
dev_t an arithmetic type Device number, consisting of major and 

minor numbers (Section 15.1)
DIR no type requirement Directory stream (Section 18.8)
fd_set structure type File descriptor set for select() (Section 63.2.1)
fsblkcnt_t unsigned integer File-system block count (Section 14.11)
fsfilcnt_t unsigned integer File count (Section 14.11)
gid_t integer Numeric group identifier (Section 8.3)
id_t integer A generic type for holding identifiers; large 

enough to hold at least pid_t, uid_t, and gid_t
in_addr_t 32-bit unsigned integer IPv4 address (Section 59.4)
in_port_t 16-bit unsigned integer IP port number (Section 59.4)
ino_t unsigned integer File i-node number (Section 15.1)
key_t an arithmetic type System V IPC key (Section 45.2)
mode_t integer File permissions and type (Section 15.1)
mqd_t no type requirement, but 

shall not be an array type
POSIX message queue descriptor

msglen_t unsigned integer Number of bytes allowed in System V message 
queue (Section 46.4)
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When discussing the data types in Table 3-1 in later chapters, we’ll often make
statements that some type “is an integer type [specified by SUSv3].” This means
that SUSv3 requires the type to be defined as an integer, but doesn’t require that a
particular native integer type (e.g., short, int, or long) be used. (Often, we won’t say
which particular native data type is actually used to represent each of the system
data types in Linux, because a portable application should be written so that it
doesn’t care which data type is used.)

msgqnum_t unsigned integer Counts of messages in System V message 
queue (Section 46.4)

nfds_t unsigned integer Number of file descriptors for poll() 
(Section 63.2.2)

nlink_t integer Count of (hard) links to a file (Section 15.1)
off_t signed integer File offset or size (Sections 4.7 and 15.1)
pid_t signed integer Process ID, process group ID, or session ID 

(Sections 6.2, 34.2, and 34.3)
ptrdiff_t signed integer Difference between two pointer values, as a 

signed integer
rlim_t unsigned integer Resource limit (Section 36.2)
sa_family_t unsigned integer Socket address family (Section 56.4)
shmatt_t unsigned integer Count of attached processes for a System V 

shared memory segment (Section 48.8)
sig_atomic_t integer Data type that can be atomically accessed 

(Section 21.1.3)
siginfo_t structure type Information about the origin of a signal 

(Section 21.4)
sigset_t integer or structure type Signal set (Section 20.9)
size_t unsigned integer Size of an object in bytes
socklen_t integer type of at least 

32 bits
Size of a socket address structure in bytes 
(Section 56.3)

speed_t unsigned integer Terminal line speed (Section 62.7)
ssize_t signed integer Byte count or (negative) error indication
stack_t structure type Description of an alternate signal stack 

(Section 21.3)
suseconds_t signed integer allowing 

range [–1, 1000000]
Microsecond time interval (Section 10.1)

tcflag_t unsigned integer Terminal mode flag bit mask (Section 62.2)
time_t integer or real-floating Calendar time in seconds since the Epoch 

(Section 10.1)
timer_t an arithmetic type Timer identifier for POSIX.1b interval timer 

functions (Section 23.6)
uid_t integer Numeric user identifier (Section 8.1)

Table 3-1: Selected system data types (continued)

Data type SUSv3 type requirement Description
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Printing system data type values

When printing values of one of the numeric system data types shown in Table 3-1
(e.g., pid_t and uid_t), we must be careful not to include a representation depen-
dency in the printf() call. A representation dependency can occur because C’s argu-
ment promotion rules convert values of type short to int, but leave values of type int
and long unchanged. This means that, depending on the definition of the system
data type, either an int or a long is passed in the printf() call. However, because
printf() has no way to determine the types of its arguments at run time, the caller
must explicitly provide this information using the %d or %ld format specifier. The
problem is that simply coding one of these specifiers within the printf() call creates
an implementation dependency. The usual solution is to use the %ld specifier and
always cast the corresponding value to long, like so:

pid_t mypid;

mypid = getpid();           /* Returns process ID of calling process */
printf("My PID is %ld\n", (long) mypid);

We make one exception to the above technique. Because the off_t data type is the
size of long long in some compilation environments, we cast off_t values to this type
and use the %lld specifier, as described in Section 5.10.

The C99 standard defines the z length modifier for printf(), to indicate that the
following integer conversion corresponds to a size_t or ssize_t type. Thus, we
could write %zd instead of using %ld plus a cast for these types. Although this
specifier is available in glibc, we avoid it because it is not available on all UNIX
implementations.

The C99 standard also defines the j length modifier, which specifies that
the corresponding argument is of type intmax_t (or uintmax_t), an integer type
that is guaranteed to be large enough to be able to represent an integer of any
type. Ultimately, the use of an (intmax_t) cast plus the %jd specifier should
replace the (long) cast plus the %ld specifier as the best way of printing numeric
system data type values, since the former approach also handles long long values
and any extended integer types such as int128_t. However, (again) we avoid
this technique since it is not possible on all UNIX implementations.

3.6.3 Miscellaneous Portability Issues
In this section, we consider a few other portability issues that we may encounter
when writing system programs.

Initializing and using structures

Each UNIX implementation specifies a range of standard structures that are used
in various system calls and library functions. As an example, consider the sembuf
structure, which is used to represent a semaphore operation to be performed by
the semop() system call:

struct sembuf {
    unsigned short sem_num;         /* Semaphore number */
    short          sem_op;          /* Operation to be performed */
    short          sem_flg;         /* Operation flags */
};
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Although SUSv3 specifies structures such as sembuf, it is important to realize the
following:

In general, the order of field definitions within such structures is not specified.

In some cases, extra implementation-specific fields may be included in such
structures.

Consequently, it is not portable to use a structure initializer such as the following:

struct sembuf s = { 3, -1, SEM_UNDO };

Although this initializer will work on Linux, it won’t work on another implementa-
tion where the fields in the sembuf structure are defined in a different order. To
portably initialize such structures, we must use explicit assignment statements, as in
the following:

struct sembuf s;

s.sem_num = 3;
s.sem_op  = -1;
s.sem_flg = SEM_UNDO;

If we are using C99, then we can employ that language’s new syntax for structure
initializers to write an equivalent initialization:

struct sembuf s = { .sem_num = 3, .sem_op = -1, .sem_flg = SEM_UNDO };

Considerations about the order of the members of standard structures also apply
if we want to write the contents of a standard structure to a file. To do this port-
ably, we can’t simply do a binary write of the structure. Instead, the structure fields
must be written individually (probably in text form) in a specified order.

Using macros that may not be present on all implementations

In some cases, a macro may be not be defined on all UNIX implementations. For
example, the WCOREDUMP() macro (which checks whether a child process produced a
core dump file) is widely available, but it is not specified in SUSv3. Therefore, this
macro might not be present on some UNIX implementations. In order to portably
handle such possibilities, we can use the C preprocessor #ifdef directive, as in the
following example:

#ifdef WCOREDUMP
    /* Use WCOREDUMP() macro */
#endif

Variation in required header files across implementations

In some cases, the header files required to prototype various system calls and
library functions vary across UNIX implementations. In this book, we show the
requirements on Linux and note any variations from SUSv3.

Some of the function synopses in this book show a particular header file with
the accompanying comment /* For portability */. This indicates that the header file
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is not required on Linux or by SUSv3, but because some other (especially older)
implementations may require it, we should include it in portable programs.

For many of the functions that it specified, POSIX.1-1990 required that the
header <sys/types.h> be included before any other headers associated with the
function. However, this requirement was redundant, because most contempo-
rary UNIX implementations did not require applications to include this
header for these functions. Consequently, SUSv1 removed this requirement.
Nevertheless, when writing portable programs, it is wise to make this one of
the first header files included. (However, we omit this header from our example
programs because it is not required on Linux and omitting it allows us to make
the example programs one line shorter.)

3.7 Summary

System calls allow processes to request services from the kernel. Even the sim-
plest system calls have a significant overhead by comparison with a user-space
function call, since the system must temporarily switch to kernel mode to execute
the system call, and the kernel must verify system call arguments and transfer
data between user memory and kernel memory.

The standard C library provides a multitude of library functions that perform a
wide range of tasks. Some library functions employ system calls to do their work;
others perform tasks entirely within user space. On Linux, the usual standard C
library implementation that is used is glibc.

Most system calls and library functions return a status indicating whether a call
has succeeded or failed. Such status returns should always be checked.

We introduced a number of functions that we have implemented for use in the
example programs in this book. The tasks performed by these functions include
diagnosing errors and parsing command-line arguments.

We discussed various guidelines and techniques that can help us write portable
system programs that run on any standards-conformant system.

When compiling an application, we can define various feature test macros that
control the definitions exposed by header files. This is useful if we want to ensure
that a program conforms to some formal or implementation-defined standard(s).

We can improve the portability of system programs by using the system data
types defined in various standards, rather than native C types. SUSv3 specifies a
wide range of system data types that an implementation should support and that an
application should employ.

3.8 Exercise

3-1. When using the Linux-specific reboot() system call to reboot the system, the second
argument, magic2, must be specified as one of a set of magic numbers (e.g.,
LINUX_REBOOT_MAGIC2). What is the significance of these numbers? (Converting them
to hexadecimal provides a clue.)
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F I L E  I / O :  T H E  U N I V E R S A L  
I / O  M O D E L

We now start to look in earnest at the system call API. Files are a good place to
start, since they are central to the UNIX philosophy. The focus of this chapter is the
system calls used for performing file input and output.

We introduce the concept of a file descriptor, and then look at the system calls
that constitute the so-called universal I/O model. These are the system calls that
open and close a file, and read and write data.

We focus on I/O on disk files. However, much of the material covered here is
relevant for later chapters, since the same system calls are used for performing I/O
on all types of files, such as pipes and terminals.

Chapter 5 extends the discussion in this chapter with further details on file I/O.
One other aspect of file I/O, buffering, is complex enough to deserve its own chapter.
Chapter 13 covers I/O buffering in the kernel and in the stdio library.

4.1 Overview

All system calls for performing I/O refer to open files using a file descriptor, a (usually
small) nonnegative integer. File descriptors are used to refer to all types of open
files, including pipes, FIFOs, sockets, terminals, devices, and regular files. Each
process has its own set of file descriptors.

By convention, most programs expect to be able to use the three standard file
descriptors listed in Table 4-1. These three descriptors are opened on the program’s



behalf by the shell, before the program is started. Or, more precisely, the program
inherits copies of the shell’s file descriptors, and the shell normally operates with
these three file descriptors always open. (In an interactive shell, these three file
descriptors normally refer to the terminal under which the shell is running.) If I/O
redirections are specified on a command line, then the shell ensures that the file
descriptors are suitably modified before starting the program.

When referring to these file descriptors in a program, we can use either the numbers
(0, 1, or 2) or, preferably, the POSIX standard names defined in <unistd.h>.

Although the variables stdin, stdout, and stderr initially refer to the process’s
standard input, output, and error, they can be changed to refer to any file by
using the freopen() library function. As part of its operation, freopen() may
change the file descriptor underlying the reopened stream. In other words,
after an freopen() on stdout, for example, it is no longer safe to assume that the
underlying file descriptor is still 1.

The following are the four key system calls for performing file I/O (programming
languages and software packages typically employ these calls only indirectly, via I/O
libraries):

fd = open(pathname, flags, mode) opens the file identified by pathname, returning
a file descriptor used to refer to the open file in subsequent calls. If the file
doesn’t exist, open() may create it, depending on the settings of the flags bit-
mask argument. The flags argument also specifies whether the file is to be
opened for reading, writing, or both. The mode argument specifies the permis-
sions to be placed on the file if it is created by this call. If the open() call is not
being used to create a file, this argument is ignored and can be omitted.

numread = read(fd, buffer, count) reads at most count bytes from the open file
referred to by fd and stores them in buffer. The read() call returns the number of
bytes actually read. If no further bytes could be read (i.e., end-of-file was
encountered), read() returns 0.

numwritten = write(fd, buffer, count) writes up to count bytes from buffer to the
open file referred to by fd. The write() call returns the number of bytes actually
written, which may be less than count.

status = close(fd) is called after all I/O has been completed, in order to release
the file descriptor fd and its associated kernel resources.

Before we launch into the details of these system calls, we provide a short demon-
stration of their use in Listing 4-1. This program is a simple version of the cp(1)
command. It copies the contents of the existing file named in its first command-
line argument to the new file named in its second command-line argument. 

Table 4-1: Standard file descriptors

File descriptor Purpose POSIX name stdio stream

0 standard input STDIN_FILENO stdin
1 standard output STDOUT_FILENO stdout
2 standard error STDERR_FILENO stderr
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We can use the program in Listing 4-1 as follows:

$ ./copy oldfile newfile

Listing 4-1: Using I/O system calls
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– fileio/copy.c

#include <sys/stat.h>
#include <fcntl.h>
#include "tlpi_hdr.h"

#ifndef BUF_SIZE        /* Allow "cc -D" to override definition */
#define BUF_SIZE 1024
#endif

int
main(int argc, char *argv[])
{
    int inputFd, outputFd, openFlags;
    mode_t filePerms;
    ssize_t numRead;
    char buf[BUF_SIZE];

    if (argc != 3 || strcmp(argv[1], "--help") == 0)
        usageErr("%s old-file new-file\n", argv[0]);

    /* Open input and output files */

    inputFd = open(argv[1], O_RDONLY);
    if (inputFd == -1)
        errExit("opening file %s", argv[1]);

    openFlags = O_CREAT | O_WRONLY | O_TRUNC;
    filePerms = S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP |
                S_IROTH | S_IWOTH;      /* rw-rw-rw- */
    outputFd = open(argv[2], openFlags, filePerms);
    if (outputFd == -1)
        errExit("opening file %s", argv[2]);

    /* Transfer data until we encounter end of input or an error */

    while ((numRead = read(inputFd, buf, BUF_SIZE)) > 0)
        if (write(outputFd, buf, numRead) != numRead)
            fatal("couldn't write whole buffer");
    if (numRead == -1)
        errExit("read");

    if (close(inputFd) == -1)
        errExit("close input");
    if (close(outputFd) == -1)
        errExit("close output");

    exit(EXIT_SUCCESS);
}
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– fileio/copy.c
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4.2 Universality of I/O

One of the distinguishing features of the UNIX I/O model is the concept of
universality of I/O. This means that the same four system calls—open(), read(), write(),
and close()—are used to perform I/O on all types of files, including devices such as
terminals. Consequently, if we write a program using only these system calls, that
program will work on any type of file. For example, the following are all valid uses
of the program in Listing 4-1:

$ ./copy test test.old           Copy a regular file
$ ./copy a.txt /dev/tty          Copy a regular file to this terminal
$ ./copy /dev/tty b.txt          Copy input from this terminal to a regular file
$ ./copy /dev/pts/16 /dev/tty    Copy input from another terminal

Universality of I/O is achieved by ensuring that each file system and device driver
implements the same set of I/O system calls. Because details specific to the file sys-
tem or device are handled within the kernel, we can generally ignore device-specific
factors when writing application programs. When access to specific features of a
file system or device is required, a program can use the catchall ioctl() system call
(Section 4.8), which provides an interface to features that fall outside the universal
I/O model.

4.3 Opening a File: open()

The open() system call either opens an existing file or creates and opens a new file.

The file to be opened is identified by the pathname argument. If pathname is a sym-
bolic link, it is dereferenced. On success, open() returns a file descriptor that is used
to refer to the file in subsequent system calls. If an error occurs, open() returns –1
and errno is set accordingly.

The flags argument is a bit mask that specifies the access mode for the file, using
one of the constants shown in Table 4-2.

Early UNIX implementations used the numbers 0, 1, and 2 instead of the
names shown in Table 4-2. Most modern UNIX implementations define these
constants to have those values. Thus, we can see that O_RDWR is not equivalent to
O_RDONLY | O_WRONLY; the latter combination is a logical error.

When open() is used to create a new file, the mode bit-mask argument specifies the
permissions to be placed on the file. (The mode_t data type used to type mode is an
integer type specified in SUSv3.) If the open() call doesn’t specify O_CREAT, mode can
be omitted.

#include <sys/stat.h>
#include <fcntl.h>

int open(const char *pathname, int flags, ... /* mode_t mode */);

Returns file descriptor on success, or –1 on error
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We describe file permissions in detail in Section 15.4. Later, we’ll see that the per-
missions actually placed on a new file depend not just on the mode argument, but
also on the process umask (Section 15.4.6) and the (optionally present) default
access control list (Section 17.6) of the parent directory. In the meantime, we’ll just
note that the mode argument can be specified as a number (typically in octal) or,
preferably, by ORing (|) together zero or more of the bit-mask constants listed in
Table 15-4, on page 295.

Listing 4-2 shows examples of the use of open(), some of which employ addi-
tional flags bits that we describe shortly.

Listing 4-2: Examples of the use of open()

    /* Open existing file for reading */

    fd = open("startup", O_RDONLY);
    if (fd == -1)
        errExit("open");

/* Open new or existing file for reading and writing, truncating to zero 
bytes; file permissions read+write for owner, nothing for all others */

    fd = open("myfile", O_RDWR | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR);
    if (fd == -1)
        errExit("open");

    /* Open new or existing file for writing; writes should always
       append to end of file */

    fd = open("w.log", O_WRONLY | O_CREAT | O_TRUNC | O_APPEND,
                       S_IRUSR | S_IWUSR);
    if (fd == -1)
        errExit("open");

File descriptor number returned by open()

SUSv3 specifies that if open() succeeds, it is guaranteed to use the lowest-numbered
unused file descriptor for the process. We can use this feature to ensure that a file
is opened using a particular file descriptor. For example, the following sequence
ensures that a file is opened using standard input (file descriptor 0).

Table 4-2: File access modes

Access mode Description

O_RDONLY Open the file for reading only
O_WRONLY Open the file for writing only
O_RDWR Open the file for both reading and writing
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if (close(STDIN_FILENO) == -1)      /* Close file descriptor 0 */
    errExit("close");

fd = open(pathname, O_RDONLY);
if (fd == -1)
    errExit("open");

Since file descriptor 0 is unused, open() is guaranteed to open the file using that
descriptor. In Section 5.5, we look at the use of dup2() and fcntl() to achieve a similar
result, but with more flexible control over the file descriptor used. In that section,
we also show an example of why it can be useful to control the file descriptor on
which a file is opened.

4.3.1 The open() flags Argument
In some of the example open() calls shown in Listing 4-2, we included other bits
(O_CREAT, O_TRUNC, and O_APPEND) in flags in addition to the file access mode. We now
consider the flags argument in more detail. Table 4-3 summarizes the full set of con-
stants that can be bit-wise ORed (|) in flags. The final column indicates which of
these constants are standardized in SUSv3 or SUSv4.

Table 4-3: Values for the flags argument of open()

Flag Purpose SUS?

O_RDONLY Open for reading only v3

O_WRONLY Open for writing only v3

O_RDWR Open for reading and writing v3

O_CLOEXEC Set the close-on-exec flag (since Linux 2.6.23) v4

O_CREAT Create file if it doesn’t already exist v3

O_DIRECT File I/O bypasses buffer cache

O_DIRECTORY Fail if pathname is not a directory v4

O_EXCL With O_CREAT: create file exclusively v3

O_LARGEFILE Used on 32-bit systems to open large files

O_NOATIME Don’t update file last access time on read() (since Linux 2.6.8)

O_NOCTTY Don’t let pathname become the controlling terminal v3

O_NOFOLLOW Don’t dereference symbolic links v4

O_TRUNC Truncate existing file to zero length v3

O_APPEND Writes are always appended to end of file v3

O_ASYNC Generate a signal when I/O is possible

O_DSYNC Provide synchronized I/O data integrity (since Linux 2.6.33) v3

O_NONBLOCK Open in nonblocking mode v3

O_SYNC Make file writes synchronous v3
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The constants in Table 4-3 are divided into the following groups:

File access mode flags: These are the O_RDONLY, O_WRONLY, and O_RDWR flags described
earlier. They can be retrieved using the fcntl() F_GETFL operation (Section 5.3).

File creation flags: These are the flags shown in the second part of Table 4-3.
They control various aspects of the behavior of the open() call, as well as
options for subsequent I/O operations. These flags can’t be retrieved or
changed.

Open file status flags: These are the remaining flags in Table 4-3. They can be
retrieved and modified using the fcntl() F_GETFL and F_SETFL operations (Sec-
tion 5.3). These flags are sometimes simply called the file status flags.

Since kernel 2.6.22, the Linux-specific files in the directory /proc/PID/fdinfo
can be read to obtain information about the file descriptors of any process on
the system. There is one file in this directory for each of the process’s open file
descriptors, with a name that matches the number of the descriptor. The pos
field in this file shows the current file offset (Section 4.7). The flags field is an
octal number that shows the file access mode flags and open file status flags.
(To decode this number, we need to look at the numeric values of these flags
in the C library header files.)

Details for the flags constants are as follows:

O_APPEND

Writes are always appended to the end of the file. We discuss the signifi-
cance of this flag in Section 5.1.

O_ASYNC

Generate a signal when I/O becomes possible on the file descriptor
returned by open(). This feature, termed signal-driven I/O, is available only
for certain file types, such as terminals, FIFOs, and sockets. (The O_ASYNC
flag is not specified in SUSv3; however, it, or the older synonym, FASYNC, is
found on most UNIX implementations.) On Linux, specifying the O_ASYNC
flag when calling open() has no effect. To enable signal-driven I/O, we must
instead set this flag using the fcntl() F_SETFL operation (Section 5.3). (Sev-
eral other UNIX implementations behave similarly.) Refer to Section 63.3
for more information about the O_ASYNC flag.

O_CLOEXEC (since Linux 2.6.23)
Enable the close-on-exec flag (FD_CLOEXEC) for the new file descriptor. We
describe the FD_CLOEXEC flag in Section 27.4. Using the O_CLOEXEC flag allows a
program to avoid additional fcntl() F_SETFD and F_SETFD operations to set the
close-on-exec flag. It is also necessary in multithreaded programs to avoid
the race conditions that could occur using the latter technique. These
races can occur when one thread opens a file descriptor and then tries to
mark it close-on-exec at the same time as another thread does a fork() and
then an exec() of an arbitrary program. (Suppose that the second thread
manages to both fork() and exec() between the time the first thread opens
the file descriptor and uses fcntl() to set the close-on-exec flag.) Such races
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could result in open file descriptors being unintentionally passed to unsafe
programs. (We say more about race conditions in Section 5.1.)

O_CREAT

If the file doesn’t already exist, it is created as a new, empty file. This flag is
effective even if the file is being opened only for reading. If we specify
O_CREAT, then we must supply a mode argument in the open() call; otherwise,
the permissions of the new file will be set to some random value from the
stack.

O_DIRECT

Allow file I/O to bypass the buffer cache. This feature is described in Sec-
tion 13.6. The _GNU_SOURCE feature test macro must be defined in order to
make this constant definition available from <fcntl.h>.

O_DIRECTORY

Return an error (errno equals ENOTDIR) if pathname is not a directory. This
flag is an extension designed specifically for implementing opendir() (Sec-
tion 18.8). The _GNU_SOURCE feature test macro must be defined in order to
make this constant definition available from <fcntl.h>.

O_DSYNC (since Linux 2.6.33)
Perform file writes according to the requirements of synchronized I/O
data integrity completion. See the discussion of kernel I/O buffering in
Section 13.3.

O_EXCL

This flag is used in conjunction with O_CREAT to indicate that if the file
already exists, it should not be opened; instead, open() should fail, with
errno set to EEXIST. In other words, this flag allows the caller to ensure that it
is the process creating the file. The check for existence and the creation of
the file are performed atomically. We discuss the concept of atomicity in
Section 5.1. When both O_CREAT and O_EXCL are specified in flags, open() fails
(with the error EEXIST) if pathname is a symbolic link. SUSv3 requires this
behavior so that a privileged application can create a file in a known loca-
tion without there being a possibility that a symbolic link would cause the
file to be created in a different location (e.g., a system directory), which
would have security implications.

O_LARGEFILE

Open the file with large file support. This flag is used on 32-bit systems in
order to work with large files. Although it is not specified in SUSv3, the
O_LARGEFILE flag is found on several other UNIX implementations. On 64-
bit Linux implementations such as Alpha and IA-64, this flag has no effect.
See Section 5.10 for more information.

O_NOATIME (since Linux 2.6.8)
Don’t update the file last access time (the st_atime field described in Sec-
tion 15.1) when reading from this file. To use this flag, the effective user
ID of the calling process must match the owner of the file, or the process
must be privileged (CAP_FOWNER); otherwise, open() fails with the error EPERM.
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(In reality, for an unprivileged process, it is the process’s file-system user
ID, rather than its effective user ID, that must match the user ID of the file
when opening a file with the O_NOATIME flag, as described in Section 9.5.)
This flag is a nonstandard Linux extension. To expose its definition from
<fcntl.h>, we must define the _GNU_SOURCE feature test macro. The O_NOATIME
flag is intended for use by indexing and backup programs. Its use can sig-
nificantly reduce the amount of disk activity, because repeated disk seeks
back and forth across the disk are not required to read the contents of a
file and to update the last access time in the file’s i-node (Section 14.4).
Functionality similar to O_NOATIME is available using the MS_NOATIME mount()
flag (Section 14.8.1) and the FS_NOATIME_FL flag (Section 15.5).

O_NOCTTY

If the file being opened is a terminal device, prevent it from becoming the
controlling terminal. Controlling terminals are discussed in Section 34.4.
If the file being opened is not a terminal, this flag has no effect.

O_NOFOLLOW

Normally, open() dereferences pathname if it is a symbolic link. However, if
the O_NOFOLLOW flag is specified, then open() fails (with errno set to ELOOP) if
pathname is a symbolic link. This flag is useful, especially in privileged pro-
grams, for ensuring that open() doesn’t dereference a symbolic link. To
expose the definition of this flag from <fcntl.h>, we must define the
_GNU_SOURCE feature test macro.

O_NONBLOCK

Open the file in nonblocking mode. See Section 5.9.

O_SYNC

Open the file for synchronous I/O. See the discussion of kernel I/O buff-
ering in Section 13.3.

O_TRUNC

If the file already exists and is a regular file, then truncate it to zero length,
destroying any existing data. On Linux, truncation occurs whether the file
is being opened for reading or writing (in both cases, we must have write per-
mission on the file). SUSv3 leaves the combination of O_RDONLY and O_TRUNC
unspecified, but most other UNIX implementations behave in the same
way as Linux.

4.3.2 Errors from open()
If an error occurs while trying to open the file, open() returns –1, and errno identi-
fies the cause of the error. The following are some possible errors that can occur
(in addition to those already noted when describing the flags argument above):

EACCES

The file permissions don’t allow the calling process to open the file in the
mode specified by flags. Alternatively, because of directory permissions,
the file could not be accessed, or the file did not exist and could not be
created.
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EISDIR

The specified file is a directory, and the caller attempted to open it for writ-
ing. This isn’t allowed. (On the other hand, there are occasions when it can
be useful to open a directory for reading. We consider an example in
Section 18.11.)

EMFILE

The process resource limit on the number of open file descriptors has
been reached (RLIMIT_NOFILE, described in Section 36.3).

ENFILE

The system-wide limit on the number of open files has been reached.

ENOENT

The specified file doesn’t exist, and O_CREAT was not specified, or O_CREAT
was specified, and one of the directories in pathname doesn’t exist or is a
symbolic link pointing to a nonexistent pathname (a dangling link).

EROFS

The specified file is on a read-only file system and the caller tried to open it
for writing.

ETXTBSY

The specified file is an executable file (a program) that is currently execut-
ing. It is not permitted to modify (i.e., open for writing) the executable file
associated with a running program. (We must first terminate the program
in order to be able to modify the executable file.)

When we later describe other system calls or library functions, we generally won’t
list the range of possible errors that may occur in the above fashion. (Such a list can
be found in the corresponding manual page for each system call or library func-
tion.) We do so here for two reasons. One of these is that open() is the first system
call that we describe in detail, and the above list illustrates that a system call or
library function may fail for any of a number of reasons. Second, the specific reasons
why open() may fail make an interesting list in themselves, illustrating a number of
factors and checks that come into play when a file is accessed. (The above list is
incomplete: see the open(2) manual page for more reasons why open() may fail.)

4.3.3 The creat() System Call
In early UNIX implementations, open() had only two arguments and could not be
used to create a new file. Instead, the creat() system call was used to create and open
a new file.

The creat() system call creates and opens a new file with the given pathname, or if
the file already exists, opens the file and truncates it to zero length. As its function

#include <fcntl.h>

int creat(const char *pathname, mode_t mode);

Returns file descriptor, or –1 on error
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result, creat() returns a file descriptor that can be used in subsequent system calls.
Calling creat() is equivalent to the following open() call:

fd = open(pathname, O_WRONLY | O_CREAT | O_TRUNC, mode);

Because the open() flags argument provides greater control over how the file is
opened (e.g., we can specify O_RDWR instead of O_WRONLY), creat() is now obsolete,
although it may still be seen in older programs.

4.4 Reading from a File: read()

The read() system call reads data from the open file referred to by the descriptor fd.

The count argument specifies the maximum number of bytes to read. (The size_t
data type is an unsigned integer type.) The buffer argument supplies the address of
the memory buffer into which the input data is to be placed. This buffer must be at
least count bytes long.

System calls don’t allocate memory for buffers that are used to return informa-
tion to the caller. Instead, we must pass a pointer to a previously allocated
memory buffer of the correct size. This contrasts with several library functions
that do allocate memory buffers in order to return information to the caller.

A successful call to read() returns the number of bytes actually read, or 0 if end-of-
file is encountered. On error, the usual –1 is returned. The ssize_t data type is a
signed integer type used to hold a byte count or a –1 error indication.

A call to read() may read less than the requested number of bytes. For a regular
file, the probable reason for this is that we were close to the end of the file.

When read() is applied to other types of files—such as pipes, FIFOs, sockets, or
terminals—there are also various circumstances where it may read fewer bytes than
requested. For example, by default, a read() from a terminal reads characters only
up to the next newline (\n) character. We consider these cases when we cover other
file types in subsequent chapters.

Using read() to input a series of characters from, say, a terminal, we might
expect the following code to work:

#define MAX_READ 20
char buffer[MAX_READ];

if (read(STDIN_FILENO, buffer, MAX_READ) == -1)
    errExit("read");
printf("The input data was: %s\n", buffer);

The output from this piece of code is likely to be strange, since it will probably
include characters in addition to the string actually entered. This is because read()

#include <unistd.h>

ssize_t read(int fd, void *buffer, size_t count);

Returns number of bytes read, 0 on EOF, or –1 on error
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doesn’t place a terminating null byte at the end of the string that printf() is being
asked to print. A moment’s reflection leads us to realize that this must be so, since
read() can be used to read any sequence of bytes from a file. In some cases, this
input might be text, but in other cases, the input might be binary integers or C
structures in binary form. There is no way for read() to tell the difference, and so it
can’t attend to the C convention of null terminating character strings. If a terminating
null byte is required at the end of the input buffer, we must put it there explicitly:

char buffer[MAX_READ + 1];
ssize_t numRead;

numRead = read(STDIN_FILENO, buffer, MAX_READ);
if (numRead == -1)
    errExit("read");

buffer[numRead] = '\0';
printf("The input data was: %s\n", buffer);

Because the terminating null byte requires a byte of memory, the size of buffer must
be at least one greater than the largest string we expect to read.

4.5 Writing to a File: write()

The write() system call writes data to an open file.

The arguments to write() are similar to those for read(): buffer is the address of the
data to be written; count is the number of bytes to write from buffer; and fd is a file
descriptor referring to the file to which data is to be written.

On success, write() returns the number of bytes actually written; this may be
less than count. For a disk file, possible reasons for such a partial write are that the
disk was filled or that the process resource limit on file sizes was reached. (The rele-
vant limit is RLIMIT_FSIZE, described in Section 36.3.)

When performing I/O on a disk file, a successful return from write() doesn’t
guarantee that the data has been transferred to disk, because the kernel performs
buffering of disk I/O in order to reduce disk activity and expedite write() calls. We
consider the details in Chapter 13.

4.6 Closing a File: close()

The close() system call closes an open file descriptor, freeing it for subsequent reuse
by the process. When a process terminates, all of its open file descriptors are auto-
matically closed.

#include <unistd.h>

ssize_t write(int fd, void *buffer, size_t count);

Returns number of bytes written, or –1 on error
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It is usually good practice to close unneeded file descriptors explicitly, since this
makes our code more readable and reliable in the face of subsequent modifica-
tions. Furthermore, file descriptors are a consumable resource, so failure to close a
file descriptor could result in a process running out of descriptors. This is a partic-
ularly important issue when writing long-lived programs that deal with multiple
files, such as shells or network servers.

Just like every other system call, a call to close() should be bracketed with error-
checking code, such as the following:

if (close(fd) == -1)
    errExit("close");

This catches errors such as attempting to close an unopened file descriptor or close
the same file descriptor twice, and catches error conditions that a specific file sys-
tem may diagnose during a close operation.

NFS (Network File System) provides an example of an error that is specific to a
file system. If an NFS commit failure occurs, meaning that the data did not
reach the remote disk, then this error is propagated to the application as a fail-
ure in the close() call.

4.7 Changing the File Offset: lseek()

For each open file, the kernel records a file offset, sometimes also called the read-
write offset or pointer. This is the location in the file at which the next read() or write()
will commence. The file offset is expressed as an ordinal byte position relative to
the start of the file. The first byte of the file is at offset 0.

The file offset is set to point to the start of the file when the file is opened and
is automatically adjusted by each subsequent call to read() or write() so that it points
to the next byte of the file after the byte(s) just read or written. Thus, successive
read() and write() calls progress sequentially through a file.

The lseek() system call adjusts the file offset of the open file referred to by the
file descriptor fd, according to the values specified in offset and whence.

#include <unistd.h>

int close(int fd);

Returns 0 on success, or –1 on error

#include <unistd.h>

off_t lseek(int fd, off_t offset, int whence);

Returns new file offset if successful, or –1 on error
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The offset argument specifies a value in bytes. (The off_t data type is a signed integer
type specified by SUSv3.) The whence argument indicates the base point from which
offset is to be interpreted, and is one of the following values:

SEEK_SET

The file offset is set offset bytes from the beginning of the file.

SEEK_CUR

The file offset is adjusted by offset bytes relative to the current file offset.

SEEK_END

The file offset is set to the size of the file plus offset. In other words, offset is
interpreted with respect to the next byte after the last byte of the file.

Figure 4-1 shows how the whence argument is interpreted.

In earlier UNIX implementations, the integers 0, 1, and 2 were used, rather
than the SEEK_* constants shown in the main text. Older versions of BSD used
different names for these values: L_SET, L_INCR, and L_XTND.

Figure 4-1: Interpreting the whence argument of lseek()

If whence is SEEK_CUR or SEEK_END, offset may be negative or positive; for SEEK_SET, offset
must be nonnegative.

The return value from a successful lseek() is the new file offset. The following
call retrieves the current location of the file offset without changing it:

curr = lseek(fd, 0, SEEK_CUR);

Some UNIX implementations (but not Linux) have the nonstandard tell(fd)
function, which serves the same purpose as the above lseek() call.

Here are some other examples of lseek() calls, along with comments indicating
where the file offset is moved to:

lseek(fd, 0, SEEK_SET);         /* Start of file */
lseek(fd, 0, SEEK_END);         /* Next byte after the end of the file */
lseek(fd, -1, SEEK_END);        /* Last byte of file */
lseek(fd, -10, SEEK_CUR);       /* Ten bytes prior to current location */
lseek(fd, 10000, SEEK_END);     /* 10001 bytes past last byte of file */

Calling lseek() simply adjusts the kernel’s record of the file offset associated with a
file descriptor. It does not cause any physical device access.

We describe some further details of the relationship between file offsets, file
descriptors, and open files in Section 5.4.

whence value

Current
file offset

byte
number

SEEK_SET SEEK_CUR SEEK_END

N–1N–20 1 . . . . . . N N+1                   . . .

Unwritten bytes
past EOF

File containing
N bytes of data
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We can’t apply lseek() to all types of files. Applying lseek() to a pipe, FIFO,
socket, or terminal is not permitted; lseek() fails, with errno set to ESPIPE. On the
other hand, it is possible to apply lseek() to devices where it is sensible to do so. For
example, it is possible to seek to a specified location on a disk or tape device.

The l in the name lseek() derives from the fact that the offset argument and the
return value were both originally typed as long. Early UNIX implementations
provided a seek() system call, which typed these values as int.

File holes

What happens if a program seeks past the end of a file, and then performs I/O? A
call to read() will return 0, indicating end-of-file. Somewhat surprisingly, it is possible
to write bytes at an arbitrary point past the end of the file.

The space in between the previous end of the file and the newly written bytes is
referred to as a file hole. From a programming point of view, the bytes in a hole
exist, and reading from the hole returns a buffer of bytes containing 0 (null bytes).

File holes don’t, however, take up any disk space. The file system doesn’t allo-
cate any disk blocks for a hole until, at some later point, data is written into it. The
main advantage of file holes is that a sparsely populated file consumes less disk
space than would otherwise be required if the null bytes actually needed to be allo-
cated in disk blocks. Core dump files (Section 22.1) are common examples of files
that contain large holes.

The statement that file holes don’t consume disk space needs to be qualified
slightly. On most file systems, file space is allocated in units of blocks (Sec-
tion 14.3). The size of a block depends on the file system, but is typically
something like 1024, 2048, or 4096 bytes. If the edge of a hole falls within a
block, rather than on a block boundary, then a complete block is allocated to
store the data in the other part of the block, and the part corresponding to
the hole is filled with null bytes.

Most native UNIX file systems support the concept of file holes, but many nonna-
tive file systems (e.g., Microsoft’s VFAT) do not. On a file system that doesn’t sup-
port holes, explicit null bytes are written to the file.

The existence of holes means that a file’s nominal size may be larger than the
amount of disk storage it utilizes (in some cases, considerably larger). Writing bytes
into the middle of the file hole will decrease the amount of free disk space as the
kernel allocates blocks to fill the hole, even though the file’s size doesn’t change.
Such a scenario is uncommon, but nevertheless one to be aware of.

SUSv3 specifies a function, posix_fallocate(fd, offset, len), that ensures that space
is allocated on disk for the byte range specified by offset and len for the disk file
referred to by the descriptor fd. This allows an application to be sure that a
later write() to the file won’t fail because disk space is exhausted (which could
otherwise occur if a hole in the file was filled in, or some other application con-
sumed space on the disk). Historically, the glibc implementation of this func-
tion achieved the desired result by writing a 0 byte into each block in the
specified range. Since version 2.6.23, Linux provides an fallocate() system call,
which provides a more efficient way of ensuring that the necessary space is
allocated, and the glibc posix_fallocate() implementation makes use of this sys-
tem call when it is available.
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Section 14.4 describes how holes are represented in a file, and Section 15.1
describes the stat() system call, which can tell us the current size of a file, as well as
the number of blocks actually allocated to the file.

Example program

Listing 4-3 demonstrates the use of lseek() in conjunction with read() and write().
The first command-line argument to this program is the name of a file to be
opened. The remaining arguments specify I/O operations to be performed on the
file. Each of these operations consists of a letter followed by an associated value
(with no separating space):

soffset: Seek to byte offset from the start of the file.

rlength: Read length bytes from the file, starting at the current file offset, and
display them in text form.

Rlength: Read length bytes from the file, starting at the current file offset, and
display them in hexadecimal.

wstr: Write the string of characters specified in str at the current file offset.

Listing 4-3: Demonstration of read(), write(), and lseek()
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– fileio/seek_io.c

#include <sys/stat.h>
#include <fcntl.h>
#include <ctype.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    size_t len;
    off_t offset;
    int fd, ap, j;
    char *buf;
    ssize_t numRead, numWritten;

    if (argc < 3 || strcmp(argv[1], "--help") == 0)
        usageErr("%s file {r<length>|R<length>|w<string>|s<offset>}...\n",
                 argv[0]);

    fd = open(argv[1], O_RDWR | O_CREAT,
                S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP |
                S_IROTH | S_IWOTH);                     /* rw-rw-rw- */
    if (fd == -1)
        errExit("open");

    for (ap = 2; ap < argc; ap++) {
        switch (argv[ap][0]) {
        case 'r':   /* Display bytes at current offset, as text */
        case 'R':   /* Display bytes at current offset, in hex */
            len = getLong(&argv[ap][1], GN_ANY_BASE, argv[ap]);
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            buf = malloc(len);
            if (buf == NULL)
                errExit("malloc");

            numRead = read(fd, buf, len);
            if (numRead == -1)
                errExit("read");

            if (numRead == 0) {
                printf("%s: end-of-file\n", argv[ap]);
            } else {
                printf("%s: ", argv[ap]);
                for (j = 0; j < numRead; j++) {
                    if (argv[ap][0] == 'r')
                        printf("%c", isprint((unsigned char) buf[j]) ?
                                                buf[j] : '?');
                    else
                        printf("%02x ", (unsigned int) buf[j]);
                }
                printf("\n");
            }

            free(buf);
            break;

        case 'w':   /* Write string at current offset */
            numWritten = write(fd, &argv[ap][1], strlen(&argv[ap][1]));
            if (numWritten == -1)
                errExit("write");
            printf("%s: wrote %ld bytes\n", argv[ap], (long) numWritten);
            break;

        case 's':   /* Change file offset */
            offset = getLong(&argv[ap][1], GN_ANY_BASE, argv[ap]);
            if (lseek(fd, offset, SEEK_SET) == -1)
                errExit("lseek");
            printf("%s: seek succeeded\n", argv[ap]);
            break;

        default:
            cmdLineErr("Argument must start with [rRws]: %s\n", argv[ap]);
        }
    }

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– fileio/seek_io.c

The following shell session log demonstrates the use of the program in Listing 4-3,
showing what happens when we attempt to read bytes from a file hole:

$ touch tfile                       Create new, empty file
$ ./seek_io tfile s100000 wabc      Seek to offset 100,000, write “abc”
s100000: seek succeeded
wabc: wrote 3 bytes
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$ ls -l tfile                       Check size of file
-rw-r--r--    1 mtk    users   100003 Feb 10 10:35 tfile
$ ./seek_io tfile s10000 R5         Seek to offset 10,000, read 5 bytes from hole
s10000: seek succeeded
R5: 00 00 00 00 00                  Bytes in the hole contain 0

4.8 Operations Outside the Universal I/O Model: ioctl()

The ioctl() system call is a general-purpose mechanism for performing file and
device operations that fall outside the universal I/O model described earlier in this
chapter.

The fd argument is an open file descriptor for the device or file upon which the
control operation specified by request is to be performed. Device-specific header
files define constants that can be passed in the request argument.

As indicated by the standard C ellipsis (...) notation, the third argument to
ioctl(), which we label argp, can be of any type. The value of the request argument
enables ioctl() to determine what type of value to expect in argp. Typically, argp is a
pointer to either an integer or a structure; in some cases, it is unused.

We’ll see a number of uses for ioctl() in later chapters (see, for example,
Section 15.5).

The only specification that SUSv3 makes for ioctl() is for operations to control
STREAMS devices. (The STREAMS facility is a System V feature that is not
supported by the mainline Linux kernel, although a few add-on implementa-
tions have been developed.) None of the other ioctl() operations described in
this book is specified in SUSv3. However, the ioctl() call has been part of the
UNIX system since early versions, and consequently several of the ioctl() opera-
tions that we describe are provided on many other UNIX implementations. As
we describe each ioctl() operation, we note portability issues.

4.9 Summary

In order to perform I/O on a regular file, we must first obtain a file descriptor
using open(). I/O is then performed using read() and write(). After performing all
I/O, we should free the file descriptor and its associated resources using close().
These system calls can be used to perform I/O on all types of files.

The fact that all file types and device drivers implement the same I/O interface
allows for universality of I/O, meaning that a program can typically be used with
any type of file without requiring code that is specific to the file type.

#include <sys/ioctl.h>

int ioctl(int fd, int request, ... /* argp */);

Value returned on success depends on request, or –1 on error
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For each open file, the kernel maintains a file offset, which determines the
location at which the next read or write will occur. The file offset is implicitly
updated by reads and writes. Using lseek(), we can explicitly reposition the file offset
to any location within the file or past the end of the file. Writing data at a position
beyond the previous end of the file creates a hole in the file. Reads from a file hole
return bytes containing zeros.

The ioctl() system call is a catchall for device and file operations that don’t fit
into the standard file I/O model.

4.10 Exercises

4-1. The tee command reads its standard input until end-of-file, writing a copy of the input
to standard output and to the file named in its command-line argument. (We show
an example of the use of this command when we discuss FIFOs in Section 44.7.)
Implement tee using I/O system calls. By default, tee overwrites any existing file with
the given name. Implement the –a command-line option (tee –a file), which causes tee
to append text to the end of a file if it already exists. (Refer to Appendix B for a
description of the getopt() function, which can be used to parse command-line
options.)

4-2. Write a program like cp that, when used to copy a regular file that contains holes
(sequences of null bytes), also creates corresponding holes in the target file.
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F I L E  I / O :  F U R T H E R  D E T A I L S

In this chapter, we extend the discussion of file I/O that we started in the previous
chapter.

In continuing the discussion of the open() system call, we explain the concept of
atomicity—the notion that the actions performed by a system call are executed as a
single uninterruptible step. This is a necessary requirement for the correct opera-
tion of many system calls.

We introduce another file-related system call, the multipurpose fcntl(), and
show one of its uses: fetching and setting open file status flags.

Next, we look at the kernel data structures used to represent file descriptors
and open files. Understanding the relationship between these structures clarifies
some of the subtleties of file I/O discussed in subsequent chapters. Building on
this model, we then explain how to duplicate file descriptors.

We then consider some system calls that provide extended read and write func-
tionality. These system calls allow us to perform I/O at a specific location in a file
without changing the file offset, and to transfer data to and from multiple buffers
in a program.

We briefly introduce the concept of nonblocking I/O, and describe some
extensions provided to support I/O on very large files.

Since temporary files are used by many system programs, we’ll also look at
some library functions that allow us to create and use temporary files with ran-
domly generated unique names.



5.1 Atomicity and Race Conditions
Atomicity is a concept that we’ll encounter repeatedly when discussing the opera-
tion of system calls. All system calls are executed atomically. By this, we mean that
the kernel guarantees that all of the steps in a system call are completed as a single
operation, without being interrupted by another process or thread.

Atomicity is essential to the successful completion of some operations. In par-
ticular, it allows us to avoid race conditions (sometimes known as race hazards). A
race condition is a situation where the result produced by two processes (or
threads) operating on shared resources depends in an unexpected way on the rela-
tive order in which the processes gain access to the CPU(s).

In the next few pages, we look at two situations involving file I/O where race
conditions occur, and show how these conditions are eliminated through the use of
open() flags that guarantee the atomicity of the relevant file operations.

We revisit the topic of race conditions when we describe sigsuspend() in Sec-
tion 22.9 and fork() in Section 24.4.

Creating a file exclusively

In Section 4.3.1, we noted that specifying O_EXCL in conjunction with O_CREAT causes
open() to return an error if the file already exists. This provides a way for a process to
ensure that it is the creator of a file. The check on the prior existence of the file and
the creation of the file are performed atomically. To see why this is important, con-
sider the code shown in Listing 5-1, which we might resort to in the absence of the
O_EXCL flag. (In this code, we display the process ID returned by the getpid() system
call, which enables us to distinguish the output of two different runs of this program.)

Listing 5-1: Incorrect code to exclusively open a file

–––––––––––––––––––––––––––––––––––––––––––– from fileio/bad_exclusive_open.c
fd = open(argv[1], O_WRONLY);       /* Open 1: check if file exists */
    if (fd != -1) {                     /* Open succeeded */
        printf("[PID %ld] File \"%s\" already exists\n",
                (long) getpid(), argv[1]);
        close(fd);
    } else {
        if (errno != ENOENT) {          /* Failed for unexpected reason */
            errExit("open");
        } else {
            /* WINDOW FOR FAILURE */
            fd = open(argv[1], O_WRONLY | O_CREAT, S_IRUSR | S_IWUSR);
            if (fd == -1)
                errExit("open");

            printf("[PID %ld] Created file \"%s\" exclusively\n",
                    (long) getpid(), argv[1]);  /* MAY NOT BE TRUE! */
        }
    }

–––––––––––––––––––––––––––––––––––––––––––– from fileio/bad_exclusive_open.c

Aside from the long-winded use of two calls to open(), the code in Listing 5-1 also
contains a bug. Suppose that when our process first called open(), the file did not
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exist, but by the time of the second open(), some other process had created the file.
This could happen if the kernel scheduler decided that the process’s time slice had
expired and gave control to another process, as shown in Figure 5-1, or if the two
processes were running at the same time on a multiprocessor system. Figure 5-1
portrays the case where two processes are both executing the code shown in List-
ing 5-1. In this scenario, process A would wrongly conclude that it had created the
file, since the second open() succeeds whether or not the file exists.

While the chance of the process wrongly believing it was the creator of the file
is relatively small, the possibility that it may occur nevertheless renders this code
unreliable. The fact that the outcome of these operations depends on the order of
scheduling of the two processes means that this is a race condition.

Figure 5-1: Failing to exclusively create a file

To demonstrate that there is indeed a problem with this code, we could replace the
commented line WINDOW FOR FAILURE in Listing 5-1 with a piece of code that creates an
artificially long delay between the check for file existence and the creation of the
file:

printf("[PID %ld] File \"%s\" doesn't exist yet\n", (long) getpid(), argv[1]);
if (argc > 2) {                 /* Delay between check and create */
    sleep(5);                   /* Suspend execution for 5 seconds */
    printf("[PID %ld] Done sleeping\n", (long) getpid());
}

The sleep() library function suspends the execution of a process for a specified
number of seconds. We discuss this function in Section 23.4.
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If we run two simultaneous instances of the program in Listing 5-1, we see that they
both claim to have exclusively created the file:

$ ./bad_exclusive_open tfile sleep &
[PID 3317] File "tfile" doesn't exist yet
[1] 3317
$ ./bad_exclusive_open tfile
[PID 3318] File "tfile" doesn't exist yet
[PID 3318] Created file "tfile" exclusively
$ [PID 3317] Done sleeping
[PID 3317] Created file "tfile" exclusively                 Not true

In the penultimate line of the above output, we see the shell prompt mixed
with output from the first instance of the test program.

Both processes claim to have created the file because the code of the first process
was interrupted between the existence check and the creation of the file. Using a
single open() call that specifies the O_CREAT and O_EXCL flags prevents this possibility
by guaranteeing that the check and creation steps are carried out as a single atomic
(i.e., uninterruptible) operation.

Appending data to a file

A second example of the need for atomicity is when we have multiple processes
appending data to the same file (e.g., a global log file). For this purpose, we might
consider using a piece of code such as the following in each of our writers:

if (lseek(fd, 0, SEEK_END) == -1)
    errExit("lseek");
if (write(fd, buf, len) != len)
    fatal("Partial/failed write");

However, this code suffers the same defect as the previous example. If the first pro-
cess executing the code is interrupted between the lseek() and write() calls by a sec-
ond process doing the same thing, then both processes will set their file offset to
the same location before writing, and when the first process is rescheduled, it will
overwrite the data already written by the second process. Again, this is a race condi-
tion because the results depend on the order of scheduling of the two processes.

Avoiding this problem requires that the seek to the next byte past the end of
the file and the write operation happen atomically. This is what opening a file
with the O_APPEND flag guarantees.

Some file systems (e.g., NFS) don’t support O_APPEND. In this case, the kernel
reverts to the nonatomic sequence of calls shown above, with the consequent
possibility of file corruption as just described.

5.2 File Control Operations: fcntl()

The fcntl() system call performs a range of control operations on an open file
descriptor.
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The cmd argument can specify a wide range of operations. We examine some of
them in the following sections, and delay examination of others until later chapters.

As indicated by the ellipsis, the third argument to fcntl() can be of different
types, or it can be omitted. The kernel uses the value of the cmd argument to deter-
mine the data type (if any) to expect for this argument.

5.3 Open File Status Flags

One use of fcntl() is to retrieve or modify the access mode and open file status flags
of an open file. (These are the values set by the flags argument specified in the call
to open().) To retrieve these settings, we specify cmd as F_GETFL:

int flags, accessMode;

flags = fcntl(fd, F_GETFL);         /* Third argument is not required */
if (flags == -1)
    errExit("fcntl");

After the above piece of code, we could test if the file was opened for synchronized
writes as follows:

if (flags & O_SYNC)
    printf("writes are synchronized\n");

SUSv3 requires that only status flags that were specified during an open() or a
later fcntl() F_SETFL should be set on an open file. However, Linux deviates
from this in one respect: if an application was compiled using one of the tech-
niques described in Section 5.10 for opening large files, then O_LARGEFILE will
always be set in the flags retrieved by F_GETFL.

Checking the access mode of the file is slightly more complex, since the O_RDONLY (0),
O_WRONLY (1), and O_RDWR (2) constants don’t correspond to single bits in the open file
status flags. Therefore, to make this check, we mask the flags value with the con-
stant O_ACCMODE, and then test for equality with one of the constants:

accessMode = flags & O_ACCMODE;
if (accessMode == O_WRONLY || accessMode == O_RDWR)
    printf("file is writable\n");

We can use the fcntl() F_SETFL command to modify some of the open file status flags.
The flags that can be modified are O_APPEND, O_NONBLOCK, O_NOATIME, O_ASYNC, and
O_DIRECT. Attempts to modify other flags are ignored. (Some other UNIX imple-
mentations allow fcntl() to modify other flags, such as O_SYNC.)

#include <fcntl.h>

int fcntl(int fd, int cmd, ...);

Return on success depends on cmd, or –1 on error
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Using fcntl() to modify open file status flags is particularly useful in the follow-
ing cases:

The file was not opened by the calling program, so that it had no control over
the flags used in the open() call (e.g., the file may be one of the three standard
descriptors that are opened before the program is started).

The file descriptor was obtained from a system call other than open(). Examples
of such system calls are pipe(), which creates a pipe and returns two file descrip-
tors referring to either end of the pipe, and socket(), which creates a socket and
returns a file descriptor referring to the socket.

To modify the open file status flags, we use fcntl() to retrieve a copy of the existing
flags, then modify the bits we wish to change, and finally make a further call to fcntl()
to update the flags. Thus, to enable the O_APPEND flag, we would write the following:

int flags;

flags = fcntl(fd, F_GETFL);
if (flags == -1)
    errExit("fcntl");
flags |= O_APPEND;
if (fcntl(fd, F_SETFL, flags) == -1)
    errExit("fcntl");

5.4 Relationship Between File Descriptors and Open Files

Up until now, it may have appeared that there is a one-to-one correspondence
between a file descriptor and an open file. However, this is not the case. It is possible—
and useful—to have multiple descriptors referring to the same open file. These file
descriptors may be open in the same process or in different processes.

To understand what is going on, we need to examine three data structures
maintained by the kernel:

the per-process file descriptor table;

the system-wide table of open file descriptions; and

the file system i-node table.

For each process, the kernel maintains a table of open file descriptors. Each entry in
this table records information about a single file descriptor, including:

a set of flags controlling the operation of the file descriptor (there is just one
such flag, the close-on-exec flag, which we describe in Section 27.4); and

a reference to the open file description.

The kernel maintains a system-wide table of all open file descriptions. (This table is
sometimes referred to as the open file table, and its entries are sometimes called open
file handles.) An open file description stores all information relating to an open file,
including:

the current file offset (as updated by read() and write(), or explicitly modified
using lseek());
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status flags specified when opening the file (i.e., the flags argument to open());

the file access mode (read-only, write-only, or read-write, as specified in open());

settings relating to signal-driven I/O (Section 63.3); and

a reference to the i-node object for this file.

Each file system has a table of i-nodes for all files residing in the file system. The i-node
structure, and file systems in general, are discussed in more detail in Chapter 14.
For now, we note that the i-node for each file includes the following information:

file type (e.g., regular file, socket, or FIFO) and permissions;

a pointer to a list of locks held on this file; and

various properties of the file, including its size and timestamps relating to dif-
ferent types of file operations.

Here, we are overlooking the distinction between on-disk and in-memory rep-
resentations of an i-node. The on-disk i-node records the persistent attributes
of a file, such as its type, permissions, and timestamps. When a file is accessed,
an in-memory copy of the i-node is created, and this version of the i-node
records a count of the open file descriptions referring to the i-node and the
major and minor IDs of the device from which the i-node was copied. The in-
memory i-node also records various ephemeral attributes that are associated
with a file while it is open, such as file locks.

Figure 5-2 illustrates the relationship between file descriptors, open file descrip-
tions, and i-nodes. In this diagram, two processes have a number of open file
descriptors.

Figure 5-2: Relationship between file descriptors, open file descriptions, and i-nodes
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In process A, descriptors 1 and 20 both refer to the same open file description
(labeled 23). This situation may arise as a result of a call to dup(), dup2(), or fcntl()
(see Section 5.5).

Descriptor 2 of process A and descriptor 2 of process B refer to a single open
file description (73). This scenario could occur after a call to fork() (i.e., process A is
the parent of process B, or vice versa), or if one process passed an open descriptor
to another process using a UNIX domain socket (Section 61.13.3).

Finally, we see that descriptor 0 of process A and descriptor 3 of process B
refer to different open file descriptions, but that these descriptions refer to the
same i-node table entry (1976)—in other words, to the same file. This occurs
because each process independently called open() for the same file. A similar situa-
tion could occur if a single process opened the same file twice.

We can draw a number of implications from the preceding discussion:

Two different file descriptors that refer to the same open file description share
a file offset value. Therefore, if the file offset is changed via one file descriptor
(as a consequence of calls to read(), write(), or lseek()), this change is visible
through the other file descriptor. This applies both when the two file descrip-
tors belong to the same process and when they belong to different processes.

Similar scope rules apply when retrieving and changing the open file status
flags (e.g., O_APPEND, O_NONBLOCK, and O_ASYNC) using the fcntl() F_GETFL and F_SETFL
operations.

By contrast, the file descriptor flags (i.e., the close-on-exec flag) are private to
the process and file descriptor. Modifying these flags does not affect other file
descriptors in the same process or a different process.

5.5 Duplicating File Descriptors

Using the (Bourne shell) I/O redirection syntax 2>&1 informs the shell that we wish
to have standard error (file descriptor 2) redirected to the same place to which
standard output (file descriptor 1) is being sent. Thus, the following command
would (since the shell evaluates I/O directions from left to right) send both stan-
dard output and standard error to the file results.log:

$ ./myscript > results.log 2>&1

The shell achieves the redirection of standard error by duplicating file descriptor 2
so that it refers to the same open file description as file descriptor 1 (in the same
way that descriptors 1 and 20 of process A refer to the same open file description
in Figure 5-2). This effect can be achieved using the dup() and dup2() system calls.

Note that it is not sufficient for the shell simply to open the results.log file
twice: once on descriptor 1 and once on descriptor 2. One reason for this is that
the two file descriptors would not share a file offset pointer, and hence could end
up overwriting each other’s output. Another reason is that the file may not be a
disk file. Consider the following command, which sends standard error down the
same pipe as standard output:

$ ./myscript 2>&1 | less
96 Chapter 5



The dup() call takes oldfd, an open file descriptor, and returns a new descriptor that
refers to the same open file description. The new descriptor is guaranteed to be the
lowest unused file descriptor.

Suppose we make the following call:

newfd = dup(1);

Assuming the normal situation where the shell has opened file descriptors 0, 1, and
2 on the program’s behalf, and no other descriptors are in use, dup() will create the
duplicate of descriptor 1 using file 3.

If we wanted the duplicate to be descriptor 2, we could use the following
technique:

close(2);               /* Frees file descriptor 2 */
newfd = dup(1);         /* Should reuse file descriptor 2 */

This code works only if descriptor 0 was open. To make the above code simpler,
and to ensure we always get the file descriptor we want, we can use dup2().

The dup2() system call makes a duplicate of the file descriptor given in oldfd using
the descriptor number supplied in newfd. If the file descriptor specified in newfd is
already open, dup2() closes it first. (Any error that occurs during this close is
silently ignored; safer programming practice is to explicitly close() newfd if it is open
before the call to dup2().)

We could simplify the preceding calls to close() and dup() to the following:

dup2(1, 2);

A successful dup2() call returns the number of the duplicate descriptor (i.e., the
value passed in newfd).

If oldfd is not a valid file descriptor, then dup2() fails with the error EBADF and
newfd is not closed. If oldfd is a valid file descriptor, and oldfd and newfd have the
same value, then dup2() does nothing—newfd is not closed, and dup2() returns the
newfd as its function result.

A further interface that provides some extra flexibility for duplicating file
descriptors is the fcntl() F_DUPFD operation:

newfd = fcntl(oldfd, F_DUPFD, startfd);

#include <unistd.h>

int dup(int oldfd);

Returns (new) file descriptor on success, or –1 on error

#include <unistd.h>

int dup2(int oldfd, int newfd);

Returns (new) file descriptor on success, or –1 on error
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This call makes a duplicate of oldfd by using the lowest unused file descriptor
greater than or equal to startfd. This is useful if we want a guarantee that the new
descriptor (newfd) falls in a certain range of values. Calls to dup() and dup2() can
always be recoded as calls to close() and fcntl(), although the former calls are more
concise. (Note also that some of the errno error codes returned by dup2() and fcntl()
differ, as described in the manual pages.)

From Figure 5-2, we can see that duplicate file descriptors share the same file
offset value and status flags in their shared open file description. However, the new
file descriptor has its own set of file descriptor flags, and its close-on-exec flag
(FD_CLOEXEC) is always turned off. The interfaces that we describe next allow explicit
control of the new file descriptor’s close-on-exec flag.

The dup3() system call performs the same task as dup2(), but adds an additional
argument, flags, that is a bit mask that modifies the behavior of the system call.

Currently, dup3() supports one flag, O_CLOEXEC, which causes the kernel to enable the
close-on-exec flag (FD_CLOEXEC) for the new file descriptor. This flag is useful for the
same reasons as the open() O_CLOEXEC flag described in Section 4.3.1.

The dup3() system call is new in Linux 2.6.27, and is Linux-specific.
Since Linux 2.6.24, Linux also supports an additional fcntl() operation for dupli-

cating file descriptors: F_DUPFD_CLOEXEC. This flag does the same thing as F_DUPFD,
but additionally sets the close-on-exec flag (FD_CLOEXEC) for the new file descriptor.
Again, this operation is useful for the same reasons as the open() O_CLOEXEC flag.
F_DUPFD_CLOEXEC is not specified in SUSv3, but is specified in SUSv4.

5.6 File I/O at a Specified Offset: pread() and pwrite()

The pread() and pwrite() system calls operate just like read() and write(), except that
the file I/O is performed at the location specified by offset, rather than at the cur-
rent file offset. The file offset is left unchanged by these calls.

#define _GNU_SOURCE
#include <unistd.h>

int dup3(int oldfd, int newfd, int flags);

Returns (new) file descriptor on success, or –1 on error

#include <unistd.h>

ssize_t pread(int fd, void *buf, size_t count, off_t offset);

Returns number of bytes read, 0 on EOF, or –1 on error

ssize_t pwrite(int fd, const void *buf, size_t count, off_t offset);

Returns number of bytes written, or –1 on error
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Calling pread() is equivalent to atomically performing the following calls:

off_t orig;

orig = lseek(fd, 0, SEEK_CUR);    /* Save current offset */
lseek(fd, offset, SEEK_SET);
s = read(fd, buf, len);
lseek(fd, orig, SEEK_SET);        /* Restore original file offset */

For both pread() and pwrite(), the file referred to by fd must be seekable (i.e., a file
descriptor on which it is permissible to call lseek()).

These system calls can be particularly useful in multithreaded applications. As
we’ll see in Chapter 29, all of the threads in a process share the same file descriptor
table. This means that the file offset for each open file is global to all threads. Using
pread() or pwrite(), multiple threads can simultaneously perform I/O on the same
file descriptor without being affected by changes made to the file offset by other
threads. If we attempted to use lseek() plus read() (or write()) instead, then we would
create a race condition similar to the one that we described when discussing the
O_APPEND flag in Section 5.1. (The pread() and pwrite() system calls can similarly be
useful for avoiding race conditions in applications where multiple processes have
file descriptors referring to the same open file description.)

If we are repeatedly performing lseek() calls followed by file I/O, then the
pread() and pwrite() system calls can also offer a performance advantage in
some cases. This is because the cost of a single pread() (or pwrite()) system call is
less than the cost of two system calls: lseek() and read() (or write()). However,
the cost of system calls is usually dwarfed by the time required to actually per-
form I/O.

5.7 Scatter-Gather I/O: readv() and writev()

The readv() and writev() system calls perform scatter-gather I/O.

Instead of accepting a single buffer of data to be read or written, these functions
transfer multiple buffers of data in a single system call. The set of buffers to be
transferred is defined by the array iov. The integer count specifies the number of
elements in iov. Each element of iov is a structure of the following form:

struct iovec {
    void  *iov_base;        /* Start address of buffer */
    size_t iov_len;         /* Number of bytes to transfer to/from buffer */
};

#include <sys/uio.h>

ssize_t readv(int fd, const struct iovec *iov, int iovcnt);

Returns number of bytes read, 0 on EOF, or –1 on error

ssize_t writev(int fd, const struct iovec *iov, int iovcnt);

Returns number of bytes written, or –1 on error
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SUSv3 allows an implementation to place a limit on the number of elements in
iov. An implementation can advertise its limit by defining IOV_MAX in <limits.h>
or at run time via the return from the call sysconf(_SC_IOV_MAX). (We
describe sysconf() in Section 11.2.) SUSv3 requires that this limit be at least 16.
On Linux, IOV_MAX is defined as 1024, which corresponds to the kernel’s limit
on the size of this vector (defined by the kernel constant UIO_MAXIOV).

However, the glibc wrapper functions for readv() and writev() silently do
some extra work. If the system call fails because iovcnt is too large, then the
wrapper function temporarily allocates a single buffer large enough to hold all
of the items described by iov and performs a read() or write() call (see the dis-
cussion below of how writev() could be implemented in terms of write()).

Figure 5-3 shows an example of the relationship between the iov and iovcnt argu-
ments, and the buffers to which they refer.

Figure 5-3: Example of an iovec array and associated buffers

Scatter input

The readv() system call performs scatter input: it reads a contiguous sequence of bytes
from the file referred to by the file descriptor fd and places (“scatters”) these bytes
into the buffers specified by iov. Each of the buffers, starting with the one defined by
iov[0], is completely filled before readv() proceeds to the next buffer.

An important property of readv() is that it completes atomically; that is, from
the point of view of the calling process, the kernel performs a single data transfer
between the file referred to by fd and user memory. This means, for example, that
when reading from a file, we can be sure that the range of bytes read is contiguous,
even if another process (or thread) sharing the same file offset attempts to manipu-
late the offset at the same time as the readv() call.

On successful completion, readv() returns the number of bytes read, or 0 if
end-of-file was encountered. The caller must examine this count to verify whether
all requested bytes were read. If insufficient data was available, then only some of
the buffers may have been filled, and the last of these may be only partially filled.

Listing 5-2 demonstrates the use of readv().

Using the prefix t_ followed by a function name as the name of an example
program (e.g., t_readv.c in Listing 5-2) is our way of indicating that the pro-
gram primarily demonstrates the use of a single system call or library function.

iov_base
iov_len = len0
iov_base
iov_len = len1
iov_base
iov_len = len2

iov

[0]

[1]

[2]

3
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Listing 5-2: Performing scatter input with readv()
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––– fileio/t_readv.c
#include <sys/stat.h>
#include <sys/uio.h>
#include <fcntl.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int fd;
    struct iovec iov[3];
    struct stat myStruct;       /* First buffer */
    int x;                      /* Second buffer */
#define STR_SIZE 100
    char str[STR_SIZE];         /* Third buffer */
    ssize_t numRead, totRequired;

    if (argc != 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s file\n", argv[0]);

    fd = open(argv[1], O_RDONLY);
    if (fd == -1)
        errExit("open");

    totRequired = 0;

    iov[0].iov_base = &myStruct;
    iov[0].iov_len = sizeof(struct stat);
    totRequired += iov[0].iov_len;

    iov[1].iov_base = &x;
    iov[1].iov_len = sizeof(x);
    totRequired += iov[1].iov_len;

    iov[2].iov_base = str;
    iov[2].iov_len = STR_SIZE;
    totRequired += iov[2].iov_len;

    numRead = readv(fd, iov, 3);
    if (numRead == -1)
        errExit("readv");

    if (numRead < totRequired)
        printf("Read fewer bytes than requested\n");

    printf("total bytes requested: %ld; bytes read: %ld\n",
            (long) totRequired, (long) numRead);
    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––– fileio/t_readv.c
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Gather output

The writev() system call performs gather output. It concatenates (“gathers”) data
from all of the buffers specified by iov and writes them as a sequence of contiguous
bytes to the file referred to by the file descriptor fd. The buffers are gathered in
array order, starting with the buffer defined by iov[0].

Like readv(), writev() completes atomically, with all data being transferred in a
single operation from user memory to the file referred to by fd. Thus, when writing
to a regular file, we can be sure that all of the requested data is written contigu-
ously to the file, rather than being interspersed with writes by other processes (or
threads).

As with write(), a partial write is possible. Therefore, we must check the return
value from writev() to see if all requested bytes were written.

The primary advantages of readv() and writev() are convenience and speed. For
example, we could replace a call to writev() by either:

code that allocates a single large buffer, copies the data to be written from
other locations in the process’s address space into that buffer, and then calls
write() to output the buffer; or

a series of write() calls that output the buffers individually.

The first of these options, while semantically equivalent to using writev(), leaves us
with the inconvenience (and inefficiency) of allocating buffers and copying data in
user space.

The second option is not semantically equivalent to a single call to writev(), since
the write() calls are not performed atomically. Furthermore, performing a single
writev() system call is cheaper than performing multiple write() calls (refer to the dis-
cussion of system calls in Section 3.1).

Performing scatter-gather I/O at a specified offset

Linux 2.6.30 adds two new system calls that combine scatter-gather I/O functional-
ity with the ability to perform the I/O at a specified offset: preadv() and pwritev().
These system calls are nonstandard, but are also available on the modern BSDs.

The preadv() and pwritev() system calls perform the same task as readv() and writev(),
but perform the I/O at the file location specified by offset (like pread() and pwrite()).

These system calls are useful for applications (e.g., multithreaded applications)
that want to combine the benefits of scatter-gather I/O with the ability to perform
I/O at a location that is independent of the current file offset.

#define _BSD_SOURCE
#include <sys/uio.h>

ssize_t preadv(int fd, const struct iovec *iov, int iovcnt, off_t offset);

Returns number of bytes read, 0 on EOF, or –1 on error

ssize_t pwritev(int fd, const struct iovec *iov, int iovcnt, off_t offset);

Returns number of bytes written, or –1 on error
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5.8 Truncating a File: truncate() and ftruncate()

The truncate() and ftruncate() system calls set the size of a file to the value specified
by length.

If the file is longer than length, the excess data is lost. If the file is currently shorter
than length, it is extended by padding with a sequence of null bytes or a hole.

The difference between the two system calls lies in how the file is specified.
With truncate(), the file, which must be accessible and writable, is specified as a
pathname string. If pathname is a symbolic link, it is dereferenced. The ftruncate()
system call takes a descriptor for a file that has been opened for writing. It doesn’t
change the file offset for the file.

If the length argument to ftruncate() exceeds the current file size, SUSv3 allows
two possible behaviors: either the file is extended (as on Linux) or the system call
returns an error. XSI-conformant systems must adopt the former behavior. SUSv3
requires that truncate() always extend the file if length is greater than the current
file size.

The truncate() system call is unique in being the only system call that can
change the contents of a file without first obtaining a descriptor for the file via
open() (or by some other means).

5.9 Nonblocking I/O

Specifying the O_NONBLOCK flag when opening a file serves two purposes:

If the file can’t be opened immediately, then open() returns an error instead of
blocking. One case where open() can block is with FIFOs (Section 44.7).

After a successful open(), subsequent I/O operations are also nonblocking. If
an I/O system call can’t complete immediately, then either a partial data trans-
fer is performed or the system call fails with one of the errors EAGAIN or
EWOULDBLOCK. Which error is returned depends on the system call. On Linux, as
on many UNIX implementations, these two error constants are synonymous.

Nonblocking mode can be used with devices (e.g., terminals and pseudoterminals),
pipes, FIFOs, and sockets. (Because file descriptors for pipes and sockets are not
obtained using open(), we must enable this flag using the fcntl() F_SETFL operation
described in Section 5.3.)

O_NONBLOCK is generally ignored for regular files, because the kernel buffer cache
ensures that I/O on regular files does not block, as described in Section 13.1. How-
ever, O_NONBLOCK does have an effect for regular files when mandatory file locking is
employed (Section 55.4).

#include <unistd.h>

int truncate(const char *pathname, off_t length);
int ftruncate(int fd, off_t length);

Both return 0 on success, or –1 on error
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We say more about nonblocking I/O in Section 44.9 and in Chapter 63.

Historically, System V–derived implementations provided the O_NDELAY flag,
with similar semantics to O_NONBLOCK. The main difference was that a nonblock-
ing write() on System V returned 0 if a write() could not be completed or if no
input was available to satisfy a read(). This behavior was problematic for read()
because it was indistinguishable from an end-of-file condition, and so the first
POSIX.1 standard introduced O_NONBLOCK. Some UNIX implementations con-
tinue to provide the O_NDELAY flag with the old semantics. On Linux, the
O_NDELAY constant is defined, but it is synonymous with O_NONBLOCK.

5.10 I/O on Large Files

The off_t data type used to hold a file offset is typically implemented as a signed
long integer. (A signed data type is required because the value –1 is used for repre-
senting error conditions.) On 32-bit architectures (such as x86-32) this would limit
the size of files to 231–1 bytes (i.e., 2 GB).

However, the capacity of disk drives long ago exceeded this limit, and thus the
need arose for 32-bit UNIX implementations to handle files larger than this size.
Since this is a problem common to many implementations, a consortium of UNIX
vendors cooperated on the Large File Summit (LFS), to enhance the SUSv2 specifi-
cation with the extra functionality required to access large files. We outline the LFS
enhancements in this section. (The complete LFS specification, finalized in 1996,
can be found at http://opengroup.org/platform/lfs.html.)

Linux has provided LFS support on 32-bit systems since kernel 2.4 (glibc 2.2 or
later is also required). In addition, the corresponding file system must also support
large files. Most native Linux file systems provide this support, but some nonnative
file systems do not (notable examples are Microsoft’s VFAT and NFSv2, both of
which impose hard limits of 2 GB, regardless of whether the LFS extensions are
employed).

Because long integers use 64 bits on 64-bit architectures (e.g., Alpha, IA-64),
these architectures generally don’t suffer the limitations that the LFS enhance-
ments were designed to address. Nevertheless, the implementation details of
some native Linux file systems mean that the theoretical maximum size of a
file may be less than 263–1, even on 64-bit systems. In most cases, these limits
are much higher than current disk sizes, so they don’t impose a practical limi-
tation on file sizes.

We can write applications requiring LFS functionality in one of two ways:

Use an alternative API that supports large files. This API was designed by the
LFS as a “transitional extension” to the Single UNIX Specification. Thus, this
API is not required to be present on systems conforming to SUSv2 or SUSv3,
but many conforming systems do provide it. This approach is now obsolete.

Define the _FILE_OFFSET_BITS macro with the value 64 when compiling our pro-
grams. This is the preferred approach, because it allows conforming applica-
tions to obtain LFS functionality without making any source code changes.
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The transitional LFS API

To use the transitional LFS API, we must define the _LARGEFILE64_SOURCE feature test
macro when compiling our program, either on the command line, or within the
source file before including any header files. This API provides functions capable
of handling 64-bit file sizes and offsets. These functions have the same names as
their 32-bit counterparts, but have the suffix 64 appended to the function name.
Among these functions are fopen64(), open64(), lseek64(), truncate64(), stat64(),
mmap64(), and setrlimit64(). (We’ve already described some of the 32-bit counter-
parts of these functions; others are described in later chapters.)

In order to access a large file, we simply use the 64-bit version of the function.
For example, to open a large file, we could write the following:

fd = open64(name, O_CREAT | O_RDWR, mode);
if (fd == -1)
    errExit("open");

Calling open64() is equivalent to specifying the O_LARGEFILE flag when calling
open(). Attempts to open a file larger than 2 GB by calling open() without this
flag return an error.

In addition to the aforementioned functions, the transitional LFS API adds some
new data types, including:

struct stat64: an analog of the stat structure (Section 15.1) allowing for large file
sizes.

off64_t: a 64-bit type for representing file offsets.

The off64_t data type is used with (among others) the lseek64() function, as shown in
Listing 5-3. This program takes two command-line arguments: the name of a file to
be opened and an integer value specifying a file offset. The program opens the
specified file, seeks to the given file offset, and then writes a string. The following
shell session demonstrates the use of the program to seek to a very large offset in
the file (greater than 10 GB) and then write some bytes:

$ ./large_file x 10111222333
$ ls -l x                                   Check size of resulting file
-rw-------    1 mtk      users    10111222337 Mar  4 13:34 x

Listing 5-3: Accessing large files

––––––––––––––––––––––––––––––––––––––––––––––––––––––– fileio/large_file.c

#define _LARGEFILE64_SOURCE
#include <sys/stat.h>
#include <fcntl.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int fd;
    off64_t off;
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    if (argc != 3 || strcmp(argv[1], "--help") == 0)
        usageErr("%s pathname offset\n", argv[0]);

    fd = open64(argv[1], O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
    if (fd == -1)
        errExit("open64");

    off = atoll(argv[2]);
    if (lseek64(fd, off, SEEK_SET) == -1)
        errExit("lseek64");

    if (write(fd, "test", 4) == -1)
        errExit("write");
    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––– fileio/large_file.c

The _FILE_OFFSET_BITS macro

The recommended method of obtaining LFS functionality is to define the macro
_FILE_OFFSET_BITS with the value 64 when compiling a program. One way to do this
is via a command-line option to the C compiler:

$ cc -D_FILE_OFFSET_BITS=64 prog.c

Alternatively, we can define this macro in the C source before including any header
files:

#define _FILE_OFFSET_BITS 64

This automatically converts all of the relevant 32-bit functions and data types into
their 64-bit counterparts. Thus, for example, calls to open() are actually converted
into calls to open64(), and the off_t data type is defined to be 64 bits long. In other
words, we can recompile an existing program to handle large files without needing
to make any changes to the source code.

Using _FILE_OFFSET_BITS is clearly simpler than using the transitional LFS API,
but this approach relies on applications being cleanly written (e.g., correctly using
off_t to declare variables holding file offsets, rather than using a native C integer
type).

The _FILE_OFFSET_BITS macro is not required by the LFS specification, which
merely mentions this macro as an optional method of specifying the size of the off_t
data type. Some UNIX implementations use a different feature test macro to
obtain this functionality.

If we attempt to access a large file using 32-bit functions (i.e., from a program
compiled without setting _FILE_OFFSET_BITS to 64), then we may encounter the
error EOVERFLOW. For example, this error can occur if we attempt to use the 32-bit
version of stat() (Section 15.1) to retrieve information about a file whose size
exceeds 2 GB.
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Passing off_t values to printf()

One problem that the LFS extensions don’t solve for us is how to pass off_t values
to printf() calls. In Section 3.6.2, we noted that the portable method of displaying
values of one of the predefined system data types (e.g., pid_t or uid_t) was to cast
that value to long, and use the %ld printf() specifier. However, if we are employing
the LFS extensions, then this is often not sufficient for the off_t data type, because it
may be defined as a type larger than long, typically long long. Therefore, to display a
value of type off_t, we cast it to long long and use the %lld printf() specifier, as in the
following:

#define _FILE_OFFSET_BITS 64

off_t offset;           /* Will be 64 bits, the size of 'long long' */

/* Other code assigning a value to 'offset' */

printf("offset=%lld\n", (long long) offset);

Similar remarks also apply for the related blkcnt_t data type, which is employed in
the stat structure (described in Section 15.1).

If we are passing function arguments of the types off_t or stat between separately
compiled modules, then we need to ensure that both modules use the same sizes
for these types (i.e., either both were compiled with _FILE_OFFSET_BITS set to 64
or both were compiled without this setting).

5.11 The /dev/fd Directory

For each process, the kernel provides the special virtual directory /dev/fd. This
directory contains filenames of the form /dev/fd/n, where n is a number correspond-
ing to one of the open file descriptors for the process. Thus, for example, /dev/fd/0
is standard input for the process. (The /dev/fd feature is not specified by SUSv3, but
several other UNIX implementations provide this feature.)

Opening one of the files in the /dev/fd directory is equivalent to duplicating the
corresponding file descriptor. Thus, the following statements are equivalent:

fd = open("/dev/fd/1", O_WRONLY);
fd = dup(1);                        /* Duplicate standard output */

The flags argument of the open() call is interpreted, so that we should take care to
specify the same access mode as was used by the original descriptor. Specifying
other flags, such as O_CREAT, is meaningless (and ignored) in this context.

/dev/fd is actually a symbolic link to the Linux-specific /proc/self/fd directory.
The latter directory is a special case of the Linux-specific /proc/PID/fd directo-
ries, each of which contains symbolic links corresponding to all of the files
held open by a process.
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The files in the /dev/fd directory are rarely used within programs. Their most com-
mon use is in the shell. Many user-level commands take filename arguments, and
sometimes we would like to put them in a pipeline and have one of the arguments
be standard input or output instead. For this purpose, some programs (e.g., diff, ed,
tar, and comm) have evolved the hack of using an argument consisting of a single
hyphen (-) to mean “use standard input or output (as appropriate) for this file-
name argument.” Thus, to compare a file list from ls against a previously built file
list, we might write the following:

$ ls | diff - oldfilelist

This approach has various problems. First, it requires specific interpretation of the
hyphen character on the part of each program, and many programs don’t perform
such interpretation; they are written to work only with filename arguments, and
they have no means of specifying standard input or output as the files with which
they are to work. Second, some programs instead interpret a single hyphen as a
delimiter marking the end of command-line options.

Using /dev/fd eliminates these difficulties, allowing the specification of stan-
dard input, output, and error as filename arguments to any program requiring
them. Thus, we can write the previous shell command as follows:

$ ls | diff /dev/fd/0 oldfilelist

As a convenience, the names /dev/stdin, /dev/stdout, and /dev/stderr are provided as
symbolic links to, respectively, /dev/fd/0, /dev/fd/1, and /dev/fd/2.

5.12 Creating Temporary Files

Some programs need to create temporary files that are used only while the pro-
gram is running, and these files should be removed when the program terminates.
For example, many compilers create temporary files during the compilation pro-
cess. The GNU C library provides a range of library functions for this purpose.
(The variety is, in part, a consequence of inheritance from various other UNIX
implementations.) Here, we describe two of these functions: mkstemp() and
tmpfile().

The mkstemp() function generates a unique filename based on a template sup-
plied by the caller and opens the file, returning a file descriptor that can be used
with I/O system calls.

The template argument takes the form of a pathname in which the last 6 characters
must be XXXXXX. These 6 characters are replaced with a string that makes the filename
unique, and this modified string is returned via the template argument. Because

#include <stdlib.h>

int mkstemp(char *template);

Returns file descriptor on success, or –1 on error
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template is modified, it must be specified as a character array, rather than as a string
constant.

The mkstemp() function creates the file with read and write permissions for the
file owner (and no permissions for other users), and opens it with the O_EXCL flag,
guaranteeing that the caller has exclusive access to the file.

Typically, a temporary file is unlinked (deleted) soon after it is opened, using
the unlink() system call (Section 18.3). Thus, we could employ mkstemp() as follows:

int fd;
char template[] = "/tmp/somestringXXXXXX";

fd = mkstemp(template);
if (fd == -1)
    errExit("mkstemp");
printf("Generated filename was: %s\n", template);
unlink(template);     /* Name disappears immediately, but the file
                         is removed only after close() */

/* Use file I/O system calls - read(), write(), and so on */

if (close(fd) == -1)
    errExit("close");

The tmpnam(), tempnam(), and mktemp() functions can also be used to generate
unique filenames. However, these functions should be avoided because they
can create security holes in an application. See the manual pages for further
details on these functions.

The tmpfile() function creates a uniquely named temporary file that is opened for
reading and writing. (The file is opened with the O_EXCL flag to guard against the
unlikely possibility that another process has already created a file with the same
name.)

On success, tmpfile() returns a file stream that can be used with the stdio library
functions. The temporary file is automatically deleted when it is closed. To do this,
tmpfile() makes an internal call to unlink() to remove the filename immediately after
opening the file.

5.13 Summary

In the course of this chapter, we introduced the concept of atomicity, which is crucial
to the correct operation of some system calls. In particular, the open() O_EXCL flag
allows the caller to ensure that it is the creator of a file, and the open() O_APPEND flag
ensures that multiple processes appending data to the same file don’t overwrite each
other’s output.

#include <stdio.h>

FILE *tmpfile(void);

Returns file pointer on success, or NULL on error
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The fcntl() system call performs a variety of file control operations, including
changing open file status flags and duplicating file descriptors. Duplicating file
descriptors is also possible using dup() and dup2().

We looked at the relationship between file descriptors, open file descriptions,
and file i-nodes, and noted that different information is associated with each of
these three objects. Duplicate file descriptors refer to the same open file descrip-
tion, and thus share open file status flags and the file offset.

We described a number of system calls that extend the functionality of the con-
ventional read() and write() system calls. The pread() and pwrite() system calls per-
form I/O at a specified file location without changing the file offset. The readv()
and writev() calls perform scatter-gather I/O. The preadv() and pwritev() calls combine
scatter-gather I/O functionality with the ability to perform I/O at a specified file
location.

The truncate() and ftruncate() system calls can be used to decrease the size of a
file, discarding the excess bytes, or to increase the size, padding with a zero-filled
file hole.

We briefly introduced the concept of nonblocking I/O, and we’ll return to it in
later chapters.

The LFS specification defines a set of extensions that allow processes running
on 32-bit systems to perform operations on files whose size is too large to be repre-
sented in 32 bits.

The numbered files in the /dev/fd virtual directory allow a process to access its
own open files via file descriptor numbers, which can be particularly useful in shell
commands.

The mkstemp() and tmpfile() functions allow an application to create temporary
files.

5.14 Exercises

5-1. Modify the program in Listing 5-3 to use standard file I/O system calls (open() and
lseek()) and the off_t data type. Compile the program with the _FILE_OFFSET_BITS
macro set to 64, and test it to show that a large file can be successfully created.

5-2. Write a program that opens an existing file for writing with the O_APPEND flag, and
then seeks to the beginning of the file before writing some data. Where does the
data appear in the file? Why?

5-3. This exercise is designed to demonstrate why the atomicity guaranteed by opening
a file with the O_APPEND flag is necessary. Write a program that takes up to three
command-line arguments:

$ atomic_append filename num-bytes [x]

This file should open the specified filename (creating it if necessary) and append
num-bytes bytes to the file by using write() to write a byte at a time. By default, the
program should open the file with the O_APPEND flag, but if a third command-line
argument (x) is supplied, then the O_APPEND flag should be omitted, and instead the
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program should perform an lseek(fd, 0, SEEK_END) call before each write(). Run
two instances of this program at the same time without the x argument to write
1 million bytes to the same file:

$ atomic_append f1 1000000 & atomic_append f1 1000000

Repeat the same steps, writing to a different file, but this time specifying the x
argument:

$ atomic_append f2 1000000 x & atomic_append f2 1000000 x

List the sizes of the files f1 and f2 using ls –l and explain the difference.

5-4. Implement dup() and dup2() using fcntl() and, where necessary, close(). (You may
ignore the fact that dup2() and fcntl() return different errno values for some error
cases.) For dup2(), remember to handle the special case where oldfd equals newfd. In
this case, you should check whether oldfd is valid, which can be done by, for example,
checking if fcntl(oldfd, F_GETFL) succeeds. If oldfd is not valid, then the function
should return –1 with errno set to EBADF.

5-5. Write a program to verify that duplicated file descriptors share a file offset value
and open file status flags.

5-6. After each of the calls to write() in the following code, explain what the content of
the output file would be, and why:

fd1 = open(file, O_RDWR | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR);
fd2 = dup(fd1);
fd3 = open(file, O_RDWR);
write(fd1, "Hello,", 6);
write(fd2, "world", 6);
lseek(fd2, 0, SEEK_SET);
write(fd1, "HELLO,", 6);
write(fd3, "Gidday", 6);

5-7. Implement readv() and writev() using read(), write(), and suitable functions from the
malloc package (Section 7.1.2).
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P R O C E S S E S

In this chapter, we look at the structure of a process, paying particular attention to
the layout and contents of a process’s virtual memory. We also examine some of the
attributes of a process. In later chapters, we examine further process attributes (for
example, process credentials in Chapter 9, and process priorities and scheduling in
Chapter 35). In Chapters 24 to 27, we look at how processes are created, how they
terminate, and how they can be made to execute new programs.

6.1 Processes and Programs

A process is an instance of an executing program. In this section, we elaborate on
this definition and clarify the distinction between a program and a process.

A program is a file containing a range of information that describes how to con-
struct a process at run time. This information includes the following:

Binary format identification: Each program file includes metainformation describ-
ing the format of the executable file. This enables the kernel to interpret the
remaining information in the file. Historically, two widely used formats for
UNIX executable files were the original a.out (“assembler output”) format
and the later, more sophisticated COFF (Common Object File Format). Nowa-
days, most UNIX implementations (including Linux) employ the Executable
and Linking Format (ELF), which provides a number of advantages over the
older formats.



Machine-language instructions: These encode the algorithm of the program.

Program entry-point address: This identifies the location of the instruction at
which execution of the program should commence.

Data: The program file contains values used to initialize variables and also lit-
eral constants used by the program (e.g., strings).

Symbol and relocation tables: These describe the locations and names of functions
and variables within the program. These tables are used for a variety of pur-
poses, including debugging and run-time symbol resolution (dynamic linking).

Shared-library and dynamic-linking information: The program file includes fields
listing the shared libraries that the program needs to use at run time and the
pathname of the dynamic linker that should be used to load these libraries.

Other information: The program file contains various other information that
describes how to construct a process.

One program may be used to construct many processes, or, put conversely, many
processes may be running the same program.

We can recast the definition of a process given at the start of this section as
follows: a process is an abstract entity, defined by the kernel, to which system
resources are allocated in order to execute a program.

From the kernel’s point of view, a process consists of user-space memory con-
taining program code and variables used by that code, and a range of kernel data
structures that maintain information about the state of the process. The informa-
tion recorded in the kernel data structures includes various identifier numbers
(IDs) associated with the process, virtual memory tables, the table of open file
descriptors, information relating to signal delivery and handling, process resource
usages and limits, the current working directory, and a host of other information.

6.2 Process ID and Parent Process ID

Each process has a process ID (PID), a positive integer that uniquely identifies the
process on the system. Process IDs are used and returned by a variety of system
calls. For example, the kill() system call (Section 20.5) allows the caller to send a sig-
nal to a process with a specific process ID. The process ID is also useful if we need
to build an identifier that is unique to a process. A common example of this is the
use of the process ID as part of a process-unique filename.

The getpid() system call returns the process ID of the calling process.

The pid_t data type used for the return value of getpid() is an integer type specified
by SUSv3 for the purpose of storing process IDs.

#include <unistd.h>

pid_t getpid(void);

Always successfully returns process ID of caller
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With the exception of a few system processes such as init (process ID 1), there
is no fixed relationship between a program and the process ID of the process that is
created to run that program.

The Linux kernel limits process IDs to being less than or equal to 32,767. When
a new process is created, it is assigned the next sequentially available process ID. Each
time the limit of 32,767 is reached, the kernel resets its process ID counter so that
process IDs are assigned starting from low integer values.

Once it has reached 32,767, the process ID counter is reset to 300, rather than 1.
This is done because many low-numbered process IDs are in permanent use by
system processes and daemons, and thus time would be wasted searching for
an unused process ID in this range.

In Linux 2.4 and earlier, the process ID limit of 32,767 is defined by the
kernel constant PID_MAX. With Linux 2.6, things change. While the default
upper limit for process IDs remains 32,767, this limit is adjustable via the value
in the Linux-specific /proc/sys/kernel/pid_max file (which is one greater than
the maximum process ID). On 32-bit platforms, the maximum value for this
file is 32,768, but on 64-bit platforms, it can be adjusted to any value up to 222

(approximately 4 million), making it possible to accommodate very large num-
bers of processes.

Each process has a parent—the process that created it. A process can find out the
process ID of its parent using the getppid() system call.

In effect, the parent process ID attribute of each process represents the tree-like
relationship of all processes on the system. The parent of each process has its own
parent, and so on, going all the way back to process 1, init, the ancestor of all pro-
cesses. (This “family tree” can be viewed using the pstree(1) command.)

If a child process becomes orphaned because its “birth” parent terminates,
then the child is adopted by the init process, and subsequent calls to getppid() in the
child return 1 (see Section 26.2).

The parent of any process can be found by looking at the Ppid field provided in
the Linux-specific /proc/PID/status file.

6.3 Memory Layout of a Process

The memory allocated to each process is composed of a number of parts, usually
referred to as segments. These segments are as follows:

The text segment contains the machine-language instructions of the program
run by the process. The text segment is made read-only so that a process
doesn’t accidentally modify its own instructions via a bad pointer value. Since

#include <unistd.h>

pid_t getppid(void);

Always successfully returns process ID of parent of caller
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many processes may be running the same program, the text segment is made
sharable so that a single copy of the program code can be mapped into the vir-
tual address space of all of the processes.

The initialized data segment contains global and static variables that are explic-
itly initialized. The values of these variables are read from the executable file
when the program is loaded into memory.

The uninitialized data segment contains global and static variables that are not
explicitly initialized. Before starting the program, the system initializes all
memory in this segment to 0. For historical reasons, this is often called the bss
segment, a name derived from an old assembler mnemonic for “block started
by symbol.” The main reason for placing global and static variables that are ini-
tialized into a separate segment from those that are uninitialized is that, when a
program is stored on disk, it is not necessary to allocate space for the uninitial-
ized data. Instead, the executable merely needs to record the location and size
required for the uninitialized data segment, and this space is allocated by the
program loader at run time.

The stack is a dynamically growing and shrinking segment containing stack
frames. One stack frame is allocated for each currently called function. A
frame stores the function’s local variables (so-called automatic variables), argu-
ments, and return value. Stack frames are discussed in more detail in Section 6.5.

The heap is an area from which memory (for variables) can be dynamically allo-
cated at run time. The top end of the heap is called the program break.

Less commonly used, but more descriptive labels for the initialized and uninitial-
ized data segments are user-initialized data segment and zero-initialized data segment.

The size(1) command displays the size of the text, initialized data, and uninitial-
ized data (bss) segments of a binary executable.

The term segment as used in the main text should not be confused with the
hardware segmentation used on some hardware architectures such as x86-32.
Rather, segments are logical divisions of a process’s virtual memory on UNIX
systems. Sometimes, the term section is used instead of segment, since section is
more consistent with the terminology used in the now ubiquitous ELF specifi-
cation for executable file formats.

In many places in this book, we note that a library function returns a
pointer to statically allocated memory. By this, we mean that the memory is
allocated in either the initialized or the uninitialized data segment. (In some
cases, the library function may instead do a one-time dynamic allocation of the
memory on the heap; however, this implementation detail is irrelevant to the
semantic point we describe here.) It is important to be aware of cases where a
library function returns information via statically allocated memory, since that
memory has an existence that is independent of the function invocation, and
the memory may be overwritten by subsequent calls to the same function (or
in some cases, by subsequent calls to related functions). The effect of using
statically allocated memory is to render a function nonreentrant. We say more
about reentrancy in Sections 21.1.2 and 31.1.

Listing 6-1 shows various types of C variables along with comments indicating in
which segment each variable is located. These comments assume a nonoptimizing
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compiler and an application binary interface in which all arguments are passed on
the stack. In practice, an optimizing compiler may allocate frequently used vari-
ables in registers, or optimize a variable out of existence altogether. Furthermore,
some ABIs require function arguments and the function result to be passed via reg-
isters, rather than on the stack. Nevertheless, this example serves to demonstrate
the mapping between C variables and the segments of a process.

Listing 6-1: Locations of program variables in process memory segments

––––––––––––––––––––––––––––––––––––––––––––––––––––––– proc/mem_segments.c

#include <stdio.h>
#include <stdlib.h>

char globBuf[65536];            /* Uninitialized data segment */
int primes[] = { 2, 3, 5, 7 };  /* Initialized data segment */

static int
square(int x)                   /* Allocated in frame for square() */
{
    int result;                 /* Allocated in frame for square() */

    result = x * x;
    return result;              /* Return value passed via register */
}

static void
doCalc(int val)                 /* Allocated in frame for doCalc() */
{
    printf("The square of %d is %d\n", val, square(val));

    if (val < 1000) {
        int t;                  /* Allocated in frame for doCalc() */

        t = val * val * val;
        printf("The cube of %d is %d\n", val, t);
    }
}

int
main(int argc, char *argv[])    /* Allocated in frame for main() */
{
    static int key = 9973;      /* Initialized data segment */
    static char mbuf[10240000]; /* Uninitialized data segment */
    char *p;                    /* Allocated in frame for main() */

    p = malloc(1024);           /* Points to memory in heap segment */

    doCalc(key);

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––– proc/mem_segments.c
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An application binary interface (ABI) is a set of rules specifying how a binary exe-
cutable should exchange information with some service (e.g., the kernel or a
library) at run time. Among other things, an ABI specifies which registers and
stack locations are used to exchange this information, and what meaning is
attached to the exchanged values. Once compiled for a particular ABI, a
binary executable should be able to run on any system presenting the same
ABI. This contrasts with a standardized API (such as SUSv3), which guarantees
portability only for applications compiled from source code.

Although not specified in SUSv3, the C program environment on most UNIX
implementations (including Linux) provides three global symbols: etext, edata, and
end. These symbols can be used from within a program to obtain the addresses of
the next byte past, respectively, the end of the program text, the end of the initial-
ized data segment, and the end of the uninitialized data segment. To make use of
these symbols, we must explicitly declare them, as follows:

extern char etext, edata, end;
        /* For example, &etext gives the address of the end
           of the program text / start of initialized data */

Figure 6-1 shows the arrangement of the various memory segments on the x86-32
architecture. The space labeled argv, environ at the top of this diagram holds the
program command-line arguments (available in C via the argv argument of the
main() function) and the process environment list (which we discuss shortly). The
hexadecimal addresses shown in the diagram may vary, depending on kernel con-
figuration and program linking options. The grayed-out areas represent invalid
ranges in the process’s virtual address space; that is, areas for which page tables have
not been created (see the following discussion of virtual memory management).

We revisit the topic of process memory layout in a little more detail in
Section 48.5, where we consider where shared memory and shared libraries are
placed in a process’s virtual memory.

6.4 Virtual Memory Management

The previous discussion of the memory layout of a process glossed over the fact
that we were talking about the layout in virtual memory. Since an understanding of
virtual memory is useful later on when we look at topics such as the fork() system
call, shared memory, and mapped files, we now consider some of the details.

Like most modern kernels, Linux employs a technique known as virtual memory
management. The aim of this technique is to make efficient use of both the CPU and
RAM (physical memory) by exploiting a property that is typical of most programs:
locality of reference. Most programs demonstrate two kinds of locality:

Spatial locality is the tendency of a program to reference memory addresses
that are near those that were recently accessed (because of sequential process-
ing of instructions, and, sometimes, sequential processing of data structures).

Temporal locality is the tendency of a program to access the same memory
addresses in the near future that it accessed in the recent past (because of
loops).
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Figure 6-1: Typical memory layout of a process on Linux/x86-32

The upshot of locality of reference is that it is possible to execute a program while
maintaining only part of its address space in RAM.

A virtual memory scheme splits the memory used by each program into small,
fixed-size units called pages. Correspondingly, RAM is divided into a series of page
frames of the same size. At any one time, only some of the pages of a program need
to be resident in physical memory page frames; these pages form the so-called
resident set. Copies of the unused pages of a program are maintained in the swap
area—a reserved area of disk space used to supplement the computer’s RAM—and
loaded into physical memory only as required. When a process references a page
that is not currently resident in physical memory, a page fault occurs, at which point
the kernel suspends execution of the process while the page is loaded from disk
into memory.

On x86-32, pages are 4096 bytes in size. Some other Linux implementations
use larger page sizes. For example, Alpha uses a page size of 8192 bytes, and
IA-64 has a variable page size, with the usual default being 16,384 bytes. A pro-
gram can determine the system virtual memory page size using the call
sysconf(_SC_PAGESIZE), as described in Section 11.2.
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Figure 6-2: Overview of virtual memory

In order to support this organization, the kernel maintains a page table for each
process (Figure 6-2). The page table describes the location of each page in the pro-
cess’s virtual address space (the set of all virtual memory pages available to the process).
Each entry in the page table either indicates the location of a virtual page in RAM
or indicates that it currently resides on disk.

Not all address ranges in the process’s virtual address space require page-table
entries. Typically, large ranges of the potential virtual address space are unused, so
that it isn’t necessary to maintain corresponding page-table entries. If a process
tries to access an address for which there is no corresponding page-table entry, it
receives a SIGSEGV signal.

A process’s range of valid virtual addresses can change over its lifetime, as the
kernel allocates and deallocates pages (and page-table entries) for the process. This
can happen in the following circumstances:

as the stack grows downward beyond limits previously reached;

when memory is allocated or deallocated on the heap, by raising the program
break using brk(), sbrk(), or the malloc family of functions (Chapter 7);

when System V shared memory regions are attached using shmat() and
detached using shmdt() (Chapter 48); and

when memory mappings are created using mmap() and unmapped using
munmap() (Chapter 49).

The implementation of virtual memory requires hardware support in the form
of a paged memory management unit (PMMU). The PMMU translates each virtual
memory address reference into the corresponding physical memory address
and advises the kernel of a page fault when a particular virtual memory
address corresponds to a page that is not resident in RAM.
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Virtual memory management separates the virtual address space of a process from
the physical address space of RAM. This provides many advantages:

Processes are isolated from one another and from the kernel, so that one pro-
cess can’t read or modify the memory of another process or the kernel. This is
accomplished by having the page-table entries for each process point to dis-
tinct sets of physical pages in RAM (or in the swap area).

Where appropriate, two or more processes can share memory. The kernel
makes this possible by having page-table entries in different processes refer to
the same pages of RAM. Memory sharing occurs in two common circumstances:

– Multiple processes executing the same program can share a single (read-
only) copy of the program code. This type of sharing is performed implicitly
when multiple programs execute the same program file (or load the same
shared library).

– Processes can use the shmget() and mmap() system calls to explicitly request
sharing of memory regions with other processes. This is done for the pur-
pose of interprocess communication.

The implementation of memory protection schemes is facilitated; that is, page-
table entries can be marked to indicate that the contents of the corresponding
page are readable, writable, executable, or some combination of these protec-
tions. Where multiple processes share pages of RAM, it is possible to specify
that each process has different protections on the memory; for example, one
process might have read-only access to a page, while another has read-write
access.

Programmers, and tools such as the compiler and linker, don’t need to be con-
cerned with the physical layout of the program in RAM.

Because only a part of a program needs to reside in memory, the program
loads and runs faster. Furthermore, the memory footprint (i.e., virtual size) of
a process can exceed the capacity of RAM.

One final advantage of virtual memory management is that since each process uses
less RAM, more processes can simultaneously be held in RAM. This typically leads
to better CPU utilization, since it increases the likelihood that, at any moment in
time, there is at least one process that the CPU can execute.

6.5 The Stack and Stack Frames

The stack grows and shrinks linearly as functions are called and return. For Linux
on the x86-32 architecture (and on most other Linux and UNIX implementations),
the stack resides at the high end of memory and grows downward (toward the
heap). A special-purpose register, the stack pointer, tracks the current top of the
stack. Each time a function is called, an additional frame is allocated on the stack,
and this frame is removed when the function returns.

Even though the stack grows downward, we still call the growing end of the stack
the top, since, in abstract terms, that is what it is. The actual direction of stack
growth is a (hardware) implementation detail. One Linux implementation, the
HP PA-RISC, does use an upwardly growing stack.
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In virtual memory terms, the stack segment increases in size as stack
frames are allocated, but on most implementations, it won’t decrease in size
after these frames are deallocated (the memory is simply reused when new
stack frames are allocated). When we talk about the stack segment growing
and shrinking, we are considering things from the logical perspective of
frames being added to and removed from the stack.

Sometimes, the term user stack is used to distinguish the stack we describe here
from the kernel stack. The kernel stack is a per-process memory region maintained
in kernel memory that is used as the stack for execution of the functions called
internally during the execution of a system call. (The kernel can’t employ the user
stack for this purpose since it resides in unprotected user memory.)

Each (user) stack frame contains the following information:

Function arguments and local variables: In C these are referred to as automatic
variables, since they are automatically created when a function is called. These
variables also automatically disappear when the function returns (since the
stack frame disappears), and this forms the primary semantic distinction
between automatic and static (and global) variables: the latter have a perma-
nent existence independent of the execution of functions.

Call linkage information: Each function uses certain CPU registers, such as the
program counter, which points to the next machine-language instruction to be
executed. Each time one function calls another, a copy of these registers is
saved in the called function’s stack frame so that when the function returns,
the appropriate register values can be restored for the calling function.

Since functions can call one another, there may be multiple frames on the stack. (If
a function calls itself recursively, there will be multiple frames on the stack for that
function.) Referring to Listing 6-1, during the execution of the function square(),
the stack will contain frames as shown in Figure 6-3.

Figure 6-3: Example of a process stack

6.6 Command-Line Arguments (argc, argv)

Every C program must have a function called main(), which is the point where
execution of the program starts. When the program is executed, the command-
line arguments (the separate words parsed by the shell) are made available via
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two arguments to the function main(). The first argument, int argc, indicates how
many command-line arguments there are. The second argument, char *argv[], is an
array of pointers to the command-line arguments, each of which is a null-termi-
nated character string. The first of these strings, in argv[0], is (conventionally) the
name of the program itself. The list of pointers in argv is terminated by a NULL
pointer (i.e., argv[argc] is NULL).

The fact that argv[0] contains the name used to invoke the program can be
employed to perform a useful trick. We can create multiple links to (i.e., names for)
the same program, and then have the program look at argv[0] and take different
actions depending on the name used to invoke it. An example of this technique is
provided by the gzip(1), gunzip(1), and zcat(1) commands, all of which are links to the
same executable file. (If we employ this technique, we must be careful to handle the
possibility that the user might invoke the program via a link with a name other than
any of those that we expect.)

Figure 6-4 shows an example of the data structures associated with argc and
argv when executing the program in Listing 6-2. In this diagram, we show the termi-
nating null bytes at the end of each string using the C notation \0.

Figure 6-4: Values of argc and argv for the command necho hello world

The program in Listing 6-2 echoes its command-line arguments, one per line of
output, preceded by a string showing which element of argv is being displayed.

Listing 6-2: Echoing command-line arguments

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– proc/necho.c

#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int j;

    for (j = 0; j < argc; j++)
        printf("argv[%d] = %s\n", j, argv[j]);

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– proc/necho.c
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Since the argv list is terminated by a NULL value, we could alternatively code the
body of the program in Listing 6-2 as follows, to output just the command-line
arguments one per line:

char **p;

for (p = argv; *p != NULL; p++)
    puts(*p);

One limitation of the argc/argv mechanism is that these variables are available only
as arguments to main(). To portably make the command-line arguments available
in other functions, we must either pass argv as an argument to those functions or
set a global variable pointing to argv.

There are a couple of nonportable methods of accessing part or all of this
information from anywhere in a program:

The command-line arguments of any process can be read via the Linux-specific
/proc/PID/cmdline file, with each argument being terminated by a null byte. (A
program can access its own command-line arguments via /proc/self/cmdline.)

The GNU C library provides two global variables that may be used anywhere in
a program in order to obtain the name used to invoke the program (i.e., the
first command-line argument). The first of these, program_invocation_name,
provides the complete pathname used to invoke the program. The second,
program_invocation_short_name, provides a version of this name with any direc-
tory prefix stripped off (i.e., the basename component of the pathname). Dec-
larations for these two variables can be obtained from <errno.h> by defining the
macro _GNU_SOURCE.

As shown in Figure 6-1, the argv and environ arrays, as well as the strings they ini-
tially point to, reside in a single contiguous area of memory just above the process
stack. (We describe environ, which holds the program’s environment list, in the
next section.) There is an upper limit on the total number of bytes that can be
stored in this area. SUSv3 prescribes the use of the ARG_MAX constant (defined in
<limits.h>) or the call sysconf(_SC_ARG_MAX) to determine this limit. (We describe
sysconf() in Section 11.2.) SUSv3 requires ARG_MAX to be at least _POSIX_ARG_MAX (4096)
bytes. Most UNIX implementations allow a considerably higher limit than this.
SUSv3 leaves it unspecified whether an implementation counts overhead bytes (for
terminating null bytes, alignment bytes, and the argv and environ arrays of pointers)
against the ARG_MAX limit.

On Linux, ARG_MAX was historically fixed at 32 pages (i.e., 131,072 bytes on
Linux/x86-32), and included the space for overhead bytes. Starting with ker-
nel 2.6.23, the limit on the total space used for argv and environ can be con-
trolled via the RLIMIT_STACK resource limit, and a much larger limit is permitted
for argv and environ. The limit is calculated as one-quarter of the soft
RLIMIT_STACK resource limit that was in force at the time of the execve() call. For
further details, see the execve(2) man page.

Many programs (including several of the examples in this book) parse command-
line options (i.e., arguments beginning with a hyphen) using the getopt() library
function. We describe getopt() in Appendix B.
124 Chapter 6



6.7 Environment List

Each process has an associated array of strings called the environment list, or simply
the environment. Each of these strings is a definition of the form name=value. Thus, the
environment represents a set of name-value pairs that can be used to hold arbitrary
information. The names in the list are referred to as environment variables.

When a new process is created, it inherits a copy of its parent’s environment.
This is a primitive but frequently used form of interprocess communication—the
environment provides a way to transfer information from a parent process to its
child(ren). Since the child gets a copy of its parent’s environment at the time it is
created, this transfer of information is one-way and once-only. After the child pro-
cess has been created, either process may change its own environment, and these
changes are not seen by the other process.

A common use of environment variables is in the shell. By placing values in its
own environment, the shell can ensure that these values are passed to the processes
that it creates to execute user commands. For example, the environment variable
SHELL is set to be the pathname of the shell program itself. Many programs interpret
this variable as the name of the shell that should be executed if the program needs
to execute a shell.

Some library functions allow their behavior to be modified by setting environ-
ment variables. This allows the user to control the behavior of an application using
the function without needing to change the code of the application or relink it
against the corresponding library. An example of this technique is provided by the
getopt() function (Appendix B), whose behavior can be modified by setting the
POSIXLY_CORRECT environment variable.

In most shells, a value can be added to the environment using the export command:

$ SHELL=/bin/bash               Create a shell variable
$ export SHELL                  Put variable into shell process’s environment

In bash and the Korn shell, this can be abbreviated to:

$ export SHELL=/bin/bash

In the C shell, the setenv command is used instead:

% setenv SHELL /bin/bash

The above commands permanently add a value to the shell’s environment, and this
environment is then inherited by all child processes that the shell creates. At any
point, an environment variable can be removed with the unset command (unsetenv
in the C shell).

In the Bourne shell and its descendants (e.g., bash and the Korn shell), the fol-
lowing syntax can be used to add values to the environment used to execute a sin-
gle program, without affecting the parent shell (and subsequent commands):

$ NAME=value program

This adds a definition to the environment of just the child process executing the
named program. If desired, multiple assignments (delimited by white space) can
precede the program name.
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The env command runs a program using a modified copy of the shell’s envi-
ronment list. The environment list can be modified to both add and remove
definitions from the list copied from the shell. See the env(1) manual page for
further details.

The printenv command displays the current environment list. Here is an example
of its output:

$ printenv
LOGNAME=mtk
SHELL=/bin/bash
HOME=/home/mtk
PATH=/usr/local/bin:/usr/bin:/bin:.
TERM=xterm

We describe the purpose of most of the above environment variables at appropri-
ate points in later chapters (see also the environ(7) manual page).

From the above output, we can see that the environment list is not sorted; the
order of the strings in the list is simply the arrangement that is most convenient for
the implementation. In general, this is not a problem, since we normally want to
access individual variables in the environment, rather than some ordered sequence
of them.

The environment list of any process can be examined via the Linux-specific /proc/
PID/environ file, with each NAME=value pair being terminated by a null byte.

Accessing the environment from a program

Within a C program, the environment list can be accessed using the global variable
char **environ. (The C run-time startup code defines this variable and assigns the
location of the environment list to it.) Like argv, environ points to a NULL-terminated
list of pointers to null-terminated strings. Figure 6-5 shows the environment list
data structures as they would appear for the environment displayed by the printenv
command above.

Figure 6-5: Example of process environment list data structures

The program in Listing 6-3 accesses environ in order to list all of the values in the pro-
cess environment. This program yields the same output as the printenv command.
The loop in this program relies on the use of pointers to walk through environ.
While it would be possible to treat environ as an array (as we use argv in Listing 6-2),
this is less natural, since the items in the environment list are in no particular order

environ

PATH=/usr/local/bin:/usr/bin:/bin:.\0

LOGNAME=mtk\0

SHELL=/bin/bash\0

HOME=/home/mtk\0

TERM=xterm\0

NULL
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and there is no variable (corresponding to argc) that specifies the size of the envi-
ronment list. (For similar reasons, we don’t number the elements of the environ
array in Figure 6-5.)

Listing 6-3: Displaying the process environment

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– proc/display_env.c

#include "tlpi_hdr.h"

extern char **environ;

int
main(int argc, char *argv[])
{
    char **ep;

    for (ep = environ; *ep != NULL; ep++)
        puts(*ep);

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– proc/display_env.c

An alternative method of accessing the environment list is to declare a third argu-
ment to the main() function:

int main(int argc, char *argv[], char *envp[])

This argument can then be treated in the same way as environ, with the difference
that its scope is local to main(). Although this feature is widely implemented on
UNIX systems, its use should be avoided since, in addition to the scope limitation,
it is not specified in SUSv3.

The getenv() function retrieves individual values from the process environment.

Given the name of an environment variable, getenv() returns a pointer to the corre-
sponding value string. Thus, in the case of our example environment shown ear-
lier, /bin/bash would be returned if SHELL was specified as the name argument. If no
environment variable with the specified name exists, then getenv() returns NULL.

Note the following portability considerations when using getenv():

SUSv3 stipulates that an application should not modify the string returned by
getenv(). This is because (in most implementations) this string is actually part of
the environment (i.e., the value part of the name=value string). If we need to
change the value of an environment variable, then we can use the setenv() or
putenv() functions (described below).

#include <stdlib.h>

char *getenv(const char *name);

Returns pointer to (value) string, or NULL if no such variable
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SUSv3 permits an implementation of getenv() to return its result using a stati-
cally allocated buffer that may be overwritten by subsequent calls to getenv(),
setenv(), putenv(), or unsetenv(). Although the glibc implementation of getenv()
doesn’t use a static buffer in this way, a portable program that needs to pre-
serve the string returned by a call to getenv() should copy it to a different loca-
tion before making a subsequent call to one of these functions.

Modifying the environment

Sometimes, it is useful for a process to modify its environment. One reason is to
make a change that is visible in all child processes subsequently created by that pro-
cess. Another possibility is that we want to set a variable that is visible to a new pro-
gram to be loaded into the memory of this process (“execed”). In this sense, the
environment is not just a form of interprocess communication, but also a method
of interprogram communication. (This point will become clearer in Chapter 27,
where we explain how the exec() functions permit a program to replace itself by a
new program within the same process.)

The putenv() function adds a new variable to the calling process’s environment
or modifies the value of an existing variable.

The string argument is a pointer to a string of the form name=value. After the
putenv() call, this string is part of the environment. In other words, rather than
duplicating the string pointed to by string, one of the elements of environ will be set
to point to the same location as string. Therefore, if we subsequently modify the
bytes pointed to by string, that change will affect the process environment. For this
reason, string should not be an automatic variable (i.e., a character array allocated
on the stack), since this memory area may be overwritten once the function in
which the variable is defined returns.

Note that putenv() returns a nonzero value on error, rather than –1.
The glibc implementation of putenv() provides a nonstandard extension. If string

doesn’t contain an equal sign (=), then the environment variable identified by string is
removed from the environment list.

The setenv() function is an alternative to putenv() for adding a variable to the
environment.

#include <stdlib.h>

int putenv(char *string);

Returns 0 on success, or nonzero on error

#include <stdlib.h>

int setenv(const char *name, const char *value, int overwrite);

Returns 0 on success, or –1 on error
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The setenv() function creates a new environment variable by allocating a memory
buffer for a string of the form name=value, and copying the strings pointed to by
name and value into that buffer. Note that we don’t need to (in fact, must not)
supply an equal sign at the end of name or the start of value, because setenv() adds
this character when it adds the new definition to the environment.

The setenv() function doesn’t change the environment if the variable identified
by name already exists and overwrite has the value 0. If overwrite is nonzero, the envi-
ronment is always changed.

The fact that setenv() copies its arguments means that, unlike with putenv(), we
can subsequently modify the contents of the strings pointed to by name and value
without affecting the environment. It also means that using automatic variables as
arguments to setenv() doesn’t cause any problems.

The unsetenv() function removes the variable identified by name from the
environment.

As with setenv(), name should not include an equal sign.
Both setenv() and unsetenv() derive from BSD, and are less widespread than

putenv(). Although not defined in the original POSIX.1 standard or in SUSv2, they
are included in SUSv3.

In versions of glibc before 2.2.2, unsetenv() was prototyped as returning void.
This was how unsetenv() was prototyped in the original BSD implementation,
and some UNIX implementations still follow the BSD prototype.

On occasion, it is useful to erase the entire environment, and then rebuild it with
selected values. For example, we might do this in order to execute set-user-ID pro-
grams in a secure manner (Section 38.8). We can erase the environment by assign-
ing NULL to environ:

environ = NULL;

This is exactly the step performed by the clearenv() library function.

#include <stdlib.h>

int unsetenv(const char *name);

Returns 0 on success, or –1 on error

#define _BSD_SOURCE           /* Or: #define _SVID_SOURCE */
#include <stdlib.h>

int clearenv(void)

Returns 0 on success, or a nonzero on error
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In some circumstances, the use of setenv() and clearenv() can lead to memory leaks
in a program. We noted above that setenv() allocates a memory buffer that is then
made part of the environment. When we call clearenv(), it doesn’t free this buffer (it
can’t, since it doesn’t know of the buffer’s existence). A program that repeatedly
employed these two functions would steadily leak memory. In practice, this is
unlikely to be a problem, because a program typically calls clearenv() just once on
startup, in order to remove all entries from the environment that it inherited from
its predecessor (i.e., the program that called exec() to start this program).

Many UNIX implementations provide clearenv(), but it is not specified in
SUSv3. SUSv3 specifies that if an application directly modifies environ, as is
done by clearenv(), then the behavior of setenv(), unsetenv(), and getenv() is unde-
fined. (The rationale behind this is that preventing a conforming application
from directly modifying the environment allows the implementation full con-
trol over the data structures that it uses to implement environment variables.)
The only way that SUSv3 permits an application to clear its environment is to
obtain a list of all environment variables (by getting the names from environ),
and then using unsetenv() to remove each of these names.

Example program

Listing 6-4 demonstrates the use of all of the functions discussed in this section.
After first clearing the environment, this program adds any environment defini-
tions provided as command-line arguments. It then: adds a definition for a variable
called GREET, if one doesn’t already exist in the environment; removes any definition
for a variable named BYE; and, finally, prints the current environment list. Here is
an example of the output produced when the program is run:

$ ./modify_env "GREET=Guten Tag" SHELL=/bin/bash BYE=Ciao
GREET=Guten Tag
SHELL=/bin/bash
$ ./modify_env SHELL=/bin/sh BYE=byebye
SHELL=/bin/sh
GREET=Hello world

If we assign NULL to environ (as is done by the call to clearenv() in Listing 6-4), then
we would expect that a loop of the following form (as used in the program) would
fail, since *environ is invalid:

for (ep = environ; *ep != NULL; ep++)
    puts(*ep);

However, if setenv() and putenv() find that environ is NULL, they create a new environ-
ment list and set environ pointing to it, with the result that the above loop operates
correctly.
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Listing 6-4: Modifying the process environment

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– proc/modify_env.c
#define _GNU_SOURCE     /* To get various declarations from <stdlib.h> */
#include <stdlib.h>
#include "tlpi_hdr.h"

extern char **environ;

int
main(int argc, char *argv[])
{
    int j;
    char **ep;

    clearenv();         /* Erase entire environment */

    for (j = 1; j < argc; j++)
        if (putenv(argv[j]) != 0)
            errExit("putenv: %s", argv[j]);

    if (setenv("GREET", "Hello world", 0) == -1)
        errExit("setenv");

    unsetenv("BYE");

    for (ep = environ; *ep != NULL; ep++)
        puts(*ep);

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– proc/modify_env.c

6.8 Performing a Nonlocal Goto: setjmp() and longjmp()

The setjmp() and longjmp() library functions are used to perform a nonlocal goto. The
term nonlocal refers to the fact that the target of the goto is a location somewhere
outside the currently executing function.

Like many programming languages, C includes the goto statement, which is
open to endless abuse in making programs difficult to read and maintain, and is
occasionally useful to make a program simpler, faster, or both.

One restriction of C’s goto is that it is not possible to jump out of the current
function into another function. However, such functionality can occasionally be use-
ful. Consider the following common scenario in error handling: during a deeply
nested function call, we encounter an error that should be handled by abandoning
the current task, returning through multiple function calls, and then continuing
execution in some much higher function (perhaps even main()). To do this, we
could have each function return a status value that is checked and appropriately
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handled by its caller. This is perfectly valid, and, in many cases, the desirable
method for handling this kind of scenario. However, in some cases, coding would
be simpler if we could jump from the middle of the nested function call back to
one of the functions that called it (the immediate caller, or the caller of the caller,
and so on). This is the functionality that setjmp() and longjmp() provide.

The restriction that a goto can’t be used to jump between functions in C exists
because all C functions reside at the same scope level (i.e., there is no nesting
of function declarations in standard C, although gcc does permit this as an
extension). Thus, given two functions, X and Y, the compiler has no way of
knowing whether a stack frame for function X might be on the stack at the
time Y is invoked, and thus whether a goto from function Y to function X
would be possible. In languages such as Pascal, where function declarations
can be nested, and a goto from a nested function to a function that encloses it
is permitted, the static scope of a function allows the compiler to determine
some information about the dynamic scope of the function. Thus, if function
Y is lexically nested within function X, then the compiler knows that a stack
frame for X must already be on the stack at the time Y is invoked, and can gen-
erate code for a goto from function Y to somewhere within function X.

Calling setjmp() establishes a target for a later jump performed by longjmp(). This
target is exactly the point in the program where the setjmp() call occurred. From a
programming point of view, after the longjmp(), it looks exactly as though we have
just returned from the setjmp() call for a second time. The way in which we distin-
guish the second “return” from the initial return is by the integer value returned by
setjmp(). The initial setjmp() returns 0, while the later “faked” return supplies what-
ever value is specified in the val argument of the longjmp() call. By using different
values for the val argument, we can distinguish jumps to the same target from dif-
ferent points in the program.

Specifying the val argument to longjmp() as 0 would, if unchecked, cause the
faked return from setjmp() to look as though it were the initial return. For this reason,
if val is specified as 0, longjmp() actually uses the value 1.

The env argument used by both functions supplies the glue enabling the jump
to be accomplished. The setjmp() call saves various information about the current
process environment into env. This allows the longjmp() call, which must specify the

#include <setjmp.h>

int setjmp(jmp_buf env);

Returns 0 on initial call, nonzero on return via longjmp()

void longjmp(jmp_buf env, int val);
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same env variable, to perform the fake return. Since the setjmp() and longjmp() calls
are in different functions (otherwise, we could use a simple goto), env is declared
globally or, less commonly, passed as a function argument.

Along with other information, env stores a copy of the program counter register
(which points to the currently executing machine-language instruction) and the
stack pointer register (which marks the top of the stack) at the time of the call to
setjmp(). This information enables the subsequent longjmp() call to accomplish two
key steps:

Strip off the stack frames for all of the intervening functions on the stack
between the function calling longjmp() and the function that previously called
setjmp(). This procedure is sometimes called “unwinding the stack,” and is
accomplished by resetting the stack pointer register to the value saved in the
env argument.

Reset the program counter register so that the program continues execution
from the location of the initial setjmp() call. Again, this is accomplished using
the value saved in env.

Example program

Listing 6-5 demonstrates the use of setjmp() and longjmp(). This program sets up a
jump target with an initial call to setjmp(). The subsequent switch (on the value
returned by setjmp()) is the means of detecting whether we have just completed the
initial return from setjmp() or whether we have arrived back after a longjmp(). In the
case of a 0 return—meaning we have just done the initial setjmp()—we call f1(), which
either immediately calls longjmp() or goes on to call f2(), depending on the value of
argc (i.e., the number of command-line arguments). If f2() is reached, it does an
immediate longjmp(). A longjmp() from either function takes us back to the point of
the setjmp() call. We use different val arguments in the two longjmp() calls, so that the
switch statement in main() can determine the function from which the jump occurred
and print a suitable message. 

When we run the program in Listing 6-5 without any command-line argu-
ments, this is what we see:

$ ./longjmp
Calling f1() after initial setjmp()
We jumped back from f1()

Specifying a command-line argument causes the jump to occur from f2():

$ ./longjmp x
Calling f1() after initial setjmp()
We jumped back from f2()
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Listing 6-5: Demonstrate the use of setjmp() and longjmp()
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– proc/longjmp.c
#include <setjmp.h>
#include "tlpi_hdr.h"

static jmp_buf env;

static void
f2(void)
{
    longjmp(env, 2);
}

static void
f1(int argc)
{
    if (argc == 1)
        longjmp(env, 1);
    f2();
}

int
main(int argc, char *argv[])
{
    switch (setjmp(env)) {
    case 0:     /* This is the return after the initial setjmp() */
        printf("Calling f1() after initial setjmp()\n");
        f1(argc);               /* Never returns... */
        break;                  /* ... but this is good form */

    case 1:
        printf("We jumped back from f1()\n");
        break;

    case 2:
        printf("We jumped back from f2()\n");
        break;
    }

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– proc/longjmp.c

Restrictions on the use of setjmp()

SUSv3 and C99 specify that a call to setjmp() may appear only in the following
contexts:

as the entire controlling expression of a selection or iteration statement (if,
switch, while, and so on);

as the operand of a unary ! (not) operator, where the resulting expression is the
entire controlling expression of a selection or iteration statement;
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as part of a comparison operation (==, !=, <, and so on), where the other oper-
and is an integer constant expression and the resulting expression is the entire
controlling expression of a selection or iteration statement; or

as a free-standing function call that is not embedded inside some larger
expression.

Note that the C assignment statement doesn’t figure in the list above. A statement
of the following form is not standards-conformant:

s = setjmp(env);                    /* WRONG! */

These restrictions are specified because an implementation of setjmp() as a conven-
tional function can’t be guaranteed to have enough information to be able to save
the values of all registers and temporary stack locations used in an enclosing
expression so that they could then be correctly restored after a longjmp(). Thus, it is
permitted to call setjmp() only inside expressions simple enough not to require tem-
porary storage.

Abusing longjmp()

If the env buffer is declared global to all functions (which is typical), then it is possible
to execute the following sequence of steps:

1. Call a function x() that uses setjmp() to establish a jump target in the global vari-
able env.

2. Return from function x().

3. Call a function y() that does a longjmp() using env.

This is a serious error. We can’t do a longjmp() into a function that has already
returned. Considering what longjmp() tries to do to the stack—it attempts to unwind
the stack back to a frame that no longer exists—leads us to realize that chaos will
result. If we are lucky, our program will simply crash. However, depending on the
state of the stack, other possibilities include infinite call-return loops and the pro-
gram behaving as though it really did return from a function that was not currently
executing. (In a multithreaded program, a similar abuse is to call longjmp() in a dif-
ferent thread from that in which setjmp() was called.)

SUSv3 says that if longjmp() is called from within a nested signal handler (i.e., a
handler that was invoked while the handler for another signal was executing),
then the program behavior is undefined.

Problems with optimizing compilers

Optimizing compilers may rearrange the order of instructions in a program and
store certain variables in CPU registers, rather than RAM. Such optimizations gen-
erally rely on the run-time flow of control reflecting the lexical structure of the pro-
gram. Since jump operations performed via setjmp() and longjmp() are established
and executed at run time, and are not reflected in the lexical structure of the pro-
gram, a compiler optimizer is unable to take them into account when performing
its task. Furthermore, the semantics of some ABI implementations require
longjmp() to restore copies of the CPU registers saved by the earlier setjmp() call.
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This means that optimized variables may end up with incorrect values as a conse-
quence of a longjmp() operation. We can see an example of this by examining the
behavior of the program in Listing 6-6.

Listing 6-6: A demonstration of the interaction of compiler optimization and longjmp()
–––––––––––––––––––––––––––––––––––––––––––––––––––––––– proc/setjmp_vars.c

#include <stdio.h>
#include <stdlib.h>
#include <setjmp.h>

static jmp_buf env;

static void
doJump(int nvar, int rvar, int vvar)
{
    printf("Inside doJump(): nvar=%d rvar=%d vvar=%d\n", nvar, rvar, vvar);
    longjmp(env, 1);
}

int
main(int argc, char *argv[])
{
    int nvar;
    register int rvar;          /* Allocated in register if possible */
    volatile int vvar;          /* See text */

    nvar = 111;
    rvar = 222;
    vvar = 333;

    if (setjmp(env) == 0) {     /* Code executed after setjmp() */
        nvar = 777;
        rvar = 888;
        vvar = 999;
        doJump(nvar, rvar, vvar);

    } else {                    /* Code executed after longjmp() */

        printf("After longjmp(): nvar=%d rvar=%d vvar=%d\n", nvar, rvar, vvar);
    }

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– proc/setjmp_vars.c

When we compile the program in Listing 6-6 normally, we see the expected output:

$ cc -o setjmp_vars setjmp_vars.c
$ ./setjmp_vars
Inside doJump(): nvar=777 rvar=888 vvar=999
After longjmp(): nvar=777 rvar=888 vvar=999
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However, when we compile with optimization, we get the following unexpected
results:

$ cc -O -o setjmp_vars setjmp_vars.c
$ ./setjmp_vars
Inside doJump(): nvar=777 rvar=888 vvar=999
After longjmp(): nvar=111 rvar=222 vvar=999

Here, we see that after the longjmp(), nvar and rvar have been reset to their values at
the time of the setjmp() call. This has occurred because the code reorganization per-
formed by the optimizer has been confused as a consequence of the longjmp(). Any
local variables that are candidates for optimization may be subject to this sort of
problem; this generally means pointer variables and variables of any of the simple
types char, int, float, and long.

We can prevent such code reorganization by declaring variables as volatile,
which tells the optimizer not to optimize them. In the preceding program output,
we see that the variable vvar, which was declared volatile, was correctly handled,
even when we compiled with optimization.

Since different compilers do different types of optimizations, portable pro-
grams should employ the volatile keyword with all of the local variables of the
aforementioned types in the function that calls setjmp().

If we specify the –Wextra (extra warnings) option to the GNU C compiler, it pro-
duces the following helpful warning for the setjmp_vars.c program:

$ cc -Wall -Wextra -O -o setjmp_vars setjmp_vars.c
setjmp_vars.c: In function `main':
setjmp_vars.c:17: warning: variable `nvar' might be clobbered by `longjmp' or 
`vfork'
setjmp_vars.c:18: warning: variable `rvar' might be clobbered by `longjmp' or 
`vfork'

It is instructive to look at the assembler output produced when compiling the
setjmp_vars.c program both with and without optimization. The cc –S com-
mand produces a file with the extension .s containing the generated assembler
code for a program.

Avoid setjmp() and longjmp() where possible

If goto statements are capable of rendering a program difficult to read, then nonlo-
cal gotos can make things an order of magnitude worse, since they can transfer
control between any two functions in a program. For this reason, setjmp() and
longjmp() should be used sparingly. It is often worth the extra work in design and
coding to come up with a program that avoids their use, because the program will
be more readable and possibly more portable. Having said that, we revisit variants
of these functions (sigsetjmp() and siglongjmp(), described in Section 21.2.1) when
we discuss signals, since they are occasionally useful when writing signal handlers.
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6.9 Summary

Each process has a unique process ID and maintains a record of its parent’s process ID.
The virtual memory of a process is logically divided into a number of segments:

text, (initialized and uninitialized) data, stack, and heap.
The stack consists of a series of frames, with a new frame being added as a

function is invoked and removed when the function returns. Each frame contains
the local variables, function arguments, and call linkage information for a single
function invocation.

The command-line arguments supplied when a program is invoked are made
available via the argc and argv arguments to main(). By convention, argv[0] contains
the name used to invoke the program.

Each process receives a copy of its parent’s environment list, a set of name-value
pairs. The global variable environ and various library functions allow a process to
access and modify the variables in its environment list.

The setjmp() and longjmp() functions provide a way to perform a nonlocal goto
from one function to another (unwinding the stack). In order to avoid problems
with compiler optimization, we may need to declare variables with the volatile
modifier when making use of these functions. Nonlocal gotos can render a pro-
gram difficult to read and maintain, and should be avoided whenever possible.

Further information

[Tanenbaum, 2007] and [Vahalia, 1996] describe virtual memory management in
detail. The Linux kernel memory management algorithms and code are described
in detail in [Gorman, 2004].

6.10 Exercises

6-1. Compile the program in Listing 6-1 (mem_segments.c), and list its size using ls –l.
Although the program contains an array (mbuf) that is around 10 MB in size, the
executable file is much smaller than this. Why is this?

6-2. Write a program to see what happens if we try to longjmp() into a function that has
already returned.

6-3. Implement setenv() and unsetenv() using getenv(), putenv(), and, where necessary,
code that directly modifies environ. Your version of unsetenv() should check to see
whether there are multiple definitions of an environment variable, and remove
them all (which is what the glibc version of unsetenv() does).
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M E M O R Y  A L L O C A T I O N

Many system programs need to be able to allocate extra memory for dynamic data
structures (e.g., linked lists and binary trees), whose size depends on information
that is available only at run time. This chapter describes the functions that are used
to allocate memory on the heap or the stack.

7.1 Allocating Memory on the Heap

A process can allocate memory by increasing the size of the heap, a variable-
size segment of contiguous virtual memory that begins just after the uninitialized
data segment of a process and grows and shrinks as memory is allocated and freed
(see Figure 6-1 on page 119). The current limit of the heap is referred to as the
program break.

To allocate memory, C programs normally use the malloc family of functions,
which we describe shortly. However, we begin with a description of brk() and sbrk(),
upon which the malloc functions are based.

7.1.1 Adjusting the Program Break: brk() and sbrk()
Resizing the heap (i.e., allocating or deallocating memory) is actually as simple as
telling the kernel to adjust its idea of where the process’s program break is. Ini-
tially, the program break lies just past the end of the uninitialized data segment
(i.e., the same location as &end, shown in Figure 6-1).



After the program break is increased, the program may access any address in
the newly allocated area, but no physical memory pages are allocated yet. The ker-
nel automatically allocates new physical pages on the first attempt by the process to
access addresses in those pages.

Traditionally, the UNIX system has provided two system calls for manipulating
the program break, and these are both available on Linux: brk() and sbrk().
Although these system calls are seldom used directly in programs, understanding
them helps clarify how memory allocation works.

The brk() system call sets the program break to the location specified by
end_data_segment. Since virtual memory is allocated in units of pages,
end_data_segment is effectively rounded up to the next page boundary.

Attempts to set the program break below its initial value (i.e., below &end) are
likely to result in unexpected behavior, such as a segmentation fault (the SIGSEGV sig-
nal, described in Section 20.2) when trying to access data in now nonexistent parts
of the initialized or uninitialized data segments. The precise upper limit on where
the program break can be set depends on a range of factors, including: the process
resource limit for the size of the data segment (RLIMIT_DATA, described in Section 36.3);
and the location of memory mappings, shared memory segments, and shared
libraries.

A call to sbrk() adjusts the program break by adding increment to it. (On Linux,
sbrk() is a library function implemented on top of brk().) The intptr_t type used to
declare increment is an integer data type. On success, sbrk() returns the previous
address of the program break. In other words, if we have increased the program
break, then the return value is a pointer to the start of the newly allocated block of
memory.

The call sbrk(0) returns the current setting of the program break without
changing it. This can be useful if we want to track the size of the heap, perhaps in
order to monitor the behavior of a memory allocation package.

SUSv2 specified brk() and sbrk() (marking them LEGACY). SUSv3 removed
their specifications.

7.1.2 Allocating Memory on the Heap: malloc() and free()
In general, C programs use the malloc family of functions to allocate and deallocate
memory on the heap. These functions offer several advantages over brk() and
sbrk(). In particular, they:

are standardized as part of the C language;

are easier to use in threaded programs;

#include <unistd.h>

int brk(void *end_data_segment);

Returns 0 on success, or –1 on error
void *sbrk(intptr_t increment);

Returns previous program break on success, or (void *) –1 on error
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provide a simple interface that allows memory to be allocated in small
units; and

allow us to arbitrarily deallocate blocks of memory, which are maintained on a
free list and recycled in future calls to allocate memory.

The malloc() function allocates size bytes from the heap and returns a pointer to the
start of the newly allocated block of memory. The allocated memory is not initialized.

Because malloc() returns void *, we can assign it to any type of C pointer. The block
of memory returned by malloc() is always aligned on a byte boundary suitable for
any type of C data structure. In practice, this means that it is allocated on an 8-byte
or 16-byte boundary on most architectures.

SUSv3 specifies that the call malloc(0) may return either NULL or a pointer to a
small piece of memory that can (and should) be freed with free(). On Linux,
malloc(0) follows the latter behavior.

If memory could not be allocated (perhaps because we reached the limit to which
the program break could be raised), then malloc() returns NULL and sets errno to indi-
cate the error. Although the possibility of failure in allocating memory is small, all
calls to malloc(), and the related functions that we describe later, should check for
this error return.

The free() function deallocates the block of memory pointed to by its ptr argu-
ment, which should be an address previously returned by malloc() or one of the
other heap memory allocation functions that we describe later in this chapter.

In general, free() doesn’t lower the program break, but instead adds the block of
memory to a list of free blocks that are recycled by future calls to malloc(). This is
done for several reasons:

The block of memory being freed is typically somewhere in the middle of the
heap, rather than at the end, so that lowering the program break is not possible.

It minimizes the number of sbrk() calls that the program must perform. (As
noted in Section 3.1, system calls have a small but significant overhead.)

In many cases, lowering the break would not help programs that allocate large
amounts of memory, since they typically tend to hold on to allocated memory
or repeatedly release and reallocate memory, rather than release it all and then
continue to run for an extended period of time.

#include <stdlib.h>

void *malloc(size_t size);

Returns pointer to allocated memory on success, or NULL on error

#include <stdlib.h>

void free(void *ptr);
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If the argument given to free() is a NULL pointer, then the call does nothing. (In other
words, it is not an error to give a NULL pointer to free().)

Making any use of ptr after the call to free()—for example, passing it to free() a
second time—is an error that can lead to unpredictable results.

Example program

The program in Listing 7-1 can be used to illustrate the effect of free() on the pro-
gram break. This program allocates multiple blocks of memory and then frees
some or all of them, depending on its (optional) command-line arguments.

The first two command-line arguments specify the number and size of blocks to
allocate. The third command-line argument specifies the loop step unit to be used
when freeing memory blocks. If we specify 1 here (which is also the default if this
argument is omitted), then the program frees every memory block; if 2, then every
second allocated block; and so on. The fourth and fifth command-line arguments
specify the range of blocks that we wish to free. If these arguments are omitted, then
all allocated blocks (in steps given by the third command-line argument) are freed.

Listing 7-1: Demonstrate what happens to the program break when memory is freed

––––––––––––––––––––––––––––––––––––––––––––––––––– memalloc/free_and_sbrk.c
#include "tlpi_hdr.h"

#define MAX_ALLOCS 1000000

int
main(int argc, char *argv[])
{
    char *ptr[MAX_ALLOCS];
    int freeStep, freeMin, freeMax, blockSize, numAllocs, j;

    printf("\n");

    if (argc < 3 || strcmp(argv[1], "--help") == 0)
        usageErr("%s num-allocs block-size [step [min [max]]]\n", argv[0]);

    numAllocs = getInt(argv[1], GN_GT_0, "num-allocs");
    if (numAllocs > MAX_ALLOCS)
        cmdLineErr("num-allocs > %d\n", MAX_ALLOCS);

    blockSize = getInt(argv[2], GN_GT_0 | GN_ANY_BASE, "block-size");

    freeStep = (argc > 3) ? getInt(argv[3], GN_GT_0, "step") : 1;
    freeMin =  (argc > 4) ? getInt(argv[4], GN_GT_0, "min") : 1;
    freeMax =  (argc > 5) ? getInt(argv[5], GN_GT_0, "max") : numAllocs;

    if (freeMax > numAllocs)
        cmdLineErr("free-max > num-allocs\n");

    printf("Initial program break:          %10p\n", sbrk(0));

    printf("Allocating %d*%d bytes\n", numAllocs, blockSize);
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    for (j = 0; j < numAllocs; j++) {
        ptr[j] = malloc(blockSize);
        if (ptr[j] == NULL)
            errExit("malloc");
    }

    printf("Program break is now:           %10p\n", sbrk(0));

    printf("Freeing blocks from %d to %d in steps of %d\n",
                freeMin, freeMax, freeStep);
    for (j = freeMin - 1; j < freeMax; j += freeStep)
        free(ptr[j]);

    printf("After free(), program break is: %10p\n", sbrk(0));

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––– memalloc/free_and_sbrk.c

Running the program in Listing 7-1 with the following command line causes the
program to allocate 1000 blocks of memory and then free every second block:

$ ./free_and_sbrk 1000 10240 2

The output shows that after these blocks have been freed, the program break is left
unchanged from the level it reached when all memory blocks were allocated:

Initial program break:           0x804a6bc
Allocating 1000*10240 bytes
Program break is now:            0x8a13000
Freeing blocks from 1 to 1000 in steps of 2
After free(), program break is:  0x8a13000

The following command line specifies that all but the last of the allocated blocks
should be freed. Again, the program break remains at its “high-water mark.”

$ ./free_and_sbrk 1000 10240 1 1 999
Initial program break:           0x804a6bc
Allocating 1000*10240 bytes
Program break is now:            0x8a13000
Freeing blocks from 1 to 999 in steps of 1
After free(), program break is:  0x8a13000

If, however, we free a complete set of blocks at the top end of the heap, we see that
the program break decreases from its peak value, indicating that free() has used
sbrk() to lower the program break. Here, we free the last 500 blocks of allocated
memory:

$ ./free_and_sbrk 1000 10240 1 500 1000
Initial program break:           0x804a6bc
Allocating 1000*10240 bytes
Program break is now:            0x8a13000
Freeing blocks from 500 to 1000 in steps of 1
After free(), program break is:  0x852b000
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In this case, the (glibc) free() function is able to recognize that an entire region at the
top end of the heap is free, since, when releasing blocks, it coalesces neighboring
free blocks into a single larger block. (Such coalescing is done to avoid having a
large number of small fragments on the free list, all of which may be too small to
satisfy subsequent malloc() requests.)

The glibc free() function calls sbrk() to lower the program break only when the
free block at the top end is “sufficiently” large, where “sufficient” is deter-
mined by parameters controlling the operation of the malloc package (128 kB
is a typical value). This reduces the number of sbrk() calls (i.e., the number of
brk() system calls) that must be made.

To free() or not to free()?

When a process terminates, all of its memory is returned to the system, including
heap memory allocated by functions in the malloc package. In programs that allo-
cate memory and continue using it until program termination, it is common to
omit calls to free(), relying on this behavior to automatically free the memory. This
can be especially useful in programs that allocate many blocks of memory, since
adding multiple calls to free() could be expensive in terms of CPU time, as well as
perhaps being complicated to code.

Although relying on process termination to automatically free memory is
acceptable for many programs, there are a couple of reasons why it can be desir-
able to explicitly free all allocated memory:

Explicitly calling free() may make the program more readable and maintainable
in the face of future modifications.

If we are using a malloc debugging library (described below) to find memory
leaks in a program, then any memory that is not explicitly freed will be
reported as a memory leak. This can complicate the task of finding real mem-
ory leaks.

7.1.3 Implementation of malloc() and free()
Although malloc() and free() provide an interface for allocating memory that is
much easier to use than brk() and sbrk(), it is still possible to make various programming
errors when using them. Understanding how malloc() and free() are implemented
provides us with insights into the causes of these errors and how we can avoid them.

The implementation of malloc() is straightforward. It first scans the list of mem-
ory blocks previously released by free() in order to find one whose size is larger than
or equal to its requirements. (Different strategies may be employed for this scan,
depending on the implementation; for example, first-fit or best-fit.) If the block is
exactly the right size, then it is returned to the caller. If it is larger, then it is split, so
that a block of the correct size is returned to the caller and a smaller free block is
left on the free list.

If no block on the free list is large enough, then malloc() calls sbrk() to allocate
more memory. To reduce the number of calls to sbrk(), rather than allocating
exactly the number of bytes required, malloc() increases the program break in
larger units (some multiple of the virtual memory page size), putting the excess
memory onto the free list.
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Looking at the implementation of free(), things start to become more interest-
ing. When free() places a block of memory onto the free list, how does it know what
size that block is? This is done via a trick. When malloc() allocates the block, it allo-
cates extra bytes to hold an integer containing the size of the block. This integer is
located at the beginning of the block; the address actually returned to the caller
points to the location just past this length value, as shown in Figure 7-1.

Figure 7-1: Memory block returned by malloc()

When a block is placed on the (doubly linked) free list, free() uses the bytes of the
block itself in order to add the block to the list, as shown in Figure 7-2.

Figure 7-2: A block on the free list

As blocks are deallocated and reallocated over time, the blocks of the free list will
become intermingled with blocks of allocated, in-use memory, as shown in Figure 7-3.

Figure 7-3: Heap containing allocated blocks and a free list

Now consider the fact that C allows us to create pointers to any location in the
heap, and modify the locations they point to, including the length, previous free block,
and next free block pointers maintained by free() and malloc(). Add this to the preced-
ing description, and we have a fairly combustible mix when it comes to creating
obscure programming bugs. For example, if, via a misdirected pointer, we acciden-
tally increase one of the length values preceding an allocated block of memory, and
subsequently deallocate that block, then free() will record the wrong size block of
memory on the free list. Subsequently, malloc() may reallocate this block, leading to
a scenario where the program has pointers to two blocks of allocated memory that
it understands to be distinct, but which actually overlap. Numerous other pictures
of what could go wrong can be drawn.
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To avoid these types of errors, we should observe the following rules:

After we allocate a block of memory, we should be careful not to touch any
bytes outside the range of that block. This could occur, for example, as a result
of faulty pointer arithmetic or off-by-one errors in loops updating the contents of
a block.

It is an error to free the same piece of allocated memory more than once. With
glibc on Linux, we often get a segmentation violation (SIGSEGV signal). This is
good, because it alerts us that we’ve made a programming error. However,
more generally, freeing the same memory twice leads to unpredictable behavior.

We should never call free() with a pointer value that wasn’t obtained by a call to
one of the functions in the malloc package.

If we are writing a long-running program (e.g., a shell or a network daemon
process) that repeatedly allocates memory for various purposes, then we
should ensure that we deallocate any memory after we have finished using it.
Failure to do so means that the heap will steadily grow until we reach the limits
of available virtual memory, at which point further attempts to allocate mem-
ory fail. Such a condition is known as a memory leak.

Tools and libraries for malloc debugging

Failure to observe the rules listed above can lead to the creation of bugs that are
obscure and difficult to reproduce. The task of finding such bugs can be eased con-
siderably by using the malloc debugging tools provided by glibc or one of a number
of malloc debugging libraries that are designed for this purpose.

Among the malloc debugging tools provided by glibc are the following:

The mtrace() and muntrace() functions allow a program to turn tracing of mem-
ory allocation calls on and off. These functions are used in conjunction with
the MALLOC_TRACE environment variable, which should be defined to contain the
name of a file to which tracing information should be written. When mtrace() is
called, it checks to see whether this file is defined and can be opened for writ-
ing; if so, then all calls to functions in the malloc package are traced and
recorded in the file. Since the resulting file is not easily human-readable, a
script—also called mtrace—is provided to analyze the file and produce a readable
summary. For security reasons, calls to mtrace() are ignored by set-user-ID and
set-group-ID programs.

The mcheck() and mprobe() functions allow a program to perform consistency
checks on blocks of allocated memory; for example, catching errors such as
attempting to write to a location past the end of a block of allocated memory.
These functions provide functionality that somewhat overlaps with the malloc
debugging libraries described below. Programs that employ these functions
must be linked with the mcheck library using the cc –lmcheck option.

The MALLOC_CHECK_ environment variable (note the trailing underscore) serves a
similar purpose to mcheck() and mprobe(). (One notable difference between the
two techniques is that using MALLOC_CHECK_ doesn’t require modification and
recompilation of the program.) By setting this variable to different integer values,
we can control how a program responds to memory allocation errors. Possible
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settings are: 0, meaning ignore errors; 1, meaning print diagnostic errors on
stderr; and 2, meaning call abort() to terminate the program. Not all memory
allocation and deallocation errors are detected via the use of MALLOC_CHECK_; it
finds just the common ones. However, this technique is fast, easy to use, and
has low run-time overhead compared with the use of malloc debugging libraries.
For security reasons, the setting of MALLOC_CHECK_ is ignored by set-user-ID and
set-group-ID programs.

Further information about all of the above features can be found in the glibc manual.
A malloc debugging library offers the same API as the standard malloc package,

but does extra work to catch memory allocation bugs. In order to use such a
library, we link our application against that library instead of the malloc package in
the standard C library. Because these libraries typically operate at the cost of slower
run-time operation, increased memory consumption, or both, we should use them
only for debugging purposes, and then return to linking with the standard malloc
package for the production version of an application. Among such libraries are
Electric Fence (http://www.perens.com/FreeSoftware/), dmalloc (http://dmalloc.com/),
Valgrind (http://valgrind.org/), and Insure++ (http://www.parasoft.com/).

Both Valgrind and Insure++ are capable of detecting many other kinds of bugs
aside from those associated with heap allocation. See their respective web sites
for details.

Controlling and monitoring the malloc package

The glibc manual describes a range of nonstandard functions that can be used to
monitor and control the allocation of memory by functions in the malloc package,
including the following:

The mallopt() function modifies various parameters that control the algorithm
used by malloc(). For example, one such parameter specifies the minimum
amount of releasable space that must exist at the end of the free list before
sbrk() is used to shrink the heap. Another parameter specifies an upper limit
for the size of blocks that will be allocated from the heap; blocks larger than
this are allocated using the mmap() system call (refer to Section 49.7).

The mallinfo() function returns a structure containing various statistics about
the memory allocated by malloc().

Many UNIX implementations provide versions of mallopt() and mallinfo(). How-
ever, the interfaces offered by these functions vary across implementations, so they
are not portable.

7.1.4 Other Methods of Allocating Memory on the Heap
As well as malloc(), the C library provides a range of other functions for allocating
memory on the heap, and we describe those functions here.

Allocating memory with calloc() and realloc()

The calloc() function allocates memory for an array of identical items.
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The numitems argument specifies how many items to allocate, and size specifies
their size. After allocating a block of memory of the appropriate size, calloc()
returns a pointer to the start of the block (or NULL if the memory could not be allo-
cated). Unlike malloc(), calloc() initializes the allocated memory to 0.

Here is an example of the use of calloc():

struct { /* Some field definitions */ } myStruct;
struct myStruct *p;

p = calloc(1000, sizeof(struct myStruct));
if (p == NULL)
    errExit("calloc");

The realloc() function is used to resize (usually enlarge) a block of memory previ-
ously allocated by one of the functions in the malloc package.

The ptr argument is a pointer to the block of memory that is to be resized. The size
argument specifies the desired new size of the block.

On success, realloc() returns a pointer to the location of the resized block. This
may be different from its location before the call. On error, realloc() returns NULL
and leaves the block pointed to by ptr untouched (SUSv3 requires this).

When realloc() increases the size of a block of allocated memory, it doesn’t ini-
tialize the additionally allocated bytes.

Memory allocated using calloc() or realloc() should be deallocated with free().

The call realloc(ptr, 0) is equivalent to calling free(ptr) followed by malloc(0). If
ptr is specified as NULL, then realloc() is equivalent to calling malloc(size).

For the usual case, where we are increasing the size of the block of memory, realloc()
attempts to coalesce the block with an immediately following block of memory on
the free list, if one exists and is large enough. If the block lies at the end of the heap,
then realloc() expands the heap. If the block of memory lies in the middle of the heap,
and there is insufficient free space immediately following it, realloc() allocates a new
block of memory and copies all existing data from the old block to the new block.
This last case is common and CPU-intensive. In general, it is advisable to minimize
the use of realloc().

#include <stdlib.h>

void *calloc(size_t numitems, size_t size);

Returns pointer to allocated memory on success, or NULL on error

#include <stdlib.h>

void *realloc(void *ptr, size_t size);

Returns pointer to allocated memory on success, or NULL on error
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Since realloc() may relocate the block of memory, we must use the returned
pointer from realloc() for future references to the memory block. We can employ
realloc() to reallocate a block pointed to by the variable ptr as follows:

nptr = realloc(ptr, newsize);
if (nptr == NULL) {
    /* Handle error */
} else {                /* realloc() succeeded */
    ptr = nptr;
}

In this example, we didn’t assign the return value of realloc() directly to ptr because,
if realloc() had failed, then ptr would have been set to NULL, making the existing
block inaccessible.

Because realloc() may move the block of memory, any pointers that referred to
locations inside the block before the realloc() call may no longer be valid after the
call. The only type of reference to a location within the block that is guaranteed to
remain valid is one formed by adding an offset to the pointer to the start of the
block. We discuss this point in more detail in Section 48.6.

Allocating aligned memory: memalign() and posix_memalign()

The memalign() and posix_memalign() functions are designed to allocate memory
starting at an address aligned at a specified power-of-two boundary, a feature that is
useful for some applications (see, for example, Listing 13-1, on page 247).

The memalign() function allocates size bytes starting at an address aligned to a
multiple of boundary, which must be a power of two. The address of the allocated
memory is returned as the function result.

The memalign() function is not present on all UNIX implementations. Most
other UNIX implementations that provide memalign() require the inclusion of
<stdlib.h> instead of <malloc.h> in order to obtain the function declaration.

SUSv3 doesn’t specify memalign(), but instead specifies a similar function,
named posix_memalign(). This function is a recent creation of the standards com-
mittees, and appears on only a few UNIX implementations.

#include <malloc.h>

void *memalign(size_t boundary, size_t size);

Returns pointer to allocated memory on success, or NULL on error

#include <stdlib.h>

int posix_memalign(void **memptr, size_t alignment, size_t size);

Returns 0 on success, or a positive error number on error
Memory Al locat ion 149



The posix_memalign() function differs from memalign() in two respects:

The address of the allocated memory is returned in memptr.

The memory is aligned to a multiple of alignment, which must be a power-of-
two multiple of sizeof(void *) (4 or 8 bytes on most hardware architectures).

Note also the unusual return value of this function—rather than returning –1 on
error, it returns an error number (i.e., a positive integer of the type normally
returned in errno).

If sizeof(void *) is 4, then we can use posix_memalign() to allocate 65,536 bytes of
memory aligned on a 4096-byte boundary as follows:

int s;
void *memptr;

s = posix_memalign(&memptr, 1024 * sizeof(void *), 65536);
if (s != 0)
    /* Handle error */

Blocks of memory allocated using memalign() or posix_memalign() should be deallo-
cated with free().

On some UNIX implementations, it is not possible to call free() on a block of
memory allocated via memalign(), because the memalign() implementation uses
malloc() to allocate a block of memory, and then returns a pointer to an
address with a suitable alignment in that block. The glibc implementation of
memalign() doesn’t suffer this limitation.

7.2 Allocating Memory on the Stack: alloca()

Like the functions in the malloc package, alloca() allocates memory dynamically.
However, instead of obtaining memory from the heap, alloca() obtains memory
from the stack by increasing the size of the stack frame. This is possible because the
calling function is the one whose stack frame is, by definition, on the top of the
stack. Therefore, there is space above the frame for expansion, which can be
accomplished by simply modifying the value of the stack pointer.

The size argument specifies the number of bytes to allocate on the stack. The
alloca() function returns a pointer to the allocated memory as its function result.

We need not—indeed, must not—call free() to deallocate memory allocated with
alloca(). Likewise, it is not possible to use realloc() to resize a block of memory allo-
cated by alloca().

Although alloca() is not part of SUSv3, it is provided on most UNIX implemen-
tations and is thus reasonably portable.

#include <alloca.h>

void *alloca(size_t size);

Returns pointer to allocated block of memory
150 Chapter 7



Older versions of glibc, and some other UNIX implementations (mainly BSD
derivatives), require the inclusion of <stdlib.h> instead of <alloca.h> to obtain
the declaration of alloca().

If the stack overflows as a consequence of calling alloca(), then program behavior is
unpredictable. In particular, we don’t get a NULL return to inform us of the error.
(In fact, in this circumstance, we may receive a SIGSEGV signal. Refer to Section 21.3
for further details.)

Note that we can’t use alloca() within a function argument list, as in this example:

func(x, alloca(size), z);           /* WRONG! */

This is because the stack space allocated by alloca() would appear in the middle of
the space for the function arguments (which are placed at fixed locations within the
stack frame). Instead, we must use code such as this:

void *y;

y = alloca(size);
func(x, y, z);

Using alloca() to allocate memory has a few advantages over malloc(). One of these
is that allocating blocks of memory is faster with alloca() than with malloc(), because
alloca() is implemented by the compiler as inline code that directly adjusts the stack
pointer. Furthermore, alloca() doesn’t need to maintain a list of free blocks.

Another advantage of alloca() is that the memory that it allocates is automati-
cally freed when the stack frame is removed; that is, when the function that called
alloca() returns. This is so because the code executed during function return resets
the value of the stack pointer register to the end of the previous frame (i.e., assum-
ing a downwardly growing stack, to the address just above the start of the current
frame). Since we don’t need to do the work of ensuring that allocated memory is
freed on all return paths from a function, coding of some functions becomes much
simpler.

Using alloca() can be especially useful if we employ longjmp() (Section 6.8) or
siglongjmp() (Section 21.2.1) to perform a nonlocal goto from a signal handler. In
this case, it is difficult or even impossible to avoid memory leaks if we allocated
memory in the jumped-over functions using malloc(). By contrast, alloca() avoids
this problem completely, since, as the stack is unwound by these calls, the allocated
memory is automatically freed.

7.3 Summary

Using the malloc family of functions, a process can dynamically allocate and release
memory on the heap. In considering the implementation of these functions, we
saw that various things can go wrong in a program that mishandles the blocks of
allocated memory, and we noted that a number of debugging tools are available to
help locate the source of such errors.

The alloca() function allocates memory on the stack. This memory is automati-
cally deallocated when the function that calls alloca() returns.
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7.4 Exercises

7-1. Modify the program in Listing 7-1 (free_and_sbrk.c) to print out the current value of
the program break after each execution of malloc(). Run the program specifying a
small allocation block size. This will demonstrate that malloc() doesn’t employ sbrk()
to adjust the program break on each call, but instead periodically allocates larger
chunks of memory from which it passes back small pieces to the caller.

7-2. (Advanced) Implement malloc() and free().
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U S E R S  A N D  G R O U P S

Every user has a unique login name and an associated numeric user identifier
(UID). Users can belong to one or more groups. Each group also has a unique
name and a group identifier (GID).

The primary purpose of user and group IDs is to determine ownership of vari-
ous system resources and to control the permissions granted to processes accessing
those resources. For example, each file belongs to a particular user and group, and
each process has a number of user and group IDs that determine who owns the pro-
cess and what permissions it has when accessing a file (see Chapter 9 for details).

In this chapter, we look at the system files that are used to define the users and
groups on the system, and then describe the library functions used to retrieve
information from these files. We conclude with a discussion of the crypt() function,
which is used to encrypt and authenticate login passwords.

8.1 The Password File: /etc/passwd

The system password file, /etc/passwd, contains one line for each user account on the
system. Each line is composed of seven fields separated by colons (:), as in the fol-
lowing example:

mtk:x:1000:100:Michael Kerrisk:/home/mtk:/bin/bash



In order, these fields are as follows:

Login name: This is the unique name that the user must enter in order to log in.
Often, this is also called the username. We can also consider the login name to
be the human-readable (symbolic) identifier corresponding to the numeric
user identifier (described in a moment). Programs such as ls(1) display this
name, rather than the numeric user ID associated with the file, when asked to
show the ownership of a file (as in ls –l).

Encrypted password: This field contains a 13-character encrypted password,
which we describe in more detail in Section 8.5. If the password field contains
any other string—in particular, a string of other than 13 characters—then logins
to this account are disabled, since such a string can’t represent a valid
encrypted password. Note, however, that this field is ignored if shadow pass-
words have been enabled (which is typical). In this case, the password field in
/etc/passwd conventionally contains the letter x (although any nonempty charac-
ter string may appear), and the encrypted password is instead stored in the
shadow password file (Section 8.2). If the password field in /etc/passwd is
empty, then no password is required to log in to this account (this is true even
if shadow passwords are enabled).

Here, we assume that passwords are encrypted using Data Encryption Stan-
dard (DES), the historical and still widely used UNIX password-encryption
scheme. It is possible to replace DES with other schemes, such as MD5, which
produces a 128-bit message digest (a kind of hash) of its input. This value is
stored as a 34-character string in the password (or shadow password) file.

User ID (UID): This is the numeric ID for this user. If this field has the value 0,
then this account has superuser privileges. There is normally one such account,
with the login name root. On Linux 2.2 and earlier, user IDs are maintained as
16-bit values, allowing the range 0 through to 65,535; on Linux 2.4 and later,
they are stored using 32 bits, allowing a much larger range.

It is possible (but unusual) to have more than one record in the password file
with the same user ID, thus permitting multiple login names for the same user
ID. This allows multiple users to access the same resources (e.g., files) using
different passwords. The different login names can be associated with differ-
ent sets of group IDs.

Group ID (GID): This is the numeric ID of the first of the groups of which this
user is a member. Further group memberships for this user are defined in the
system group file.

Comment: This field holds text about the user. This text is displayed by various
programs, such as finger(1).

Home directory: This is the initial directory into which the user is placed after
logging in. This field becomes the value of the HOME environment variable.

Login shell: This is the program to which control is transferred once the user is
logged in. Usually, this is one of the shells, such as bash, but it can be any pro-
gram. If this field is empty, then the login shell defaults to /bin/sh, the Bourne
shell. This field becomes the value of the SHELL environment variable.
154 Chapter 8



On a stand-alone system, all the password information resides in the file /etc/passwd.
However, if we are using a system such as Network Information System (NIS) or
Lightweight Directory Access Protocol (LDAP) to distribute passwords in a net-
work environment, part or all of this information resides on a remote system. As
long as programs accessing password information employ the functions described
later in this chapter (getpwnam(), getpwuid(), and so on), the use of NIS or LDAP is
transparent to applications. Similar comments apply regarding the shadow pass-
word and group files discussed in the following sections.

8.2 The Shadow Password File: /etc/shadow

Historically, UNIX systems maintained all user information, including the encrypted
password, in /etc/passwd. This presented a security problem. Since various unprivi-
leged system utilities needed to have read access to other information in the pass-
word file, it had to be made readable to all users. This opened the door for
password-cracking programs, which try encrypting large lists of likely passwords
(e.g., standard dictionary words or people’s names) to see if they match the
encrypted password of a user. The shadow password file, /etc/shadow, was devised as a
method of preventing such attacks. The idea is that all of the nonsensitive user
information resides in the publicly readable password file, while encrypted pass-
words are maintained in the shadow password file, which is readable only by privi-
leged programs.

In addition to the login name, which provides the match to the corresponding
record in the password file, and the encrypted password, the shadow password file
also contains a number of other security-related fields. Further details on these
fields can be found in the shadow(5) manual page. We’ll concern ourselves mainly
with the encrypted password field, which we discuss in greater detail when looking
at the crypt() library function later in Section 8.5.

SUSv3 doesn’t specify shadow passwords, and not all UNIX implementations
provide this feature.

8.3 The Group File: /etc/group

For various administrative purposes, in particular, controlling access to files and
other system resources, it is useful to organize users into groups.

The set of groups to which a user belongs is defined by the combination of the
group ID field in the user’s password entry and the groups under which the user is
listed in the group file. This strange split of information across two files is historical in
origin. In early UNIX implementations, a user could be a member of only one group
at a time. A user’s initial group membership at login was determined by the group
ID field of the password file and could be changed thereafter using the newgrp(1)
command, which required the user to supply the group password (if the group was
password protected). 4.2BSD introduced the concept of multiple simultaneous
group memberships, which was later standardized in POSIX.1-1990. Under this
scheme, the group file listed the extra group memberships of each user. (The
groups(1) command displays the groups of which the shell process is a member,
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or, if one or more usernames are supplied as command-line arguments, then the
group memberships of those users.)

The group file, /etc/group, contains one line for each group in the system. Each
line consists of four colon-separated fields, as in the following examples:

users:x:100:
jambit:x:106:claus,felli,frank,harti,markus,martin,mtk,paul

In order, these fields are as follows:

Group name: This is the name of the group. Like the login name in the pass-
word file, we can consider this to be the human-readable (symbolic) identifier
corresponding to the numeric group identifier.

Encrypted password: This field contains an optional password for the group.
With the advent of multiple group memberships, group passwords are nowa-
days rarely used on UNIX systems. Nevertheless, it is possible to place a pass-
word on a group (a privileged user can do this using the passwd command). If a
user is not a member of the group, newgrp(1) requests this password before
starting a new shell whose group memberships include that group. If password
shadowing is enabled, then this field is ignored (in this case, conventionally
it contains just the letter x, but any string, including an empty string, may
appear) and the encrypted passwords are actually kept in the shadow group
file, /etc/gshadow, which can be accessed only by privileged users and programs.
Group passwords are encrypted in a similar fashion to user passwords
(Section 8.5).

Group ID (GID): This is the numeric ID for this group. There is normally one
group defined with the group ID 0, named root (like the /etc/passwd record with
user ID of 0). On Linux 2.2 and earlier, group IDs are maintained as 16-bit values,
allowing the range 0 through to 65,535; on Linux 2.4 and later, they are stored
using 32 bits.

User list: This is a comma-separated list of names of users who are members of
this group. (This list consists of usernames rather than user IDs, since, as noted
earlier, user IDs are not necessarily unique in the password file.)

To record that the user avr is a member of the groups users, staff, and teach, we
would see the following record in the password file:

avr:x:1001:100:Anthony Robins:/home/avr:/bin/bash

And the following records would appear in the group file:

users:x:100:
staff:x:101:mtk,avr,martinl
teach:x:104:avr,rlb,alc

The fourth field of the password record, containing the group ID 100, specifies
membership of the group users. The remaining group memberships are indicated
by listing avr once in each of the relevant records in the group file.
156 Chapter 8



8.4 Retrieving User and Group Information

In this section, we look at library functions that permit us to retrieve individual
records from the password, shadow password, and group files, and to scan all of
the records in each of these files.

Retrieving records from the password file

The getpwnam() and getpwuid() functions retrieve records from the password file.

Given a login name in name, the getpwnam() function returns a pointer to a struc-
ture of the following type, containing the corresponding information from the
password record:

struct passwd {
    char *pw_name;      /* Login name (username) */
    char *pw_passwd;    /* Encrypted password */
    uid_t pw_uid;       /* User ID */
    gid_t pw_gid;       /* Group ID */
    char *pw_gecos;     /* Comment (user information) */
    char *pw_dir;       /* Initial working (home) directory */
    char *pw_shell;     /* Login shell */
};

The pw_gecos and pw_passwd fields of the passwd structure are not defined in SUSv3,
but are available on all UNIX implementations. The pw_passwd field contains valid
information only if password shadowing is not enabled. (Programmatically, the
simplest way to determine whether password shadowing is enabled is to follow a
successful getpwnam() call with a call to getspnam(), described shortly, to see if it
returns a shadow password record for the same username.) Some other implemen-
tations provide additional, nonstandard fields in this structure.

The pw_gecos field derives its name from early UNIX implementations, where
this field contained information that was used for communicating with a
machine running the General Electric Comprehensive Operating System
(GECOS). Although this usage has long since become obsolete, the field name
has survived, and the field is used for recording information about the user.

The getpwuid() function returns exactly the same information as getpwnam(), but
does a lookup using the numeric user ID supplied in the argument uid.

Both getpwnam() and getpwuid() return a pointer to a statically allocated struc-
ture. This structure is overwritten on each call to either of these functions (or to the
getpwent() function described below).

#include <pwd.h>

struct passwd *getpwnam(const char *name);
struct passwd *getpwuid(uid_t uid);

Both return a pointer on success, or NULL on error;
see main text for description of the “not found” case
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Because they return a pointer to statically allocated memory, getpwnam() and
getpwuid() are not reentrant. In fact, the situation is even more complex, since
the returned passwd structure contains pointers to other information (e.g., the
pw_name field) that is also statically allocated. (We explain reentrancy in Sec-
tion 21.1.2.) Similar statements apply to the getgrnam() and getgrgid() functions
(described shortly).

SUSv3 specifies an equivalent set of reentrant functions—getpwnam_r(),
getpwuid_r(), getgrnam_r(), and getgrgid_r()—that include as arguments both
a passwd (or group) structure and a buffer area to hold the other structures
to which the fields of the passwd (group) structure point. The number of
bytes required for this additional buffer can be obtained using the call
sysconf(_SC_GETPW_R_SIZE_MAX) (or sysconf(_SC_GETGR_R_SIZE_MAX)
in the case of the group-related functions). See the manual pages for details
of these functions.

According to SUSv3, if a matching passwd record can’t be found, then getpwnam()
and getpwuid() should return NULL and leave errno unchanged. This means that we
should be able to distinguish the error and the “not found” cases using code such
as the following:

struct passwd *pwd;

errno = 0;
pwd = getpwnam(name);
if (pwd == NULL) {
    if (errno == 0)
        /* Not found */;
    else
        /* Error */;
 }

However, a number of UNIX implementations don’t conform to SUSv3 on this
point. If a matching passwd record is not found, then these functions return NULL
and set errno to a nonzero value, such as ENOENT or ESRCH. Before version 2.7, glibc
produced the error ENOENT for this case, but since version 2.7, glibc conforms to the
SUSv3 requirements. This variation across implementations arises in part because
POSIX.1-1990 did not require these functions to set errno on error and allowed
them to set errno for the “not found” case. The upshot of all of this is that it isn’t
really possible to portably distinguish the error and “not found” cases when using
these functions.

Retrieving records from the group file

The getgrnam() and getgrgid() functions retrieve records from the group file.

#include <grp.h>

struct group *getgrnam(const char *name);
struct group *getgrgid(gid_t gid);

Both return a pointer on success, or NULL on error;
see main text for description of the “not found” case
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The getgrnam() function looks up group information by group name, and the
getgrgid() function performs lookups by group ID. Both functions return a pointer
to a structure of the following type:

struct group {
    char  *gr_name;     /* Group name */
    char  *gr_passwd;   /* Encrypted password (if not password shadowing) */
    gid_t  gr_gid;      /* Group ID */
    char **gr_mem;      /* NULL-terminated array of pointers to names
                           of members listed in /etc/group */
};

The gr_passwd field of the group structure is not specified in SUSv3, but is avail-
able on most UNIX implementations.

As with the corresponding password functions described above, this structure is
overwritten on each call to one of these functions.

If these functions can’t find a matching group record, then they show the same
variations in behavior that we described for getpwnam() and getpwuid().

Example program

One common use of the functions that we have already described in this section is
to convert symbolic user and group names into numeric IDs and vice versa. Listing 8-1
demonstrates these conversions, in the form of four functions: userNameFromId(),
userIdFromName(), groupNameFromId(), and groupIdFromName(). As a convenience
to the caller, userIdFromName() and groupIdFromName() also allow the name argu-
ment to be a (purely) numeric string; in that case, the string is converted directly to
a number and returned to the caller. We employ these functions in some example
programs later in this book.

Listing 8-1: Functions to convert user and group IDs to and from user and group names

––––––––––––––––––––––––––––––––––––––––––––––  users_groups/ugid_functions.c
#include <pwd.h>
#include <grp.h>
#include <ctype.h>
#include "ugid_functions.h"     /* Declares functions defined here */

char *  /* Return name corresponding to 'uid', or NULL on error */
userNameFromId(uid_t uid)
{
    struct passwd *pwd;

    pwd = getpwuid(uid);
    return (pwd == NULL) ? NULL : pwd->pw_name;
}

uid_t   /* Return UID corresponding to 'name', or -1 on error */
userIdFromName(const char *name)
{
    struct passwd *pwd;
    uid_t u;
    char *endptr;
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    if (name == NULL || *name == '\0')  /* On NULL or empty string */
        return -1;                      /* return an error */

    u = strtol(name, &endptr, 10);      /* As a convenience to caller */
    if (*endptr == '\0')                /* allow a numeric string */
        return u;

    pwd = getpwnam(name);
    if (pwd == NULL)
        return -1;

    return pwd->pw_uid;
}

char *  /* Return name corresponding to 'gid', or NULL on error */
groupNameFromId(gid_t gid)
{
    struct group *grp;

    grp = getgrgid(gid);
    return (grp == NULL) ? NULL : grp->gr_name;
}

gid_t  /* Return GID corresponding to 'name', or -1 on error */
groupIdFromName(const char *name)
{
    struct group *grp;
    gid_t g;
    char *endptr;

    if (name == NULL || *name == '\0')  /* On NULL or empty string */
        return -1;                      /* return an error */

    g = strtol(name, &endptr, 10);      /* As a convenience to caller */
    if (*endptr == '\0')                /* allow a numeric string */
        return g;

    grp = getgrnam(name);
    if (grp == NULL)
        return -1;

    return grp->gr_gid;
}

––––––––––––––––––––––––––––––––––––––––––––––  users_groups/ugid_functions.c

Scanning all records in the password and group files

The setpwent(), getpwent(), and endpwent() functions are used to perform sequential
scans of the records in the password file.
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The getpwent() function returns records from the password file one by one, return-
ing NULL when there are no more records (or an error occurs). On the first call,
getpwent() automatically opens the password file. When we have finished with the
file, we call endpwent() to close it.

We can walk through the entire password file printing login names and user
IDs with the following code:

struct passwd *pwd;

while ((pwd = getpwent()) != NULL)
    printf("%-8s %5ld\n", pwd->pw_name, (long) pwd->pw_uid);

endpwent();

The endpwent() call is necessary so that any subsequent getpwent() call (perhaps in
some other part of our program or in some library function that we call) will
reopen the password file and start from the beginning. On the other hand, if we
are part-way through the file, we can use the setpwent() function to restart from the
beginning.

The getgrent(), setgrent(), and endgrent() functions perform analogous tasks for
the group file. We omit the prototypes for these functions because they are similar
to those of the password file functions described above; see the manual pages for
details.

Retrieving records from the shadow password file

The following functions are used to retrieve individual records from the shadow
password file and to scan all records in that file.

#include <pwd.h>

struct passwd *getpwent(void);

Returns pointer on success, or NULL on end of stream or error

void setpwent(void);
void endpwent(void);

#include <shadow.h>

struct spwd *getspnam(const char *name);

Returns pointer on success, or NULL on not found or error

struct spwd *getspent(void);

Returns pointer on success, or NULL on end of stream or error

void setspent(void);
void endspent(void);
Users and Groups 161



We won’t describe these functions in detail, since their operation is similar to the
corresponding password file functions. (These functions aren’t specified in SUSv3,
and aren’t present on all UNIX implementations.)

The getspnam() and getspent() functions return pointers to a structure of type
spwd. This structure has the following form:

struct spwd {
    char *sp_namp;          /* Login name (username) */
    char *sp_pwdp;          /* Encrypted password */

    /* Remaining fields support "password aging", an optional
       feature that forces users to regularly change their
       passwords, so that even if an attacker manages to obtain
       a password, it will eventually cease to be usable. */

    long sp_lstchg;         /* Time of last password change
                               (days since 1 Jan 1970) */
    long sp_min;            /* Min. number of days between password changes */
    long sp_max;            /* Max. number of days before change required */
    long sp_warn;           /* Number of days beforehand that user is
                               warned of upcoming password expiration */
    long sp_inact;          /* Number of days after expiration that account
                               is considered inactive and locked */
    long sp_expire;         /* Date when account expires
                               (days since 1 Jan 1970) */
    unsigned long sp_flag;  /* Reserved for future use */
};

We demonstrate the use of getspnam() in Listing 8-2.

8.5 Password Encryption and User Authentication

Some applications require that users authenticate themselves. Authentication typi-
cally takes the form of a username (login name) and password. An application may
maintain its own database of usernames and passwords for this purpose. Sometimes,
however, it is necessary or convenient to allow users to enter their standard user-
name and password as defined in /etc/passwd and /etc/shadow. (For the remainder of
this section, we assume a system where password shadowing is enabled, and thus
that the encrypted password is stored in /etc/shadow.) Network applications that
provide some form of login to a remote system, such as ssh and ftp, are typical
examples of such programs. These applications must validate a username and pass-
word in the same way that the standard login program does.

For security reasons, UNIX systems encrypt passwords using a one-way encryption
algorithm, which means that there is no method of re-creating the original pass-
word from its encrypted form. Therefore, the only way of validating a candidate
password is to encrypt it using the same method and see if the encrypted result
matches the value stored in /etc/shadow. The encryption algorithm is encapsulated
in the crypt() function.
162 Chapter 8



The crypt() algorithm takes a key (i.e., a password) of up to 8 characters, and applies
a variation of the Data Encryption Standard (DES) algorithm to it. The salt argu-
ment is a 2-character string whose value is used to perturb (vary) the algorithm, a
technique designed to make it more difficult to crack the encrypted password. The
function returns a pointer to a statically allocated 13-character string that is the
encrypted password.

Details of DES can be found at http://www.itl.nist.gov/fipspubs/fip46-2.htm. As
noted earlier, other algorithms may be used instead of DES. For example,
MD5 yields a 34-character string starting with a dollar sign ($), which allows
crypt() to distinguish DES-encrypted passwords from MD5-encrypted passwords.

In our discussion of password encryption, we are using the word “encryp-
tion” somewhat loosely. Accurately, DES uses the given password string as an
encryption key to encode a fixed bit string, while MD5 is a complex type of
hashing function. The result in both cases is the same: an undecipherable and
irreversible transformation of the input password.

Both the salt argument and the encrypted password are composed of characters
selected from the 64-character set [a-zA-Z0-9/.]. Thus, the 2-character salt argu-
ment can cause the encryption algorithm to vary in any of 64 * 64 = 4096 different
ways. This means that instead of preencrypting an entire dictionary and checking
the encrypted password against all words in the dictionary, a cracker would need to
check the password against 4096 encrypted versions of the dictionary.

The encrypted password returned by crypt() contains a copy of the original salt
value as its first two characters. This means that when encrypting a candidate pass-
word, we can obtain the appropriate salt value from the encrypted password value
already stored in /etc/shadow. (Programs such as passwd(1) generate a random salt
value when encrypting a new password.) In fact, the crypt() function ignores any
characters in the salt string beyond the first two. Therefore, we can specify the
encrypted password itself as the salt argument.

In order to use crypt() on Linux, we must compile programs with the –lcrypt
option, so that they are linked against the crypt library.

Example program

Listing 8-2 demonstrates how to use crypt() to authenticate a user. This program
first reads a username and then retrieves the corresponding password record and
(if it exists) shadow password record. The program prints an error message and
exits if no password record is found, or if the program doesn’t have permission to
read from the shadow password file (this requires either superuser privilege or
membership of the shadow group). The program then reads the user’s password,
using the getpass() function.

#define _XOPEN_SOURCE
#include <unistd.h>

char *crypt(const char *key, const char *salt);

Returns pointer to statically allocated string containing
encrypted password on success, or NULL on error
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The getpass() function first disables echoing and all processing of terminal special
characters (such as the interrupt character, normally Control-C). (We explain how to
change these terminal settings in Chapter 62.) It then prints the string pointed to
by prompt, and reads a line of input, returning the null-terminated input string with
the trailing newline stripped, as its function result. (This string is statically allocated,
and so will be overwritten on a subsequent call to getpass().) Before returning,
getpass() restores the terminal settings to their original states.

Having read a password with getpass(), the program in Listing 8-2 then validates
that password by using crypt() to encrypt it and checking that the resulting string
matches the encrypted password recorded in the shadow password file. If the pass-
word matches, then the ID of the user is displayed, as in the following example:

$ su                            Need privilege to read shadow password file
Password:
# ./check_password
Username: mtk
Password:                       We type in password, which is not echoed
Successfully authenticated: UID=1000

The program in Listing 8-2 sizes the character array holding a username using
the value returned by sysconf(_SC_LOGIN_NAME_MAX), which yields the max-
imum size of a username on the host system. We explain the use of sysconf() in
Section 11.2.

Listing 8-2: Authenticating a user against the shadow password file

––––––––––––––––––––––––––––––––––––––––––––––  users_groups/check_password.c
#define _BSD_SOURCE     /* Get getpass() declaration from <unistd.h> */
#define _XOPEN_SOURCE   /* Get crypt() declaration from <unistd.h> */
#include <unistd.h>
#include <limits.h>
#include <pwd.h>
#include <shadow.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    char *username, *password, *encrypted, *p;
    struct passwd *pwd;
    struct spwd *spwd;
    Boolean authOk;
    size_t len;
    long lnmax;

#define _BSD_SOURCE
#include <unistd.h>

char *getpass(const char *prompt);

Returns pointer to statically allocated input password string
on success, or NULL on error
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    lnmax = sysconf(_SC_LOGIN_NAME_MAX);
    if (lnmax == -1)                    /* If limit is indeterminate */
        lnmax = 256;                    /* make a guess */

    username = malloc(lnmax);
    if (username == NULL)
        errExit("malloc");

    printf("Username: ");
    fflush(stdout);
    if (fgets(username, lnmax, stdin) == NULL)
        exit(EXIT_FAILURE);             /* Exit on EOF */

    len = strlen(username);
    if (username[len - 1] == '\n')
        username[len - 1] = '\0';       /* Remove trailing '\n' */

    pwd = getpwnam(username);
    if (pwd == NULL)
        fatal("couldn't get password record");
    spwd = getspnam(username);
    if (spwd == NULL && errno == EACCES)
        fatal("no permission to read shadow password file");

    if (spwd != NULL)       /* If there is a shadow password record */
        pwd->pw_passwd = spwd->sp_pwdp; /* Use the shadow password */

    password = getpass("Password: ");

    /* Encrypt password and erase cleartext version immediately */

    encrypted = crypt(password, pwd->pw_passwd);
    for (p = password; *p != '\0'; )
        *p++ = '\0';

    if (encrypted == NULL)
        errExit("crypt");

    authOk = strcmp(encrypted, pwd->pw_passwd) == 0;
    if (!authOk) {
        printf("Incorrect password\n");
        exit(EXIT_FAILURE);
    }

    printf("Successfully authenticated: UID=%ld\n", (long) pwd->pw_uid);

    /* Now do authenticated work... */

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––– users_groups/check_password.c

Listing 8-2 illustrates an important security point. Programs that read a password
should immediately encrypt that password and erase the unencrypted version from
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memory. This minimizes the possibility of a program crash producing a core dump
file that could be read to discover the password.

There are other possible ways in which the unencrypted password could be
exposed. For example, the password could be read from the swap file by a priv-
ileged program if the virtual memory page containing the password is swapped
out. Alternatively, a process with sufficient privilege could read /dev/mem (a vir-
tual device that presents the physical memory of a computer as a sequential
stream of bytes) in an attempt to discover the password.

The getpass() function appeared in SUSv2, which marked it LEGACY, not-
ing that the name was misleading and the function provided functionality that
was in any case easy to implement. The specification of getpass() was removed
in SUSv3. It nevertheless appears on most UNIX implementations.

8.6 Summary

Each user has a unique login name and an associated numeric user ID. Users can
belong to one or more groups, each of which also has a unique name and an associ-
ated numeric identifier. The primary purpose of these identifiers is to establish
ownership of various system resources (e.g., files) and permissions for accessing
them.

A user’s name and ID are defined in the /etc/passwd file, which also contains
other information about the user. A user’s group memberships are defined by
fields in the /etc/passwd and /etc/group files. A further file, /etc/shadow, which can be
read only by privileged processes, is used to separate the sensitive password infor-
mation from the publicly available user information in /etc/passwd. Various library
functions are provided for retrieving information from each of these files.

The crypt() function encrypts a password in the same manner as the standard
login program, which is useful for programs that need to authenticate users.

8.7 Exercises

8-1. When we execute the following code, we find that it displays the same number
twice, even though the two users have different IDs in the password file. Why is this?

printf("%ld %ld\n", (long) (getpwnam("avr")->pw_uid),
                    (long) (getpwnam("tsr")->pw_uid));

8-2. Implement getpwnam() using setpwent(), getpwent(), and endpwent().
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P R O C E S S  C R E D E N T I A L S

Every process has a set of associated numeric user identifiers (UIDs) and group iden-
tifiers (GIDs). Sometimes, these are referred to as process credentials. These identifi-
ers are as follows:

real user ID and group ID;

effective user ID and group ID;

saved set-user-ID and saved set-group-ID;

file-system user ID and group ID (Linux-specific); and

supplementary group IDs.

In this chapter, we look in detail at the purpose of these process identifiers and
describe the system calls and library functions that can be used to retrieve and
change them. We also discuss the notion of privileged and unprivileged processes,
and the use of the set-user-ID and set-group-ID mechanisms, which allow the creation
of programs that run with the privileges of a specified user or group.

9.1 Real User ID and Real Group ID

The real user ID and group ID identify the user and group to which the process
belongs. As part of the login process, a login shell gets its real user and group IDs
from the third and fourth fields of the user’s password record in the /etc/passwd file



(Section 8.1). When a new process is created (e.g., when the shell executes a pro-
gram), it inherits these identifiers from its parent.

9.2 Effective User ID and Effective Group ID

On most UNIX implementations (Linux is a little different, as explained in Sec-
tion 9.5), the effective user ID and group ID, in conjunction with the supplementary
group IDs, are used to determine the permissions granted to a process when it tries
to perform various operations (i.e., system calls). For example, these identifiers
determine the permissions granted to a process when it accesses resources such as
files and System V interprocess communication (IPC) objects, which themselves
have associated user and group IDs determining to whom they belong. As we’ll see
in Section 20.5, the effective user ID is also used by the kernel to determine
whether one process can send a signal to another.

A process whose effective user ID is 0 (the user ID of root) has all of the privi-
leges of the superuser. Such a process is referred to as a privileged process. Certain
system calls can be executed only by privileged processes.

In Chapter 39, we describe Linux’s implementation of capabilities, a scheme
that divides the privileges granted to the superuser into a number of distinct
units that can be independently enabled and disabled.

Normally, the effective user and group IDs have the same values as the correspond-
ing real IDs, but there are two ways in which the effective IDs can assume different
values. One way is through the use of system calls that we discuss in Section 9.7.
The second way is through the execution of set-user-ID and set-group-ID programs.

9.3 Set-User-ID and Set-Group-ID Programs

A set-user-ID program allows a process to gain privileges it would not normally have,
by setting the process’s effective user ID to the same value as the user ID (owner) of
the executable file. A set-group-ID program performs the analogous task for the pro-
cess’s effective group ID. (The terms set-user-ID program and set-group-ID program
are sometimes abbreviated as set-UID program and set-GID program.)

Like any other file, an executable program file has an associated user ID and
group ID that define the ownership of the file. In addition, an executable file has
two special permission bits: the set-user-ID and set-group-ID bits. (In fact, every file
has these two permission bits, but it is their use with executable files that interests
us here.) These permission bits are set using the chmod command. An unprivileged
user can set these bits for files that they own. A privileged user (CAP_FOWNER) can set
these bits for any file. Here’s an example:

$ su
Password:
# ls -l prog
-rwxr-xr-x    1 root     root       302585 Jun 26 15:05 prog
# chmod u+s prog                        Turn on set-user-ID permission bit
# chmod g+s prog                        Turn on set-group-ID permission bit
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As shown in this example, it is possible for a program to have both of these bits set,
although this is uncommon. When ls –l is used to list the permissions for a program
that has the set-user-ID or set-group-ID permission bit set, then the x that is nor-
mally used to indicate that execute permission is set is replaced by an s:

# ls -l prog
-rwsr-sr-x    1 root     root       302585 Jun 26 15:05 prog

When a set-user-ID program is run (i.e., loaded into a process’s memory by an
exec()), the kernel sets the effective user ID of the process to be the same as the user
ID of the executable file. Running a set-group-ID program has an analogous effect
for the effective group ID of the process. Changing the effective user or group ID
in this way gives a process (in other words, the user executing the program) privi-
leges it would not normally have. For example, if an executable file is owned by root
(superuser) and has the set-user-ID permission bit enabled, then the process gains
superuser privileges when that program is run.

Set-user-ID and set-group-ID programs can also be designed to change the
effective IDs of a process to something other than root. For example, to provide
access to a protected file (or other system resource), it may suffice to create a special-
purpose user (group) ID that has the privileges required to access the file, and create a
set-user-ID (set-group-ID) program that changes the effective user (group) ID of a
process to that ID. This permits the program to access the file without allowing it
all of the privileges of the superuser.

Sometimes, we’ll use the term set-user-ID-root to distinguish a set-user-ID pro-
gram that is owned by root from one owned by another user, which merely gives a
process the privileges accorded to that user.

We have now started using the term privileged in two different senses. One is
the sense defined earlier: a process with an effective user ID of 0, which has all
of the privileges accorded to root. However, when we are talking about a set-
user-ID program owned by a user other than root, we’ll sometimes refer to a
process as gaining the privileges accorded to the user ID of the set-user-ID pro-
gram. Which sense of the term privileged we mean in each case should be clear
from the context.

For reasons that we explain in Section 38.3, the set-user-ID and set-group-
ID permission bits don’t have any effect for shell scripts on Linux.

Examples of commonly used set-user-ID programs on Linux include: passwd(1),
which changes a user’s password; mount(8) and umount(8), which mount and
unmount file systems; and su(1), which allows a user to run a shell under a different
user ID. An example of a set-group-ID program is wall(1), which writes a message to
all terminals owned by the tty group (normally, every terminal is owned by this group).

In Section 8.5, we noted that the program in Listing 8-2 needed to be run from
a root login so that it could access the /etc/shadow file. We could make this program
runnable by any user by making it a set-user-ID-root program, as follows:

$ su
Password:
# chown root check_password             Make this program owned by root
# chmod u+s check_password              With the set-user-ID bit enabled
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# ls -l check_password
-rwsr-xr-x    1 root   users    18150 Oct 28 10:49 check_password
# exit
$ whoami                                This is an unprivileged login
mtk
$ ./check_password                      But we can now access the shadow
Username: avr                           password file using this program
Password:
Successfully authenticated: UID=1001

The set-user-ID/set-group-ID technique is a useful and powerful tool, but one that can
result in security breaches in applications that are poorly designed. In Chapter 38, we
list a set of good practices that should be observed when writing set-user-ID and set-
group-ID programs.

9.4 Saved Set-User-ID and Saved Set-Group-ID

The saved set-user-ID and saved set-group-ID are designed for use with set-user-ID
and set-group-ID programs. When a program is executed, the following steps
(among many others) occur:

1. If the set-user-ID (set-group-ID) permission bit is enabled on the executable,
then the effective user (group) ID of the process is made the same as the owner
of the executable. If the set-user-ID (set-group-ID) bit is not set, then no change
is made to the effective user (group) ID of the process.

2. The values for the saved set-user-ID and saved set-group-ID are copied from
the corresponding effective IDs. This copying occurs regardless of whether the
set-user-ID or set-group-ID bit is set on the file being executed.

As an example of the effect of the above steps, suppose that a process whose real
user ID, effective user ID, and saved set-user-ID are all 1000 execs a set-user-ID pro-
gram owned by root (user ID 0). After the exec, the user IDs of the process will be
changed as follows:

real=1000 effective=0 saved=0

Various system calls allow a set-user-ID program to switch its effective user ID
between the values of the real user ID and the saved set-user-ID. Analogous system
calls allow a set-group-ID program to modify its effective group ID. In this manner,
the program can temporarily drop and regain whatever privileges are associated
with the user (group) ID of the execed file. (In other words, the program can move
between the states of potentially being privileged and actually operating with privi-
lege.) As we’ll elaborate in Section 38.2, it is secure programming practice for set-
user-ID and set-group-ID programs to operate under the unprivileged (i.e., real) ID
whenever the program doesn’t actually need to perform any operations associated
with the privileged (i.e., saved set) ID.

The saved set-user-ID and saved set-group-ID are sometimes synonymously
referred to as the saved user ID and saved group ID.
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The saved set IDs are a System V invention adopted by POSIX. They were
not provided on releases of BSD prior to 4.4. The initial POSIX.1 standard
made support for these IDs optional, but later standards (starting with FIPS
151-1 in 1988) made support mandatory.

9.5 File-System User ID and File-System Group ID

On Linux, it is the file-system user and group IDs, rather than the effective user and
group IDs, that are used (in conjunction with the supplementary group IDs) to
determine permissions when performing file-system operations such as opening
files, changing file ownership, and modifying file permissions. (The effective IDs
are still used, as on other UNIX implementations, for the other purposes described
earlier.)

Normally, the file-system user and group IDs have the same values as the corre-
sponding effective IDs (and thus typically are the same as the corresponding real
IDs). Furthermore, whenever the effective user or group ID is changed, either by a
system call or by execution of a set-user-ID or set-group-ID program, the corre-
sponding file-system ID is also changed to the same value. Since the file-system IDs
follow the effective IDs in this way, this means that Linux effectively behaves just
like any other UNIX implementation when privileges and permissions are being
checked. The file-system IDs differ from the corresponding effective IDs, and
hence Linux differs from other UNIX implementations, only when we use two
Linux-specific system calls, setfsuid() and setfsgid(), to explicitly make them different.

Why does Linux provide the file-system IDs and in what circumstances would
we want the effective and file-system IDs to differ? The reasons are primarily histori-
cal. The file-system IDs first appeared in Linux 1.2. In that kernel version, one pro-
cess could send a signal to another if the effective user ID of the sender matched
the real or effective user ID of the target process. This affected certain programs
such as the Linux NFS (Network File System) server program, which needed to be
able to access files as though it had the effective IDs of the corresponding client
process. However, if the NFS server changed its effective user ID, it would be vul-
nerable to signals from unprivileged user processes. To prevent this possibility, the
separate file-system user and group IDs were devised. By leaving its effective IDs
unchanged, but changing its file-system IDs, the NFS server could masquerade as
another user for the purpose of accessing files without being vulnerable to signals from
user processes.

From kernel 2.0 onward, Linux adopted the SUSv3-mandated rules regarding
permission for sending signals, and these rules don’t involve the effective user ID
of the target process (refer to Section 20.5). Thus, the file-system ID feature is no
longer strictly necessary (a process can nowadays achieve the desired results by
making judicious use of the system calls described later in this chapter to change
the value of the effective user ID to and from an unprivileged value, as required),
but it remains for compatibility with existing software.

Since the file-system IDs are something of an oddity, and they normally have
the same values as the corresponding effective IDs, in the remainder of this book,
we’ll generally describe various file permission checks, as well as the setting of the
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ownership of new files, in terms of the effective IDs of a process. Even though the
process’s file-system IDs are really used for these purposes on Linux, in practice,
their presence seldom makes an effective difference.

9.6 Supplementary Group IDs

The supplementary group IDs are a set of additional groups to which a process
belongs. A new process inherits these IDs from its parent. A login shell obtains its
supplementary group IDs from the system group file. As noted above, these IDs are
used in conjunction with the effective and file-system IDs to determine permissions
for accessing files, System V IPC objects, and other system resources.

9.7 Retrieving and Modifying Process Credentials

Linux provides a range of system calls and library functions for retrieving and
changing the various user and group IDs that we have described in this chapter.
Only some of these APIs are specified in SUSv3. Of the remainder, several are
widely available on other UNIX implementations and a few are Linux-specific. We
note portability issues as we describe each interface. Toward the end of this chapter,
Table 9-1 summarizes the operation of all of the interfaces used to change process
credentials.

As an alternative to using the system calls described in the following pages, the
credentials of any process can be found by examining the Uid, Gid, and Groups lines
provided in the Linux-specific /proc/PID/status file. The Uid and Gid lines list the
identifiers in the order real, effective, saved set, and file system.

In the following sections, we use the traditional definition of a privileged pro-
cess as one whose effective user ID is 0. However, Linux divides the notion of
superuser privileges into distinct capabilities, as described in Chapter 39. Two capa-
bilities are relevant for our discussion of all of the system calls used to change pro-
cess user and group IDs:

The CAP_SETUID capability allows a process to make arbitrary changes to its user IDs.

The CAP_SETGID capability allows a process to make arbitrary changes to its
group IDs.

9.7.1 Retrieving and Modifying Real, Effective, and Saved Set IDs
In the following paragraphs, we describe the system calls that retrieve and modify the
real, effective, and saved set IDs. There are several system calls that perform these
tasks, and in some cases their functionality overlaps, reflecting the fact that the vari-
ous system calls originated on different UNIX implementations.

Retrieving real and effective IDs

The getuid() and getgid() system calls return, respectively, the real user ID and real
group ID of the calling process. The geteuid() and getegid() system calls perform the
corresponding tasks for the effective IDs. These system calls are always successful.
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Modifying effective IDs

The setuid() system call changes the effective user ID—and possibly the real user ID
and the saved set-user-ID—of the calling process to the value given by the uid argu-
ment. The setgid() system call performs the analogous task for the corresponding
group IDs.

The rules about what changes a process can make to its credentials using setuid()
and setgid() depend on whether the process is privileged (i.e., has an effective user
ID equal to 0). The following rules apply to setuid():

1. When an unprivileged process calls setuid(), only the effective user ID of the
process is changed. Furthermore, it can be changed only to the same value as
either the real user ID or saved set-user-ID. (Attempts to violate this constraint
yield the error EPERM.) This means that, for unprivileged users, this call is useful
only when executing a set-user-ID program, since, for the execution of normal
programs, the process’s real user ID, effective user ID, and saved set-user-ID all
have the same value. On some BSD-derived implementations, calls to setuid()
or setgid() by an unprivileged process have different semantics from other
UNIX implementations: the calls change the real, effective, and saved set IDs
(to the value of the current real or effective ID).

2. When a privileged process executes setuid() with a nonzero argument, then the
real user ID, effective user ID, and saved set-user-ID are all set to the value spec-
ified in the uid argument. This is a one-way trip, in that once a privileged process
has changed its identifiers in this way, it loses all privileges and therefore can’t
subsequently use setuid() to reset the identifiers back to 0. If this is not desired,
then either seteuid() or setreuid(), which we describe shortly, should be used
instead of setuid().

The rules governing the changes that may be made to group IDs using setgid() are
similar, but with setgid() substituted for setuid() and group for user. With these

#include <unistd.h>

uid_t getuid(void);

Returns real user ID of calling process
uid_t geteuid(void);

Returns effective user ID of calling process
gid_t getgid(void);

Returns real group ID of calling process
gid_t getegid(void);

Returns effective group ID of calling process

#include <unistd.h>

int setuid(uid_t uid);
int setgid(gid_t gid);

Both return 0 on success, or –1 on error
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changes, rule 1 applies exactly as stated. In rule 2, since changing the group IDs
doesn’t cause a process to lose privileges (which are determined by the effective
user ID), privileged programs can use setgid() to freely change the group IDs to any
desired values.

The following call is the preferred method for a set-user-ID-root program whose
effective user ID is currently 0 to irrevocably drop all privileges (by setting both
the effective user ID and saved set-user-ID to the same value as the real user ID):

if (setuid(getuid()) == -1)
    errExit("setuid");

A set-user-ID program owned by a user other than root can use setuid() to switch the
effective user ID between the values of the real user ID and saved set-user-ID for
the security reasons described in Section 9.4. However, seteuid() is preferable for
this purpose, since it has the same effect, regardless of whether the set-user-ID pro-
gram is owned by root.

A process can use seteuid() to change its effective user ID (to the value specified
by euid), and setegid() to change its effective group ID (to the value specified by egid).

The following rules govern the changes that a process may make to its effective IDs
using seteuid() and setegid():

1. An unprivileged process can change an effective ID only to the same value as
the corresponding real or saved set ID. (In other words, for an unprivileged
process, seteuid() and setegid() have the same effect as setuid() and setgid(),
respectively, except for the BSD portability issues noted earlier.)

2. A privileged process can change an effective ID to any value. If a privileged
process uses seteuid() to change its effective user ID to a nonzero value, then it
ceases to be privileged (but may be able to regain privilege via the previous rule).

Using seteuid() is the preferred method for set-user-ID and set-group-ID programs
to temporarily drop and later regain privileges. Here’s an example:

euid = geteuid();               /* Save initial effective user ID (which
                                   is same as saved set-user-ID) */
if (seteuid(getuid()) == -1)    /* Drop privileges */
    errExit("seteuid");
if (seteuid(euid) == -1)        /* Regain privileges */
    errExit("seteuid");

Originally derived from BSD, seteuid() and setegid() are now specified in SUSv3 and
appear on most UNIX implementations.

#include <unistd.h>

int seteuid(uid_t euid);
int setegid(gid_t egid);

Both return 0 on success, or –1 on error
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In older versions of the GNU C library (glibc 2.0 and earlier), seteuid(euid) is
implemented as setreuid(–1, euid). In modern versions of glibc, seteuid(euid)
is implemented as setresuid(–1, euid, –1). (We describe setreuid(), setresuid(), and
their group analogs shortly.) Both implementations permit us to specify euid as
the same value as the current effective user ID (i.e., no change). However,
SUSv3 doesn’t specify this behavior for seteuid(), and it is not possible on some
other UNIX implementations. Generally, this potential variation across imple-
mentations is not apparent, since, in normal circumstances, the effective user
ID has the same value as either the real user ID or the saved set-user-ID. (The
only way in which we can make the effective user ID differ from both the real
user ID and the saved set-user-ID on Linux is via the use of the nonstandard
setresuid() system call.)

In all versions of glibc (including modern ones), setegid(egid) is imple-
mented as setregid(–1, egid). As with seteuid(), this means that we can specify egid
as the same value as the current effective group ID, although this behavior is
not specified in SUSv3. It also means that setegid() changes the saved set-group-
ID if the effective group ID is set to a value other than the current real group
ID. (A similar remark applies for the older implementation of seteuid() using
setreuid().) Again, this behavior is not specified in SUSv3.

Modifying real and effective IDs

The setreuid() system call allows the calling process to independently change the
values of its real and effective user IDs. The setregid() system call performs the anal-
ogous task for the real and effective group IDs.

The first argument to each of these system calls is the new real ID. The second
argument is the new effective ID. If we want to change only one of the identifiers,
then we can specify –1 for the other argument.

Originally derived from BSD, setreuid() and setregid() are now specified in
SUSv3 and are available on most UNIX implementations.

As with the other system calls described in this section, rules govern the
changes that we can make using setreuid() and setregid(). We describe these rules
from the point of view of setreuid(), with the understanding that setregid() is similar,
except as noted:

1. An unprivileged process can set the real user ID only to the current value of
the real (i.e., no change) or effective user ID. The effective user ID can be set
only to the current value of the real user ID, effective user ID (i.e., no change),
or saved set-user-ID.

#include <unistd.h>

int setreuid(uid_t ruid, uid_t euid);
int setregid(gid_t rgid, gid_t egid);

Both return 0 on success, or –1 on error
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SUSv3 says that it is unspecified whether an unprivileged process can use
setreuid() to change the value of the real user ID to the current value of the real
user ID, effective user ID, or saved set-user-ID, and the details of precisely what
changes can be made to the real user ID vary across implementations.

SUSv3 describes slightly different behavior for setregid(): an unprivileged
process can set the real group ID to the current value of the saved set-group-ID
or set the effective group ID to the current value of either the real group ID or
the saved set-group-ID. Again, the details of precisely what changes can be
made vary across implementations.

2. A privileged process can make any changes to the IDs.

3. For both privileged and unprivileged processes, the saved set-user-ID is also set
to the same value as the (new) effective user ID if either of the following is true:

a) ruid is not –1 (i.e., the real user ID is being set, even to the same value it
already had), or

b) the effective user ID is being set to a value other than the value of the real
user ID prior to the call.

Put conversely, if a process uses setreuid() only to change the effective user ID
to the same value as the current real user ID, then the saved set-user-ID is left
unchanged, and a later call to setreuid() (or seteuid()) can restore the effective
user ID to the saved set-user-ID value. (SUSv3 doesn’t specify the effect of
setreuid() and setregid() on the saved set IDs, but SUSv4 specifies the behavior
described here.)

The third rule provides a way for a set-user-ID program to permanently drop its
privilege, using a call such as the following:

setreuid(getuid(), getuid());

A set-user-ID-root process that wants to change both its user and group credentials
to arbitrary values should first call setregid() and then call setreuid(). If the calls are
made in the opposite order, then the setregid() call will fail, because the program
will no longer be privileged after the call to setreuid(). Similar remarks apply if we
are using setresuid() and setresgid() (described below) for this purpose.

BSD releases up to and including 4.3BSD did not have the saved set-user-ID
and saved set-group-ID (which are nowadays mandated by SUSv3). Instead, on
BSD, setreuid() and setregid() permitted a process to drop and regain privilege
by swapping the values of the real and effective IDs back and forth. This had
the undesirable side effect of changing the real user ID in order to change the
effective user ID.

Retrieving real, effective, and saved set IDs

On most UNIX implementations, a process can’t directly retrieve (or update) its
saved set-user-ID and saved set-group-ID. However, Linux provides two (nonstand-
ard) system calls allowing us to do just that: getresuid() and getresgid().
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The getresuid() system call returns the current values of the calling process’s real
user ID, effective user ID, and saved set-user-ID in the locations pointed by its three
arguments. The getresgid() system call does the same for the corresponding group IDs.

Modifying real, effective, and saved set IDs

The setresuid() system call allows the calling process to independently change the
values of all three of its user IDs. The new values for each of the user IDs are speci-
fied by the three arguments to the system call. The setresgid() system call performs
the analogous task for the group IDs.

If we don’t want to change all of the identifiers, then specifying –1 for an argument
leaves the corresponding identifier unchanged. For example, the following call is
equivalent to seteuid(x):

setresuid(-1, x, -1);

The rules about what changes may be made by setresuid() (setresgid() is similar) are as
follows:

1. An unprivileged process can set any of its real user ID, effective user ID, and
saved set-user-ID to any of the values currently in its current real user ID, effec-
tive user ID, or saved set-user-ID.

2. A privileged process can make arbitrary changes to its real user ID, effective
user ID, and saved set-user-ID.

3. Regardless of whether the call makes any changes to other IDs, the file-system
user ID is always set to the same value as the (possibly new) effective user ID.

Calls to setresuid() and setresgid() have an all-or-nothing effect. Either all of the
requested identifiers are successfully changed or none are changed. (The same
comment applies with respect to the other system calls described in this chapter
that change multiple identifiers.)

#define _GNU_SOURCE
#include <unistd.h>

int getresuid(uid_t *ruid, uid_t *euid, uid_t *suid);
int getresgid(gid_t *rgid, gid_t *egid, gid_t *sgid);

Both return 0 on success, or –1 on error

#define _GNU_SOURCE
#include <unistd.h>

int setresuid(uid_t ruid, uid_t euid, uid_t suid);
int setresgid(gid_t rgid, gid_t egid, gid_t sgid);

Both return 0 on success, or –1 on error
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Although setresuid() and setresgid() provide the most straightforward API for
changing process credentials, we can’t portably employ them in applications; they are
not specified in SUSv3 and are available on only a few other UNIX implementations.

9.7.2 Retrieving and Modifying File-System IDs
All of the previously described system calls that change the process’s effective user
or group ID also always change the corresponding file-system ID. To change the
file-system IDs independently of the effective IDs, we must employ two Linux-specific
system calls: setfsuid() and setfsgid().

The setfsuid() system call changes the file-system user ID of a process to the value
specified by fsuid. The setfsgid() system call changes the file system group ID to the
value specified by fsgid.

Again, there are rules about the kind of changes that can be made. The rules
for setfsgid() are similar to the rules for setfsuid(), which are as follows:

1. An unprivileged process can set the file-system user ID to the current value of
the real user ID, effective user ID, file-system user ID (i.e., no change), or saved
set-user-ID.

2. A privileged process can set the file-system user ID to any value.

The implementation of these calls is somewhat unpolished. To begin with, there
are no corresponding system calls that retrieve the current value of the file-system
IDs. In addition, the system calls do no error checking; if an unprivileged process
attempts to set its file-system ID to an unacceptable value, the attempt is silently
ignored. The return value from each of these system calls is the previous value of
the corresponding file-system ID, whether the call succeeds or fails. Thus, we do have a
way of finding out the current values of the file-system IDs, but only at the same
time as we try (either successfully or unsuccessfully) to change them.

Use of the setfsuid() and setfsgid() system calls is no longer necessary on Linux
and should be avoided in applications designed to be ported to other UNIX
implementations.

9.7.3 Retrieving and Modifying Supplementary Group IDs
The getgroups() system call returns the set of groups of which the calling process is
currently a member, in the array pointed to by grouplist.

#include <sys/fsuid.h>

int setfsuid(uid_t fsuid);

Always returns the previous file-system user ID

int setfsgid(gid_t fsgid);

Always returns the previous file-system group ID
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On Linux, as on most UNIX implementations, getgroups() simply returns the calling
process’s supplementary group IDs. However, SUSv3 also allows an implementa-
tion to include the calling process’s effective group ID in the returned grouplist.

The calling program must allocate the grouplist array and specify its length in
the argument gidsetsize. On successful completion, getgroups() returns the number
of group IDs placed in grouplist.

If the number of groups of which a process is a member exceeds gidsetsize,
getgroups() returns an error (EINVAL). To avoid this possibility, we can size the
grouplist array to be one greater (to portably allow for the possible inclusion of the
effective group ID) than the constant NGROUPS_MAX (defined in <limits.h>), which
defines the maximum number of supplementary groups of which a process may be
a member. Thus, we could declare grouplist as follows:

gid_t grouplist[NGROUPS_MAX + 1];

In Linux kernels prior to 2.6.4, NGROUPS_MAX has the value 32. From kernel 2.6.4
onward, NGROUPS_MAX has the value 65,536.

An application can also determine the NGROUPS_MAX limit at run time in the fol-
lowing ways:

Call sysconf(_SC_NGROUPS_MAX). (We explain the use of sysconf() in Section 11.2.)

Read the limit from the read-only, Linux-specific /proc/sys/kernel/ngroups_max
file. This file is provided since kernel 2.6.4.

Alternatively, an application can make a call to getgroups() specifying gidtsetsize as 0.
In this case, grouplist is not modified, but the return value of the call gives the num-
ber of groups of which the process is a member.

The value obtained by any of these run-time techniques can then be used to
dynamically allocate a grouplist array for a future getgroups() call.

A privileged process can use setgroups() and initgroups() to change its set of sup-
plementary group IDs.

#include <unistd.h>

int getgroups(int gidsetsize, gid_t grouplist[]);

Returns number of group IDs placed in grouplist on success, or –1 on error

#define _BSD_SOURCE
#include <grp.h>

int setgroups(size_t gidsetsize, const gid_t *grouplist);
int initgroups(const char *user, gid_t group);

Both return 0 on success, or –1 on error
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The setgroups() system call replaces the calling process’s supplementary group IDs
with the set given in the array grouplist. The gidsetsize argument specifies the num-
ber of group IDs in the array argument grouplist.

The initgroups() function initializes the calling process’s supplementary group
IDs by scanning /etc/groups and building a list of all groups of which the named user
is a member. In addition, the group ID specified in group is also added to the pro-
cess’s set of supplementary group IDs.

The primary users of initgroups() are programs that create login sessions—for
example, login(1), which sets various process attributes prior to executing the user’s
login shell. Such programs typically obtain the value to be used for the group argu-
ment by reading the group ID field from the user’s record in the password file. This
is slightly confusing, since the group ID from the password file is not really a sup-
plementary group, Instead, it defines the initial real user ID, effective user ID, and
saved set-user-ID of the login shell. Nevertheless, this is how initgroups() is usually
employed.

Although not part of SUSv3, setgroups() and initgroups() are available on all
UNIX implementations.

9.7.4 Summary of Calls for Modifying Process Credentials
Table 9-1 summarizes the effects of the various system calls and library functions
used to change process credentials. 

Figure 9-1 provides a graphical overview of the same information given in
Table 9-1. This diagram shows things from the perspective of the calls that change
the user IDs, but the rules for changes to the group IDs are similar.

Figure 9-1: Effect of credential-changing functions on process user IDs
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Note the following supplementary information to Table 9-1:

The glibc implementations of seteuid() (as setresuid(–1, e, –1)) and setegid() (as
setregid(–1, e)) also allow the effective ID to be set to the same value it already
has, but this is not specified in SUSv3. The setegid() implementation also
changes the saved set-group-ID if the effective user ID is set to a value other
than that of the current real user ID. (SUSv3 doesn’t specify that setegid() makes
changes to the saved set-group-ID.)

For calls to setreuid() and setregid() by both privileged and unprivileged pro-
cesses, if r is not –1, or e is specified as a value different from the real ID prior
to the call, then the saved set-user-ID or saved set-group-ID is also set to the
same value as the (new) effective ID. (SUSv3 doesn’t specify that setreuid() and
setregid() make changes to the saved set IDs.)

Whenever the effective user (group) ID is changed, the Linux-specific file-system
user (group) ID is changed to the same value.

Calls to setresuid() always modify the file-system user ID to have the same value
as the effective user ID, regardless of whether the effective user ID is changed
by the call. Calls to setresgid() have an analogous effect on the file-system group ID.

Table 9-1: Summary of interfaces used to change process credentials

Interface Purpose and effect within: Portability

unprivileged process privileged process

setuid(u)
setgid(g)

Change effective ID to the 
same value as current real 
or saved set ID

Change real, 
effective, and 
saved set IDs to 
any (single) value

Specified in SUSv3; 
BSD derivatives 
have different 
semantics

seteuid(e)
setegid(e)

Change effective ID to the 
same value as current real 
or saved set ID

Change effective 
ID to any value

Specified in SUSv3

setreuid(r, e) 
setregid(r, e)

(Independently) change 
real ID to same value as 
current real or effective 
ID, and effective ID to 
same value as current real, 
effective, or saved set ID

(Independently) 
change real and 
effective IDs to 
any values

Specified in SUSv3, 
but operation 
varies across 
implementations

setresuid(r, e, s)
setresgid(r, e, s)

(Independently) change 
real, effective, and saved 
set IDs to same value as 
current real, effective, or 
saved set ID

(Independently) 
change real, 
effective, and 
saved set IDs to 
any values

Not in SUSv3 and 
present on few 
other UNIX 
implementations

setfsuid(u)
setfsgid(u)

Change file-system ID to 
same value as current real, 
effective, file system, or 
saved set ID

Change file-system 
ID to any value

Linux-specific

setgroups(n, l) Can’t be called from an 
unprivileged process

Set supplementary 
group IDs to any 
values

Not in SUSv3, but 
available on all UNIX 
implementations
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9.7.5 Example: Displaying Process Credentials
The program in Listing 9-1 uses the system calls and library functions described in
the preceding pages to retrieve all of the process’s user and group IDs, and then
displays them.

Listing 9-1: Display all process user and group IDs

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– proccred/idshow.c
#define _GNU_SOURCE
#include <unistd.h>
#include <sys/fsuid.h>
#include <limits.h>
#include "ugid_functions.h"   /* userNameFromId() & groupNameFromId() */
#include "tlpi_hdr.h"

#define SG_SIZE (NGROUPS_MAX + 1)

int
main(int argc, char *argv[])
{
    uid_t ruid, euid, suid, fsuid;
    gid_t rgid, egid, sgid, fsgid;
    gid_t suppGroups[SG_SIZE];
    int numGroups, j;
    char *p;

    if (getresuid(&ruid, &euid, &suid) == -1)
        errExit("getresuid");
    if (getresgid(&rgid, &egid, &sgid) == -1)
        errExit("getresgid");

    /* Attempts to change the file-system IDs are always ignored
       for unprivileged processes, but even so, the following
       calls return the current file-system IDs */

    fsuid = setfsuid(0);
    fsgid = setfsgid(0);

    printf("UID: ");
    p = userNameFromId(ruid);
    printf("real=%s (%ld); ", (p == NULL) ? "???" : p, (long) ruid);
    p = userNameFromId(euid);
    printf("eff=%s (%ld); ", (p == NULL) ? "???" : p, (long) euid);
    p = userNameFromId(suid);
    printf("saved=%s (%ld); ", (p == NULL) ? "???" : p, (long) suid);
    p = userNameFromId(fsuid);
    printf("fs=%s (%ld); ", (p == NULL) ? "???" : p, (long) fsuid);
    printf("\n");

    printf("GID: ");
    p = groupNameFromId(rgid);
    printf("real=%s (%ld); ", (p == NULL) ? "???" : p, (long) rgid);
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    p = groupNameFromId(egid);
    printf("eff=%s (%ld); ", (p == NULL) ? "???" : p, (long) egid);
    p = groupNameFromId(sgid);
    printf("saved=%s (%ld); ", (p == NULL) ? "???" : p, (long) sgid);
    p = groupNameFromId(fsgid);
    printf("fs=%s (%ld); ", (p == NULL) ? "???" : p, (long) fsgid);
    printf("\n");

    numGroups = getgroups(SG_SIZE, suppGroups);
    if (numGroups == -1)
        errExit("getgroups");

    printf("Supplementary groups (%d): ", numGroups);
    for (j = 0; j < numGroups; j++) {
        p = groupNameFromId(suppGroups[j]);
        printf("%s (%ld) ", (p == NULL) ? "???" : p, (long) suppGroups[j]);
    }
    printf("\n");

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– proccred/idshow.c

9.8 Summary

Each process has a number of associated user and group IDs (credentials). The real
IDs define the ownership of the process. On most UNIX implementations, the
effective IDs are used to determine a process’s permissions when accessing
resources such as files. On Linux, however, the file-system IDs are used for deter-
mining permissions for accessing files, while the effective IDs are used for other
permission checks. (Because the file-system IDs normally have the same values as
the corresponding effective IDs, Linux behaves in the same way as other UNIX
implementations when checking file permissions.) A process’s supplementary
group IDs are a further set of groups of which the process is considered to be a
member for the purpose of permission checking. Various system calls and library
functions allow a process to retrieve and change its user and group IDs.

When a set-user-ID program is run, the effective user ID of the process is set to
that of the owner of the file. This mechanism allows a user to assume the identity,
and thus the privileges, of another user while running a particular program. Corre-
spondingly, set-group-ID programs change the effective group ID of the process
running a program. The saved set-user-ID and saved set-group-ID allow set-user-ID
and set-group-ID programs to temporarily drop and then later reassume privileges.

The user ID 0 is special. Normally, a single user account, named root, has this
user ID. Processes with an effective user ID of 0 are privileged—that is, they are
exempt from many of the permission checks normally performed when a process
makes various system calls (such as those used to arbitrarily change the various
process user and group IDs).
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9.9 Exercises

9-1. Assume in each of the following cases that the initial set of process user IDs is
real=1000 effective=0 saved=0 file-system=0. What would be the state of the user IDs
after the following calls?

a) setuid(2000);

b) setreuid(–1, 2000);

c) seteuid(2000);

d) setfsuid(2000);

e) setresuid(–1, 2000, 3000);

9-2. Is a process with the following user IDs privileged? Explain your answer.

real=0 effective=1000 saved=1000 file-system=1000

9-3. Implement initgroups() using setgroups() and library functions for retrieving
information from the password and group files (Section 8.4). Remember that a
process must be privileged in order to be able to call setgroups().

9-4. If a process whose user IDs all have the value X executes a set-user-ID program
whose user ID, Y, is nonzero, then the process credentials are set as follows:

real=X effective=Y saved=Y

(We ignore the file-system user ID, since it tracks the effective user ID.) Show the
setuid(), seteuid(), setreuid(), and setresuid() calls, respectively, that would be used to
perform the following operations:

a) Suspend and resume the set-user-ID identity (i.e., switch the effective user
ID to the value of the real user ID and then back to the saved set-user-ID).

b) Permanently drop the set-user-ID identity (i.e., ensure that the effective
user ID and the saved set-user-ID are set to the value of the real user ID).

(This exercise also requires the use of getuid() and geteuid() to retrieve the process’s
real and effective user IDs.) Note that for certain of the system calls listed above,
some of these operations can’t be performed.

9-5. Repeat the previous exercise for a process executing a set-user-ID-root program,
which has the following initial set of process credentials:

real=X effective=0 saved=0
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T I M E

Within a program, we may be interested in two kinds of time:

Real time: This is the time as measured either from some standard point
(calendar time) or from some fixed point (typically the start) in the life of a
process (elapsed or wall clock time). Obtaining the calendar time is useful to pro-
grams that, for example, timestamp database records or files. Measuring
elapsed time is useful for a program that takes periodic actions or makes regu-
lar measurements from some external input device.

Process time: This is the amount of CPU time used by a process. Measuring pro-
cess time is useful for checking or optimizing the performance of a program or
algorithm.

Most computer architectures have a built-in hardware clock that enables the kernel
to measure real and process time. In this chapter, we look at system calls for dealing
with both sorts of time, and library functions for converting between human-
readable and internal representations of time. Since human-readable representa-
tions of time are dependent on the geographical location and on linguistic and
cultural conventions, discussion of these representations leads us into an investiga-
tion of timezones and locales.



10.1 Calendar Time

Regardless of geographic location, UNIX systems represent time internally as a
measure of seconds since the Epoch; that is, since midnight on the morning of
1 January 1970, Universal Coordinated Time (UTC, previously known as Green-
wich Mean Time, or GMT). This is approximately the date when the UNIX system
came into being. Calendar time is stored in variables of type time_t, an integer type
specified by SUSv3.

On 32-bit Linux systems, time_t, which is a signed integer, can represent dates
in the range 13 December 1901 20:45:52 to 19 January 2038 03:14:07. (SUSv3
leaves the meaning of negative time_t values unspecified.) Thus, many current
32-bit UNIX systems face a theoretical Year 2038 problem, which they may
encounter before 2038, if they do calculations based on dates in the future.
This problem will be significantly alleviated by the fact that by 2038, probably
all UNIX systems will have long become 64-bit and beyond. However, 32-bit
embedded systems, which typically have a much longer lifespan than desktop
hardware, may still be afflicted by the problem. Furthermore, the problem will
remain for any legacy data and applications that maintain time in a 32-bit
time_t format.

The gettimeofday() system call returns the calendar time in the buffer pointed to by tv.

The tv argument is a pointer to a structure of the following form:

struct timeval {
    time_t      tv_sec;     /* Seconds since 00:00:00, 1 Jan 1970 UTC */
    suseconds_t tv_usec;    /* Additional microseconds (long int) */
};

Although the tv_usec field affords microsecond precision, the accuracy of the value
it returns is determined by the architecture-dependent implementation. (The u in
tv_usec derives from the resemblance to the Greek letter μ (“mu”) used in the metric
system to denote one-millionth.) On modern x86-32 systems (i.e., Pentium systems
with a Timestamp Counter register that is incremented once at each CPU clock
cycle), gettimeofday() does provide microsecond accuracy.

The tz argument to gettimeofday() is a historical artifact. In older UNIX imple-
mentations, it was used to retrieve timezone information for the system. This argu-
ment is now obsolete and should always be specified as NULL.

#include <sys/time.h>

int gettimeofday(struct timeval *tv, struct timezone *tz);

Returns 0 on success, or –1 on error
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If the tz argument is supplied, then it returns a timezone structure whose fields
contain whatever values were specified in the (obsolete) tz argument in a previ-
ous call to settimeofday(). This structure contains two fields: tz_minuteswest and
tz_dsttime. The tz_minuteswest field indicates the number of minutes that must
be added to times in this zone to match UTC, with a negative value indicating
that an adjustment of minutes to the east of UTC (e.g., for Central European
Time, one hour ahead of UTC, this field would contain the value –60). The
tz_dsttime field contains a constant that was designed to represent the day-
light saving time (DST) regime in force in this timezone. It is because the
DST regime can’t be represented using a simple algorithm that the tz argu-
ment is obsolete. (This field has never been supported on Linux.) See the
gettimeofday(2) manual page for further details.

The time() system call returns the number of seconds since the Epoch (i.e., the same
value that gettimeofday() returns in the tv_sec field of its tv argument).

If the timep argument is not NULL, the number of seconds since the Epoch is also
placed in the location to which timep points.

Since time() returns the same value in two ways, and the only possible error that
can occur when using time() is to give an invalid address in the timep argument
(EFAULT), we often simply use the following call (without error checking):

t = time(NULL);

The reason for the existence of two system calls (time() and gettimeofday()) with
essentially the same purpose is historical. Early UNIX implementations pro-
vided time(). 4.3BSD added the more precise gettimeofday() system call. The
existence of time() as a system call is now redundant; it could be implemented
as a library function that calls gettimeofday().

10.2 Time-Conversion Functions

Figure 10-1 shows the functions used to convert between time_t values and other
time formats, including printable representations. These functions shield us from
the complexity brought to such conversions by timezones, daylight saving time
(DST) regimes, and localization issues. (We describe timezones in Section 10.3 and
locales in Section 10.4.)

#include <time.h>

time_t time(time_t *timep);

Returns number of seconds since the Epoch,or (time_t) –1 on error
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Figure 10-1: Functions for retrieving and working with calendar time
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the date and time in a standard format, as illustrated by the following example:
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The string includes a terminating newline character and a terminating null byte. The
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#include <time.h>
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A reentrant version of ctime() is provided in the form of ctime_r(). (We explain
reentrancy in Section 21.1.2.) This function permits the caller to specify an
additional argument that is a pointer to a (caller-supplied) buffer that is used
to return the time string. Other reentrant versions of functions mentioned in
this chapter operate similarly.

10.2.2 Converting Between time_t and Broken-Down Time
The gmtime() and localtime() functions convert a time_t value into a so-called broken-
down time. The broken-down time is placed in a statically allocated structure whose
address is returned as the function result.

The gmtime() function converts a calendar time into a broken-down time corre-
sponding to UTC. (The letters gm derive from Greenwich Mean Time.) By contrast,
localtime() takes into account timezone and DST settings to return a broken-down
time corresponding to the system’s local time.

Reentrant versions of these functions are provided as gmtime_r() and
localtime_r().

The tm structure returned by these functions contains the date and time fields
broken into individual parts. This structure has the following form:

struct tm {
    int tm_sec;        /* Seconds (0-60) */
    int tm_min;        /* Minutes (0-59) */
    int tm_hour;       /* Hours (0-23) */
    int tm_mday;       /* Day of the month (1-31) */
    int tm_mon;        /* Month (0-11) */
    int tm_year;       /* Year since 1900 */
    int tm_wday;       /* Day of the week (Sunday = 0)*/
    int tm_yday;       /* Day in the year (0-365; 1 Jan = 0)*/
    int tm_isdst;      /* Daylight saving time flag
                            > 0: DST is in effect;
                            = 0: DST is not effect;
                            < 0: DST information not available */
};

The tm_sec field can be up to 60 (rather than 59) to account for the leap seconds
that are occasionally applied to adjust human calendars to the astronomically exact
(the so-called tropical) year.

If the _BSD_SOURCE feature test macro is defined, then the glibc definition of the
tm structure also includes two additional fields containing further information
about the represented time. The first of these, long int tm_gmtoff, contains the

#include <time.h>

struct tm *gmtime(const time_t *timep);
struct tm *localtime(const time_t *timep);

Both return a pointer to a statically allocated broken-down
time structure on success, or NULL on error
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number of seconds that the represented time falls east of UTC. The second field,
const char *tm_zone, is the abbreviated timezone name (e.g., CEST for Central Euro-
pean Summer Time). SUSv3 doesn’t specify either of these fields, and they appear
on only a few other UNIX implementations (mainly BSD derivatives).

The mktime() function translates a broken-down time, expressed as local time,
into a time_t value, which is returned as the function result. The caller supplies the
broken-down time in a tm structure pointed to by timeptr. During this translation,
the tm_wday and tm_yday fields of the input tm structure are ignored.

The mktime() function may modify the structure pointed to by timeptr. At a minimum,
it ensures that the tm_wday and tm_yday fields are set to values that correspond
appropriately to the values of the other input fields.

In addition, mktime() doesn’t require the other fields of the tm structure to be
restricted to the ranges described earlier. For each field whose value is out of range,
mktime() adjusts that field’s value so that it is in range and makes suitable adjustments
to the other fields. All of these adjustments are performed before mktime() updates
the tm_wday and tm_yday fields and calculates the returned time_t value.

For example, if the input tm_sec field were 123, then on return, the value of this
field would be 3, and the value of the tm_min field would have 2 added to whatever
value it previously had. (And if that addition caused tm_min to overflow, then the
tm_min value would be adjusted and the tm_hour field would be incremented, and
so on.) These adjustments even apply for negative field values. For example, specify-
ing –1 for tm_sec means the 59th second of the previous minute. This feature is useful
since it allows us to perform date and time arithmetic on a broken-down time value.

The timezone setting is used by mktime() when performing the translation. In
addition, the DST setting may or may not be used, depending on the value of the
input tm_isdst field:

If tm_isdst is 0, treat this time as standard time (i.e., ignore DST, even if it would
be in effect at this time of year).

If tm_isdst is greater than 0, treat this time as DST (i.e., behave as though DST is
in effect, even if it would not normally be so at this time of year).

If tm_isdst is less than 0, attempt to determine if DST would be in effect at this
time of the year. This is typically the setting we want.

On completion (and regardless of the initial setting of tm_isdst), mktime() sets the
tm_isdst field to a positive value if DST is in effect at the given date, or to 0 if DST is
not in effect.

#include <time.h>

time_t mktime(struct tm *timeptr);

Returns seconds since the Epoch corresponding to timeptr
on success, or (time_t) –1 on error
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10.2.3 Converting Between Broken-Down Time and Printable Form
In this section, we describe functions that convert a broken-down time to printable
form, and vice versa.

Converting from broken-down time to printable form

Given a pointer to a broken-down time structure in the argument tm, asctime()
returns a pointer to a statically allocated string containing the time in the same
form as ctime().

By contrast with ctime(), local timezone settings have no effect on asctime(), since it
is converting a broken-down time that is typically either already localized via
localtime() or in UTC as returned by gmtime().

As with ctime(), we have no control over the format of the string produced by
asctime().

A reentrant version of asctime() is provided in the form of asctime_r().

Listing 10-1 demonstrates the use of asctime(), as well as all of the time-conversion
functions described so far in this chapter. This program retrieves the current calen-
dar time, and then uses various time-conversion functions and displays their
results. Here is an example of what we see when running this program in Munich,
Germany, which (in winter) is on Central European Time, one hour ahead of UTC:

$ date
Tue Dec 28 16:01:51 CET 2010
$ ./calendar_time
Seconds since the Epoch (1 Jan 1970): 1293548517 (about 40.991 years)
  gettimeofday() returned 1293548517 secs, 715616 microsecs
Broken down by gmtime():
  year=110 mon=11 mday=28 hour=15 min=1 sec=57 wday=2 yday=361 isdst=0
Broken down by localtime():
  year=110 mon=11 mday=28 hour=16 min=1 sec=57 wday=2 yday=361 isdst=0

asctime() formats the gmtime() value as: Tue Dec 28 15:01:57 2010
ctime() formats the time() value as:     Tue Dec 28 16:01:57 2010
mktime() of gmtime() value:    1293544917 secs
mktime() of localtime() value: 1293548517 secs      3600 secs ahead of UTC

Listing 10-1: Retrieving and converting calendar times

–––––––––––––––––––––––––––––––––––––––––––––––––––––– time/calendar_time.c

#include <locale.h>
#include <time.h>
#include <sys/time.h>
#include "tlpi_hdr.h"

#include <time.h>

char *asctime(const struct tm *timeptr);

Returns pointer to statically allocated string terminated by
newline and \0 on success, or NULL on error
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#define SECONDS_IN_TROPICAL_YEAR (365.24219 * 24 * 60 * 60)

int
main(int argc, char *argv[])
{
    time_t t;
    struct tm *gmp, *locp;
    struct tm gm, loc;
    struct timeval tv;

    t = time(NULL);
    printf("Seconds since the Epoch (1 Jan 1970): %ld", (long) t);
    printf(" (about %6.3f years)\n", t / SECONDS_IN_TROPICAL_YEAR);

    if (gettimeofday(&tv, NULL) == -1)
        errExit("gettimeofday");
    printf("  gettimeofday() returned %ld secs, %ld microsecs\n",
            (long) tv.tv_sec, (long) tv.tv_usec);

    gmp = gmtime(&t);
    if (gmp == NULL)
        errExit("gmtime");

    gm = *gmp;          /* Save local copy, since *gmp may be modified
                           by asctime() or gmtime() */
    printf("Broken down by gmtime():\n");
    printf("  year=%d mon=%d mday=%d hour=%d min=%d sec=%d ", gm.tm_year,
            gm.tm_mon, gm.tm_mday, gm.tm_hour, gm.tm_min, gm.tm_sec);
    printf("wday=%d yday=%d isdst=%d\n", gm.tm_wday, gm.tm_yday, gm.tm_isdst);

    locp = localtime(&t);
    if (locp == NULL)
        errExit("localtime");

    loc = *locp;        /* Save local copy */

    printf("Broken down by localtime():\n");
    printf("  year=%d mon=%d mday=%d hour=%d min=%d sec=%d ",
            loc.tm_year, loc.tm_mon, loc.tm_mday,
            loc.tm_hour, loc.tm_min, loc.tm_sec);
    printf("wday=%d yday=%d isdst=%d\n\n",
            loc.tm_wday, loc.tm_yday, loc.tm_isdst);

    printf("asctime() formats the gmtime() value as: %s", asctime(&gm));
    printf("ctime() formats the time() value as:     %s", ctime(&t));

    printf("mktime() of gmtime() value:    %ld secs\n", (long) mktime(&gm));
    printf("mktime() of localtime() value: %ld secs\n", (long) mktime(&loc));

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– time/calendar_time.c
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The strftime() function provides us with more precise control when converting a
broken-down time into printable form. Given a broken-down time pointed to by
timeptr, strftime() places a corresponding null-terminated, date-plus-time string in
the buffer pointed to by outstr.

The string returned in outstr is formatted according to the specification in format. The
maxsize argument specifies the maximum space available in outstr. Unlike ctime()
and asctime(), strftime() doesn’t include a newline character at the end of the string
(unless one is included in format).

On success, strftime() returns the number of bytes placed in outstr, excluding
the terminating null byte. If the total length of the resulting string, including the
terminating null byte, would exceed maxsize bytes, then strftime() returns 0 to indi-
cate an error, and the contents of outstr are indeterminate.

The format argument to strftime() is a string akin to that given to printf().
Sequences beginning with a percent character (%) are conversion specifications,
which are replaced by various components of the date and time according to the
specifier character following the percent character. A rich set of conversion specifiers
is provided, a subset of which is listed in Table 10-1. (For a complete list, see the
strftime(3) manual page.) Except as otherwise noted, all of these conversion specifiers
are standardized in SUSv3.

The %U and %W specifiers both produce a week number in the year. The %U week
numbers are calculated such that the first week containing a Sunday is numbered 1,
and the partial week preceding that is numbered 0. If Sunday happens to fall as the
first day of the year, then there is no week 0, and the last day of the year falls in week 53.
The %W week numbers work in the same way, but with Monday rather than Sunday.

Often, we want to display the current time in various demonstration programs
in this book. For this purpose we provide the function currTime(), which returns a
string containing the current time as formatted by strftime() when given the argu-
ment format.

The currTime() function implementation is shown in Listing 10-2.

#include <time.h>

size_t strftime(char *outstr, size_t maxsize, const char *format,
                const struct tm *timeptr);

Returns number of bytes placed in outstr (excluding
terminating null byte) on success, or 0 on error

#include "curr_time.h"

char *currTime(const char *format);

Returns pointer to statically allocated string, or NULL on error
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Listing 10-2: A function that returns a string containing the current time

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––– time/curr_time.c
#include <time.h>
#include "curr_time.h"          /* Declares function defined here */

#define BUF_SIZE 1000

/* Return a string containing the current time formatted according to
   the specification in 'format' (see strftime(3) for specifiers).
   If 'format' is NULL, we use "%c" as a specifier (which gives the
   date and time as for ctime(3), but without the trailing newline).
   Returns NULL on error. */

Table 10-1: Selected conversion specifiers for strftime()

Specifier Description Example

%% A % character %

%a Abbreviated weekday name Tue

%A Full weekday name Tuesday

%b, %h Abbreviated month name Feb

%B Full month name February

%c Date and time Tue Feb  1 21:39:46 2011

%d Day of month (2 digits, 01 to 31) 01

%D American date (same as %m/%d/%y) 02/01/11

%e Day of month (2 characters)  1

%F ISO date (same as %Y-%m-%d) 2011-02-01

%H Hour (24-hour clock, 2 digits) 21

%I Hour (12-hour clock, 2 digits) 09

%j Day of year (3 digits, 001 to 366) 032

%m Decimal month (2 digits, 01 to 12) 02

%M Minute (2 digits) 39

%p AM/PM PM

%P am/pm (GNU extension) pm

%R 24-hour time (same as %H:%M) 21:39

%S Second (00 to 60) 46

%T Time (same as %H:%M:%S) 21:39:46

%u Weekday number (1 to 7, Monday = 1) 2

%U Sunday week number (00 to 53) 05

%w Weekday number (0 to 6, Sunday = 0) 2

%W Monday week number (00 to 53) 05

%x Date (localized) 02/01/11

%X Time (localized) 21:39:46

%y 2-digit year 11

%Y 4-digit year 2011

%Z Timezone name CET
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char *
currTime(const char *format)
{
    static char buf[BUF_SIZE];  /* Nonreentrant */
    time_t t;
    size_t s;
    struct tm *tm;

    t = time(NULL);
    tm = localtime(&t);
    if (tm == NULL)
        return NULL;

    s = strftime(buf, BUF_SIZE, (format != NULL) ? format : "%c", tm);

    return (s == 0) ? NULL : buf;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––– time/curr_time.c

Converting from printable form to broken-down time

The strptime() function is the converse of strftime(). It converts a date-plus-time
string to a broken-down time.

The strptime() function uses the specification given in format to parse the date-plus-
time string given in str, and places the converted broken-down time in the structure
pointed to by timeptr.

On success, strptime() returns a pointer to the next unprocessed character in str.
(This is useful if the string contains further information to be processed by the call-
ing program.) If the complete format string could not be matched, strptime()
returns NULL to indicate the error.

The format specification given to strptime() is akin to that given to scanf(3). It
contains the following types of characters:

conversion specifications beginning with a percent character (%);

white-space characters, which match zero or more white spaces in the input
string; and

non-white-space characters (other than %), which must match exactly the same
characters in the input string.

#define _XOPEN_SOURCE
#include <time.h>

char *strptime(const char *str, const char *format, struct tm *timeptr);
Returns pointer to next unprocessed character in

str on success, or NULL on error
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The conversion specifications are similar to those given to strftime() (Table 10-1). The
major difference is that the specifiers are more general. For example, both %a and
%A can accept a weekday name in either full or abbreviated form, and %d or %e can be
used to read a day of the month with or without a leading 0 in the case of single-
digit days. In addition, case is ignored; for example, May and MAY are equivalent
month names. The string %% is used to match a percent character in the input
string. The strptime(3) manual page provides more details.

The glibc implementation of strptime() doesn’t modify those fields of the tm
structure that are not initialized by specifiers in format. This means that we can
employ a series of strptime() calls to construct a single tm structure from informa-
tion in multiple strings, such as a date string and a time string. While SUSv3 per-
mits this behavior, it doesn’t require it, and so we can’t rely on it on other UNIX
implementations. In a portable application, we must ensure that str and format con-
tain input that will set all fields of the resulting tm structure, or make sure that the
tm structure is suitably initialized before calling strptime(). In most cases, it would be
sufficient to zero out the entire structure using memset(), but be aware that a value
of 0 in the tm_mday field corresponds to the last day of the previous month in glibc
and many other implementations of the time-conversion functions. Finally, note
that strptime() never sets the value of the tm_isdst field of the tm structure.

The GNU C library also provides two other functions that serve a similar pur-
pose to strptime(): getdate() (specified in SUSv3 and widely available) and its
reentrant analog getdate_r() (not specified in SUSv3 and available on only a few
other UNIX implementations). We don’t describe these functions here,
because they employ an external file (identified by the environment variable
DATEMSK) to specify the format used for scanning the date, which makes them
somewhat awkward to use and also creates security vulnerabilities in set-user-
ID programs.

Listing 10-3 demonstrates the use of strptime() and strftime(). This program takes a
command-line argument containing a date and time, converts this to a broken-down
time using strptime(), and then displays the result of performing the reverse conver-
sion using strftime(). The program takes up to three arguments, of which the first two
are required. The first argument is the string containing a date and time. The second
argument is the format specification to be used by strptime() to parse the first argu-
ment. The optional third argument is the format string to be used by strftime() for the
reverse conversion. If this argument is omitted, a default format string is used. (We
describe the setlocale() function used in this program in Section 10.4.) The following
shell session log shows some examples of the use of this program:

$ ./strtime "9:39:46pm 1 Feb 2011" "%I:%M:%S%p %d %b %Y"
calendar time (seconds since Epoch): 1296592786
strftime() yields: 21:39:46 Tuesday, 01 February 2011 CET

The following usage is similar, but this time we explicitly specify a format for
strftime():

$ ./strtime "9:39:46pm 1 Feb 2011" "%I:%M:%S%p %d %b %Y" "%F %T"
calendar time (seconds since Epoch): 1296592786
strftime() yields: 2011-02-01 21:39:46
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Listing 10-3: Retrieving and converting calendar times

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– time/strtime.c
#define _XOPEN_SOURCE
#include <time.h>
#include <locale.h>
#include "tlpi_hdr.h"

#define SBUF_SIZE 1000

int
main(int argc, char *argv[])
{
    struct tm tm;
    char sbuf[SBUF_SIZE];
    char *ofmt;

    if (argc < 3 || strcmp(argv[1], "--help") == 0)
        usageErr("%s input-date-time in-format [out-format]\n", argv[0]);

    if (setlocale(LC_ALL, "") == NULL)
        errExit("setlocale");   /* Use locale settings in conversions */

    memset(&tm, 0, sizeof(struct tm));          /* Initialize 'tm' */
    if (strptime(argv[1], argv[2], &tm) == NULL)
        fatal("strptime");

    tm.tm_isdst = -1;           /* Not set by strptime(); tells mktime()
                                   to determine if DST is in effect */
    printf("calendar time (seconds since Epoch): %ld\n", (long) mktime(&tm));

    ofmt = (argc > 3) ? argv[3] : "%H:%M:%S %A, %d %B %Y %Z";
    if (strftime(sbuf, SBUF_SIZE, ofmt, &tm) == 0)
        fatal("strftime returned 0");
    printf("strftime() yields: %s\n", sbuf);

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– time/strtime.c

10.3 Timezones

Different countries (and sometimes even different regions within a single country)
operate on different timezones and DST regimes. Programs that input and output
times must take into account the timezone and DST regime of the system on which
they are run. Fortunately, all of the details are handled by the C library.

Timezone definitions

Timezone information tends to be both voluminous and volatile. For this reason,
rather than encoding it directly into programs or libraries, the system maintains
this information in files in standard formats.
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These files reside in the directory /usr/share/zoneinfo. Each file in this directory
contains information about the timezone regime in a particular country or region.
These files are named according to the timezone they describe, so we may find files
with names such as EST (US Eastern Standard Time), CET (Central European Time),
UTC, Turkey, and Iran. In addition, subdirectories can be used to hierarchically group
related timezones. Under a directory such as Pacific, we may find the files Auckland,
Port_Moresby, and Galapagos. When we specify a timezone for use by a program, in
effect, we are specifying a relative pathname for one of the timezone files in this
directory.

The local time for the system is defined by the timezone file /etc/localtime,
which is often linked to one of the files in /usr/share/zoneinfo.

The format of timezone files is documented in the tzfile(5) manual page. Time-
zone files are built using zic(8), the zone information compiler. The zdump(8)
command can be used to display the time as it would be currently according to
the timezone in a specified timezone file.

Specifying the timezone for a program

To specify a timezone when running a program, we set the TZ environment variable
to a string consisting of a colon (:) followed by one of the timezone names defined
in /usr/share/zoneinfo. Setting the timezone automatically influences the functions
ctime(), localtime(), mktime(), and strftime().

To obtain the current timezone setting, each of these functions uses tzset(3),
which initializes three global variables:

char *tzname[2];    /* Name of timezone and alternate (DST) timezone */
int daylight;       /* Nonzero if there is an alternate (DST) timezone */
long timezone;      /* Seconds difference between UTC and local
                       standard time */

The tzset() function first checks the TZ environment variable. If this variable is
not set, then the timezone is initialized to the default defined in the timezone
file /etc/localtime. If the TZ environment variable is defined with a value that
can’t be matched to a timezone file, or it is an empty string, then UTC is used.
The TZDIR environment variable (a nonstandard GNU-extension) can be set to
the name of a directory in which timezone information should be sought instead
of in the default /usr/share/zoneinfo.

We can see the effect of the TZ variable by running the program in Listing 10-4.
In the first run, we see the output corresponding to the system’s default timezone
(Central European Time, CET). In the second run, we specify the timezone for New
Zealand, which at this time of year is on daylight saving time, 12 hours ahead of CET.

$ ./show_time
ctime() of time() value is:  Tue Feb  1 10:25:56 2011
asctime() of local time is:  Tue Feb  1 10:25:56 2011
strftime() of local time is: Tuesday, 01 Feb 2011, 10:25:56 CET
$ TZ=":Pacific/Auckland" ./show_time
ctime() of time() value is:  Tue Feb  1 22:26:19 2011
asctime() of local time is:  Tue Feb  1 22:26:19 2011
strftime() of local time is: Tuesday, 01 February 2011, 22:26:19 NZDT
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Listing 10-4: Demonstrate the effect of timezones and locales

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– time/show_time.c

#include <time.h>
#include <locale.h>
#include "tlpi_hdr.h"

#define BUF_SIZE 200

int
main(int argc, char *argv[])
{
    time_t t;
    struct tm *loc;
    char buf[BUF_SIZE];

    if (setlocale(LC_ALL, "") == NULL)
        errExit("setlocale");   /* Use locale settings in conversions */

    t = time(NULL);

    printf("ctime() of time() value is:  %s", ctime(&t));

    loc = localtime(&t);
    if (loc == NULL)
        errExit("localtime");

    printf("asctime() of local time is:  %s", asctime(loc));

    if (strftime(buf, BUF_SIZE, "%A, %d %B %Y, %H:%M:%S %Z", loc) == 0)
        fatal("strftime returned 0");
    printf("strftime() of local time is: %s\n", buf);

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– time/show_time.c

SUSv3 defines two general ways in which the TZ environment variable can be set. As
just described, TZ can be set to a character sequence consisting of a colon plus a
string that identifies the timezone in an implementation-specific manner, typically
as a pathname for a timezone description file. (Linux and some other UNIX imple-
mentations permit the colon to be omitted when using this form, but SUSv3
doesn’t specify this; for portability, we should always include the colon.)

The other method of setting TZ is fully specified in SUSv3. In this method, we
assign a string of the following form to TZ:

std offset [ dst [ offset ][ , start-date [ /time ] , end-date [ /time ]]]

Spaces are included in the line above for clarity, but none should appear in the TZ
value. The brackets ([]) are used to indicate optional components.

The std and dst components are strings identifying the standard and DST time-
zones; for example, CET and CEST for Central European Time and Central Euro-
pean Summer Time. The offset in each case specifies the positive or negative
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adjustment to add to the local time to convert it to UTC. The final four compo-
nents provide a rule describing when the change from standard time to DST
occurs.

The dates can be specified in a variety of forms, one of which is Mm.n.d. This
notation means day d (0 = Sunday, 6 = Saturday) of week n (1 to 5, where 5 always
means the last d day) of month m (1 to 12). If the time is omitted, it defaults to
02:00:00 (2 AM) in each case.

Here is how we could define TZ for Central Europe, where standard time is one
hour ahead of UTC, and DST—running from the last Sunday in March to the last
Sunday in October—is 2 hours ahead of UTC:

TZ="CET-1:00:00CEST-2:00:00,M3.5.0,M10.5.0

We omitted the specification of the time for the DST changeover, since it occurs at
the default of 02:00:00. Of course, the preceding form is less readable than the
Linux-specific near equivalent:

TZ=":Europe/Berlin"

10.4 Locales

Several thousand languages are spoken across the world, of which a significant per-
centage are regularly used on computer systems. Furthermore, different countries
use different conventions for displaying information such as numbers, currency
amounts, dates, and times. For example, in most European countries, a comma,
rather than a decimal point, is used to separate the integer and fractional parts of
(real) numbers, and most countries use formats for writing dates that are different
from the MM/DD/YY format used in the United States. SUSv3 defines a locale as the
“subset of a user’s environment that depends on language and cultural conventions.”

Ideally, all programs designed to run in more than one location should deal
with locales in order to display and input information in the user’s preferred lan-
guage and format. This constitutes the complex subject of internationalization. In
the ideal world, we would write a program once, and then, wherever it was run, it
would automatically do the right things when performing I/O; that is, it would
perform the task of localization. Internationalizing programs is a somewhat time-
consuming job, although various tools are available to ease the task. Program librar-
ies such as glibc also provide facilities to help with internationalization.

The term internationalization is often written as I18N, for I plus 18 letters plus N.
As well as being quicker to write, this term has the advantage of avoiding the
difference in the spelling of the term itself in British and American English.

Locale definitions

Like timezone information, locale information tends to be both voluminous and
volatile. For this reason, rather than requiring each program and library to store
locale information, the system maintains this information in files in standard formats.
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Locale information is maintained in a directory hierarchy under /usr/share/
locale (or /usr/lib/locale in some distributions). Each subdirectory under this direc-
tory contains information about a particular locale. These directories are named
using the following convention:

language[_territory[.codeset]][@modifier]

The language is a two-letter ISO language code, and the territory is a two-letter ISO
country code. The codeset designates a character-encoding set. The modifier pro-
vides a means of distinguishing multiple locale directories whose language, terri-
tory, and codeset are the same. An example of a complete locale directory name is
de_DE.utf-8@euro, as the locale for: German language, Germany, UTF-8 character
encoding, employing the euro as the monetary unit.

As indicated by the brackets shown in the directory naming format, various
parts of the name of a locale directory can be omitted. Often the name consists of
just a language and a territory. Thus, the directory en_US is the locale directory for
the (English-speaking) United States, and fr_CH is the locale directory for the
French-speaking region of Switzerland.

The CH stands for Confoederatio Helvetica, the Latin (and thus locally language-
neutral) name for Switzerland. With four official national languages, Switzer-
land is an example of a locale analog of a country with multiple timezones.

When we specify a locale to be used within a program, we are, in effect, specifying
the name of one of the subdirectories under /usr/share/locale. If the locale speci-
fied to the program doesn’t match a locale directory name exactly, then the C
library searches for a match by stripping components from the specified locale in
the following order:

1. codeset

2. normalized codeset

3. territory

4. modifier

The normalized codeset is a version of the codeset name in which all nonalphanu-
meric characters are removed, all letters are converted to lowercase, and the result-
ing string is preprended with the characters iso. The aim of normalizing is to
handle variations in the capitalization and punctuation (e.g., extra hyphens) of
codeset names.

As an example of this stripping process, if the locale for a program is specified
as fr_CH.utf-8, but no locale directory by that name exists, then the fr_CH locale
directory will be matched if it exists. If the fr_CH directory doesn’t exist, then the fr
locale directory will be used. In the unlikely event that the fr directory doesn’t
exist, then the setlocale() function, described shortly, will report an error.

The file /usr/share/locale/locale.alias defines alternative ways of specifying
locales to a program. See the locale.aliases(5) manual page for details.
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Under each locale subdirectory is a standard set of files that specify the conven-
tions for this locale, as shown in Table 10-2. Note the following further points con-
cerning the information in this table:

The LC_COLLATE file defines a set of rules describing how the characters in a char-
acter set are ordered (i.e., the “alphabetical” order for the character set). These
rules determine the operation of the strcoll(3) and strxfrm(3) functions. Even
languages using Latin-based scripts don’t follow the same ordering rules. For
example, several European languages have additional letters that, in some
cases, sort after the letter Z. Other special cases include the Spanish two-letter
sequence ll, which sorts as a single letter after l, and the German umlauted
characters such as ä, which corresponds to ae and sorts as those two letters.

The LC_MESSAGES directory is one step toward internationalizing the messages
displayed by a program. More extensive internationalization of program mes-
sages can be accomplished through the use of either message catalogs (see the
catopen(3) and catgets(3) manual pages) or the GNU gettext API (available at
http://www.gnu.org/).

Version 2.2.2 of glibc introduced a number of new, nonstandard locale catego-
ries. LC_ADDRESS defines rules for the locale-specific representation of a postal
address. LC_IDENTIFICATION specifies information identifying the locale.
LC_MEASUREMENT defines the measurement system for the locale (e.g., metric ver-
sus imperial). LC_NAME defines the locale-specific rules for representation of a
person’s names and title. LC_PAPER defines the standard paper size for the
locale (e.g., US letter versus the A4 format used in most other countries).
LC_TELEPHONE defines the rules for locale-specific representation of domestic
and international telephone numbers, as well as the international country pre-
fix and international dial-out prefix.

The actual locales that are defined on a system can vary. SUSv3 doesn’t make any
requirements about this, except that a standard locale called POSIX (and synony-
mously, C, a name that exists for historical reasons) must be defined. This locale
mirrors the historical behavior of UNIX systems. Thus, it is based on an ASCII

Table 10-2: Contents of locale-specific subdirectories

Filename Purpose

LC_CTYPE A file containing character classifications (see isalpha(3)) and rules for case 
conversion

LC_COLLATE A file containing the collation rules for a character set
LC_MONETARY A file containing formatting rules for monetary values (see localeconv(3) and 

<locale.h>)
LC_NUMERIC A file containing formatting rules for numbers other than monetary values 

(see localeconv(3) and <locale.h>)
LC_TIME A file containing formatting rules for dates and times
LC_MESSAGES A directory containing files specifying formats and values used for 

affirmative and negative (yes/no) responses 
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character set, and uses English for names of days and months, and for yes/no
responses. The monetary and numeric components of this locale are undefined.

The locale command displays information about the current locale environ-
ment (within the shell). The command locale –a lists the full set of locales
defined on the system.

Specifying the locale for a program

The setlocale() function is used to both set and query a program’s current locale.

The category argument selects which part of the locale to set or query, and is speci-
fied as one of a set of constants whose names are the same as the locale categories
listed in Table 10-2. Thus, for example, it is possible to set the locale for time dis-
plays to be Germany, while setting the locale for monetary displays to US dollars.
Alternatively, and more commonly, we can use the value LC_ALL to specify that we
want to set all aspects of the locale.

There are two different methods of setting the locale using setlocale(). The locale
argument may be a string specifying one of the locales defined on the system (i.e.,
the name of one of the subdirectories under /usr/lib/locale), such as de_DE or en_US.
Alternatively, locale may be specified as an empty string, meaning that locale set-
tings should be taken from environment variables:

setlocale(LC_ALL, "");

We must make this call in order for a program to be cognizant of the locale envi-
ronment variables. If the call is omitted, these environment variables will have no
effect on the program.

When running a program that makes a setlocale(LC_ALL, “”) call, we can con-
trol various aspects of the locale using a set of environment variables whose names
again correspond to the categories listed in Table 10-2: LC_CTYPE, LC_COLLATE,
LC_MONETARY, LC_NUMERIC, LC_TIME, and LC_MESSAGES. Alternatively, we can use the LC_ALL
or the LANG environment variable to specify the setting of the entire locale. If more
than one of the preceding variables is set, then LC_ALL has precedence over all of the
other LC_* environment variables, and LANG has lowest precedence. Thus, it is possible
to use LANG to set a default locale for all categories, and then use individual LC_* vari-
ables to set aspects of the locale to something other than this default.

As its result, setlocale() returns a pointer to a (usually statically allocated) string
that identifies the locale setting for this category. If we are interested only in discov-
ering the current locale setting, without changing it, then we can specify the locale
argument as NULL.

Locale settings control the operation of a wide range of GNU/Linux utilities,
as well as many functions in glibc. Among these are the functions strftime() and

#include <locale.h>

char *setlocale(int category, const char *locale);

Returns pointer to a (usually statically allocated) string identifying
the new or current locale on success, or NULL on error
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strptime() (Section 10.2.3), as shown by the results from strftime() when we run the
program in Listing 10-4 in a number of different locales:

$ LANG=de_DE ./show_time                        German locale
ctime() of time() value is:  Tue Feb  1 12:23:39 2011
asctime() of local time is:  Tue Feb  1 12:23:39 2011
strftime() of local time is: Dienstag, 01 Februar 2011, 12:23:39 CET

The next run demonstrates that the LC_TIME has precedence over LANG:

$ LANG=de_DE LC_TIME=it_IT ./show_time          German and Italian locales
ctime() of time() value is:  Tue Feb  1 12:24:03 2011
asctime() of local time is:  Tue Feb  1 12:24:03 2011
strftime() of local time is: martedì, 01 febbraio 2011, 12:24:03 CET

And this run demonstrates that LC_ALL has precedence over LC_TIME:

$ LC_ALL=fr_FR LC_TIME=en_US ./show_time        French and US locales
ctime() of time() value is:  Tue Feb  1 12:25:38 2011
asctime() of local time is:  Tue Feb  1 12:25:38 2011
strftime() of local time is: mardi, 01 février 2011, 12:25:38 CET

10.5 Updating the System Clock

We now look at two interfaces that update the system clock: settimeofday() and
adjtime(). These interfaces are rarely used by application programs (since the sys-
tem time is usually maintained by tools such as the Network Time Protocol daemon),
and they require that the caller be privileged (CAP_SYS_TIME).

The settimeofday() system call performs the converse of gettimeofday() (which we
described in Section 10.1): it sets the system’s calendar time to the number of sec-
onds and microseconds specified in the timeval structure pointed to by tv.

As with gettimeofday(), the use of the tz argument is obsolete, and this argument
should always be specified as NULL.

The microsecond precision of the tv.tv_usec field doesn’t mean that we have
microsecond accuracy in controlling the system clock, since the clock’s granularity
may be larger than one microsecond.

Although settimeofday() is not specified in SUSv3, it is widely available on other
UNIX implementations.

Linux also provides the stime() system call for setting the system clock. The dif-
ference between settimeofday() and stime() is that the latter call allows the new
calendar time to be expressed with a precision of only 1 second. As with time()
and gettimeofday(), the reason for the existence of both stime() and settimeofday()
is historical: the latter, more precise call was added by 4.3BSD.

#define _BSD_SOURCE
#include <sys/time.h>

int settimeofday(const struct timeval *tv, const struct timezone *tz);

Returns 0 on success, or –1 on error
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Abrupt changes in the system time of the sort caused by calls to settimeofday() can
have deleterious effects on applications (e.g., make(1), a database system using
timestamps, or time-stamped log files) that depend on a monotonically increasing
system clock. For this reason, when making small changes to the time (of the order
of a few seconds), it is usually preferable to use the adjtime() library function, which
causes the system clock to gradually adjust to the desired value.

The delta argument points to a timeval structure that specifies the number of seconds
and microseconds by which to change the time. If this value is positive, then a small
amount of additional time is added to the system clock each second, until the
desired amount of time has been added. If the delta value is negative, the clock is
slowed down in a similar fashion.

The rate of clock adjustment on Linux/x86-32 amounts to 1 second per 2000 sec-
onds (or 43.2 seconds per day).

It may be that an incomplete clock adjustment was in progress at the time of the
adjtime() call. In this case, the amount of remaining, unadjusted time is returned in
the timeval structure pointed to by olddelta. If we are not interested in this value, we
can specify olddelta as NULL. Conversely, if we are interested only in knowing the cur-
rently outstanding time correction to be made, and don’t want to change the value,
we can specify the delta argument as NULL.

Although not specified in SUSv3, adjtime() is available on most UNIX
implementations.

On Linux, adjtime() is implemented on top of a more general (and complex)
Linux-specific system call, adjtimex(). This system call is employed by the
Network Time Protocol (NTP) daemon. For further information, refer to the
Linux source code, the Linux adjtimex(2) manual page, and the NTP specifica-
tion ([Mills, 1992]).

10.6 The Software Clock (Jiffies)

The accuracy of various time-related system calls described in this book is limited
to the resolution of the system software clock, which measures time in units called
jiffies. The size of a jiffy is defined by the constant HZ within the kernel source code.
This is the unit in which the kernel allocates the CPU to processes under the round-
robin time-sharing scheduling algorithm (Section 35.1).

On Linux/x86-32 in kernel versions up to and including 2.4, the rate of the
software clock was 100 hertz; that is, a jiffy is 10 milliseconds.

Because CPU speeds have greatly increased since Linux was first implemented,
in kernel 2.6.0, the rate of the software clock was raised to 1000 hertz on Linux/
x86-32. The advantages of a higher software clock rate are that timers can operate

#define _BSD_SOURCE
#include <sys/time.h>

int adjtime(struct timeval *delta, struct timeval *olddelta);

Returns 0 on success, or –1 on error
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with greater accuracy and time measurements can be made with greater precision.
However, it isn’t desirable to set the clock rate to arbitrarily high values, because
each clock interrupt consumes a small amount of CPU time, which is time that the
CPU can’t spend executing processes.

Debate among kernel developers eventually resulted in the software clock
rate becoming a configurable kernel option (under Processor type and features,
Timer frequency). Since kernel 2.6.13, the clock rate can be set to 100, 250 (the
default), or 1000 hertz, giving jiffy values of 10, 4, and 1 milliseconds, respec-
tively. Since kernel 2.6.20, a further frequency is available: 300 hertz, a number
that divides evenly for two common video frame rates: 25 frames per second
(PAL) and 30 frames per second (NTSC).

10.7 Process Time

Process time is the amount of CPU time used by a process since it was created. For
recording purposes, the kernel separates CPU time into the following two
components:

User CPU time is the amount of time spent executing in user mode. Sometimes
referred to as virtual time, this is the time that it appears to the program that it
has access to the CPU.

System CPU time is amount of time spent executing in kernel mode. This is the
time that the kernel spends executing system calls or performing other tasks
on behalf of the program (e.g., servicing page faults).

Sometimes, we refer to process time as the total CPU time consumed by the process.
When we run a program from the shell, we can use the time(1) command to

obtain both process time values, as well as the real time required to run the program:

$ time ./myprog
real    0m4.84s
user    0m1.030s
sys     0m3.43s

The times() system call retrieves process time information, returning it in the struc-
ture pointed to by buf.

This tms structure pointed to by buf has the following form:

struct tms {
    clock_t tms_utime;   /* User CPU time used by caller */
    clock_t tms_stime;   /* System CPU time used by caller */

#include <sys/times.h>

clock_t times(struct tms *buf);

Returns number of clock ticks (sysconf(_SC_CLK_TCK)) since
“arbitrary” time in past on success, or (clock_t) –1 on error
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    clock_t tms_cutime;  /* User CPU time of all (waited for) children */
    clock_t tms_cstime;  /* System CPU time of all (waited for) children */
};

The first two fields of the tms structure return the user and system components of
CPU time used so far by the calling process. The last two fields return information
about the CPU time used by all child processes that have terminated and for which
the parent (i.e., the caller of times()) has done a wait() system call.

The clock_t data type used to type the four fields of the tms structure is an integer
type that measures time in units called clock ticks. We can call sysconf(_SC_CLK_TCK)
to obtain the number of clock ticks per second, and then divide a clock_t value by
this number to convert to seconds. (We describe sysconf() in Section 11.2.)

On most Linux hardware architectures, sysconf(_SC_CLK_TCK) returns the
number 100. This corresponds to the kernel constant USER_HZ. However,
USER_HZ can be defined with a value other than 100 on a few architectures, such
as Alpha and IA-64.

On success, times() returns the elapsed (real) time in clock ticks since some arbi-
trary point in the past. SUSv3 deliberately does not specify what this point is,
merely stating that it will be constant during the life of the calling process. There-
fore, the only portable use of this return value is to measure elapsed time in the
execution of the process by calculating the difference in the value returned by pairs
of times() calls. However, even for this use, the return value of times() is unreliable,
since it can overflow the range of clock_t, at which point the value would cycle to
start again at 0 (i.e., a later times() call could return a number that is lower than an
earlier times() call). The reliable way to measure the passage of elapsed time is to
use gettimeofday() (described in Section 10.1).

On Linux, we can specify buf as NULL; in this case, times() simply returns a func-
tion result. However, this is not portable. The use of NULL for buf is not specified in
SUSv3, and many other UNIX implementations require a non-NULL value for this
argument.

The clock() function provides a simpler interface for retrieving the process
time. It returns a single value that measures the total (i.e., user plus system) CPU
time used by the calling process.

The value returned by clock() is measured in units of CLOCKS_PER_SEC, so we must divide
by this value to arrive at the number of seconds of CPU time used by the process.
CLOCKS_PER_SEC is fixed at 1 million by POSIX.1, regardless of the resolution of the
underlying software clock (Section 10.6). The accuracy of clock() is nevertheless lim-
ited to the resolution of the software clock.

#include <time.h>

clock_t clock(void);

Returns total CPU time used by calling process measured in
CLOCKS_PER_SEC, or (clock_t) –1 on error
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Although the clock_t return type of clock() is the same data type that is used in
the times() call, the units of measurement employed by these two interfaces are
different. This is the result of historically conflicting definitions of clock_t in
POSIX.1 and the C programming language standard.

Even though CLOCKS_PER_SEC is fixed at 1 million, SUSv3 notes that this constant could
be an integer variable on non-XSI-conformant systems, so that we can’t portably treat
it as a compile-time constant (i.e., we can’t use it in #ifdef preprocessor expressions).
Because it may be defined as a long integer (i.e., 1000000L), we always cast this con-
stant to long so that we can portably print it with printf() (see Section 3.6.2).

SUSv3 states that clock() should return “the processor time used by the pro-
cess.” This is open to different interpretations. On some UNIX implementations,
the time returned by clock() includes the CPU time used by all waited-for children.
On Linux, it does not.

Example program

The program in Listing 10-5 demonstrates the use of the functions described in
this section. The displayProcessTimes() function prints the message supplied by the
caller, and then uses clock() and times() to retrieve and display process times. The
main program makes an initial call to displayProcessTimes(), and then executes a
loop that consumes some CPU time by repeatedly calling getppid(), before again
calling displayProcessTimes() once more to see how much CPU time has been con-
sumed within the loop. When we use this program to call getppid() 10 million times,
this is what we see:

$ ./process_time 10000000
CLOCKS_PER_SEC=1000000  sysconf(_SC_CLK_TCK)=100

At program start:
        clock() returns: 0 clocks-per-sec (0.00 secs)
        times() yields: user CPU=0.00; system CPU: 0.00
After getppid() loop:
        clock() returns: 2960000 clocks-per-sec (2.96 secs)
        times() yields: user CPU=1.09; system CPU: 1.87

Listing 10-5: Retrieving process CPU times

––––––––––––––––––––––––––––––––––––––––––––––––––––––– time/process_time.c

#include <sys/times.h>
#include <time.h>
#include "tlpi_hdr.h"

static void             /* Display 'msg' and process times */
displayProcessTimes(const char *msg)
{
    struct tms t;
    clock_t clockTime;
    static long clockTicks = 0;

    if (msg != NULL)
        printf("%s", msg);
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    if (clockTicks == 0) {      /* Fetch clock ticks on first call */
        clockTicks = sysconf(_SC_CLK_TCK);
        if (clockTicks == -1)
            errExit("sysconf");
    }

    clockTime = clock();
    if (clockTime == -1)
        errExit("clock");

    printf("        clock() returns: %ld clocks-per-sec (%.2f secs)\n",
            (long) clockTime, (double) clockTime / CLOCKS_PER_SEC);

    if (times(&t) == -1)
        errExit("times");
    printf("        times() yields: user CPU=%.2f; system CPU: %.2f\n",
            (double) t.tms_utime / clockTicks,
            (double) t.tms_stime / clockTicks);
}

int
main(int argc, char *argv[])
{
    int numCalls, j;

    printf("CLOCKS_PER_SEC=%ld  sysconf(_SC_CLK_TCK)=%ld\n\n",
            (long) CLOCKS_PER_SEC, sysconf(_SC_CLK_TCK));

    displayProcessTimes("At program start:\n");

    numCalls = (argc > 1) ? getInt(argv[1], GN_GT_0, "num-calls") : 100000000;
    for (j = 0; j < numCalls; j++)
        (void) getppid();

    displayProcessTimes("After getppid() loop:\n");

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––– time/process_time.c

10.8 Summary

Real time corresponds to the everyday definition of time. When real time is mea-
sured from some standard point, we refer to it as calendar time, by contrast with
elapsed time, which is measured from some point (usually the start) in the life of a
process.

Process time is the amount of CPU time used by a process, and is divided into
user and system components.

Various system calls enable us to get and set the system clock value (i.e., calendar
time, as measured in seconds since the Epoch), and a range of library functions allow
conversions between calendar time and other time formats, including broken-down
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time and human-readable character strings. Describing such conversions took us into
a discussion of locales and internationalization.

Using and displaying times and dates is an important part of many applications,
and we’ll make frequent use of the functions described in this chapter in later parts
of this book. We also say a little more about the measurement of time in Chapter 23.

Further information

Details of how the Linux kernel measures time can be found in [Love, 2010].
An extensive discussion of timezones and internationalization can be found in

the GNU C library manual (online at http://www.gnu.org/). The SUSv3 documents
also cover locales in detail.

10.9 Exercise

10-1. Assume a system where the value returned by the call sysconf(_SC_CLK_TCK) is
100. Assuming that the clock_t value returned by times() is an unsigned 32-bit
integer, how long will it take before this value cycles so that it restarts at 0? Perform
the same calculation for the CLOCKS_PER_SEC value returned by clock().
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S Y S T E M  L I M I T S  A N D  O P T I O N S

Each UNIX implementation sets limits on various system features and resources,
and provides—or chooses not to provide—options defined in various standards.
Examples include the following:

How many files can a process hold open at one time?

Does the system support realtime signals?

What is the largest value that can be stored in a variable of type int?

How big an argument list can a program have?

What is the maximum length of a pathname?

While we could hard-code assumed limits and options into an application, this
reduces portability, since limits and options may vary:

Across UNIX implementations: Although limits and options may be fixed on an
individual implementation, they can vary from one UNIX implementation to
another. The maximum value that can be stored in an int is an example of such
a limit.

At run time on a particular implementation: The kernel may have been reconfig-
ured to change a limit, for example. Alternatively, the application may have
been compiled on one system, but run on another system with different limits
and options.



From one file system to another: For example, traditional System V file systems
allow a filename to be up to 14 bytes, while traditional BSD file systems and
most native Linux file systems allow filenames of up to 255 bytes.

Since system limits and options affect what an application may do, a portable appli-
cation needs ways of determining limit values and whether options are supported.
The C programming language standards and SUSv3 provide two principal avenues
for an application to obtain such information:

Some limits and options can be determined at compile time. For example, the
maximum value of an int is determined by the hardware architecture and com-
piler design choices. Such limits can be recorded in header files.

Other limits and options may vary at run time. For such cases, SUSv3 defines
three functions—sysconf(), pathconf(), and fpathconf()—that an application can
call to check these implementation limits and options.

SUSv3 specifies a range of limits that a conforming implementation may enforce,
as well as a set of options, each of which may or may not be provided by a particular
system. We describe a few of these limits and options in this chapter, and describe
others at relevant points in later chapters.

11.1 System Limits

For each limit that it specifies, SUSv3 requires that all implementations support a
minimum value for the limit. In most cases, this minimum value is defined as a con-
stant in <limits.h> with a name prefixed by the string _POSIX_, and (usually) contain-
ing the string _MAX; thus, the form of the name is _POSIX_XXX_MAX.

If an application restricts itself to the minimum values that SUSv3 requires for
each limit, then it will be portable to all implementations of the standard. However,
doing so prevents an application from taking advantage of implementations that
provide higher limits. For this reason, it is usually preferable to determine the limit
on a particular system using <limits.h>, sysconf(), or pathconf().

The use of the string _MAX in the limit names defined by SUSv3 can appear
confusing, given their description as minimum values. The rationale for the
names becomes clear when we consider that each of these constants defines
an upper limit on some resource or feature, and the standards are saying
that this upper limit must have a certain minimum value.

In some cases, maximum values are provided for a limit, and these values
have names containing the string _MIN. For these constants, the converse holds
true: they represent a lower limit on some resource, and the standards are say-
ing that, on a conforming implementation, this lower limit can be no greater
than a certain value. For example, the FLT_MIN limit (1E-37) defines the largest
value that an implementation may set for the smallest floating-point number
that may be represented, and all conforming implementations will be able to
represent floating-point numbers at least this small.

Each limit has a name, which corresponds to the minimum value name described
above, but lacks the _POSIX_ prefix. An implementation may define a constant with
this name in <limits.h> to indicate the corresponding limit for this implementation.
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If defined, this limit will always be at least the size of the minimum value described
above (i.e., XXX_MAX >= _POSIX_XXX_MAX).

SUSv3 divides the limits that it specifies into three categories: runtime invariant
values, pathname variable values, and runtime increasable values. In the following para-
graphs, we describe these categories and provide some examples.

Runtime invariant values (possibly indeterminate)

A runtime invariant value is a limit whose value, if defined in <limits.h>, is fixed for
the implementation. However, the value may be indeterminate (perhaps because it
depends on available memory space), and hence omitted from <limits.h>. In this
case (and even if the limit is also defined in <limits.h>), an application can use
sysconf() to determine the value at run time.

The MQ_PRIO_MAX limit is an example of a runtime invariant value. As noted in
Section 52.5.1, there is a limit on the priority for messages in POSIX message
queues. SUSv3 defines the constant _POSIX_MQ_PRIO_MAX, with the value 32, as the
minimum value that all conforming implementations must provide for this limit.
This means that we can be sure that all conforming implementations will allow prior-
ities from 0 up to at least 31 for message priorities. A UNIX implementation can set a
higher limit than this, defining the constant MQ_PRIO_MAX in <limits.h> with the value of
its limit. For example, on Linux, MQ_PRIO_MAX is defined with the value 32,768. This value
can also be determined at run time using the following call:

lim = sysconf(_SC_MQ_PRIO_MAX);

Pathname variable values

Pathname variable values are limits that relate to pathnames (files, directories, ter-
minals, and so on). Each limit may be constant for the implementation or may vary
from one file system to another. In cases where a limit can vary depending on the
pathname, an application can determine its value using pathconf() or fpathconf().

The NAME_MAX limit is an example of a pathname variable value. This limit
defines the maximum size for a filename on a particular file system. SUSv3 defines
the constant _POSIX_NAME_MAX, with the value 14 (the old System V file-system limit),
as the minimum value that an implementation must allow. An implementation may
define NAME_MAX with a limit higher than this and/or make information about a spe-
cific file system available via a call of the following form:

lim = pathconf(directory_path, _PC_NAME_MAX)

The directory_path is a pathname for a directory on the file system of interest.

Runtime increasable values

A runtime increasable value is a limit that has a fixed minimum value for a particu-
lar implementation, and all systems running the implementation will provide at
least this minimum value. However, a specific system may increase this limit at run
time, and an application can find the actual value supported on the system using
sysconf().

An example of a runtime increasable value is NGROUPS_MAX, which defines the
maximum number of simultaneous supplementary group IDs for a process
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(Section 9.6). SUSv3 defines the corresponding minimum value, _POSIX_NGROUPS_MAX,
with the value 8. At run time, an application can retrieve the limit using the call
sysconf(_SC_NGROUPS_MAX).

Summary of selected SUSv3 limits

Table 11-1 lists a few of the SUSv3-defined limits that are relevant to this book
(other limits are introduced in later chapters). 

The first column of Table 11-1 gives the name of the limit, which may be defined as
a constant in <limits.h> to indicate the limit for a particular implementation. The
second column is the SUSv3-defined minimum for the limit (also defined in
<limits.h>). In most cases, each of the minimum values is defined as a constant pre-
fixed with the string _POSIX_. For example, the constant _POSIX_RTSIG_MAX (defined

Table 11-1: Selected SUSv3 limits

Name of limit 
(<limits.h>)

Min. 
value

sysconf() / pathconf() 
name (<unistd.h>)

Description

ARG_MAX 4096 _SC_ARG_MAX Maximum bytes for arguments (argv) 
plus environment (environ) that can be 
supplied to an exec() (Sections 6.7 
and 27.2.3)

none none _SC_CLK_TCK Unit of measurement for times()
LOGIN_NAME_MAX 9 _SC_LOGIN_NAME_MAX Maximum size of a login name (including 

terminating null byte)
OPEN_MAX 20 _SC_OPEN_MAX Maximum number of file descriptors that 

a process can have open at one time, and 
one greater than maximum usable 
descriptor number (Section 36.2)

NGROUPS_MAX 8 _SC_NGROUPS_MAX Maximum number of supplementary 
groups of which a process can be a mem-
ber (Section 9.7.3)

none 1 _SC_PAGESIZE Size of a virtual memory page 
(_SC_PAGE_SIZE is a synonym)

RTSIG_MAX 8 _SC_RTSIG_MAX Maximum number of distinct realtime 
signals (Section 22.8)

SIGQUEUE_MAX 32 _SC_SIGQUEUE_MAX Maximum number of queued realtime 
signals (Section 22.8)

STREAM_MAX 8 _SC_STREAM_MAX Maximum number of stdio streams that 
can be open at one time

NAME_MAX 14 _PC_NAME_MAX Maximum number of bytes in a filename, 
excluding terminating null byte

PATH_MAX 256 _PC_PATH_MAX Maximum number of bytes in a 
pathname, including terminating 
null byte

PIPE_BUF 512 _PC_PIPE_BUF Maximum number of bytes that can be 
written atomically to a pipe or FIFO 
(Section 44.1)
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with the value 8) specifies the SUSv3-required minimum corresponding to the
RTSIG_MAX implementation constant. The third column specifies the constant name
that can be given at run time to sysconf() or pathconf() in order to retrieve the imple-
mentation limit. The constants beginning with _SC_ are for use with sysconf(); those
beginning with _PC_ are for use with pathconf() and fpathconf(). 

Note the following information supplementary to that shown in Table 11-1:

The getdtablesize() function is an obsolete alternative for determining the pro-
cess file descriptor limit (OPEN_MAX). This function was specified in SUSv2
(marked LEGACY), but was removed in SUSv3.

The getpagesize() function is an obsolete alternative for determining the system
page size (_SC_PAGESIZE). This function was specified in SUSv2 (marked LEG-
ACY), but was removed in SUSv3.

The constant FOPEN_MAX, defined in <stdio.h>, is synonymous with STREAM_MAX.

NAME_MAX excludes the terminating null byte, while PATH_MAX includes it. This incon-
sistency repairs an earlier inconsistency in the POSIX.1 standard that left it
unclear whether PATH_MAX included the terminating null byte. Defining PATH_MAX to
include the terminator means that applications that allocated just PATH_MAX bytes
for a pathname will still conform to the standard.

Determining limits and options from the shell: getconf

From the shell, we can use the getconf command to obtain the limits and options
implemented by a particular UNIX implementation. The general form of this com-
mand is as follows:

$ getconf variable-name [ pathname ]

The variable-name identifies the limit of interest and is one of the SUSV3 standard
limit names, such as ARG_MAX or NAME_MAX. Where the limit relates to a pathname, we
must specify a pathname as the second argument to the command, as in the second
of the following examples.

$ getconf ARG_MAX
131072
$ getconf NAME_MAX /boot
255

11.2 Retrieving System Limits (and Options) at Run Time

The sysconf() function allows an application to obtain the values of system limits at
run time.

#include <unistd.h>

long sysconf(int name);

Returns value of limit specified by name,
or –1 if limit is indeterminate or an error occurred
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The name argument is one of the _SC_* constants defined in <unistd.h>, some of
which are listed in Table 11-1. The value of the limit is returned as the function
result.

If a limit can’t be determined, sysconf() returns –1. It may also return –1 if an
error occurred. (The only specified error is EINVAL, indicating that name is not
valid.) To distinguish the case of an indeterminate limit from an error, we must set
errno to 0 before the call; if the call returns –1 and errno is set after the call, then an
error occurred.

The limit values returned by sysconf() (as well as pathconf() and fpathconf()) are
always (long) integers. In the rationale text for sysconf(), SUSv3 notes that
strings were considered as possible return values, but were rejected because of
the complexity of implementation and use.

Listing 11-1 demonstrates the use of sysconf() to display various system limits. Run-
ning this program on one Linux 2.6.31/x86-32 system yields the following:

$ ./t_sysconf
_SC_ARG_MAX:         2097152
_SC_LOGIN_NAME_MAX:  256
_SC_OPEN_MAX:        1024
_SC_NGROUPS_MAX:     65536
_SC_PAGESIZE:        4096
_SC_RTSIG_MAX:       32

Listing 11-1: Using sysconf()
–––––––––––––––––––––––––––––––––––––––––––––––––––––––– syslim/t_sysconf.c

#include "tlpi_hdr.h"

static void     /* Print 'msg' plus sysconf() value for 'name' */
sysconfPrint(const char *msg, int name)
{
    long lim;

    errno = 0;
    lim = sysconf(name);
    if (lim != -1) {        /* Call succeeded, limit determinate */
        printf("%s %ld\n", msg, lim);
    } else {
        if (errno == 0)     /* Call succeeded, limit indeterminate */
            printf("%s (indeterminate)\n", msg);
        else                /* Call failed */
            errExit("sysconf %s", msg);
    }
}

int
main(int argc, char *argv[])
{
    sysconfPrint("_SC_ARG_MAX:        ", _SC_ARG_MAX);
    sysconfPrint("_SC_LOGIN_NAME_MAX: ", _SC_LOGIN_NAME_MAX);
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    sysconfPrint("_SC_OPEN_MAX:       ", _SC_OPEN_MAX);
    sysconfPrint("_SC_NGROUPS_MAX:    ", _SC_NGROUPS_MAX);
    sysconfPrint("_SC_PAGESIZE:       ", _SC_PAGESIZE);
    sysconfPrint("_SC_RTSIG_MAX:      ", _SC_RTSIG_MAX);
    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– syslim/t_sysconf.c

SUSv3 requires that the value returned by sysconf() for a particular limit be constant
for the lifetime of the calling process. For example, we can assume that the value
returned for _SC_PAGESIZE won’t change while a process is running.

On Linux, there are some (sensible) exceptions to the statement that limit
values are constant for the life of a process. A process can use setrlimit() (Sec-
tion 36.2) to change various process resource limits that affect limit values
reported by sysconf(): RLIMIT_NOFILE, which determines the number of files the
process may open (_SC_OPEN_MAX); RLIMIT_NPROC (a resource limit not actually
specified in SUSv3), which is the per-user limit on the number of processes
that may created by this process (_SC_CHILD_MAX); and RLIMIT_STACK, which, since
Linux 2.6.23, determines the limit on the space allowed for the process’s
command-line arguments and environment (_SC_ARG_MAX; see the execve(2) man-
ual page for details).

11.3 Retrieving File-Related Limits (and Options) at Run Time

The pathconf() and fpathconf() functions allow an application to obtain the values of
file-related limits at run time.

The only difference between pathconf() and fpathconf() is the manner in which a file
or directory is specified. For pathconf(), specification is by pathname; for fpathconf(),
specification is via a (previously opened) file descriptor.

The name argument is one of the _PC_* constants defined in <unistd.h>, some of
which are listed in Table 11-1. Table 11-2 provides some further details about the
_PC_* constants that were shown in Table 11-1.

The value of the limit is returned as the function result. We can distinguish
between an indeterminate return and an error return in the same manner as for
sysconf().

Unlike sysconf(), SUSv3 doesn’t require that the values returned by pathconf()
and fpathconf() remain constant over the lifetime of a process, since, for example, a
file system may be dismounted and remounted with different characteristics while
a process is running.

#include <unistd.h>

long pathconf(const char *pathname, int name);
long fpathconf(int fd, int name);

Both return value of limit specified by name,
or –1 if limit is indeterminate or an error occurred
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Listing 11-2 shows the use of fpathconf() to retrieve various limits for the file
referred to by its standard input. When we run this program specifying standard
input as a directory on an ext2 file system, we see the following:

$ ./t_fpathconf < .
_PC_NAME_MAX:  255
_PC_PATH_MAX:  4096
_PC_PIPE_BUF:  4096

Listing 11-2: Using fpathconf()
–––––––––––––––––––––––––––––––––––––––––––––––––––––– syslim/t_fpathconf.c
#include "tlpi_hdr.h"

static void     /* Print 'msg' plus value of fpathconf(fd, name) */
fpathconfPrint(const char *msg, int fd, int name)
{
    long lim;

    errno = 0;
    lim = fpathconf(fd, name);
    if (lim != -1) {        /* Call succeeded, limit determinate */
        printf("%s %ld\n", msg, lim);
    } else {
        if (errno == 0)     /* Call succeeded, limit indeterminate */
            printf("%s (indeterminate)\n", msg);
        else                /* Call failed */
            errExit("fpathconf %s", msg);
    }
}

int
main(int argc, char *argv[])
{
    fpathconfPrint("_PC_NAME_MAX: ", STDIN_FILENO, _PC_NAME_MAX);
    fpathconfPrint("_PC_PATH_MAX: ", STDIN_FILENO, _PC_PATH_MAX);
    fpathconfPrint("_PC_PIPE_BUF: ", STDIN_FILENO, _PC_PIPE_BUF);
    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– syslim/t_fpathconf.c

Table 11-2: Details of selected pathconf() _PC_* names

Constant Notes

_PC_NAME_MAX For a directory, this yields a value for files in the directory. Behavior for 
other file types is unspecified.

_PC_PATH_MAX For a directory, this yields the maximum length for a relative pathname 
from this directory. Behavior for other file types is unspecified.

_PC_PIPE_BUF For a FIFO or a pipe, this yields a value that applies to the referenced file. 
For a directory, the value applies to a FIFO created in that directory. 
Behavior for other file types is unspecified.
218 Chapter 11



11.4 Indeterminate Limits

On occasion, we may find that some system limit is not defined by an implementa-
tion limit constant (e.g., PATH_MAX), and that sysconf() or pathconf() informs us that the
limit (e.g., _PC_PATH_MAX) is indeterminate. In this case, we can employ one of the fol-
lowing strategies:

When writing an application to be portable across multiple UNIX implementa-
tions, we could elect to use the minimum limit value specified by SUSv3. These
are the constants with names of the form _POSIX_*_MAX, described in Section 11.1.
Sometimes, this approach may not be viable because the limit is unrealistically
low, as in the cases of _POSIX_PATH_MAX and _POSIX_OPEN_MAX.

In some cases, a practical solution may be to ignore the checking of limits, and
instead perform the relevant system or library function call. (Similar argu-
ments can also apply with respect to some of the SUSv3 options described in
Section 11.5.) If the call fails and errno indicates that the error occurred
because some system limit was exceeded, then we can try again, modifying the
application behavior as necessary. For example, most UNIX implementations
impose a limit on the number of realtime signals that can be queued to a pro-
cess. Once this limit is reached, attempts to send further signals (using
sigqueue()) fail with the error EAGAIN. In this case, the sending process could
simply retry, perhaps after some delay interval. Similarly, attempting to open a
file whose name is too long yields the error ENAMETOOLONG, and an application
could deal with this by trying again with a shorter name.

We can write our own program or function to either deduce or estimate the
limit. In each case, the relevant sysconf() or pathconf() call is made, and if this
limit is indeterminate, the function returns a “good guess” value. While not
perfect, such a solution is often viable in practice.

We can employ a tool such as GNU Autoconf, an extensible tool that can determine
the existence and settings of various system features and limits. The Autoconf
program produces header files based on the information it determines, and
these files can then be included in C programs. Further information about
Autoconf can be found at http://www.gnu.org/software/autoconf/.

11.5 System Options

As well as specifying limits for various system resources, SUSv3 also specifies vari-
ous options that a UNIX implementation may support. These include support for
features such as realtime signals, POSIX shared memory, job control, and POSIX
threads. With a few exceptions, implementations are not required to support these
options. Instead, SUSv3 allows an implementation to advise—at both compile time
and run time—whether it supports a particular feature.

An implementation can advertise support for a particular SUSv3 option at
compile time by defining a corresponding constant in <unistd.h>. Each such con-
stant starts with a prefix that indicates the standard from which it originates (e.g.,
_POSIX_ or _XOPEN_).
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Each option constant, if defined, has one of the following values:

A value of –1 means that the option is not supported. In this case, header files,
data types, and function interfaces associated with the option need not be
defined by the implementation. We may need to handle this possibility by con-
ditional compilation using #if preprocessor directives.

A value of 0 means that the option may be supported. An application must check
at run time to see whether the option is supported.

A value greater than 0 means that the option is supported. All header files, data
types, and function interfaces associated with this option are defined and
behave as specified. In many cases, SUSv3 requires that this positive value be
200112L, a constant corresponding to the year and month number in which
SUSv3 was approved as a standard. (The analogous value for SUSv4 is 200809L.)

Where a constant is defined with the value 0, an application can use the sysconf()
and pathconf() (or fpathconf()) functions to check at run time whether the option is
supported. The name arguments passed to these functions generally have the same
form as the corresponding compile-time constants, but with the prefix replaced by
_SC_ or _PC_. The implementation must provide at least the header files, constants,
and function interfaces necessary to perform the run-time check.

SUSv3 is unclear on whether an undefined option constant has the same mean-
ing as defining the constant with the value 0 (“the option may be supported”) or
with the value –1 (“the option is not supported”). The standards committee
subsequently resolved that this case should mean the same as defining the con-
stant with the value –1, and SUSv4 states this explicitly.

Table 11-3 lists some of the options specified in SUSv3. The first column of the
table gives the name of the associated compile-time constant for the option
(defined in <unistd.h>), as well as the corresponding sysconf() (_SC_*) or pathconf()
(_PC_*) name argument. Note the following points regarding specific options:

Certain options are required by SUSv3; that is, the compile-time constant
always evaluates to a value greater than 0. Historically, these options were truly
optional, but nowadays they are not. These options are marked with the char-
acter + in the Notes column. (In SUSv4, a range of options that were optional in
SUSv3 become mandatory.)

Although such options are required by SUSv3, some UNIX systems may never-
theless be installed in a nonconforming configuration. Thus, for portable
applications, it may be worth checking whether an option that affects the appli-
cation is supported, regardless of whether the standard requires that option.

For certain options, the compile-time constant must have a value other than –1.
In other words, either the option must be supported or support at run time
must be checkable. These options are marked with the character * in the Notes
column.
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11.6 Summary

SUSv3 specifies limits that an implementation may enforce and system options that
an implementation may support.

Often, it is desirable not to hard-code assumptions about system limits and
options into a program, since these may vary across implementations and also on a
single implementation, either at run time or across file systems. Therefore, SUSv3
specifies methods by which an implementation can advertise the limits and options
it supports. For most limits, SUSv3 specifies a minimum value that all implementations
must support. Additionally, each implementation can advertise its implementation-
specific limits and options at compile time (via a constant definition in <limits.h> or
<unistd.h>) and/or run time (via a call to sysconf(), pathconf(), or fpathconf()). These
techniques may similarly be used to find out which SUSv3 options an implementa-
tion supports. In some cases, it may not be possible to determine a particular limit
using either of these methods. For such indeterminate limits, we must resort to
ad hoc techniques to determine the limit to which an application should adhere.

Table 11-3: Selected SUSv3 options

Option (constant) name
(sysconf() / pathconf() name)

Description Notes

_POSIX_ASYNCHRONOUS_IO
(_SC_ASYNCHRONOUS_IO)

Asynchronous I/O

_POSIX_CHOWN_RESTRICTED
(_PC_CHOWN_RESTRICTED)

Only privileged processes can use chown() and 
fchown() to change the user ID and group ID of a 
file to arbitrary values (Section 15.3.2)

*

_POSIX_JOB_CONTROL
(_SC_JOB_CONTROL)

Job Control (Section 34.7) +

_POSIX_MESSAGE_PASSING
(_SC_MESSAGE_PASSING)

POSIX Message Queues (Chapter 52)

_POSIX_PRIORITY_SCHEDULING
(_SC_PRIORITY_SCHEDULING)

Process Scheduling (Section 35.3)

_POSIX_REALTIME_SIGNALS
(_SC_REALTIME_SIGNALS)

Realtime Signals Extension (Section 22.8)

_POSIX_SAVED_IDS
(none)

Processes have saved set-user-IDs and saved 
set-group-IDs (Section 9.4)

+

_POSIX_SEMAPHORES
(_SC_SEMAPHORES)

POSIX Semaphores (Chapter 53)

_POSIX_SHARED_MEMORY_OBJECTS
(_SC_SHARED_MEMORY_OBJECTS)

POSIX Shared Memory Objects (Chapter 54)

_POSIX_THREADS
(_SC_THREADS)

POSIX Threads

_XOPEN_UNIX
(_SC_XOPEN_UNIX)

The XSI extension is supported (Section 1.3.4)
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Further information

Chapter 2 of [Stevens & Rago, 2005] and Chapter 2 of [Gallmeister, 1995] cover
similar ground to this chapter. [Lewine, 1991] also provides much useful (although
now slightly outdated) background. Some information about POSIX options with
notes on glibc and Linux details can be found at http://people.redhat.com/drepper/
posix-option-groups.html. The following Linux manual pages are also relevant:
sysconf(3), pathconf(3), feature_test_macros(7), posixoptions(7), and standards(7).

The best sources of information (though sometimes difficult reading) are the
relevant parts of SUSv3, particularly Chapter 2 from the Base Definitions (XBD),
and the specifications for <unistd.h>, <limits.h>, sysconf(), and fpathconf(). [Josey,
2004] provides guidance on the use of SUSv3.

11.7 Exercises

11-1. Try running the program in Listing 11-1 on other UNIX implementations if you
have access to them.

11-2. Try running the program in Listing 11-2 on other file systems.
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S Y S T E M  A N D  P R O C E S S  
I N F O R M A T I O N

In this chapter, we look at ways of accessing a variety of system and process infor-
mation. The primary focus of the chapter is a discussion of the /proc file system. We
also describe the uname() system call, which is used to retrieve various system
identifiers.

12.1 The /proc File System

In older UNIX implementations, there was typically no easy way to introspectively
analyze (or change) attributes of the kernel, to answer questions such as the following:

How many processes are running on the system and who owns them?

What files does a process have open?

What files are currently locked, and which processes hold the locks?

What sockets are being used on the system?

Some older UNIX implementations solved this problem by allowing privileged pro-
grams to delve into data structures in kernel memory. However, this approach
suffered various problems. In particular, it required specialized knowledge of the
kernel data structures, and these structures might change from one kernel version
to the next, requiring programs that depended on them to be rewritten.



In order to provide easier access to kernel information, many modern UNIX
implementations provide a /proc virtual file system. This file system resides under
the /proc directory and contains various files that expose kernel information, allow-
ing processes to conveniently read that information, and change it in some cases,
using normal file I/O system calls. The /proc file system is said to be virtual because
the files and subdirectories that it contains don’t reside on a disk. Instead, the kernel
creates them “on the fly” as processes access them.

In this section, we present an overview of the /proc file system. In later chap-
ters, we describe specific /proc files, as they relate to the topics of each chapter.
Although many UNIX implementations provide a /proc file system, SUSv3 doesn’t
specify this file system; the details described in this book are Linux-specific.

12.1.1 Obtaining Information About a Process: /proc/PID
For each process on the system, the kernel provides a corresponding directory
named /proc/PID, where PID is the ID of the process. Within this directory are vari-
ous files and subdirectories containing information about that process. For example,
we can obtain information about the init process, which always has the process ID 1,
by looking at files under the directory /proc/1.

Among the files in each /proc/PID directory is one named status, which pro-
vides a range of information about the process:

$ cat /proc/1/status
Name:   init Name of command run by this process
State:  S (sleeping) State of this process
Tgid:   1 Thread group ID (traditional PID, getpid())
Pid:    1 Actually, thread ID (gettid())
PPid:   0 Parent process ID
TracerPid:      0 PID of tracing process (0 if not traced)
Uid:    0       0       0       0 Real, effective, saved set, and FS UIDs
Gid:    0       0       0       0 Real, effective, saved set, and FS GIDs
FDSize: 256 # of file descriptor slots currently allocated
Groups: Supplementary group IDs
VmPeak:      852 kB Peak virtual memory size
VmSize:      724 kB Current virtual memory size
VmLck:         0 kB Locked memory
VmHWM:       288 kB Peak resident set size
VmRSS:       288 kB Current resident set size
VmData:      148 kB Data segment size
VmStk:        88 kB Stack size
VmExe:       484 kB Text (executable code) size
VmLib:         0 kB Shared library code size
VmPTE:        12 kB Size of page table (since 2.6.10)
Threads:        1 # of threads in this thread’s thread group
SigQ:   0/3067 Current/max. queued signals (since 2.6.12)
SigPnd: 0000000000000000 Signals pending for thread
ShdPnd: 0000000000000000 Signals pending for process (since 2.6)
SigBlk: 0000000000000000 Blocked signals
SigIgn: fffffffe5770d8fc Ignored signals
SigCgt: 00000000280b2603 Caught signals
CapInh: 0000000000000000 Inheritable capabilities
CapPrm: 00000000ffffffff Permitted capabilities
224 Chapter 12



CapEff: 00000000fffffeff Effective capabilities
CapBnd: 00000000ffffffff Capability bounding set (since 2.6.26)
Cpus_allowed:   1 CPUs allowed, mask (since 2.6.24)
Cpus_allowed_list:      0 Same as above, list format (since 2.6.26)
Mems_allowed:   1 Memory nodes allowed, mask (since 2.6.24)
Mems_allowed_list:      0 Same as above, list format (since 2.6.26)
voluntary_ctxt_switches:     6998 Voluntary context switches (since 2.6.23)
nonvoluntary_ctxt_switches:  107 Involuntary context switches (since 2.6.23)
Stack usage:    8 kB Stack usage high-water mark (since 2.6.32)

The above output is taken from kernel 2.6.32. As indicated by the since comments
accompanying the file output, the format of this file has evolved over time, with
new fields added (and in a few cases, removed) in various kernel versions. (Aside
from the Linux 2.6 changes noted above, Linux 2.4 added the Tgid, TracerPid,
FDSize, and Threads fields.)

The fact that the contents of this file have changed over time raises a general
point about the use of /proc files: when these files consist of multiple entries, we
should parse them defensively—in this case, looking for a match on a line containing
a particular string (e.g., PPid:), rather than processing the file by (logical) line number.

Table 12-1 lists some of the other files found in each /proc/PID directory.

The /proc/PID/fd directory

The /proc/PID/fd directory contains one symbolic link for each file descriptor that
the process has open. Each of these symbolic links has a name that matches the
descriptor number; for example, /proc/1968/1 is a symbolic link to the standard out-
put of process 1968. Refer to Section 5.11 for further information.

As a convenience, any process can access its own /proc/PID directory using the
symbolic link /proc/self.

Threads: the /proc/PID/task directory

Linux 2.4 added the notion of thread groups to properly support the POSIX
threading model. Since some attributes are distinct for the threads in a thread
group, Linux 2.4 added a task subdirectory under the /proc/PID directory. For each
thread in this process, the kernel provides a subdirectory named /proc/PID/task/TID,

Table 12-1:  Selected files in each /proc/PID directory

File Description (process attribute)

cmdline Command-line arguments delimited by \0
cwd Symbolic link to current working directory
environ Environment list NAME=value pairs, delimited by \0
exe Symbolic link to file being executed
fd Directory containing symbolic links to files opened by this process 
maps Memory mappings
mem Process virtual memory (must lseek() to valid offset before I/O)
mounts Mount points for this process
root Symbolic link to root directory
status Various information (e.g., process IDs, credentials, memory usage, signals)
task Contains one subdirectory for each thread in process (Linux 2.6)
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where TID is the thread ID of the thread. (This is the same number as would be
returned by a call to gettid() in the thread.)

Under each /proc/PID/task/TID subdirectory is a set of files and directories
exactly like those that are found under /proc/PID. Since threads share many attri-
butes, much of the information in these files is the same for each of the threads in
the process. However, where it makes sense, these files show distinct information
for each thread. For example, in the /proc/PID/task/TID/status files for a thread
group, State, Pid, SigPnd, SigBlk, CapInh, CapPrm, CapEff, and CapBnd are some of
the fields that may be distinct for each thread.

12.1.2 System Information Under /proc
Various files and subdirectories under /proc provide access to system-wide informa-
tion. A few of these are shown in Figure 12-1.

Many of the files shown in Figure 12-1 are described elsewhere in this book.
Table 12-2 summarizes the general purpose of the /proc subdirectories shown in
Figure 12-1.

12.1.3 Accessing /proc Files
Files under /proc are often accessed using shell scripts (most /proc files that contain
multiple values can be easily parsed with a scripting language such as Python or
Perl). For example, we can modify and view the contents of a /proc file using shell
commands as follows:

# echo 100000 > /proc/sys/kernel/pid_max
# cat /proc/sys/kernel/pid_max
100000

/proc files can also be accessed from a program using normal file I/O system calls.
Some restrictions apply when accessing these files:

Some /proc files are read-only; that is, they exist only to display kernel informa-
tion and can’t be used to modify that information. This applies to most files
under the /proc/PID directories.

Some /proc files can be read only by the file owner (or by a privileged process).
For example, all files under /proc/PID are owned by the user who owns the cor-
responding process, and on some of these files (e.g., /proc/PID/environ), read
permission is granted only to the file owner.

Table 12-2: Purpose of selected /proc subdirectories

Directory Information exposed by files in this directory

/proc Various system information
/proc/net Status information about networking and sockets
/proc/sys/fs Settings related to file systems
/proc/sys/kernel Various general kernel settings
/proc/sys/net Networking and sockets settings
/proc/sys/vm Memory-management settings
/proc/sysvipc Information about System V IPC objects
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Other than the files in the /proc/PID subdirectories, most files under /proc are
owned by root, and the files that are modifiable can be modified only by root.

Figure 12-1: Selected files and subdirectories under /proc

Accessing files in /proc/PID

The /proc/PID directories are volatile. Each of these directories comes into existence
when a process with the corresponding process ID is created and disappears when
that process terminates. This means that if we determine that a particular /proc/PID
directory exists, then we need to cleanly handle the possibility that the process has
terminated, and the corresponding /proc/PID directory has been deleted, by the
time we try to open a file in that directory.
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Example program

Listing 12-1 demonstrates how to read and modify a /proc file. This program reads
and displays the contents of /proc/sys/kernel/pid_max. If a command-line argument
is supplied, the program updates the file using that value. This file (which is new in
Linux 2.6) specifies an upper limit for process IDs (Section 6.2). Here is an example
of the use of this program:

$ su                            Privilege is required to update pid_max file
Password:
# ./procfs_pidmax 10000
Old value: 32768
/proc/sys/kernel/pid_max now contains 10000

Listing 12-1: Accessing /proc/sys/kernel/pid_max

–––––––––––––––––––––––––––––––––––––––––––––––––––– sysinfo/procfs_pidmax.c
#include <fcntl.h>
#include "tlpi_hdr.h"

#define MAX_LINE 100

int
main(int argc, char *argv[])
{
    int fd;
    char line[MAX_LINE];
    ssize_t n;

    fd = open("/proc/sys/kernel/pid_max", (argc > 1) ? O_RDWR : O_RDONLY);
    if (fd == -1)
        errExit("open");

    n = read(fd, line, MAX_LINE);
    if (n == -1)
        errExit("read");

    if (argc > 1)
        printf("Old value: ");
    printf("%.*s", (int) n, line);

    if (argc > 1) {
        if (write(fd, argv[1], strlen(argv[1])) != strlen(argv[1]))
            fatal("write() failed");

        system("echo /proc/sys/kernel/pid_max now contains "
               "`cat /proc/sys/kernel/pid_max`");
    }

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––– sysinfo/procfs_pidmax.c
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12.2 System Identification: uname()

The uname() system call returns a range of identifying information about the host
system on which an application is running, in the structure pointed to by utsbuf.

The utsbuf argument is a pointer to a utsname structure, which is defined as follows:

#define _UTSNAME_LENGTH 65

struct utsname {
    char sysname[_UTSNAME_LENGTH];      /* Implementation name */
    char nodename[_UTSNAME_LENGTH];     /* Node name on network */
    char release[_UTSNAME_LENGTH];      /* Implementation release level */
    char version[_UTSNAME_LENGTH];      /* Release version level */
    char machine[_UTSNAME_LENGTH];      /* Hardware on which system
                                           is running */
#ifdef _GNU_SOURCE                      /* Following is Linux-specific */
    char domainname[_UTSNAME_LENGTH];   /* NIS domain name of host */
#endif
};

SUSv3 specifies uname(), but leaves the lengths of the various fields of the utsname
structure undefined, requiring only that the strings be terminated by a null byte.
On Linux, these fields are each 65 bytes long, including space for the terminating
null byte. On some UNIX implementations, these fields are shorter; on others (e.g.,
Solaris), they range up to 257 bytes.

The sysname, release, version, and machine fields of the utsname structure are
automatically set by the kernel.

On Linux, three files in the directory /proc/sys/kernel provide access to the
same information as is returned in the sysname, release, and version fields of the
utsname structure. These read-only files are, respectively, ostype, osrelease, and
version. Another file, /proc/version, includes the same information as in these
files, and also includes information about the kernel compilation step (i.e., the
name of the user that performed the compilation, the name of host on which
the compilation was performed, and the gcc version used).

The nodename field returns the value that was set using the sethostname() system call
(see the manual page for details of this system call). Often, this name is something
like the hostname prefix from the system’s DNS domain name.

The domainname field returns the value that was set using the setdomainname()
system call (see the manual page for details of this system call). This is the Network
Information Services (NIS) domain name of the host (which is not the same thing
as the host’s DNS domain name).

#include <sys/utsname.h>

int uname(struct utsname *utsbuf);

Returns 0 on success, or –1 on error
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The gethostname() system call, which is the converse of sethostname(), retrieves the
system hostname. The system hostname is also viewable and settable using
the hostname(1) command and the Linux-specific /proc/hostname file.

The getdomainname() system call, which is the converse of setdomainname(),
retrieves the NIS domain name. The NIS domain name is also viewable and set-
table using the domainname(1) command and the Linux-specific /proc/domainname
file.

The sethostname() and setdomainname() system calls are rarely used in appli-
cation programs. Normally, the hostname and NIS domain name are estab-
lished at boot time by startup scripts.

The program in Listing 12-2 displays the information returned by uname(). Here’s
an example of the output we might see when running this program:

$ ./t_uname
Node name:   tekapo
System name: Linux
Release:     2.6.30-default
Version:     #3 SMP Fri Jul 17 10:25:00 CEST 2009
Machine:     i686
Domain name:

Listing 12-2: Using uname()
–––––––––––––––––––––––––––––––––––––––––––––––––––––––– sysinfo/t_uname.c

#define _GNU_SOURCE
#include <sys/utsname.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    struct utsname uts;

    if (uname(&uts) == -1)
        errExit("uname");

    printf("Node name:   %s\n", uts.nodename);
    printf("System name: %s\n", uts.sysname);
    printf("Release:     %s\n", uts.release);
    printf("Version:     %s\n", uts.version);
    printf("Machine:     %s\n", uts.machine);
#ifdef _GNU_SOURCE
    printf("Domain name: %s\n", uts.domainname);
#endif
    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– sysinfo/t_uname.c
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12.3 Summary

The /proc file system exposes a range of kernel information to application pro-
grams. Each /proc/PID subdirectory contains files and subdirectories that provide
information about the process whose ID matches PID. Various other files and
directories under /proc expose system-wide information that programs can read
and, in some cases, modify.

The uname() system call allows us to discover the UNIX implementation and
the type of machine on which an application is running.

Further information

Further information about the /proc file system can be found in the proc(5) manual
page, in the kernel source file Documentation/filesystems/proc.txt, and in various files
in the Documentation/sysctl directory.

12.4 Exercises

12-1. Write a program that lists the process ID and command name for all processes
being run by the user named in the program’s command-line argument. (You may
find the userIdFromName() function from Listing 8-1, on page 159, useful.) This can
be done by inspecting the Name: and Uid: lines of all of the /proc/PID/status files on
the system. Walking through all of the /proc/PID directories on the system requires the
use of readdir(3), which is described in Section 18.8. Make sure your program
correctly handles the possibility that a /proc/PID directory disappears between the
time that the program determines that the directory exists and the time that it tries
to open the corresponding /proc/PID/status file.

12-2. Write a program that draws a tree showing the hierarchical parent-child
relationships of all processes on the system, going all the way back to init. For each
process, the program should display the process ID and the command being
executed. The output of the program should be similar to that produced by pstree(1),
although it does need not to be as sophisticated. The parent of each process on the
system can be found by inspecting the PPid: line of all of the /proc/PID/status files
on the system. Be careful to handle the possibility that a process’s parent (and thus
its /proc/PID directory) disappears during the scan of all /proc/PID directories.

12-3. Write a program that lists all processes that have a particular file pathname open.
This can be achieved by inspecting the contents of all of the /proc/PID/fd/* symbolic
links. This will require nested loops employing readdir(3) to scan all /proc/PID
directories, and then the contents of all /proc/PID/fd entries within each /proc/PID
directory. To read the contents of a /proc/PID/fd/n symbolic link requires the use
of readlink(), described in Section 18.5.
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F I L E  I / O  B U F F E R I N G

In the interests of speed and efficiency, I/O system calls (i.e., the kernel) and the I/O
functions of the standard C library (i.e., the stdio functions) buffer data when oper-
ating on disk files. In this chapter, we describe both types of buffering and consider
how they affect application performance. We also look at various techniques for
influencing and disabling both types of buffering, and look at a technique called
direct I/O, which is useful for bypassing kernel buffering in certain circumstances.

13.1 Kernel Buffering of File I/O: The Buffer Cache

When working with disk files, the read() and write() system calls don’t directly ini-
tiate disk access. Instead, they simply copy data between a user-space buffer and a
buffer in the kernel buffer cache. For example, the following call transfers 3 bytes of
data from a buffer in user-space memory to a buffer in kernel space:

write(fd, "abc", 3);

At this point, write() returns. At some later point, the kernel writes (flushes) its
buffer to the disk. (Hence, we say that the system call is not synchronized with the
disk operation.) If, in the interim, another process attempts to read these bytes of
the file, then the kernel automatically supplies the data from the buffer cache,
rather than from (the outdated contents of) the file.



Correspondingly, for input, the kernel reads data from the disk and stores it in
a kernel buffer. Calls to read() fetch data from this buffer until it is exhausted, at
which point the kernel reads the next segment of the file into the buffer cache.
(This is a simplification; for sequential file access, the kernel typically performs
read-ahead to try to ensure that the next blocks of a file are read into the buffer
cache before the reading process requires them. We say a bit more about read-
ahead in Section 13.5.)

The aim of this design is to allow read() and write() to be fast, since they don’t
need to wait on a (slow) disk operation. This design is also efficient, since it reduces
the number of disk transfers that the kernel must perform.

The Linux kernel imposes no fixed upper limit on the size of the buffer cache.
The kernel will allocate as many buffer cache pages as are required, limited only by
the amount of available physical memory and the demands for physical memory
for other purposes (e.g., holding the text and data pages required by running pro-
cesses). If available memory is scarce, then the kernel flushes some modified buffer
cache pages to disk, in order to free those pages for reuse.

Speaking more precisely, from kernel 2.4 onward, Linux no longer maintains
a separate buffer cache. Instead, file I/O buffers are included in the page
cache, which, for example, also contains pages from memory-mapped files.
Nevertheless, in the discussion in the main text, we use the term buffer cache,
since that term is historically common on UNIX implementations.

Effect of buffer size on I/O system call performance

The kernel performs the same number of disk accesses, regardless of whether we
perform 1000 writes of a single byte or a single write of a 1000 bytes. However, the
latter is preferable, since it requires a single system call, while the former requires
1000. Although much faster than disk operations, system calls nevertheless take an
appreciable amount of time, since the kernel must trap the call, check the validity
of the system call arguments, and transfer data between user space and kernel
space (refer to Section 3.1 for further details).

The impact of performing file I/O using different buffer sizes can be seen by
running the program in Listing 4-1 (on page 71) with different BUF_SIZE values.
(The BUF_SIZE constant specifies how many bytes are transferred by each call to
read() and write().) Table 13-1 shows the time that this program requires to copy a
file of 100 million bytes on a Linux ext2 file system using different BUF_SIZE values.
Note the following points concerning the information in this table:

The Elapsed and Total CPU time columns have the obvious meanings. The User
CPU and System CPU columns show a breakdown of the Total CPU time into,
respectively, the time spent executing code in user mode and the time spent
executing kernel code (i.e., system calls).

The tests shown in the table were performed using a vanilla 2.6.30 kernel on an
ext2 file system with a block size of 4096 bytes.

When we talk about a vanilla kernel, we mean an unpatched mainline kernel.
This is in contrast to kernels that are supplied by most distributors, which
often include various patches to fix bugs or add features.
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Each row shows the average of 20 runs for the given buffer size. In these tests,
as in other tests shown later in this chapter, the file system was unmounted and
remounted between each execution of the program to ensure that the buffer
cache for the file system was empty. Timing was done using the shell time
command.

Since the total amount of data transferred (and hence the number of disk opera-
tions) is the same for the various buffer sizes, what Table 13-1 illustrates is the over-
head of making read() and write() calls. With a buffer size of 1 byte, 100 million calls
are made to read() and write(). With a buffer size of 4096 bytes, the number of invo-
cations of each system call falls to around 24,000, and near optimal performance is
reached. Beyond this point, there is no significant performance improvement,
because the cost of making read() and write() system calls becomes negligible com-
pared to the time required to copy data between user space and kernel space, and
to perform actual disk I/O.

The final rows of Table 13-1 allow us to make rough estimates of the times
required for data transfer between user space and kernel space, and for file I/O.
Since the number of system calls in these cases is relatively small, their contri-
bution to the elapsed and CPU times is negligible. Thus, we can say that the
System CPU time is essentially measuring the time for data transfers between
user space and kernel space. The Elapsed time value gives us an estimate of the
time required for data transfer to and from the disk. (As we’ll see in a moment,
this is mainly the time required for disk reads.)

In summary, if we are transferring a large amount of data to or from a file, then by
buffering data in large blocks, and thus performing fewer system calls, we can
greatly improve I/O performance.

The data in Table 13-1 measures a range of factors: the time to perform read()
and write() system calls, the time to transfer data between buffers in kernel space
and user space, and the time to transfer data between kernel buffers and the disk.
Let’s consider the last factor further. Obviously, transferring the contents of the

Table 13-1: Time required to duplicate a file of 100 million bytes

BUF_SIZE
Time (seconds)

Elapsed Total CPU User CPU System CPU
    1 107.43 107.32  8.20  99.12
    2  54.16  53.89  4.13  49.76
    4  31.72  30.96  2.30  28.66
    8  15.59  14.34  1.08  13.26
   16   7.50   7.14  0.51   6.63
   32   3.76   3.68  0.26   3.41
   64   2.19   2.04  0.13   1.91
  128   2.16   1.59  0.11   1.48
  256   2.06   1.75  0.10   1.65
  512   2.06   1.03  0.05   0.98
 1024   2.05   0.65  0.02   0.63

 4096   2.05   0.38  0.01   0.38
16384   2.05   0.34  0.00   0.33
65536   2.06   0.32  0.00   0.32
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input file into the buffer cache is unavoidable. However, we already saw that write()
returns immediately after transferring data from user space to the kernel buffer
cache. Since the RAM size on the test system (4 GB) far exceeds the size of the file
being copied (100 MB), we can assume that by the time the program completes, the
output file has not actually been written to disk. Therefore, as a further experi-
ment, we ran a program that simply wrote arbitrary data to a file using different
write() buffer sizes. The results are shown in Table 13-2.

Again, the data shown in Table 13-2 was obtained from kernel 2.6.30, on an
ext2 file system with a 4096-byte block size, and each row shows the average of 20 runs.
We don’t show the test program (filebuff/write_bytes.c), but it is available in the
source code distribution for this book.

Table 13-2 shows the costs just for making write() system calls and transferring data
from user space to the kernel buffer cache using different write() buffer sizes. For
larger buffer sizes, we see significant differences from the data shown in Table 13-1.
For example, for a 65,536-byte buffer size, the elapsed time in Table 13-1 is 2.06 sec-
onds, while for Table 13-2 it is 0.09 seconds. This is because no actual disk I/O is
being performed in the latter case. In other words, the majority of the time
required for the large buffer cases in Table 13-1 is due to the disk reads.

As we’ll see in Section 13.3, when we force output operations to block until
data is transferred to the disk, the times for write() calls rise significantly.

Finally, it is worth noting that the information in Table 13-2 (and later, in
Table 13-3) represents just one form of (naive) benchmark for a file system. Fur-
thermore, the results will probably show some variation across file systems. File systems
can be measured by various other criteria, such as performance under heavy multiuser
load, speed of file creation and deletion, time required to search for a file in a large
directory, space required to store small files, or maintenance of file integrity in the
event of a system crash. Where the performance of I/O or other file-system opera-
tions is critical, there is no substitute for application-specific benchmarks on the
target platform.

Table 13-2: Time required to write a file of 100 million bytes 

BUF_SIZE
Time (seconds)

Elapsed Total CPU User CPU System CPU
    1 72.13 72.11 5.00 67.11
    2 36.19 36.17 2.47 33.70
    4 20.01 19.99 1.26 18.73
    8  9.35  9.32 0.62  8.70
   16  4.70  4.68 0.31  4.37
   32  2.39  2.39 0.16  2.23
   64  1.24  1.24 0.07  1.16
  128  0.67  0.67 0.04  0.63
  256  0.38  0.38 0.02  0.36
  512  0.24  0.24 0.01  0.23
 1024  0.17  0.17 0.01  0.16

 4096  0.11  0.11 0.00  0.11
16384  0.10  0.10 0.00  0.10
65536  0.09  0.09 0.00  0.09
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13.2 Buffering in the stdio Library

Buffering of data into large blocks to reduce system calls is exactly what is done by
the C library I/O functions (e.g., fprintf(), fscanf(), fgets(), fputs(), fputc(), fgetc()) when
operating on disk files. Thus, using the stdio library relieves us of the task of buffer-
ing data for output with write() or input via read().

Setting the buffering mode of a stdio stream

The setvbuf() function controls the form of buffering employed by the stdio library.

The stream argument identifies the file stream whose buffering is to be modified.
After the stream has been opened, the setvbuf() call must be made before calling
any other stdio function on the stream. The setvbuf() call affects the behavior of all
subsequent stdio operations on the specified stream.

The streams used by the stdio library should not be confused with the
STREAMS facility of System V. The System V STREAMS facility is not imple-
mented in the mainline Linux kernel.

The buf and size arguments specify the buffer to be used for stream. These argu-
ments may be specified in two ways:

If buf is non-NULL, then it points to a block of memory of size bytes that is to be
used as the buffer for stream. Since the buffer pointed to by buf is then used by
the stdio library, it should be either statically allocated or dynamically allocated
on the heap (using malloc() or similar). It should not be allocated as a local
function variable on the stack, since chaos will result when that function
returns and its stack frame is deallocated.

If buf is NULL, then the stdio library automatically allocates a buffer for use with
stream (unless we select unbuffered I/O, as described below). SUSv3 permits,
but does not require, an implementation to use size to determine the size for
this buffer. In the glibc implementation, size is ignored in this case.

The mode argument specifies the type of buffering and has one of the following values:

_IONBF

Don’t buffer I/O. Each stdio library call results in an immediate write() or
read() system call. The buf and size arguments are ignored, and can be spec-
ified as NULL and 0, respectively. This is the default for stderr, so that error
output is guaranteed to appear immediately.

#include <stdio.h>

int setvbuf(FILE *stream, char *buf, int mode, size_t size);

Returns 0 on success, or nonzero on error
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_IOLBF

Employ line-buffered I/O. This flag is the default for streams referring to
terminal devices. For output streams, data is buffered until a newline char-
acter is output (unless the buffer fills first). For input streams, data is read
a line at a time.

_IOFBF

Employ fully buffered I/O. Data is read or written (via calls to read() or
write()) in units equal to the size of the buffer. This mode is the default for
streams referring to disk files.

The following code demonstrates the use of setvbuf():

#define BUF_SIZE 1024
static char buf[BUF_SIZE];

if (setvbuf(stdout, buf, _IOFBF, BUF_SIZE) != 0)
    errExit("setvbuf");

Note that setvbuf() returns a nonzero value (not necessarily –1) on error.
The setbuf() function is layered on top of setvbuf(), and performs a similar task.

Other than the fact that it doesn’t return a function result, the call setbuf(fp, buf) is
equivalent to:

setvbuf(fp, buf, (buf != NULL) ? _IOFBF: _IONBF, BUFSIZ);

The buf argument is specified either as NULL, for no buffering, or as a pointer to a
caller-allocated buffer of BUFSIZ bytes. (BUFSIZ is defined in <stdio.h>. In the glibc
implementation, this constant has the value 8192, which is typical.)

The setbuffer() function is similar to setbuf(), but allows the caller to specify the
size of buf.

The call setbuffer(fp, buf, size) is equivalent to the following:

setvbuf(fp, buf, (buf != NULL) ? _IOFBF : _IONBF, size);

The setbuffer() function is not specified in SUSv3, but is available on most UNIX
implementations.

#include <stdio.h>

void setbuf(FILE *stream, char *buf);

#define _BSD_SOURCE
#include <stdio.h>

void setbuffer(FILE *stream, char *buf, size_t size);
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Flushing a stdio buffer

Regardless of the current buffering mode, at any time, we can force the data in a
stdio output stream to be written (i.e., flushed to a kernel buffer via write()) using
the fflush() library function. This function flushes the output buffer for the speci-
fied stream.

If stream is NULL, fflush() flushes all stdio buffers.
The fflush() function can also be applied to an input stream. This causes any

buffered input to be discarded. (The buffer will be refilled when the program next
tries to read from the stream.)

A stdio buffer is automatically flushed when the corresponding stream is closed.
In many C library implementations, including glibc, if stdin and stdout refer to a

terminal, then an implicit fflush(stdout) is performed whenever input is read from
stdin. This has the effect of flushing any prompts written to stdout that don’t include
a terminating newline character (e.g., printf(“Date: ”)). However, this behavior is not
specified in SUSv3 or C99 and is not implemented in all C libraries. Portable programs
should use explicit fflush(stdout) calls to ensure that such prompts are displayed.

The C99 standard makes two requirements if a stream is opened for both input
and output. First, an output operation can’t be directly followed by an input
operation without an intervening call to fflush() or one of the file-positioning
functions (fseek(), fsetpos(), or rewind()). Second, an input operation can’t be
directly followed by an output operation without an intervening call to one of
the file-positioning functions, unless the input operation encountered end-
of-file.

13.3 Controlling Kernel Buffering of File I/O

It is possible to force flushing of kernel buffers for output files. Sometimes, this is
necessary if an application (e.g., a database journaling process) must ensure that
output really has been written to the disk (or at least to the disk’s hardware cache)
before continuing.

Before we describe the system calls used to control kernel buffering, it is useful
to consider a few relevant definitions from SUSv3.

Synchronized I/O data integrity and synchronized I/O file integrity

SUSv3 defines the term synchronized I/O completion to mean “an I/O operation that
has either been successfully transferred [to the disk] or diagnosed as unsuccessful.”

SUSv3 defines two different types of synchronized I/O completion. The differ-
ence between the types involves the metadata (“data about data”) describing the file,
which the kernel stores along with the data for a file. We consider file metadata in
detail when we look at file i-nodes in Section 14.4, but for now, it is sufficient to

#include <stdio.h>

int fflush(FILE *stream);

Returns 0 on success, EOF on error
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note that the file metadata includes information such as the file owner and group;
file permissions; file size; number of (hard) links to the file; timestamps indicating
the time of the last file access, last file modification, and last metadata change; and
file data block pointers.

The first type of synchronized I/O completion defined by SUSv3 is synchronized
I/O data integrity completion. This is concerned with ensuring that a file data update
transfers sufficient information to allow a later retrieval of that data to proceed.

For a read operation, this means that the requested file data has been trans-
ferred (from the disk) to the process. If there were any pending write opera-
tions affecting the requested data, these are transferred to the disk before
performing the read.

For a write operation, this means that the data specified in the write request
has been transferred (to the disk) and all file metadata required to retrieve that
data has also been transferred. The key point to note here is that not all modi-
fied file metadata attributes need to be transferred to allow the file data to be
retrieved. An example of a modified file metadata attribute that would need to
be transferred is the file size (if the write operation extended the file). By con-
trast, modified file timestamps would not need to be transferred to disk before
a subsequent data retrieval could proceed.

The other type of synchronized I/O completion defined by SUSv3 is synchronized I/O
file integrity completion, which is a superset of synchronized I/O data integrity com-
pletion. The difference with this mode of I/O completion is that during a file
update, all updated file metadata is transferred to disk, even if it is not necessary
for the operation of a subsequent read of the file data.

System calls for controlling kernel buffering of file I/O

The fsync() system call causes the buffered data and all metadata associated with the
open file descriptor fd to be flushed to disk. Calling fsync() forces the file to the syn-
chronized I/O file integrity completion state.

An fsync() call returns only after the transfer to the disk device (or at least its cache)
has completed.

The fdatasync() system call operates similarly to fsync(), but only forces the file
to the synchronized I/O data integrity completion state.

#include <unistd.h>

int fsync(int fd);

Returns 0 on success, or –1 on error

#include <unistd.h>

int fdatasync(int fd);

Returns 0 on success, or –1 on error
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Using fdatasync() potentially reduces the number of disk operations from the two
required by fsync() to one. For example, if the file data has changed, but the file size
has not, then calling fdatasync() only forces the data to be updated. (We noted
above that changes to file metadata attributes such as the last modification
timestamp don’t need to be transferred for synchronized I/O data completion.) By
contrast, calling fsync() would also force the metadata to be transferred to disk.

Reducing the number of disk I/O operations in this manner is useful for certain
applications in which performance is crucial and the accurate maintenance of cer-
tain metadata (such as timestamps) is not essential. This can make a considerable
performance difference for applications that are making multiple file updates:
because the file data and metadata normally reside on different parts of the disk,
updating them both would require repeated seek operations backward and for-
ward across the disk.

In Linux 2.2 and earlier, fdatasync() is implemented as a call to fsync(), and thus
carries no performance gain.

Starting with kernel 2.6.17, Linux provides the nonstandard sync_file_range()
system call, which allows more precise control than fdatasync() when flushing
file data. The caller can specify the file region to be flushed, and specify flags
controlling whether the system call blocks on disk writes. See the
sync_file_range(2) manual page for further details.

The sync() system call causes all kernel buffers containing updated file information
(i.e., data blocks, pointer blocks, metadata, and so on) to be flushed to disk.

In the Linux implementation, sync() returns only after all data has been transferred
to the disk device (or at least to its cache). However, SUSv3 permits an implementa-
tion of sync() to simply schedule the I/O transfer and return before it has completed.

A permanently running kernel thread ensures that modified kernel buffers are
flushed to disk if they are not explicitly synchronized within 30 seconds. This is
done to ensure that buffers don’t remain unsynchronized with the corre-
sponding disk file (and thus vulnerable to loss in the event of a system crash)
for long periods. In Linux 2.6, this task is performed by the pdflush kernel
thread. (In Linux 2.4, it is performed by the kupdated kernel thread.)

The file /proc/sys/vm/dirty_expire_centisecs specifies the age (in hun-
dredths of a second) that a dirty buffer must reach before it is flushed by
pdflush. Additional files in the same directory control other aspects of the oper-
ation of pdflush.

Making all writes synchronous: O_SYNC

Specifying the O_SYNC flag when calling open() makes all subsequent output
synchronous:

fd = open(pathname, O_WRONLY | O_SYNC);

#include <unistd.h>

void sync(void);
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After this open() call, every write() to the file automatically flushes the file data and
metadata to the disk (i.e., writes are performed according to synchronized I/O file
integrity completion).

Older BSD systems used the O_FSYNC flag to provide O_SYNC functionality. In
glibc, O_FSYNC is defined as a synonym for O_SYNC.

Performance impact of O_SYNC

Using the O_SYNC flag (or making frequent calls to fsync(), fdatasync(), or sync()) can
strongly affect performance. Table 13-3 shows the time required to write 1 million
bytes to a newly created file (on an ext2 file system) for a range of buffer sizes with
and without O_SYNC. The results were obtained (using the filebuff/write_bytes.c
program provided in the source code distribution for this book) using a vanilla
2.6.30 kernel and an ext2 file system with a block size of 4096 bytes. Each row
shows the average of 20 runs for the given buffer size.

As can be seen from the table, O_SYNC increases elapsed times enormously—in
the 1-byte buffer case, by a factor of more than 1000. Note also the large differences
between the elapsed and CPU times for writes with O_SYNC. This is a consequence of
the program being blocked while each buffer is actually transferred to disk.

The results shown in Table 13-3 omit a further factor that affects performance
when using O_SYNC. Modern disk drives have large internal caches, and by default,
O_SYNC merely causes data to be transferred to the cache. If we disable caching on
the disk (using the command hdparm –W0), then the performance impact of O_SYNC
becomes even more extreme. In the 1-byte case, the elapsed time rises from 1030
seconds to around 16,000 seconds. In the 4096-byte case, the elapsed time rises
from 0.34 seconds to 4 seconds.

In summary, if we need to force flushing of kernel buffers, we should consider
whether we can design our application to use large write() buffer sizes or make judi-
cious use of occasional calls to fsync() or fdatasync(), instead of using the O_SYNC flag
when opening the file.

Table 13-3: Impact of the O_SYNC flag on the speed of writing 1 million bytes

BUF_SIZE

Time required (seconds)

Without O_SYNC With O_SYNC

Elapsed Total CPU Elapsed Total CPU

1 0.73 0.73 1030 98.8

16 0.05 0.05     65.0   0.40

256 0.02 0.02      4.07 0.03

4096 0.01 0.01      0.34 0.03
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The O_DSYNC and O_RSYNC flags

SUSv3 specifies two further open file status flags related to synchronized I/O:
O_DSYNC and O_RSYNC.

The O_DSYNC flag causes writes to be performed according to the requirements
of synchronized I/O data integrity completion (like fdatasync()). This contrasts with
O_SYNC, which causes writes to be performed according to the requirements of syn-
chronized I/O file integrity completion (like fsync()).

The O_RSYNC flag is specified in conjunction with either O_SYNC or O_DSYNC, and
extends the write behaviors of these flags to read operations. Specifying both
O_RSYNC and O_DSYNC when opening a file means that all subsequent reads are com-
pleted according to the requirements of synchronized I/O data integrity (i.e., prior
to performing the read, all pending file writes are completed as though carried out
with O_DSYNC). Specifying both O_RSYNC and O_SYNC when opening a file means that all
subsequent reads are completed according to the requirements of synchronized I/O
file integrity (i.e., prior to performing the read, all pending file writes are com-
pleted as though carried out with O_SYNC).

Before kernel 2.6.33, the O_DSYNC and O_RSYNC flags were not implemented on
Linux, and the glibc headers defined these constants to be the same as O_SYNC. (This
isn’t actually correct in the case of O_RSYNC, since O_SYNC doesn’t provide any func-
tionality for read operations.)

Starting with kernel 2.6.33, Linux implements O_DSYNC, and an implementation
of O_RSYNC is likely to be added in a future kernel release.

Before kernel 2.6.33, Linux didn’t fully implement O_SYNC semantics. Instead,
O_SYNC was implemented as O_DSYNC. To maintain consistent behavior for appli-
cations that were built for older kernels, applications that were linked against
older versions of the GNU C library continue to provide O_DSYNC semantics for
O_SYNC, even on Linux 2.6.33 and later.

13.4 Summary of I/O Buffering

Figure 13-1 provides an overview of the buffering employed (for output files) by
the stdio library and the kernel, along with the mechanisms for controlling each
type of buffering. Traveling downward through the middle of this diagram, we see
the transfer of user data by the stdio library functions to the stdio buffer, which is
maintained in user memory space. When this buffer is filled, the stdio library
invokes the write() system call, which transfers the data into the kernel buffer cache
(maintained in kernel memory). Eventually, the kernel initiates a disk operation to
transfer the data to the disk.

The left side of Figure 13-1 shows the calls that can be used at any time to
explicitly force a flush of either of the buffers. The right side shows the calls that
can be used to make flushing automatic, either by disabling buffering in the stdio
library or by making file output system calls synchronous, so that each write() is
immediately flushed to the disk.
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Figure 13-1: Summary of I/O buffering

13.5 Advising the Kernel About I/O Patterns

The posix_fadvise() system call allows a process to inform the kernel about its likely
pattern for accessing file data.

The kernel may (but is not obliged to) use the information provided by
posix_fadvise() to optimize its use of the buffer cache, thereby improving I/O per-
formance for the process and for the system as a whole. Calling posix_fadvise() has
no effect on the semantics of a program.

The fd argument is a file descriptor identifying the file about whose access pat-
terns we wish to inform the kernel. The offset and len arguments identify the region
of the file about which advice is being given: offset specifies the starting offset of the
region, and len specifies the size of the region in bytes. A len value of 0 means all
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#define _XOPEN_SOURCE 600
#include <fcntl.h>

int posix_fadvise(int fd, off_t offset, off_t len, int advice);

Returns 0 on success, or a positive error number on error
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bytes from offset through to the end of the file. (In kernels before 2.6.6, a len of 0
was interpreted literally as zero bytes.)

The advice argument indicates the process’s expected pattern of access for the
file. It is specified as one of the following:

POSIX_FADV_NORMAL

The process has no special advice to give about access patterns. This is the
default behavior if no advice is given for the file. On Linux, this operation
sets the file read-ahead window to the default size (128 kB).

POSIX_FADV_SEQUENTIAL

The process expects to read data sequentially from lower offsets to higher
offsets. On Linux, this operation sets the file read-ahead window to the
twice the default size.

POSIX_FADV_RANDOM

The process expects to access the data in random order. On Linux, this
option disables file read-ahead.

POSIX_FADV_WILLNEED

The process expects to access the specified file region in the near future. The
kernel performs read-ahead to populate the buffer cache with file data in
the range specified by offset and len. Subsequent read() calls on the file don’t
block on disk I/O; instead, they simply fetch data from the buffer cache.
The kernel provides no guarantees about how long the data fetched from
the file will remain resident in the buffer cache. If other processes or kernel
activities place a sufficiently strong demand on memory, then the pages
will eventually be reused. In other words, if memory pressure is high, then
we should ensure that the elapsed time between the posix_fadvise() call and
the subsequent read() call(s) is short. (The Linux-specific readahead() system
call provides functionality equivalent to the POSIX_FADV_WILLNEED operation.)

POSIX_FADV_DONTNEED

The process expects not to access the specified file region in the near
future. This advises the kernel that it can free the corresponding cache
pages (if there are any). On Linux, this operation is performed in two
steps. First, if the underlying device is not currently congested with a series
of queued write operations, the kernel flushes any modified pages in the
specified region. Second, the kernel attempts to free any cache pages for
the region. For modified pages in the region, this second step will succeed
only if the pages have been written to the underlying device in the first
step—that is, if the device’s write queue was not congested. Since conges-
tion on the device can’t be controlled by the application, an alternate way
of ensuring that the cache pages can be freed is to precede the
POSIX_FADV_DONTNEED operation with a sync() or fdatasync() call that specifies fd.

POSIX_FADV_NOREUSE

The process expects to access data in the specified file region once, and
then not to reuse it. This hint tells the kernel that it can free the pages after
they have been accessed once. On Linux, this operation currently has no
effect.
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The specification of posix_fadvise() is new in SUSv3, and not all UNIX implementa-
tions support this interface. Linux provides posix_fadvise() since kernel 2.6.

13.6 Bypassing the Buffer Cache: Direct I/O

Starting with kernel 2.4, Linux allows an application to bypass the buffer cache
when performing disk I/O, thus transferring data directly from user space to a file
or disk device. This is sometimes termed direct I/O or raw I/O.

The details described here are Linux-specific and are not standardized by
SUSv3. Nevertheless, most UNIX implementations provide some form of
direct I/O access to devices and files.

Direct I/O is sometimes misunderstood as being a means of obtaining fast I/O
performance. However, for most applications, using direct I/O can considerably
degrade performance. This is because the kernel applies a number of optimiza-
tions to improve the performance of I/O done via the buffer cache, including per-
forming sequential read-ahead, performing I/O in clusters of disk blocks, and
allowing processes accessing the same file to share buffers in the cache. All of these
optimizations are lost when we use direct I/O. Direct I/O is intended only for
applications with specialized I/O requirements. For example, database systems
that perform their own caching and I/O optimizations don’t need the kernel to
consume CPU time and memory performing the same tasks.

We can perform direct I/O either on an individual file or on a block device
(e.g., a disk). To do this, we specify the O_DIRECT flag when opening the file or device
with open().

The O_DIRECT flag is effective since kernel 2.4.10. Not all Linux file systems and
kernel versions support the use of this flag. Most native file systems support
O_DIRECT, but many non-UNIX file systems (e.g., VFAT) do not. It may be necessary
to test the file system concerned (if a file system doesn’t support O_DIRECT, then
open() fails with the error EINVAL) or read the kernel source code to check for this
support.

If a file is opened with O_DIRECT by one process, and opened normally (i.e., so
that the buffer cache is used) by another process, then there is no coherency
between the contents of the buffer cache and the data read or written via
direct I/O. Such scenarios should be avoided.

The raw(8) manual page describes an older (now deprecated) technique
for obtaining raw access to a disk device.

Alignment restrictions for direct I/O

Because direct I/O (on both disk devices and files) involves direct access to the
disk, we must observe a number of restrictions when performing I/O:

The data buffer being transferred must be aligned on a memory boundary that
is a multiple of the block size.

The file or device offset at which data transfer commences must be a multiple
of the block size.

The length of the data to be transferred must be a multiple of the block size.
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Failure to observe any of these restrictions results in the error EINVAL. In the above
list, block size means the physical block size of the device (typically 512 bytes).

When performing direct I/O, Linux 2.4 is more restrictive than Linux 2.6: the
alignment, length, and offset must be multiples of the logical block size of the
underlying file system. (Typical file system logical block sizes are 1024, 2048,
or 4096 bytes.)

Example program

Listing 13-1 provides a simple example of the use of O_DIRECT while opening a file
for reading. This program takes up to four command-line arguments specifying, in
order, the file to be read, the number of bytes to be read from the file, the offset to
which the program should seek before reading from the file, and the alignment of
the data buffer passed to read(). The last two arguments are optional, and default to
offset 0 and 4096 bytes, respectively. Here are some examples of what we see when
we run this program:

$ ./direct_read /test/x 512                 Read 512 bytes at offset 0
Read 512 bytes                              Succeeds
$ ./direct_read /test/x 256
ERROR [EINVAL Invalid argument] read        Length is not a multiple of 512
$ ./direct_read /test/x 512 1
ERROR [EINVAL Invalid argument] read        Offset is not a multiple of 512
$ ./direct_read /test/x 4096 8192 512
Read 4096 bytes                             Succeeds
$ ./direct_read /test/x 4096 512 256
ERROR [EINVAL Invalid argument] read        Alignment is not a multiple of 512

The program in Listing 13-1 uses the memalign() function to allocate a block of
memory aligned on a multiple of its first argument. We describe memalign() in
Section 7.1.4.

Listing 13-1: Using O_DIRECT to bypass the buffer cache

––––––––––––––––––––––––––––––––––––––––––––––––––––  filebuff/direct_read.c
#define _GNU_SOURCE     /* Obtain O_DIRECT definition from <fcntl.h> */
#include <fcntl.h>
#include <malloc.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int fd;
    ssize_t numRead;
    size_t length, alignment;
    off_t offset;
    void *buf;

    if (argc < 3 || strcmp(argv[1], "--help") == 0)
        usageErr("%s file length [offset [alignment]]\n", argv[0]);
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    length = getLong(argv[2], GN_ANY_BASE, "length");
    offset = (argc > 3) ? getLong(argv[3], GN_ANY_BASE, "offset") : 0;
    alignment = (argc > 4) ? getLong(argv[4], GN_ANY_BASE, "alignment") : 4096;

    fd = open(argv[1], O_RDONLY | O_DIRECT);
    if (fd == -1)
        errExit("open");

    /* memalign() allocates a block of memory aligned on an address that
       is a multiple of its first argument. The following expression
       ensures that 'buf' is aligned on a non-power-of-two multiple of
       'alignment'. We do this to ensure that if, for example, we ask
       for a 256-byte aligned buffer, then we don't accidentally get
       a buffer that is also aligned on a 512-byte boundary.

       The '(char *)' cast is needed to allow pointer arithmetic (which
       is not possible on the 'void *' returned by memalign()). */

    buf = (char *) memalign(alignment * 2, length + alignment) + alignment;
    if (buf == NULL)
        errExit("memalign");

    if (lseek(fd, offset, SEEK_SET) == -1)
        errExit("lseek");

    numRead = read(fd, buf, length);
    if (numRead == -1)
        errExit("read");
    printf("Read %ld bytes\n", (long) numRead);

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––  filebuff/direct_read.c

13.7 Mixing Library Functions and System Calls for File I/O

It is possible to mix the use of system calls and the standard C library functions to
perform I/O on the same file. The fileno() and fdopen() functions assist us with this task.

Given a stream, fileno() returns the corresponding file descriptor (i.e., the one that
the stdio library has opened for this stream). This file descriptor can then be used in the
usual way with I/O system calls such as read(), write(), dup(), and fcntl().

#include <stdio.h>

int fileno(FILE *stream);

Returns file descriptor on success, or –1 on error

FILE *fdopen(int fd, const char *mode);

Returns (new) file pointer on success, or NULL on error
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The fdopen() function is the converse of fileno(). Given a file descriptor, it creates a
corresponding stream that uses this descriptor for its I/O. The mode argument is
the same as for fopen(); for example, r for read, w for write, or a for append. If this
argument is not consistent with the access mode of the file descriptor fd, then
fdopen() fails.

The fdopen() function is especially useful for descriptors referring to files other
than regular files. As we’ll see in later chapters, the system calls for creating sockets
and pipes always return file descriptors. To use the stdio library with these file
types, we must use fdopen() to create a corresponding file stream.

When using the stdio library functions in conjunction with I/O system calls to
perform I/O on disk files, we must keep buffering issues in mind. I/O system calls
transfer data directly to the kernel buffer cache, while the stdio library waits until
the stream’s user-space buffer is full before calling write() to transfer that buffer to the
kernel buffer cache. Consider the following code used to write to standard output:

printf("To man the world is twofold, ");
write(STDOUT_FILENO, "in accordance with his twofold attitude.\n", 41);

In the usual case, the output of the printf() will typically appear after the output of
the write(), so that this code yields the following output:

in accordance with his twofold attitude.
To man the world is twofold,

When intermingling I/O system calls and stdio functions, judicious use of fflush()
may be required to avoid this problem. We could also use setvbuf() or setbuf() to disable
buffering, but doing so might impact I/O performance for the application, since
each output operation would then result in the execution of a write() system call.

SUSv3 goes to some length specifying the requirements for an application to
be able to mix the use of I/O system calls and stdio functions. See the section
headed Interaction of File Descriptors and Standard I/O Streams under the chapter
General Information in the System Interfaces (XSH) volume for details.

13.8 Summary

Buffering of input and output data is performed by the kernel, and also by the stdio
library. In some cases, we may wish to prevent buffering, but we need to be aware
of the impact this has on application performance. Various system calls and library
functions can be used to control kernel and stdio buffering and to perform one-off
buffer flushes.

A process can use posix_fadvise() to advise the kernel of its likely pattern for
accessing data from a specified file. The kernel may use this information to opti-
mize the use of the buffer cache, thus improving I/O performance.

The Linux-specific open() O_DIRECT flag allows specialized applications to bypass
the buffer cache.

The fileno() and fdopen() functions assist us with the task of mixing system calls
and standard C library functions to perform I/O on the same file. Given a stream,
fileno() returns the corresponding file descriptor; fdopen() performs the converse
operation, creating a new stream that employs a specified open file descriptor.
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Further information

[Bach, 1986] describes the implementation and advantages of the buffer cache on
System V. [Goodheart & Cox, 1994] and [Vahalia, 1996] also describe the rationale
and implementation of the System V buffer cache. Further relevant information
specific to Linux can be found in [Bovet & Cesati, 2005] and [Love, 2010].

13.9 Exercises

13-1. Using the time built-in command of the shell, try timing the operation of the
program in Listing 4-1 (copy.c) on your system.

a) Experiment with different file and buffer sizes. You can set the buffer size
using the –DBUF_SIZE=nbytes option when compiling the program.

b) Modify the open() system call to include the O_SYNC flag. How much differ-
ence does this make to the speed for various buffer sizes?

c) Try performing these timing tests on a range of file systems (e.g., ext3, XFS,
Btrfs, and JFS). Are the results similar? Are the trends the same when going
from small to large buffer sizes?

13-2. Time the operation of the filebuff/write_bytes.c program (provided in the source
code distribution for this book) for various buffer sizes and file systems.

13-3. What is the effect of the following statements?

fflush(fp);
fsync(fileno(fp));

13-4. Explain why the output of the following code differs depending on whether
standard output is redirected to a terminal or to a disk file.

printf("If I had more time, \n");
write(STDOUT_FILENO, "I would have written you a shorter letter.\n", 43);

13-5. The command tail [ –n num ] file prints the last num lines (ten by default) of the
named file. Implement this command using I/O system calls (lseek(), read(), write(),
and so on). Keep in mind the buffering issues described in this chapter, in order to
make the implementation efficient.
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F I L E  S Y S T E M S

In Chapters 4, 5, and 13, we looked at file I/O, with a particular focus on regular
(i.e., disk) files. In this and the following chapters, we go into detail on a range of
file-related topics:

This chapter looks at file systems.

Chapter 15 describes various attributes associated with a file, including the
timestamps, ownership, and permissions.

Chapters 16 and 17 consider two new features of Linux 2.6: extended attributes
and access control lists (ACLs). Extended attributes are a method of associat-
ing arbitrary metadata with a file. ACLs are an extension of the traditional
UNIX file permission model.

Chapter 18 looks at directories and links.

The majority of this chapter is concerned with file systems, which are organized col-
lections of files and directories. We explain a range of file-system concepts, some-
times using the traditional Linux ext2 file system as a specific example. We also
briefly describe some of the journaling file systems available on Linux.

We conclude the chapter with a discussion of the system calls used to mount
and unmount a file system, and the library functions used to obtain information
about mounted file systems.



14.1 Device Special Files (Devices)

This chapter frequently mentions disk devices, so we start with a brief overview of
the concept of a device file.

A device special file corresponds to a device on the system. Within the kernel,
each device type has a corresponding device driver, which handles all I/O requests
for the device. A device driver is a unit of kernel code that implements a set of oper-
ations that (normally) correspond to input and output actions on an associated
piece of hardware. The API provided by device drivers is fixed, and includes opera-
tions corresponding to the system calls open(), close(), read(), write(), mmap(), and ioctl().
The fact that each device driver provides a consistent interface, hiding the differ-
ences in operation of individual devices, allows for universality of I/O (Section 4.2).

Some devices are real, such as mice, disks, and tape drives. Others are virtual,
meaning that there is no corresponding hardware; rather, the kernel provides (via
a device driver) an abstract device with an API that is the same as a real device.

Devices can be divided into two types:

Character devices handle data on a character-by-character basis. Terminals and
keyboards are examples of character devices.

Block devices handle data a block at a time. The size of a block depends on the
type of device, but is typically some multiple of 512 bytes. Examples of block
devices include disks and tape drives.

Device files appear within the file system, just like other files, usually under the /dev
directory. The superuser can create a device file using the mknod command, and
the same task can be performed in a privileged (CAP_MKNOD) program using the
mknod() system call.

We don’t describe the mknod() (“make file-system i-node”) system call in detail
since its use is straightforward, and the only purpose for which it is required
nowadays is to create device files, which is not a common application
requirement. We can also use mknod() to create FIFOs (Section 44.7), but the
mkfifo() function is preferred for this task. Historically, some UNIX imple-
mentations also used mknod() for creating directories, but this use has now
been replaced by the mkdir() system call. Nevertheless, some UNIX implemen-
tations—but not Linux—preserve this capability in mknod() for backward com-
patibility. See the mknod(2) manual page for further details.

In earlier versions of Linux, /dev contained entries for all possible devices on the
system, even if such devices weren’t actually connected to the system. This meant
that /dev could contain literally thousands of unused entries, slowing the task of
programs that needed to scan the contents of that directory, and making it
impossible to use the contents of the directory as a means of discovering which
devices were actually present on the system. In Linux 2.6, these problems are
solved by the udev program. The udev program relies on the sysfs file system, which
exports information about devices and other kernel objects into user space via a
pseudo-file system mounted under /sys.
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[Kroah-Hartman, 2003] provides an overview of udev, and outlines the reasons
it is considered superior to devfs, the Linux 2.4 solution to the same problems.
Information about the sysfs file system can be found in the Linux 2.6 kernel
source file Documentation/filesystems/sysfs.txt and in [Mochel, 2005].

Device IDs

Each device file has a major ID number and a minor ID number. The major ID identi-
fies the general class of device, and is used by the kernel to look up the appropriate
driver for this type of device. The minor ID uniquely identifies a particular device
within a general class. The major and minor IDs of a device file are displayed by the
ls –l command.

A device’s major and minor IDs are recorded in the i-node for the device file.
(We describe i-nodes in Section 14.4.) Each device driver registers its association
with a specific major device ID, and this association provides the connection
between the device special file and the device driver. The name of the device file
has no relevance when the kernel looks for the device driver.

On Linux 2.4 and earlier, the total number of devices on the system is limited
by the fact that device major and minor IDs are each represented using just 8 bits.
The fact that major device IDs are fixed and centrally assigned (by the Linux
Assigned Names and Numbers Authority; see http://www.lanana.org/) further exac-
erbates this limitation. Linux 2.6 eases this limitation by using more bits to hold the
major and minor device IDs (respectively, 12 and 20 bits).

14.2 Disks and Partitions

Regular files and directories typically reside on hard disk devices. (Files and direc-
tories may also exist on other devices, such as CD-ROMs, flash memory cards, and
virtual disks, but for the present discussion, we are interested primarily in hard disk
devices.) In the following sections, we look at how disks are organized and divided
into partitions.

Disk drives

A hard disk drive is a mechanical device consisting of one or more platters that
rotate at high speed (of the order of thousands of revolutions per minute). Magnet-
ically encoded information on the disk surface is retrieved or modified by read/
write heads that move radially across the disk. Physically, information on the disk
surface is located on a set of concentric circles called tracks. Tracks themselves are
divided into a number of sectors, each of which consists of a series of physical blocks.
Physical blocks are typically 512 bytes (or some multiple thereof) in size, and repre-
sent the smallest unit of information that the drive can read or write.

Although modern disks are fast, reading and writing information on the disk
still takes significant time. The disk head must first move to the appropriate track
(seek time), then the drive must wait until the appropriate sector rotates under the
head (rotational latency), and finally the required blocks must be transferred
(transfer time). The total time required to carry out such an operation is typically of
the order of milliseconds. By comparison, modern CPUs are capable of executing
millions of instructions in this time.
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Disk partitions

Each disk is divided into one or more (nonoverlapping) partitions. Each partition is
treated by the kernel as a separate device residing under the /dev directory.

The system administrator determines the number, type, and size of partitions
on a disk using the fdisk command. The command fdisk –l lists all partitions on
a disk. The Linux-specific /proc/partitions file lists the major and minor device
numbers, size, and name of each disk partition on the system.

A disk partition may hold any type of information, but usually contains one of the
following:

a file system holding regular files and directories, as described in Section 14.3;

a data area accessed as a raw-mode device, as described in Section 13.6 (some
database management systems use this technique); or

a swap area used by the kernel for memory management.

A swap area is created using the mkswap(8) command. A privileged (CAP_SYS_ADMIN)
process can use the swapon() system call to notify the kernel that a disk partition is
to be used as a swap area. The swapoff() system call performs the converse function,
telling the kernel to cease using a disk partition as a swap area. These system calls
are not standardized in SUSv3, but they exist on many UNIX implementations. See
the swapon(2), and swapon(8) manual pages for additional information.

The Linux-specific /proc/swaps file can be used to display information about
the currently enabled swap areas on the system. This information includes the
size of each swap area and the amount of the area that is in use.

14.3 File Systems

A file system is an organized collection of regular files and directories. A file system
is created using the mkfs command.

One of the strengths of Linux is that it supports a wide variety of file systems,
including the following:

the traditional ext2 file system;

various native UNIX file systems such as the Minix, System V, and BSD file
systems;

Microsoft’s FAT, FAT32, and NTFS file systems;

the ISO 9660 CD-ROM file system;

Apple Macintosh’s HFS;

a range of network file systems, including Sun’s widely used NFS (information
about the Linux implementation of NFS is available at http://nfs.sourceforge.net/),
IBM and Microsoft’s SMB, Novell’s NCP, and the Coda file system developed
at Carnegie Mellon University; and

a range of journaling file systems, including ext3, ext4, Reiserfs, JFS, XFS, and Btrfs.
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The file-system types currently known by the kernel can be viewed in the Linux-specific
/proc/filesystems file.

Linux 2.6.14 added the Filesystem in Userspace (FUSE) facility. This mechanism
adds hooks to the kernel that allow a file system to be completely implemented
via a user-space program, without needing to patch or recompile the kernel.
For further details, see http://fuse.sourceforge.net/.

The ext2 file system

For many years, the most widely used file system on Linux was ext2, the Second
Extended File System, which is the successor to the original Linux file system, ext. In
more recent times, the use of ext2 has declined in favor of various journaling file
systems. Sometimes, it is useful to describe generic file-system concepts in terms of
a specific file-system implementation, and for this purpose, we use ext2 as an
example at various points later in this chapter.

The ext2 file system was written by Remy Card. The source code for ext2 is
small (around 5000 lines of C) and forms the model for several other file-system
implementations. The ext2 home page is http://e2fsprogs.sourceforge.net/ext2.html.
This web site includes a good overview paper describing the implementation
of ext2. The Linux Kernel, an online book by David Rusling available at http://
www.tldp.org/, also describes ext2.

File-system structure

The basic unit for allocating space in a file system is a logical block, which is some
multiple of contiguous physical blocks on the disk device on which the file system
resides. For example, the logical block size on ext2 is 1024, 2048, or 4096 bytes.
(The logical block size is specified as an argument of the mkfs(8) command used to
build the file system.)

A privileged (CAP_SYS_RAWIO) program can use the FIBMAP ioctl() operation to
determine the physical location of a specified block of a file. The third argu-
ment of the call is a value-result integer. Before the call, this argument should
be set to a logical block number (the first logical block is number 0); after the
call, it is set to the number of the starting physical block where that logical
block is stored.

Figure 14-1 shows the relationship between disk partitions and file systems, and
shows the parts of a (generic) file system.

Figure 14-1: Layout of disk partitions and a file system
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A file system contains the following parts:

Boot block: This is always the first block in a file system. The boot block is not
used by the file system; rather, it contains information used to boot the operat-
ing system. Although only one boot block is needed by the operating system,
all file systems have a boot block (most of which are unused).

Superblock: This is a single block, immediately following the boot block, which
contains parameter information about the file system, including:

– the size of the i-node table;

– the size of logical blocks in this file system; and

– the size of the file system in logical blocks.

Different file systems residing on the same physical device can be of different
types and sizes, and have different parameter settings (e.g., block size). This is
one of the reasons for splitting a disk into multiple partitions.

I-node table: Each file or directory in the file system has a unique entry in the i-node
table. This entry records various information about the file. I-nodes are dis-
cussed in greater detail in the next section. The i-node table is sometimes also
called the i-list.

Data blocks: The great majority of space in a file system is used for the blocks of
data that form the files and directories residing in the file system.

In the specific case of the ext2 file system, the picture is somewhat more com-
plex than described in the main text. After the initial boot block, the file sys-
tem is broken into a set of equal-sized block groups. Each block group contains a
copy of the superblock, parameter information about the block group, and
then the i-node table and data blocks for this block group. By attempting to
store all of the blocks of a file within the same block group, the ext2 file system
aims to reduce seek time when sequentially accessing a file. For further infor-
mation, see the Linux source code file Documentation/filesystems/ext2.txt, the
source code of the dumpe2fs program that comes as part of the e2fsprogs package,
and [Bovet & Cesati, 2005].

14.4 I-nodes

A file system’s i-node table contains one i-node (short for index node) for each file
residing in the file system. I-nodes are identified numerically by their sequential
location in the i-node table. The i-node number (or simply i-number) of a file is the
first field displayed by the ls –li command. The information maintained in an i-node
includes the following:

File type (e.g., regular file, directory, symbolic link, character device).

Owner (also referred to as the user ID or UID) for the file.

Group (also referred to as the group ID or GID) for the file.

Access permissions for three categories of user: owner (sometimes referred to
as user), group, and other (the rest of the world). Section 15.4 provides further
details.
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Three timestamps: time of last access to the file (shown by ls –lu), time of last
modification of the file (the default time shown by ls –l), and time of last status
change (last change to i-node information, shown by ls –lc). As on other UNIX
implementations, it is notable that most Linux file systems don’t record the
creation time of a file.

Number of hard links to the file.

Size of the file in bytes.

Number of blocks actually allocated to the file, measured in units of 512-byte
blocks. There may not be a simple correspondence between this number and
the size of the file in bytes, since a file can contain holes (Section 4.7), and thus
require fewer allocated blocks than would be expected according to its nomi-
nal size in bytes.

Pointers to the data blocks of the file.

I-nodes and data block pointers in ext2

Like most UNIX file systems, the ext2 file system doesn’t store the data blocks of a
file contiguously or even in sequential order (though it does attempt to store them
close to one another). To locate the file data blocks, the kernel maintains a set of
pointers in the i-node. The system used for doing this on the ext2 file system is
shown in Figure 14-2.

Removing the need to store the blocks of a file contiguously allows the file
system to use space in an efficient way. In particular, it reduces the incidence
of fragmentation of free disk space—the wastage created by the existence of
numerous pieces of noncontiguous free space, all of which are too small to
use. Put conversely, we could say that the advantage of efficiently using the
free disk space is paid for by fragmenting files in the filled disk space.

Under ext2, each i-node contains 15 pointers. The first 12 of these pointers (num-
bered 0 to 11 in Figure 14-2) point to the location in the file system of the first 12 blocks
of the file. The next pointer is a pointer to a block of pointers that give the locations of
the thirteenth and subsequent data blocks of the file. The number of pointers in
this block depends on the block size of the file system. Each pointer requires 4 bytes,
so there may be from 256 pointers (for a 1024-byte block size) to 1024 pointers (for
a 4096-byte block size). This allows for quite large files. For even larger files, the
fourteenth pointer (numbered 13 in the diagram) is a double indirect pointer—it points
to blocks of pointers that in turn point to blocks of pointers that in turn point to
data blocks of the file. And should the need for a truly enormous file arise, there is
a further level of indirection: the last pointer in the i-node is a triple-indirect pointer.

This seemingly complex system is designed to satisfy a number of require-
ments. To begin with, it allows the i-node structure to be a fixed size, while at the
same time allowing for files of an arbitrary size. Additionally, it allows the file sys-
tem to store the blocks of a file noncontiguously, while also allowing the data to be
accessed randomly via lseek(); the kernel just needs to calculate which pointer(s) to
follow. Finally, for small files, which form the overwhelming majority of files on
most systems, this scheme allows the file data blocks to be accessed rapidly via the
direct pointers of the i-node.
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Figure 14-2: Structure of file blocks for a file in an ext2 file system

As an example, the author measured one system containing somewhat more
than 150,000 files. Just over 30% of the files were less than 1000 bytes in size,
and 80% occupied 10,000 bytes or less. Assuming a 1024-byte block size, all of
the latter files could be referenced using just the 12 direct pointers, which can
refer to blocks containing a total of 12,288 bytes. Using a 4096-byte block
size, this limit rises to 49,152 bytes (95% of the files on the system fell under
that limit).

This design also allows for enormous file sizes; for a block size of 4096 bytes, the
theoretical largest file size is slightly more than 1024*1024*1024*4096, or approxi-
mately 4 terabytes (4096 GB). (We say slightly more because of the blocks pointed to
by the direct, indirect, and double indirect pointers. These are insignificant com-
pared to the range that can be pointed to by the triple indirect pointer.)
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One other benefit conferred by this design is that files can have holes, as
described in Section 4.7. Rather than allocate blocks of null bytes for the holes in a
file, the file system can just mark (with the value 0) appropriate pointers in the i-node
and in the indirect pointer blocks to indicate that they don’t refer to actual disk blocks.

14.5 The Virtual File System (VFS)

Each of the file systems available on Linux differs in the details of its implementa-
tion. Such differences include, for example, the way in which the blocks of a file are
allocated and the manner in which directories are organized. If every program that
worked with files needed to understand the specific details of each file system, the
task of writing programs that worked with all of the different file systems would be
nearly impossible. The virtual file system (VFS, sometimes also referred to as the
virtual file switch) is a kernel feature that resolves this problem by creating an
abstraction layer for file-system operations (see Figure 14-3). The ideas behind the
VFS are straightforward:

The VFS defines a generic interface for file-system operations. All programs
that work with files specify their operations in terms of this generic interface.

Each file system provides an implementation for the VFS interface.

Under this scheme, programs need to understand only the VFS interface and can
ignore details of individual file-system implementations.

The VFS interface includes operations corresponding to all of the usual system
calls for working with file systems and directories, such as open(), read(), write(),
lseek(), close(), truncate(), stat(), mount(), umount(), mmap(), mkdir(), link(), unlink(),
symlink(), and rename().

The VFS abstraction layer is closely modeled on the traditional UNIX file-system
model. Naturally, some file systems—especially non-UNIX file systems—don’t support
all of the VFS operations (e.g., Microsoft’s VFAT doesn’t support the notion of
symbolic links, created using symlink()). In such cases, the underlying file system
passes an error code back to the VFS layer indicating the lack of support, and the
VFS in turn passes this error code back to the application.

Figure 14-3: The virtual file system

Application

Virtual File System (VFS)

ext2 Reiserfs VFAT NFSext3
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14.6 Journaling File Systems

The ext2 file system is a good example of a traditional UNIX file system, and suffers
from a classic limitation of such file systems: after a system crash, a file-system con-
sistency check ( fsck) must be performed on reboot in order to ensure the integrity
of the file system. This is necessary because, at the time of the system crash, a file
update may have been only partially completed, and the file-system metadata
(directory entries, i-node information, and file data block pointers) may be in an
inconsistent state, so that the file system might be further damaged if these incon-
sistencies are not repaired. A file-system consistency check ensures the consistency
of the file-system metadata. Where possible, repairs are performed; otherwise,
information that is not retrievable (possibly including file data) is discarded.

The problem is that a consistency check requires examining the entire file sys-
tem. On a small file system, this may take anything from several seconds to a few
minutes. On a large file system, this may require several hours, which is a serious
problem for systems that must maintain high availability (e.g., network servers).

Journaling file systems eliminate the need for lengthy file-system consis-
tency checks after a system crash. A journaling file system logs (journals) all
metadata updates to a special on-disk journal file before they are actually carried
out. The updates are logged in groups of related metadata updates (transactions). In
the event of a system crash in the middle of a transaction, on system reboot, the log
can be used to rapidly redo any incomplete updates and bring the file system back
to a consistent state. (To borrow database parlance, we can say that a journaling
file system ensures that file metadata transactions are always committed as a com-
plete unit.) Even very large journaling file systems can typically be available within
seconds after a system crash, making them very attractive for systems with high-
availability requirements.

The most notable disadvantage of journaling is that it adds time to file updates,
though good design can make this overhead low.

Some journaling file systems ensure only the consistency of file metadata.
Because they don’t log file data, data may still be lost in the event of a crash. The
ext3, ext4, and Reiserfs file systems provide options for logging data updates, but,
depending on the workload, this may result in lower file I/O performance.

The journaling file systems available for Linux include the following:

Reiserfs was the first of the journaling file systems to be integrated into the ker-
nel (in version 2.4.1). Reiserfs provides a feature called tail packing (or tail
merging): small files (and the final fragment of larger files) are packed into the
same disk blocks as the file metadata. Because many systems have (and some
applications create) large numbers of small files, this can save a significant
amount of disk space.

The ext3 file system was a result of a project to add journaling to ext2 with mini-
mal impact. The migration path from ext2 to ext3 is very easy (no backup and
restore are required), and it is possible to migrate in the reverse direction as
well. The ext3 file system was integrated into the kernel in version 2.4.15.
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JFS was developed at IBM. It was integrated into the 2.4.20 kernel.

XFS (http://oss.sgi.com/projects/xfs/) was originally developed by Silicon Graph-
ics (SGI) in the early 1990s for Irix, its proprietary UNIX implementation. In
2001, XFS was ported to Linux and made available as a free software project.
XFS was integrated into the 2.4.24 kernel.

Support for the various file systems is enabled using kernel options that are set
under the File systems menu when configuring the kernel.

At the time of writing, work is in progress on two other file systems that pro-
vide journaling and a range of other advanced features:

The ext4 file system (http://ext4.wiki.kernel.org/) is the successor to ext3. The first
pieces of the implementation were added in kernel 2.6.19, and various features
were added in later kernel versions. Among the planned (or already imple-
mented) features for ext4 are extents (reservation of contiguous blocks of stor-
age) and other allocation features that aim to reduce file fragmentation, online
file-system defragmentation, faster file-system checking, and support for nano-
second timestamps.

Btrfs (B-tree FS, usually pronounced “butter FS”; http://btrfs.wiki.kernel.org/) is a
new file system designed from the ground up to provide a range of modern
features, including extents, writable snapshots (which provide functionality
equivalent to metadata and data journaling), checksums on data and metadata,
online file-system checking, online file-system defragmentation, space-efficient
packing of small files, and space-efficient indexed directories. It was integrated
into the kernel in version 2.6.29.

14.7 Single Directory Hierarchy and Mount Points

On Linux, as on other UNIX systems, all files from all file systems reside under a
single directory tree. At the base of this tree is the root directory, / (slash). Other
file systems are mounted under the root directory and appear as subtrees within the
overall hierarchy. The superuser uses a command of the following form to mount a
file system:

$ mount device directory

This command attaches the file system on the named device into the directory hier-
archy at the specified directory—the file system’s mount point. It is possible to change
the location at which a file system is mounted—the file system is unmounted using the
umount command, and then mounted once more at a different point.

With Linux 2.4.19 and later, things became more complicated. The kernel
now supports per-process mount namespaces. This means that each process
potentially has its own set of file-system mount points, and thus may see a dif-
ferent single directory hierarchy from other processes. We explain this point
further when we describe the CLONE_NEWNS flag in Section 28.2.1.
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To list the currently mounted file systems, we can use the command mount, with no
arguments, as in the following example (whose output has been somewhat
abridged):

$ mount
/dev/sda6 on / type ext4 (rw)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
devpts on /dev/pts type devpts (rw,mode=0620,gid=5)
/dev/sda8 on /home type ext3 (rw,acl,user_xattr)
/dev/sda1 on /windows/C type vfat (rw,noexec,nosuid,nodev)
/dev/sda9 on /home/mtk/test type reiserfs (rw)

Figure 14-4 shows a partial directory and file structure for the system on which the
above mount command was performed. This diagram shows how the mount points
map onto the directory hierarchy.

Figure 14-4: Example directory hierarchy showing file-system mount points

14.8 Mounting and Unmounting File Systems

The mount() and umount() system calls allow a privileged (CAP_SYS_ADMIN) process to
mount and unmount file systems. Most UNIX implementations provide versions of
these system calls. However, they are not standardized by SUSv3, and their opera-
tion varies both across UNIX implementations and across file systems.

/

bin home

vmlinuzbash mtkavr

test britta windows

explorer.execopy.c

directory

regular file

Mount
points

sda6 file system

boot windows

sda9 file system

sda8 file system

sda1 file system

C

262 Chapter 14



Before looking at these system calls, it is useful to know about three files that
contain information about the file systems that are currently mounted or can be
mounted:

A list of the currently mounted file systems can be read from the Linux-specific
/proc/mounts virtual file. /proc/mounts is an interface to kernel data structures, so
it always contains accurate information about mounted file systems.

With the arrival of the per-process mount namespace feature mentioned ear-
lier, each process now has a /proc/PID/mounts file that lists the mount points
constituting its mount namespace, and /proc/mounts is just a symbolic link to
/proc/self/mounts.

The mount(8) and umount(8) commands automatically maintain the file /etc/mtab,
which contains information that is similar to that in /proc/mounts, but slightly
more detailed. In particular, /etc/mtab includes file system–specific options
given to mount(8), which are not shown in /proc/mounts. However, because the
mount() and umount() system calls don’t update /etc/mtab, this file may be inac-
curate if some application that mounts or unmounts devices fails to update it.

The /etc/fstab file, maintained manually by the system administrator, contains
descriptions of all of the available file systems on a system, and is used by the
mount(8), umount(8), and fsck(8) commands.

The /proc/mounts, /etc/mtab, and /etc/fstab files share a common format, described
in the fstab(5) manual page. Here is an example of a line from the /proc/mounts file:

/dev/sda9 /boot ext3 rw 0 0

This line contains six fields:

1. The name of the mounted device.

2. The mount point for the device.

3. The file-system type.

4. Mount flags. In the above example, rw indicates that the file system was
mounted read-write.

5. A number used to control the operation of file-system backups by dump(8).
This field and the next are used only in the /etc/fstab file; for /proc/mounts
and /etc/mtab, these fields are always 0.

6. A number used to control the order in which fsck(8) checks file systems at system
boot time.

The getfsent(3) and getmntent(3) manual pages document functions that can be used
to read records from these files.
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14.8.1 Mounting a File System: mount()
The mount() system call mounts the file system contained on the device specified by
source under the directory (the mount point) specified by target.

The names source and target are used for the first two arguments because mount()
can perform other tasks than mounting a disk file system under a directory.

The fstype argument is a string identifying the type of file system contained on
the device, such as ext4 or btrfs.

The mountflags argument is a bit mask constructed by ORing (|) zero or more
of the flags shown in Table 14-1, which are described in more detail below.

The final mount() argument, data, is a pointer to a buffer of information whose
interpretation depends on the file system. For most file-system types, this argument
is a string consisting of comma-separated option settings. A full list of these options
can be found in the mount(8) manual page (or the documentation for the file system
concerned, if it is not described in mount(8)).

#include <sys/mount.h>

int mount(const char *source, const char *target, const char *fstype,
          unsigned long mountflags, const void *data);

Returns 0 on success, or –1 on error

Table 14-1: mountflags values for mount()

Flag Purpose

MS_BIND Create a bind mount (since Linux 2.4)
MS_DIRSYNC Make directory updates synchronous (since Linux 2.6)
MS_MANDLOCK Permit mandatory locking of files 
MS_MOVE Atomically move mount point to new location
MS_NOATIME Don’t update last access time for files
MS_NODEV Don’t allow access to devices
MS_NODIRATIME Don’t update last access time for directories
MS_NOEXEC Don’t allow programs to be executed
MS_NOSUID Disable set-user-ID and set-group-ID programs
MS_RDONLY Read-only mount; files can’t be created or modified
MS_REC Recursive mount (since Linux 2.6.20)
MS_RELATIME Update last access time only if older than last modification time or last 

status change time (since Linux 2.4.11)
MS_REMOUNT Remount with new mountflags and data
MS_STRICTATIME Always update last access time (since Linux 2.6.30)
MS_SYNCHRONOUS Make all file and directory updates synchronous
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The mountflags argument is a bit mask of flags that modify the operation of mount().
Zero or more of the following flags can be specified in mountflags:

MS_BIND (since Linux 2.4)
Create a bind mount. We describe this feature in Section 14.9.4. If this flag
is specified, then the fstype, mountflags, and data arguments are ignored.

MS_DIRSYNC (since Linux 2.6)
Make directory updates synchronous. This is similar to the effect of the
open() O_SYNC flag (Section 13.3), but applies only to directory updates. The
MS_SYNCHRONOUS flag described below provides a superset of the functionality
of MS_DIRSYNC, ensuring that both file and directory updates are performed
synchronously. The MS_DIRSYNC flag allows an application to ensure that
directory updates (e.g., open(pathname, O_CREAT), rename(), link(),
unlink(), symlink(), and mkdir()) are synchronized without incurring the
expense of synchronizing all file updates. The FS_DIRSYNC_FL flag
(Section 15.5) serves a similar purpose to MS_DIRSYNC, with the difference
that FS_DIRSYNC_FL can be applied to individual directories. In addition, on
Linux, calling fsync() on a file descriptor that refers to a directory provides
a means of synchronizing directory updates on a per-directory basis. (This
Linux-specific fsync() behavior is not specified in SUSv3.)

MS_MANDLOCK

Permit mandatory record locking on files in this file system. We describe
record locking in Chapter 55.

MS_MOVE

Atomically move the existing mount point specified by source to the new
location specified by target. This corresponds to the ––move option to
mount(8). This is equivalent to unmounting the subtree and then remount-
ing at a different location, except that there is no point in time when the
subtree is unmounted. The source argument should be a string specified as
a target in a previous mount() call. When this flag is specified, the fstype,
mountflags, and data arguments are ignored.

MS_NOATIME

Don’t update the last access time for files in this file system. The purpose
of this flag, as well as the MS_NODIRATIME flag described below, is to eliminate
the extra disk access required to update the file i-node each time a file is
accessed. In some applications, maintaining this timestamp is not critical,
and avoiding doing so can significantly improve performance. The
MS_NOATIME flag serves a similar purpose to the FS_NOATIME_FL flag
(Section 15.5), with the difference that FS_NOATIME_FL can be applied to single
files. Linux also provides similar functionality via the O_NOATIME open() flag,
which selects this behavior for individual open files (Section 4.3.1).
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MS_NODEV

Don’t allow access to block and character devices on this file system. This is
a security feature designed to prevent users from doing things such as
inserting a removable disk containing device special files that would allow
arbitrary access to the system.

MS_NODIRATIME

Don’t update the last access time for directories on this file system. (This
flag provides a subset of the functionality of MS_NOATIME, which prevents
updates to the last access time for all file types.)

MS_NOEXEC

Don’t allow programs (or scripts) to be executed from this file system. This
is useful if the file system contains non-Linux executables.

MS_NOSUID

Disable set-user-ID and set-group-ID programs on this file system. This is a
security feature to prevent users from running set-user-ID and set-group-
ID programs from removable devices.

MS_RDONLY

Mount the file system read-only, so that no new files can be created and no
existing files can be modified.

MS_REC (since Linux 2.4.11)
This flag is used in conjunction with other flags (e.g., MS_BIND) to recursively
apply the mount action to all of the mounts in a subtree.

MS_RELATIME (since Linux 2.6.20)
Update the last access timestamp for files on this file system only if the cur-
rent setting of this timestamp is less than or equal to either the last modifi-
cation or the last status change timestamp. This provides some of the
performance benefits of MS_NOATIME, but is useful for programs that need to
know if a file has been read since it was last updated. Since Linux 2.6.30,
the behavior provided by MS_RELATIME is the default (unless the MS_NOATIME
flag is specified), and the MS_STRICTATIME flag is required to obtain classical
behavior. In addition, since Linux 2.6.30, the last access timestamp is
always updated if its current value is more than 24 hours in the past, even if
the current value is more recent than the last modification and last status
change timestamps. (This is useful for certain system programs that moni-
tor directories to see whether files have recently been accessed.)

MS_REMOUNT

Alter the mountflags and data for a file system that is already mounted (e.g.,
to make a read-only file system writable). When using this flag, the source and
target arguments should be the same as for the original mount() call, and the
fstype argument is ignored. This flag avoids the need to unmount and
remount the disk, which may not be possible in some cases. For example, we
can’t unmount a file system if any process has files open on, or its current
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working directory located within, the file system (this will always be true of
the root file system). Another example of where we need to use MS_REMOUNT is
with tmpfs (memory-based) file systems (Section 14.10), which can’t be
unmounted without losing their contents. Not all mountflags are modifiable;
see the mount(2) manual page for details.

MS_STRICTATIME (since Linux 2.6.30)
Always update the last access timestamp when files on this file system are
accessed. This was the default behavior before Linux 2.6.30. If MS_STRICTATIME
is specified, then MS_NOATIME and MS_RELATIME are ignored if they are also
specified in mountflags.

MS_SYNCHRONOUS

Make all file and directory updates on this file system synchronous. (In the
case of files, this is as though files were always opened with the open()
O_SYNC flag.)

Starting with kernel 2.6.15, Linux provides four new mount flags to support
the notion of shared subtrees. The new flags are MS_PRIVATE, MS_SHARED, MS_SLAVE,
and MS_UNBINDABLE. (These flags can be used in conjunction with MS_REC to prop-
agate their effects to all of the submounts under a mount subtree.) Shared sub-
trees are designed for use with certain advanced file-system features, such as
per-process mount namespaces (see the description of CLONE_NEWNS in
Section 28.2.1), and the Filesystem in Userspace (FUSE) facility. The shared sub-
tree facility permits file-system mounts to be propagated between mount
namespaces in a controlled fashion. Details on shared subtrees can be found in
the kernel source code file Documentation/filesystems/sharedsubtree.txt and
[Viro & Pai, 2006].

Example program

The program in Listing 14-1 provides a command-level interface to the mount(2)
system call. In effect, it is a crude version of the mount(8) command. The following
shell session log demonstrates the use of this program. We begin by creating a
directory to be used as a mount point and mounting a file system:

$ su                                    Need privilege to mount a file system
Password:
# mkdir /testfs
# ./t_mount -t ext2 -o bsdgroups /dev/sda12 /testfs
# cat /proc/mounts | grep sda12         Verify the setup
/dev/sda12 /testfs ext3 rw 0 0          Doesn’t show bsdgroups
# grep sda12 /etc/mtab

We find that the preceding grep command produces no output because our pro-
gram doesn’t update /etc/mtab. We continue, remounting the file system read-only:

# ./t_mount -f Rr /dev/sda12 /testfs
# cat /proc/mounts | grep sda12         Verify change
/dev/sda12 /testfs ext3 ro 0 0

The string ro in the line displayed from /proc/mounts indicates that this is a read-only
mount.
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Finally, we move the mount point to a new location within the directory hierarchy:

# mkdir /demo
# ./t_mount -f m /testfs /demo
# cat /proc/mounts | grep sda12         Verify change
/dev/sda12 /demo ext3 ro 0

Listing 14-1: Using mount()
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– filesys/t_mount.c

#include <sys/mount.h>
#include "tlpi_hdr.h"

static void
usageError(const char *progName, const char *msg)
{
    if (msg != NULL)
        fprintf(stderr, "%s", msg);

    fprintf(stderr, "Usage: %s [options] source target\n\n", progName);
    fprintf(stderr, "Available options:\n");
#define fpe(str) fprintf(stderr, "    " str)    /* Shorter! */
    fpe("-t fstype        [e.g., 'ext2' or 'reiserfs']\n");
    fpe("-o data          [file system-dependent options,\n");
    fpe("                 e.g., 'bsdgroups' for ext2]\n");
    fpe("-f mountflags    can include any of:\n");
#define fpe2(str) fprintf(stderr, "            " str)
    fpe2("b - MS_BIND         create a bind mount\n");
    fpe2("d - MS_DIRSYNC      synchronous directory updates\n");
    fpe2("l - MS_MANDLOCK     permit mandatory locking\n");
    fpe2("m - MS_MOVE         atomically move subtree\n");
    fpe2("A - MS_NOATIME      don't update atime (last access time)\n");
    fpe2("V - MS_NODEV        don't permit device access\n");
    fpe2("D - MS_NODIRATIME   don't update atime on directories\n");
    fpe2("E - MS_NOEXEC       don't allow executables\n");
    fpe2("S - MS_NOSUID       disable set-user/group-ID programs\n");
    fpe2("r - MS_RDONLY       read-only mount\n");
    fpe2("c - MS_REC          recursive mount\n");
    fpe2("R - MS_REMOUNT      remount\n");
    fpe2("s - MS_SYNCHRONOUS  make writes synchronous\n");
    exit(EXIT_FAILURE);
}

int
main(int argc, char *argv[])
{
    unsigned long flags;
    char *data, *fstype;
    int j, opt;

    flags = 0;
    data = NULL;
    fstype = NULL;

    while ((opt = getopt(argc, argv, "o:t:f:")) != -1) {
        switch (opt) {
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        case 'o':
            data = optarg;
            break;

        case 't':
            fstype = optarg;
            break;

        case 'f':
            for (j = 0; j < strlen(optarg); j++) {
                switch (optarg[j]) {
                case 'b': flags |= MS_BIND;             break;
                case 'd': flags |= MS_DIRSYNC;          break;
                case 'l': flags |= MS_MANDLOCK;         break;
                case 'm': flags |= MS_MOVE;             break;
                case 'A': flags |= MS_NOATIME;          break;
                case 'V': flags |= MS_NODEV;            break;
                case 'D': flags |= MS_NODIRATIME;       break;
                case 'E': flags |= MS_NOEXEC;           break;
                case 'S': flags |= MS_NOSUID;           break;
                case 'r': flags |= MS_RDONLY;           break;
                case 'c': flags |= MS_REC;              break;
                case 'R': flags |= MS_REMOUNT;          break;
                case 's': flags |= MS_SYNCHRONOUS;      break;
                default:  usageError(argv[0], NULL);
                }
            }
            break;

        default:
            usageError(argv[0], NULL);
        }
    }

    if (argc != optind + 2)
        usageError(argv[0], "Wrong number of arguments\n");

    if (mount(argv[optind], argv[optind + 1], fstype, flags, data) == -1)
        errExit("mount");

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– filesys/t_mount.c

14.8.2 Unmounting a File System: umount() and umount2()
The umount() system call unmounts a mounted file system.

The target argument specifies the mount point of the file system to be unmounted.

#include <sys/mount.h>

int umount(const char *target);

Returns 0 on success, or –1 on error
Fi le Sys tems 269



On Linux 2.2 and earlier, the file system can be identified in two ways: by the
mount point or by the name of the device containing the file system. Since
kernel 2.4, Linux doesn’t allow the latter possibility, because a single file sys-
tem can now be mounted at multiple locations, so that specifying a file system
for target would be ambiguous. We explain this point in further detail in
Section 14.9.1.

It is not possible to unmount a file system that is busy; that is, if there are open files
on the file system, or a process’s current working directory is somewhere in the file
system. Calling umount() on a busy file system yields the error EBUSY.

The umount2() system call is an extended version of umount(). It allows finer
control over the unmount operation via the flags argument.

This flags bit-mask argument consists of zero or more of the following values ORed
together:

MNT_DETACH (since Linux 2.4.11)
Perform a lazy unmount. The mount point is marked so that no process
can make new accesses to it, but processes that are already using it can con-
tinue to do so. The file system is actually unmounted when all processes
cease using the mount.

MNT_EXPIRE (since Linux 2.6.8)
Mark the mount point as expired. If an initial umount2() call is made specify-
ing this flag, and the mount point is not busy, then the call fails with the
error EAGAIN, but the mount point is marked to expire. (If the mount point
is busy, then the call fails with the error EBUSY, and the mount point is not
marked to expire.) A mount point remains expired as long as no process
subsequently makes use of it. A second umount2() call specifying MNT_EXPIRE
will unmount an expired mount point. This provides a mechanism to
unmount a file system that hasn’t been used for some period of time. This
flag can’t be specified with MNT_DETACH or MNT_FORCE.

MNT_FORCE

Force an unmount even if the device is busy (NFS mounts only). Employ-
ing this option can cause data loss.

UMOUNT_NOFOLLOW (since Linux 2.6.34)
Don’t dereference target if it is a symbolic link. This flag is designed for use
in certain set-user-ID-root programs that allow unprivileged users to per-
form unmounts, in order to avoid the security problems that could occur if
target is a symbolic link that is changed to point to a different location.

#include <sys/mount.h>

int umount2(const char *target, int flags);

Returns 0 on success, or –1 on error
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14.9 Advanced Mount Features

We now look at a number of more advanced features that can be employed when
mounting file systems. We demonstrate the use of most of these features using the
mount(8) command. The same effects can also be accomplished from a program via
calls to mount(2).

14.9.1 Mounting a File System at Multiple Mount Points
In kernel versions before 2.4, a file system could be mounted only on a single
mount point. From kernel 2.4 onward, a file system can be mounted at multiple
locations within the file system. Because each of the mount points shows the same
subtree, changes made via one mount point are visible through the other(s), as
demonstrated by the following shell session:

$ su                                  Privilege is required to use mount(8)
Password:
# mkdir /testfs                       Create two directories for mount points
# mkdir /demo
# mount /dev/sda12 /testfs            Mount file system at one mount point
# mount /dev/sda12 /demo              Mount file system at second mount point
# mount | grep sda12                  Verify the setup
/dev/sda12 on /testfs type ext3 (rw)
/dev/sda12 on /demo type ext3 (rw)
# touch /testfs/myfile                Make a change via first mount point
# ls /demo                            View files at second mount point
lost+found  myfile

The output of the ls command shows that the change made via the first mount
point (/testfs) was visible via the second mount point (/demo).

We present one example of why it is useful to mount a file system at multiple
points when we describe bind mounts in Section 14.9.4.

It is because a device can be mounted at multiple points that the umount() system
call can’t take a device as its argument in Linux 2.4 and later.

14.9.2 Stacking Multiple Mounts on the Same Mount Point
In kernel versions before 2.4, a mount point could be used only once. Since
kernel 2.4, Linux allows multiple mounts to be stacked on a single mount point.
Each new mount hides the directory subtree previously visible at that mount point.
When the mount at the top of the stack is unmounted, the previously hidden
mount becomes visible once more, as demonstrated by the following shell session:

$ su                                  Privilege is required to use mount(8)
Password:
# mount /dev/sda12 /testfs            Create first mount on /testfs
# touch /testfs/myfile                Make a file in this subtree
# mount /dev/sda13 /testfs            Stack a second mount on /testfs
# mount | grep testfs                 Verify the setup
/dev/sda12 on /testfs type ext3 (rw)
/dev/sda13 on /testfs type reiserfs (rw)
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# touch /testfs/newfile               Create a file in this subtree
# ls /testfs                          View files in this subtree
newfile
# umount /testfs                      Pop a mount from the stack
# mount | grep testfs
/dev/sda12 on /testfs type ext3 (rw)  Now only one mount on /testfs
# ls /testfs                          Previous mount is now visible
lost+found  myfile

One use of mount stacking is to stack a new mount on an existing mount point that
is busy. Processes that hold file descriptors open, that are chroot()-jailed, or that
have current working directories within the old mount point continue to operate
under that mount, but processes making new accesses to the mount point use the
new mount. Combined with a MNT_DETACH unmount, this can provide a smooth
migration off a file system without needing to take the system into single-user
mode. We’ll see another example of how stacking mounts is useful when we discuss
the tmpfs file system in Section 14.10.

14.9.3 Mount Flags That Are Per-Mount Options
In kernel versions before 2.4, there was a one-to-one correspondence between file
systems and mount points. Because this no longer holds in Linux 2.4 and later,
some of the mountflags values described in Section 14.8.1 can be set on a per-mount
basis. These flags are MS_NOATIME (since Linux 2.6.16), MS_NODEV, MS_NODIRATIME (since
Linux 2.6.16), MS_NOEXEC, MS_NOSUID, MS_RDONLY (since Linux 2.6.26), and MS_RELATIME.
The following shell session demonstrates this effect for the MS_NOEXEC flag:

$ su
Password:
# mount /dev/sda12 /testfs
# mount -o noexec /dev/sda12 /demo
# cat /proc/mounts | grep sda12
/dev/sda12 /testfs ext3 rw 0 0
/dev/sda12 /demo ext3 rw,noexec 0 0
# cp /bin/echo /testfs
# /testfs/echo "Art is something which is well done"
Art is something which is well done
# /demo/echo "Art is something which is well done"
bash: /demo/echo: Permission denied

14.9.4 Bind Mounts
Starting with kernel 2.4, Linux permits the creation of bind mounts. A bind mount
(created using the mount() MS_BIND flag) allows a directory or a file to be mounted at
some other location in the file-system hierarchy. This results in the directory or file
being visible in both locations. A bind mount is somewhat like a hard link, but dif-
fers in two respects:

A bind mount can cross file-system mount points (and even chroot jails).

It is possible to make a bind mount for a directory.
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We can create a bind mount from the shell using the ––bind option to mount(8), as
shown in the following examples.

In the first example, we bind mount a directory at another location and show
that files created in one directory are visible at the other location:

$ su                            Privilege is required to use mount(8)
Password:
# pwd
/testfs
# mkdir d1                      Create directory to be bound at another location
# touch d1/x                    Create file in the directory
# mkdir d2                      Create mount point to which d1 will be bound
# mount --bind d1 d2            Create bind mount: d1 visible via d2
# ls d2                         Verify that we can see contents of d1 via d2
x
# touch d2/y                    Create second file in directory d2
# ls d1                         Verify that this change is visible via d1
x  y

In the second example, we bind mount a file at another location and demonstrate
that changes to the file via one mount are visible via the other mount:

# cat > f1                      Create file to be bound to another location
Chance is always powerful. Let your hook be always cast.
Type Control-D
# touch f2                      This is the new mount point
# mount --bind f1 f2            Bind f1 as f2
# mount | egrep '(d1|f1)'       See how mount points look
/testfs/d1 on /testfs/d2 type none (rw,bind)
/testfs/f1 on /testfs/f2 type none (rw,bind)
# cat >> f2                     Change f2
In the pool where you least expect it, will be a fish.
# cat f1                        The change is visible via original file f1
Chance is always powerful. Let your hook be always cast.
In the pool where you least expect it, will be a fish.
# rm f2                         Can’t do this because it is a mount point
rm: cannot unlink `f2': Device or resource busy
# umount f2                     So unmount
# rm f2                         Now we can remove f2

One example of when we might use a bind mount is in the creation of a chroot jail
(Section 18.12). Rather than replicating various standard directories (such as /lib)
in the jail, we can simply create bind mounts for these directories (possibly
mounted read-only) within the jail.

14.9.5 Recursive Bind Mounts
By default, if we create a bind mount for a directory using MS_BIND, then only that
directory is mounted at the new location; if there are any submounts under the
source directory, they are not replicated under the mount target. Linux 2.4.11 added
the MS_REC flag, which can be ORed with MS_BIND as part of the flags argument to
mount() so that submounts are replicated under the mount target. This is referred
to as a recursive bind mount. The mount(8) command provides the ––rbind option to
achieve the same effect from the shell, as shown in the following shell session.
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We begin by creating a directory tree (src1) mounted under top. This tree
includes a submount (src2) at top/sub.

$ su
Password:
# mkdir top                     This is our top-level mount point
# mkdir src1                    We’ll mount this under top
# touch src1/aaa
# mount --bind src1 top         Create a normal bind mount
# mkdir top/sub                 Create directory for a submount under top
# mkdir src2                    We’ll mount this under top/sub
# touch src2/bbb
# mount --bind src2 top/sub     Create a normal bind mount
# find top                      Verify contents under top mount tree
top
top/aaa
top/sub                         This is the submount
top/sub/bbb

Now we create another bind mount (dir1) using top as the source. Since this new
mount is nonrecursive, the submount is not replicated.

# mkdir dir1
# mount --bind top dir1         Here we use a normal bind mount
# find dir1
dir1
dir1/aaa
dir1/sub

The absence of dir1/sub/bbb in the output of find shows that the submount top/sub
was not replicated.

Now we create a recursive bind mount (dir2) using top as the source.

# mkdir dir2
# mount --rbind top dir2
# find dir2
dir2
dir2/aaa
dir2/sub
dir2/sub/bbb

The presence of dir2/sub/bbb in the output of find shows that the submount top/sub
was replicated.

14.10 A Virtual Memory File System: tmpfs

All of the file systems we have described so far in this chapter reside on disks. How-
ever, Linux also supports the notion of virtual file systems that reside in memory. To
applications, these look just like any other file system—the same operations (open(),
read(), write(), link(), mkdir(), and so on) can be applied to files and directories in
such file systems. There is, however, one important difference: file operations are
much faster, since no disk access is involved.
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Various memory-based file systems have been developed for Linux. The most
sophisticated of these to date is the tmpfs file system, which first appeared in
Linux 2.4. The tmpfs file system differs from other memory-based file systems in
that it is a virtual memory file system. This means that tmpfs uses not only RAM, but
also the swap space, if RAM is exhausted. (Although the tmpfs file system described
here is Linux-specific, most UNIX implementations provide some form of memory-
based file system.)

The tmpfs file system is an optional Linux kernel component that is configured
via the CONFIG_TMPFS option.

To create a tmpfs file system, we use a command of the following form:

# mount -t tmpfs source target

The source can be any name; its only significance is that it appears in /proc/mounts
and is displayed by the mount and df commands. As usual, target is the mount point
for the file system. Note that it is not necessary to use mkfs to create a file system
first, because the kernel automatically builds a file system as part of the mount() sys-
tem call.

As an example of the use of tmpfs, we could employ mount stacking (so that we
don’t need to care if /tmp is already in use) and create a tmpfs file system mounted
on /tmp as follows:

# mount -t tmpfs newtmp /tmp
# cat /proc/mounts | grep tmp
newtmp /tmp tmpfs rw 0 0

A command such as the above (or an equivalent entry in /etc/fstab) is sometimes
used to improve the performance of applications (e.g., compilers) that make heavy
use of the /tmp directory for creating temporary files.

By default, a tmpfs file system is permitted to grow to half the size of RAM, but
the size=nbytes mount option can be used to set a different ceiling for the file-system
size, either when the file system is created or during a later remount. (A tmpfs file
system consumes only as much memory and swap space as is currently required for
the files it holds.)

If we unmount a tmpfs file system, or the system crashes, then all data in the file
system is lost; hence the name tmpfs.

Aside from use by user applications, tmpfs file systems also serve two special
purposes:

An invisible tmpfs file system, mounted internally by the kernel, is used for
implementing System V shared memory (Chapter 48) and shared anonymous
memory mappings (Chapter 49).

A tmpfs file system mounted at /dev/shm is used for the glibc implementation of
POSIX shared memory and POSIX semaphores.
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14.11 Obtaining Information About a File System: statvfs()

The statvfs() and fstatvfs() library functions obtain information about a mounted file
system.

The only difference between these two functions is in how the file system is identi-
fied. For statvfs(), we use pathname to specify the name of any file in the file system.
For fstatvfs(), we specify an open file descriptor, fd, referring to any file in the file
system. Both functions return a statvfs structure containing information about the
file system in the buffer pointed to by statvfsbuf. This structure has the following
form:

struct statvfs {
    unsigned long f_bsize; /* File-system block size (in bytes) */
    unsigned long f_frsize; /* Fundamental file-system block size

(in bytes) */
    fsblkcnt_t    f_blocks; /* Total number of blocks in file

system (in units of 'f_frsize') */
    fsblkcnt_t    f_bfree; /* Total number of free blocks */
    fsblkcnt_t    f_bavail; /* Number of free blocks available to

unprivileged process */
    fsfilcnt_t    f_files; /* Total number of i-nodes */
    fsfilcnt_t    f_ffree; /* Total number of free i-nodes */
    fsfilcnt_t    f_favail; /* Number of i-nodes available to unprivileged

process (set to 'f_ffree' on Linux) */
    unsigned long f_fsid; /* File-system ID */
    unsigned long f_flag; /* Mount flags */
    unsigned long f_namemax; /* Maximum length of filenames on

this file system */
};

The purpose of most of the fields in the statvfs structure is made clear in the com-
ments above. We note a few further points regarding some fields:

The fsblkcnt_t and fsfilcnt_t data types are integer types specified by SUSv3.

For most file Linux systems, the values of f_bsize and f_frsize are the same. How-
ever, some file systems support the notion of block fragments, which can be
used to allocate a smaller unit of storage at the end of the file if a full block is
not required. This avoids the waste of space that would otherwise occur if a full
block was allocated. On such file systems, f_frsize is the size of a fragment, and
f_bsize is the size of a whole block. (The notion of fragments in UNIX file sys-
tems first appeared in the early 1980s with the 4.2BSD Fast File System,
described in [McKusick et al., 1984].)

#include <sys/statvfs.h>

int statvfs(const char *pathname, struct statvfs *statvfsbuf);
int fstatvfs(int fd, struct statvfs *statvfsbuf);

Both return 0 on success, or –1 on error
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Many native UNIX and Linux file systems support the notion of reserving a
certain portion of the blocks of a file system for the superuser, so that if the file
system fills up, the superuser can still log in to the system and do some work to
resolve the problem. If there are reserved blocks in the file system, then the dif-
ference in values of the f_bfree and f_bavail fields in the statvfs structure tells us
how many blocks are reserved.

The f_flag field is a bit mask of the flags used to mount the file system; that is, it
contains information similar to the mountflags argument given to mount(2).
However, the constants used for the bits in this field have names starting with
ST_ instead of the MS_ used for mountflags. SUSv3 requires only the ST_RDONLY and
ST_NOSUID constants, but the glibc implementation supports a full range of con-
stants with names corresponding to the MS_* constants described for the
mount() mountflags argument.

The f_fsid field is used on some UNIX implementations to return a unique
identifier for the file system—for example, a value based on the identifier of the
device on which the file system resides. For most Linux file systems, this field
contains 0.

SUSv3 specifies both statvfs() and fstatvfs(). On Linux (as on several other UNIX
implementations), these functions are layered on top of the quite similar statfs()
and fstatfs() system calls. (Some UNIX implementations provide a statfs() system
call, but don’t provide statvfs().) The principal differences (aside from some differ-
ently named fields) are as follows

The statvfs() and fstatvfs() functions return the f_flag field, giving information
about the file-system mount flags. (The glibc implementation obtains this infor-
mation by scanning /proc/mounts or /etc/mtab.)

The statfs() and fstatfs() system calls return the field f_type, giving the type of the
file system (e.g., the value 0xef53 indicates that this is an ext2 file system).

The filesys subdirectory in the source code distribution for this book contains
two files, t_statvfs.c and t_statfs.c, demonstrating the use of statvfs() and statfs().

14.12 Summary

Devices are represented by entries in the /dev directory. Each device has a corre-
sponding device driver, which implements a standard set of operations, including
those corresponding to the open(), read(), write(), and close() system calls. A device
may be real, meaning that there is a corresponding hardware device, or virtual,
meaning that no hardware device exists, but the kernel nevertheless provides a
device driver that implements an API that is the same as a real device.

A hard disk is divided into one or more partitions, each of which may contain a
file system. A file system is an organized collection of regular files and directories.
Linux implements a wide variety of file systems, including the traditional ext2 file
system. The ext2 file system is conceptually similar to early UNIX file systems, con-
sisting of a boot block, a superblock, an i-node table, and a data area containing file
data blocks. Each file has an entry in the file system’s i-node table. This entry contains
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various information about the file, including its type, size, link count, ownership,
permissions, timestamps, and pointers to the file’s data blocks.

Linux provides a range of journaling file systems, including Reiserfs, ext3, ext4,
XFS, JFS, and Btrfs. A journaling file system records metadata updates (and option-
ally on some file systems, data updates) to a log file before the actual file updates
are performed. This means that in the event of a system crash, the log file can be
replayed to quickly restore the file system to a consistent state. The key benefit of
journaling file systems is that they avoid the lengthy file-system consistency checks
required by conventional UNIX file systems after a system crash.

All file systems on a Linux system are mounted under a single directory tree,
with the directory / at its root. The location at which a file system is mounted in the
directory tree is called its mount point.

A privileged process can mount and unmount a file system using the mount()
and umount() system calls. Information about a mounted file system can be
retrieved using statvfs().

Further information

For detailed information about devices and device drivers, see [Bovet & Cesati,
2005] and especially [Corbet et al., 2005]. Some useful information about devices
can be found in the kernel source file Documentation/devices.txt.

Several books provide further information about file systems. [Tanenbaum,
2007] is a general introduction to file-system structures and implementation.
[Bach, 1986] provides an introduction to the implementation of UNIX file systems,
oriented primarily toward System V. [Vahalia, 1996] and [Goodheart & Cox, 1994]
also describe the System V file-system implementation. [Love, 2010] and [Bovet &
Cesati, 2005] describe the Linux VFS implementation.

Documentation on various file systems can be found in the kernel source sub-
directory Documentation/filesystems. Individual web sites can be found describing
most of the file-system implementations available on Linux.

14.13 Exercise

14-1. Write a program that measures the time required to create and then remove a
large number of 1-byte files from a single directory. The program should create
files with names of the form xNNNNNN, where NNNNNN is replaced by a random six-digit
number. The files should be created in the random order in which their names are
generated, and then deleted in increasing numerical order (i.e., an order that is
different from that in which they were created). The number of files (NF) and the
directory in which they are to be created should be specifiable on the command
line. Measure the times required for different values of NF (e.g., in the range from
1000 to 20,000) and for different file systems (e.g., ext2, ext3, and XFS). What
patterns do you observe on each file system as NF increases? How do the various
file systems compare? Do the results change if the files are created in increasing
numerical order (x000001, x000001, x0000002, and so on) and then deleted in the same
order? If so, what do you think the reason(s) might be? Again, do the results vary
across file-system types?
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F I L E  A T T R I B U T E S

In this chapter, we investigate various attributes of files (file metadata). We begin
with a description of the stat() system call, which returns a structure containing
many of these attributes, including file timestamps, file ownership, and file permis-
sions. We then go on to look at various system calls used to change these attributes.
(The discussion of file permissions continues in Chapter 17, where we look at
access control lists.) We conclude the chapter with a discussion of i-node flags (also
known as ext2 extended file attributes), which control various aspects of the treat-
ment of files by the kernel.

15.1 Retrieving File Information: stat()

The stat(), lstat(), and fstat() system calls retrieve information about a file, mostly
drawn from the file i-node.

#include <sys/stat.h>

int stat(const char *pathname, struct stat *statbuf);
int lstat(const char *pathname, struct stat *statbuf);
int fstat(int fd, struct stat *statbuf);

All return 0 on success, or –1 on error



These three system calls differ only in the way that the file is specified:

stat() returns information about a named file;

lstat() is similar to stat(), except that if the named file is a symbolic link, infor-
mation about the link itself is returned, rather than the file to which the link
points; and

fstat() returns information about a file referred to by an open file descriptor.

The stat() and lstat() system calls don’t require permissions on the file itself. How-
ever, execute (search) permission is required on all of the parent directories specified
in pathname. The fstat() system call always succeeds, if provided with a valid file
descriptor.

All of these system calls return a stat structure in the buffer pointed to by
statbuf. This structure has the following form:

struct stat {
    dev_t     st_dev;         /* IDs of device on which file resides */
    ino_t     st_ino;         /* I-node number of file */
    mode_t    st_mode;        /* File type and permissions */
    nlink_t   st_nlink;       /* Number of (hard) links to file */
    uid_t     st_uid;         /* User ID of file owner */
    gid_t     st_gid;         /* Group ID of file owner */
    dev_t     st_rdev;        /* IDs for device special files */
    off_t     st_size;        /* Total file size (bytes) */
    blksize_t st_blksize;     /* Optimal block size for I/O (bytes) */
    blkcnt_t  st_blocks;      /* Number of (512B) blocks allocated */
    time_t    st_atime;       /* Time of last file access */
    time_t    st_mtime;       /* Time of last file modification */
    time_t    st_ctime;       /* Time of last status change */
};

The various data types used to type the fields in the stat structure are all specified in
SUSv3. See Section 3.6.2 for further information about these types.

According to SUSv3, when lstat() is applied to a symbolic link, it needs to
return valid information only in the st_size field and in the file type component
(described shortly) of the st_mode field. None of other fields (e.g., the time
fields) need contain valid information. This gives an implementation the freedom
to not maintain these fields, which may be done for efficiency reasons. In par-
ticular, the intent of earlier UNIX standards was to allow a symbolic link to be
implemented either as an i-node or as an entry in a directory. Under the latter
implementation, it is not possible to implement all of the fields required by the
stat structure. (On all major contemporary UNIX implementations, symbolic
links are implemented as i-nodes.) On Linux, lstat() returns information in all
of the stat fields when applied to a symbolic link.

In the following pages, we look at some of the stat structure fields in more detail,
and finish with an example program that displays the entire stat structure.
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Device IDs and i-node number

The st_dev field identifies the device on which the file resides. The st_ino field con-
tains the i-node number of the file. The combination of st_dev and st_ino uniquely
identifies a file across all file systems. The dev_t type records the major and minor
IDs of a device (Section 14.1).

If this is the i-node for a device, then the st_rdev field contains the major and
minor IDs of the device.

The major and minor IDs of a dev_t value can be extracted using two macros:
major() and minor(). The header file required to obtain the declarations of these two
macros varies across UNIX implementations. On Linux, they are exposed by
<sys/types.h> if the _BSD_SOURCE macro is defined.

The size of the integer values returned by major() and minor() varies across
UNIX implementations. For portability, we always cast the returned values to long
when printing them (see Section 3.6.2).

File ownership

The st_uid and st_gid fields identify, respectively, the owner (user ID) and group
(group ID) to which the file belongs.

Link count

The st_nlink field is the number of (hard) links to the file. We describe links in
detail in Chapter 18.

File type and permissions

The st_mode field is a bit mask serving the dual purpose of identifying the file type
and specifying the file permissions. The bits of this field are laid out as shown in
Figure 15-1.

Figure 15-1: Layout of st_mode bit mask

The file type can be extracted from this field by ANDing (&) with the constant
S_IFMT. (On Linux, 4 bits are used for the file-type component of the st_mode field.
However, because SUSv3 makes no specification about how the file type is repre-
sented, this detail may vary across implementations.) The resulting value can then
be compared with a range of constants to determine the file type, like so:

if ((statbuf.st_mode & S_IFMT) == S_IFREG)
    printf("regular file\n");

Because this is a common operation, standard macros are provided to simplify the
above to the following:

if (S_ISREG(statbuf.st_mode))
    printf("regular file\n");
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The full set of file-type macros (defined in <sys/stat.h>) is shown in Table 15-1. All
of the file-type macros in Table 15-1 are specified in SUSv3 and appear on Linux.
Some other UNIX implementations define additional file types (e.g., S_IFDOOR, for
door files on Solaris). The type S_IFLNK is returned only by calls to lstat(), since calls
to stat() always follow symbolic links.

The original POSIX.1 standard did not specify the constants shown in the first
column of Table 15-1, although most of them appeared on most UNIX implemen-
tations. SUSv3 requires these constants.

In order to obtain the definitions of S_IFSOCK and S_ISSOCK() from <sys/stat.h>,
we must either define the _BSD_SOURCE feature test macro or define
_XOPEN_SOURCE with a value greater than or equal to 500. (The rules have varied
somewhat across glibc versions: in some cases, _XOPEN_SOURCE must be defined
with a value of 600 or greater.)

The bottom 12 bits of the st_mode field define the permissions for the file. We
describe the file permission bits in Section 15.4. For now, we simply note that the 9
least significant of the permission bits are the read, write, and execute permissions
for each of the categories owner, group, and other.

File size, blocks allocated, and optimal I/O block size

For regular files, the st_size field is the total size of the file in bytes. For a symbolic
link, this field contains the length (in bytes) of the pathname pointed to by the link.
For a shared memory object (Chapter 54), this field contains the size of the object.

The st_blocks field indicates the total number of blocks allocated to the file, in
512-byte block units. This total includes space allocated for pointer blocks (see Fig-
ure 14-2, on page 258). The choice of the 512-byte unit of measurement is histori-
cal—this is the smallest block size on any of the file systems that have been
implemented under UNIX. More modern file systems use larger logical block sizes.
For example, under ext2, the value in st_blocks is always a multiple of 2, 4, or 8,
depending on whether the ext2 logical block size is 1024, 2048, or 4096 bytes.

SUSv3 doesn’t define the units in which st_blocks is measured, allowing the pos-
sibility that an implementation uses a unit other than 512 bytes. Most UNIX
implementations do use 512-byte units, but HP-UX 11 uses file system–specific
units (e.g., 1024 bytes in some cases).

Table 15-1: Macros for checking file types in the st_mode field of the stat structure

Constant Test macro File type

S_IFREG S_ISREG() Regular file
S_IFDIR S_ISDIR() Directory
S_IFCHR S_ISCHR() Character device
S_IFBLK S_ISBLK() Block device
S_IFIFO S_ISFIFO() FIFO or pipe
S_IFSOCK S_ISSOCK() Socket
S_IFLNK S_ISLNK() Symbolic link
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The st_blocks field records the number of disk blocks actually allocated. If the file con-
tains holes (Section 4.7), this will be smaller than might be expected from the corre-
sponding number of bytes (st_size) in the file. (The disk usage command, du –k file,
displays the actual space allocated for a file, in kilobytes; that is, a figure calculated
from the st_blocks value for the file, rather than the st_size value.)

The st_blksize field is somewhat misleadingly named. It is not the block size of
the underlying file system, but rather the optimal block size (in bytes) for I/O on
files on this file system. I/O in blocks smaller than this size is less efficient (refer to
Section 13.1). A typical value returned in st_blksize is 4096.

File timestamps

The st_atime, st_mtime, and st_ctime fields contain, respectively, the times of last file
access, last file modification, and last status change. These fields are of type time_t,
the standard UNIX time format of seconds since the Epoch. We say more about
these fields in Section 15.2.

Example program

The program in Listing 15-1 uses stat() to retrieve information about the file named
on its command line. If the –l command-line option is specified, then the program
instead uses lstat() so that we can retrieve information about a symbolic link instead
of the file to which it refers. The program prints all fields of the returned stat struc-
ture. (For an explanation of why we cast the st_size and st_blocks fields to long long,
see Section 5.10.) The filePermStr() function used by this program is shown in List-
ing 15-4, on page 296.

Here is an example of the use of the program:

$ echo 'All operating systems provide services for programs they run' > apue
$ chmod g+s apue        Turn on set-group-ID bit; affects last status change time
$ cat apue              Affects last file access time
All operating systems provide services for programs they run
$ ./t_stat apue
File type:                regular file
Device containing i-node: major=3   minor=11
I-node number:            234363
Mode:                     102644 (rw-r--r--)
    special bits set:     set-GID
Number of (hard) links:   1
Ownership:                UID=1000   GID=100
File size:                61 bytes
Optimal I/O block size:   4096 bytes
512B blocks allocated:    8
Last file access:         Mon Jun  8 09:40:07 2011
Last file modification:   Mon Jun  8 09:39:25 2011
Last status change:       Mon Jun  8 09:39:51 2011
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Listing 15-1: Retrieving and interpreting file stat information

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– files/t_stat.c

#define _BSD_SOURCE     /* Get major() and minor() from <sys/types.h> */
#include <sys/types.h>
#include <sys/stat.h>
#include <time.h>
#include "file_perms.h"
#include "tlpi_hdr.h"

static void
displayStatInfo(const struct stat *sb)
{
    printf("File type:                ");

switch (sb->st_mode & S_IFMT) {
    case S_IFREG:  printf("regular file\n");            break;
    case S_IFDIR:  printf("directory\n");               break;
    case S_IFCHR:  printf("character device\n");        break;
    case S_IFBLK:  printf("block device\n");            break;
    case S_IFLNK:  printf("symbolic (soft) link\n");    break;
    case S_IFIFO:  printf("FIFO or pipe\n");            break;
    case S_IFSOCK: printf("socket\n");                  break;
    default:       printf("unknown file type?\n");      break;
    }

    printf("Device containing i-node: major=%ld   minor=%ld\n",
                (long) major(sb->st_dev), (long) minor(sb->st_dev));
    

printf("I-node number:            %ld\n", (long) sb->st_ino);

    printf("Mode:                     %lo (%s)\n",
            (unsigned long) sb->st_mode, filePermStr(sb->st_mode, 0));
    

if (sb->st_mode & (S_ISUID | S_ISGID | S_ISVTX))
        printf("    special bits set:     %s%s%s\n",
                (sb->st_mode & S_ISUID) ? "set-UID " : "",
                (sb->st_mode & S_ISGID) ? "set-GID " : "",
                (sb->st_mode & S_ISVTX) ? "sticky " : "");

    printf("Number of (hard) links:   %ld\n", (long) sb->st_nlink);
    

printf("Ownership:                UID=%ld   GID=%ld\n",
            (long) sb->st_uid, (long) sb->st_gid);

    if (S_ISCHR(sb->st_mode) || S_ISBLK(sb->st_mode))
        printf("Device number (st_rdev):  major=%ld; minor=%ld\n",
                (long) major(sb->st_rdev), (long) minor(sb->st_rdev));

    printf("File size:                %lld bytes\n", (long long) sb->st_size);
    printf("Optimal I/O block size:   %ld bytes\n", (long) sb->st_blksize);
    printf("512B blocks allocated:    %lld\n", (long long) sb->st_blocks);
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    printf("Last file access:         %s", ctime(&sb->st_atime));
    printf("Last file modification:   %s", ctime(&sb->st_mtime));
    printf("Last status change:       %s", ctime(&sb->st_ctime));
}

int
main(int argc, char *argv[])
{
    struct stat sb;
    Boolean statLink;           /* True if "-l" specified (i.e., use lstat) */
    int fname;                  /* Location of filename argument in argv[] */

    statLink = (argc > 1) && strcmp(argv[1], "-l") == 0;
                            /* Simple parsing for "-l" */
    fname = statLink ? 2 : 1;

    if (fname >= argc || (argc > 1 && strcmp(argv[1], "--help") == 0))
        usageErr("%s [-l] file\n"
                "        -l = use lstat() instead of stat()\n", argv[0]);

    if (statLink) {
        if (lstat(argv[fname], &sb) == -1)
            errExit("lstat");
    } else {
        if (stat(argv[fname], &sb) == -1)
            errExit("stat");
    }

    displayStatInfo(&sb);

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– files/t_stat.c

15.2 File Timestamps

The st_atime, st_mtime, and st_ctime fields of the stat structure contain file timestamps.
These fields record, respectively, the times of last file access, last file modification,
and last file status change (i.e., last change to the file’s i-node information). Time-
stamps are recorded in seconds since the Epoch (1 January 1970; see Section 10.1).

Most native Linux and UNIX file systems support all of the timestamp fields,
but some non-UNIX file systems may not.

Table 15-2 summarizes which of the timestamp fields (and in some cases, the
analogous fields in the parent directory) are changed by various system calls and
library functions described in this book. In the headings of this table, a, m, and c
represent the st_atime, st_mtime, and st_ctime fields, respectively. In most cases, the
relevant timestamp is set to the current time by the system call. The exceptions are
utime() and similar calls (discussed in Sections 15.2.1 and 15.2.2), which can be used
to explicitly set the last file access and modification times to arbitrary values.
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In Sections 14.8.1 and 15.5, we describe mount(2) options and per-file flags that pre-
vent updates to the last access time of a file. The open() O_NOATIME flag described in
Section 4.3.1 also serves a similar purpose. In some applications, this can be useful
for performance reasons, since it reduces the number of disk operations that are
required when a file is accessed.

Although most UNIX systems don’t record the creation time of a file, on
recent BSD systems, this time is recorded in a stat field named st_birthtime.

Table 15-2: Effect of various functions on file timestamps

Function
File or 

directory
Parent 

directory Notes
a m c a m c

chmod() • Same for fchmod()

chown() • Same for lchown() and fchown()

exec() •
link() • • • Affects parent directory of second argument

mkdir() • • • • •
mkfifo() • • • • •
mknod() • • • • •
mmap() • • • st_mtime and st_ctime are changed only on updates 

to MAP_SHARED mapping

msync() • • Changed only if file is modified

open(), creat() • • • • • When creating new file

open(), creat() • • When truncating existing file

pipe() • • •
read() • Same for readv(), pread(), and preadv()

readdir() • readdir() may buffer directory entries; timestamps 
updated only if directory is read

removexattr() • Same for fremovexattr() and lremovexattr()

rename() • • • Affects timestamps in both parent directories; 
SUSv3 doesn’t specify file st_ctime change, but 
notes that some implementations do this

rmdir() • • Same for remove(directory)

sendfile() • Timestamp changed for input file

setxattr() • Same for fsetxattr() and lsetxattr() 

symlink() • • • • • Sets timestamps of link (not target file)

truncate() • • Same for ftruncate(); timestamps change only if 
file size changes

unlink() • • • Same for remove(file); file st_ctime changes if 
previous link count was > 1

utime() • • • Same for utimes(), futimes(), futimens(), lutimes(), 
and utimensat()

write() • • Same for writev(), pwrite(), and pwritev()
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Nanosecond timestamps

With version 2.6, Linux supports nanosecond resolution for the three timestamp
fields of the stat structure. Nanosecond resolution improves the accuracy of programs
that need to make decisions based on the relative order of file timestamps (e.g.,
make(1)).

SUSv3 doesn’t specify nanosecond timestamps for the stat structure, but SUSv4
adds this specification.

Not all file systems support nanosecond timestamps. JFS, XFS, ext4, and Btrfs
do, but ext2, ext3, and Reiserfs do not.

Under the glibc API (since version 2.3), the timestamp fields are each defined
as a timespec structure (we describe this structure when we discuss utimensat() later
in this section), which represents a time in seconds and nanoseconds components.
Suitable macro definitions make the seconds component of these structures visible
using the traditional field names (st_atime, st_mtime, and st_ctime). The nanosecond
components can be accessed using field names such st_atim.tv_nsec, for the nano-
second component of the last file access time.

15.2.1 Changing File Timestamps with utime() and utimes()
The last file access and modification timestamps stored in a file i-node can be
explicitly changed using utime() or one of a related set of system calls. Programs
such as tar(1) and unzip(1) use these system calls to reset file timestamps when
unpacking an archive.

The pathname argument identifies the file whose times we wish to modify. If
pathname is a symbolic link, it is dereferenced. The buf argument can be either NULL
or a pointer to a utimbuf structure:

struct utimbuf {
    time_t actime;      /* Access time */
    time_t modtime;     /* Modification time */
};

The fields in this structure measure time in seconds since the Epoch (Section 10.1).
Two different cases determine how utime() works:

If buf is specified as NULL, then both the last access and the last modification
times are set to the current time. In this case, either the effective user ID of the
process must match the file’s user ID (owner), the process must have write per-
mission on the file (logical, since a process with write permission on a file could
employ other system calls that would have the side effect of changing these file
timestamps), or the process must be privileged (CAP_FOWNER or CAP_DAC_OVERRIDE).

#include <utime.h>

int utime(const char *pathname, const struct utimbuf *buf);

Returns 0 on success, or –1 on error
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(To be accurate, on Linux, it is the process’s file-system user ID, rather than
its effective user ID, that is checked against the file’s user ID, as described in
Section 9.5.)

If buf is specified as pointer to a utimbuf structure, then the last file access and
modification times are updated using the corresponding fields of this struc-
ture. In this case, the effective user ID of the process must match the file’s user
ID (having write permission on the file is not sufficient) or the caller must be
privileged (CAP_FOWNER).

To change just one of the file timestamps, we first use stat() to retrieve both times,
use one of these times to initialize the utimbuf structure, and then set the other as
desired. This is demonstrated in the following code, which makes the last modifica-
tion time of a file the same as the last access time:

struct stat sb;
struct utimbuf utb;

if (stat(pathname, &sb) == -1)
    errExit("stat");
utb.actime = sb.st_atime;       /* Leave access time unchanged */
utb.modtime = sb.st_atime;
if (utime(pathname, &utb) == -1)
    errExit("utime");

A successful call to utime() always sets the last status change time to the current
time.

Linux also provides the BSD-derived utimes() system call, which performs a sim-
ilar task to utime().

The most notable difference between utime() and utimes() is that utimes() allows
time values to be specified with microsecond accuracy (the timeval structure is
described in Section 10.1). This provides (partial) access to the nanosecond accu-
racy with which file timestamps are provided in Linux 2.6. The new file access time
is specified in tv[0], and the new modification time is specified in tv[1].

An example of the use of utimes() is provided in the file files/t_utimes.c in the
source code distribution for this book.

The futimes() and lutimes() library functions perform a similar task to utimes(). They
differ from utimes() in the argument used to specify the file whose timestamps are
to be changed.

#include <sys/time.h>

int utimes(const char *pathname, const struct timeval tv[2]);

Returns 0 on success, or –1 on error
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With futimes(), the file is specified via an open file descriptor, fd.
With lutimes(), the file is specified via a pathname, with the difference from

utimes() that if the pathname refers to a symbolic link, then the link is not derefer-
enced; instead, the timestamps of the link itself are changed.

The futimes() function is supported since glibc 2.3. The lutimes() function is
supported since glibc 2.6.

15.2.2 Changing File Timestamps with utimensat() and futimens()
The utimensat() system call (supported since kernel 2.6.22) and the futimens() library
function (supported since glibc 2.6) provide extended functionality for setting a
file’s last access and last modification timestamps. Among the advantages of these
interfaces are the following:

We can set timestamps with nanosecond precision. This improves on the
microsecond precision provided by utimes().

It is possible to set the timestamps independently (i.e., one at a time). As shown
earlier, to change just one of the timestamps using the older interfaces, we
must first call stat() to retrieve the value of the other timestamp, and then spec-
ify the retrieved value along with the timestamp whose value we want to
change. (This could lead to a race condition if another process performed an
operation that updated the timestamp between these two steps.)

We can independently set either of the timestamps to the current time. To
change just one timestamp to the current time with the older interfaces, we
need to employ a call to stat() to retrieve the setting of the timestamp whose
value we wish to leave unchanged, and a call to gettimeofday() to obtain the cur-
rent time.

These interfaces are not specified in SUSv3, but are included in SUSv4.
The utimensat() system call updates the timestamps of the file specified by

pathname to the values specified in the array times.

#include <sys/time.h>

int futimes(int fd, const struct timeval tv[2]);
int lutimes(const char *pathname, const struct timeval tv[2]);

Both return 0 on success, or –1 on error

#define _XOPEN_SOURCE 700     /* Or define _POSIX_C_SOURCE >= 200809 */
#include <sys/stat.h>

int utimensat(int dirfd, const char *pathname,
              const struct timespec times[2], int flags);

Returns 0 on success, or –1 on error
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If times is specified as NULL, then both file timestamps are updated to the current
time. If times is not NULL, then the new last access timestamp is specified in times[0]
and the new last modification timestamp is specified in times[1]. Each of the ele-
ments of the array times is a structure of the following form:

struct timespec {
    time_t tv_sec;     /* Seconds ('time_t' is an integer type) */
    long   tv_nsec;    /* Nanoseconds */
};

The fields in this structure specify a time in seconds and nanoseconds since the
Epoch (Section 10.1).

To set one of the timestamps to the current time, we specify the special value
UTIME_NOW in the corresponding tv_nsec field. To leave one of the timestamps
unchanged, we specify the special value UTIME_OMIT in the corresponding tv_nsec
field. In both cases, the value in the corresponding tv_sec field is ignored.

The dirfd argument can either specify AT_FDCWD, in which case the pathname argu-
ment is interpreted as for utimes(), or it can specify a file descriptor referring to a
directory. The purpose of the latter choice is described in Section 18.11.

The flags argument can be either 0, or AT_SYMLINK_NOFOLLOW, meaning that
pathname should not be dereferenced if it is a symbolic link (i.e., the timestamps of
the symbolic link itself should be changed). By contrast, utimes() always derefer-
ences symbolic links.

The following code segment sets the last access time to the current time and
leaves the last modification time unchanged:

struct timespec times[2];

times[0].tv_sec = 0;
times[0].tv_nsec = UTIME_NOW;
times[1].tv_sec = 0;
times[1].tv_nsec = UTIME_OMIT;
if (utimensat(AT_FDCWD, "myfile", times, 0) == -1)
    errExit("utimensat");

The permission rules for changing timestamps with utimensat() (and futimens()) are
similar to those for the older APIs, and are detailed in the utimensat(2) manual
page.

The futimens() library function updates the timestamps of the file referred to by
the open file descriptor fd.

The times argument of futimens() is used in the same way as for utimensat().

#include _GNU_SOURCE
#include <sys/stat.h>

int futimens(int fd, const struct timespec times[2]);

Returns 0 on success, or –1 on error
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15.3 File Ownership

Each file has an associated user ID (UID) and group ID (GID). These IDs determine
which user and group the file belongs to. We now look at the rules that determine the
ownership of new files and describe the system calls used to change a file’s ownership.

15.3.1 Ownership of New Files
When a new file is created, its user ID is taken from the effective user ID of the pro-
cess. The group ID of the new file may be taken from either the effective group ID
of the process (equivalent to the System V default behavior) or the group ID of the
parent directory (the BSD behavior). The latter possibility is useful for creating
project directories in which all files belong to a particular group and are accessible
to the members of that group. Which of the two values is used as the new file’s
group ID is determined by various factors, including the type of file system on
which the new file is created. We begin by describing the rules followed by ext2 and
a few other file systems.

To be accurate, on Linux, all uses of the terms effective user or group ID in this
section should really be file-system user or group ID (Section 9.5).

When an ext2 file system is mounted, either the –o grpid (or the synonymous
–o bsdgroups) option or the –o nogrpid (or the synonymous –o sysvgroups) option may
be specified to the mount command. (If neither option is specified, the default
is –o nogrpid.) If –o grpid is specified, then a new file always inherits its group ID
from the parent directory. If –o nogrpid is specified, then, by default, a new file
takes its group ID from the process’s effective group ID. However, if the set-group-
ID bit is enabled for the directory (via chmod g+s), then the group ID of the file is
inherited from the parent directory. These rules are summarized in Table 15-3.

In Section 18.6, we’ll see that when the set-group-ID bit is set on a directory,
then it is also set on new subdirectories created within that directory. In this
manner, the set-group-ID behavior described in the main text is propagated
down through an entire directory tree.

At the time of writing, the only file systems that support the grpid and nogrpid
mount options are ext2, ext3, ext4, and (since Linux 2.6.14) XFS. Other file systems
follow the nogrpid rules.

15.3.2 Changing File Ownership: chown(), fchown(), and lchown()
The chown(), lchown(), and fchown() system calls change the owner (user ID) and
group (group ID) of a file.

Table 15-3: Rules determining the group ownership of a newly created file

File system 
mount option

Set-group-ID bit enabled
on parent directory?

Group ownership of
new file taken from

–o grpid, –o bsdgroups (ignored) parent directory group ID

–o nogrpid, –o sysvgroups 
(default)

no process effective group ID

yes parent directory group ID
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The distinction between these three system calls is similar to the stat() family of sys-
tem calls:

chown() changes the ownership of the file named in the pathname argument;

lchown() does the same, except that if pathname is a symbolic link, ownership of
the link file is changed, rather than the file to which it refers; and

fchown() changes the ownership of a file referred to by the open file descriptor, fd.

The owner argument specifies the new user ID for the file, and the group argument
specifies the new group ID for the file. To change just one of the IDs, we can specify
–1 for the other argument to leave that ID unchanged.

Prior to Linux 2.2, chown() did not dereference symbolic links. The semantics
of chown() were changed with Linux 2.2, and the new lchown() system call was
added to provide the behavior of the old chown() system call.

Only a privileged (CAP_CHOWN) process may use chown() to change the user ID of a file.
An unprivileged process can use chown() to change the group ID of a file that it
owns (i.e., the process’s effective user ID matches the user ID of the file) to any of
the groups of which they are a member. A privileged process can change the group
ID of a file to any value.

If the owner or group of a file is changed, then the set-user-ID and set-group-ID
permission bits are both turned off. This is a security precaution to ensure that a
normal user could not enable the set-user-ID (or set-group-ID) bit on an executable
file and then somehow make it owned by some privileged user (or group), thereby
gaining that privileged identity when executing the file.

SUSv3 leaves it unspecified whether the set-user-ID and set-group-ID bits
should be turned off when the superuser changes the owner or group of an
executable file. Linux 2.0 did turn these bits off in this case, while some of the
early 2.2 kernels (up to 2.2.12) did not. Later 2.2 kernels returned to the 2.0
behavior, where changes by the superuser are treated the same as everyone
else, and this behavior is maintained in subsequent kernel versions. (However,
if we use the chown(1) command under a root login to change the ownership of
a file, then, after calling chown(2), the chown command uses the chmod() system
call to reenable the set-user-ID and set-group-ID bits.)

#include <unistd.h>

int chown(const char *pathname, uid_t owner, gid_t group);

#define _XOPEN_SOURCE 500     /* Or: #define _BSD_SOURCE */
#include <unistd.h>

int lchown(const char *pathname, uid_t owner, gid_t group);
int fchown(int fd, uid_t owner, gid_t group);

All return 0 on success, or –1 on error
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When changing the owner or group of a file, the set-group-ID permission bit is not
turned off if the group-execute permission bit is already off or if we are changing
the ownership of a directory. In both of these cases, the set-group-ID bit is being
used for a purpose other than the creation of a set-group-ID program, and there-
fore it is undesirable to turn the bit off. These other uses of the set-group-ID bit are
as follows:

If the group-execute permission bit is off, then the set-group-ID permission bit
is being used to enable mandatory file locking (discussed in Section 55.4).

In the case of a directory, the set-group-ID bit is being used to control the own-
ership of new files created in the directory (Section 15.3.1).

The use of chown() is demonstrated in Listing 15-2, a program that allows the user to
change the owner and group of an arbitrary number of files, specified as command-
line arguments. (This program uses the userIdFromName() and groupIdFromName()
functions from Listing 8-1, on page 159, to convert user and group names into cor-
responding numeric IDs.)

Listing 15-2: Changing the owner and group of a file

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  files/t_chown.c
#include <pwd.h>
#include <grp.h>
#include "ugid_functions.h"             /* Declarations of userIdFromName()
                                           and groupIdFromName() */
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    uid_t uid;
    gid_t gid;
    int j;
    Boolean errFnd;

    if (argc < 3 || strcmp(argv[1], "--help") == 0)
        usageErr("%s owner group [file...]\n"
                "        owner or group can be '-', "
                "meaning leave unchanged\n", argv[0]);

    if (strcmp(argv[1], "-") == 0) {            /* "-" ==> don't change owner */
        uid = -1;
    } else {                                    /* Turn user name into UID */
        uid = userIdFromName(argv[1]);
        if (uid == -1)
            fatal("No such user (%s)", argv[1]);
    }

    if (strcmp(argv[2], "-") == 0) {            /* "-" ==> don't change group */
        gid = -1;
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    } else {                                    /* Turn group name into GID */
        gid = groupIdFromName(argv[2]);
        if (gid == -1)
            fatal("No group user (%s)", argv[1]);
    }

    /* Change ownership of all files named in remaining arguments */

    errFnd = FALSE;
    for (j = 3; j < argc; j++) {
        if (chown(argv[j], uid, gid) == -1) {
            errMsg("chown: %s", argv[j]);
            errFnd = TRUE;
        }
    }

    exit(errFnd ? EXIT_FAILURE : EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  files/t_chown.c

15.4 File Permissions

In this section, we describe the permission scheme applied to files and directories.
Although we talk about permissions here mainly as they apply to regular files and
directories, the rules that we describe apply to all types of files, including devices,
FIFOs, and UNIX domain sockets. Furthermore, the System V and POSIX inter-
process communication objects (shared memory, semaphores, and message
queues) also have permission masks, and the rules that apply for these objects are
similar to those for files.

15.4.1 Permissions on Regular Files
As noted in Section 15.1, the bottom 12 bits of the st_mode field of the stat structure
define the permissions for a file. The first 3 of these bits are special bits known as
the set-user-ID, set-group-ID, and sticky bits (labeled U, G, and T, respectively, in
Figure 15-1). We say more about these bits in Section 15.4.5. The remaining 9 bits
form the mask defining the permissions that are granted to various categories of users
accessing the file. The file permissions mask divides the world into three categories:

Owner (also known as user): The permissions granted to the owner of the file.

The term user is used by commands such as chmod(1), which uses the abbrevia-
tion u to refer to this permission category.

Group: The permissions granted to users who are members of the file’s group.

Other: The permissions granted to everyone else.

Three permissions may be granted to each user category:

Read: The contents of the file may be read.

Write: The contents of the file may be changed.
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Execute: The file may be executed (i.e., it is a program or a script). In order to
execute a script file (e.g., a bash script), both read and execute permissions are
required.

The permissions and ownership of a file can be viewed using the command ls –l, as
in the following example:

$ ls -l myscript.sh
-rwxr-x---    1 mtk      users        1667 Jan 15 09:22 myscript.sh

In the above example, the file permissions are displayed as rwxr-x--- (the initial
hyphen preceding this string indicates the type of this file: a regular file). To inter-
pret this string, we break these 9 characters into sets of 3 characters, which respec-
tively indicate whether read, write, and execute permission are enabled. The first
set indicates the permissions for owner, which has read, write, and execute permis-
sions enabled. The next set indicates the permissions for group, which has read
and execute enabled, but not write. The final set are the permissions for other,
which doesn’t have any permissions enabled.

The <sys/stat.h> header file defines constants that can be ANDed (&) with
st_mode of the stat structure, in order to check whether particular permission bits
are set. (These constants are also defined via the inclusion of <fcntl.h>, which proto-
types the open() system call.) These constants are shown in Table 15-4.

In addition to the constants shown in Table 15-4, three constants are defined to
equate to masks for all three permissions for each of the categories owner, group,
and other: S_IRWXU (0700), S_IRWXG (070), and S_IRWXO (07).

The header file in Listing 15-3 declares a function, filePermStr(), which, given a
file permissions mask, returns a statically allocated string representation of that
mask in the same style as is used by ls(1).

Table 15-4: Constants for file permission bits

Constant Octal value Permission bit

S_ISUID  04000 Set-user-ID
S_ISGID  02000 Set-group-ID
S_ISVTX  01000 Sticky

S_IRUSR  0400 User-read
S_IWUSR  0200 User-write
S_IXUSR  0100 User-execute

S_IRGRP  040 Group-read
S_IWGRP  020 Group-write
S_IXGRP  010 Group-execute

S_IROTH  04 Other-read
S_IWOTH  02 Other-write
S_IXOTH  01 Other-execute
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Listing 15-3: Header file for file_perms.c

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– files/file_perms.h

#ifndef FILE_PERMS_H
#define FILE_PERMS_H

#include <sys/types.h>

#define FP_SPECIAL 1            /* Include set-user-ID, set-group-ID, and sticky
                                   bit information in returned string */

char *filePermStr(mode_t perm, int flags);

#endif

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– files/file_perms.h

If the FP_SPECIAL flag is set in the filePermStr() flags argument, then the returned
string includes the settings of the set-user-ID, set-group-ID, and sticky bits, again in
the style of ls(1).

The implementation of the filePermStr() function is shown in Listing 15-4. We
employ this function in the program in Listing 15-1.

Listing 15-4: Convert file permissions mask to string

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– files/file_perms.c

#include <sys/stat.h>
#include <stdio.h>
#include "file_perms.h"                 /* Interface for this implementation */

#define STR_SIZE sizeof("rwxrwxrwx")

char *      /* Return ls(1)-style string for file permissions mask */
filePermStr(mode_t perm, int flags)
{
    static char str[STR_SIZE];

    snprintf(str, STR_SIZE, "%c%c%c%c%c%c%c%c%c",
        (perm & S_IRUSR) ? 'r' : '-', (perm & S_IWUSR) ? 'w' : '-',
        (perm & S_IXUSR) ?
            (((perm & S_ISUID) && (flags & FP_SPECIAL)) ? 's' : 'x') :
            (((perm & S_ISUID) && (flags & FP_SPECIAL)) ? 'S' : '-'),
        (perm & S_IRGRP) ? 'r' : '-', (perm & S_IWGRP) ? 'w' : '-',
        (perm & S_IXGRP) ?
            (((perm & S_ISGID) && (flags & FP_SPECIAL)) ? 's' : 'x') :
            (((perm & S_ISGID) && (flags & FP_SPECIAL)) ? 'S' : '-'),
        (perm & S_IROTH) ? 'r' : '-', (perm & S_IWOTH) ? 'w' : '-',
        (perm & S_IXOTH) ?
            (((perm & S_ISVTX) && (flags & FP_SPECIAL)) ? 't' : 'x') :
            (((perm & S_ISVTX) && (flags & FP_SPECIAL)) ? 'T' : '-'));

    return str;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– files/file_perms.c
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15.4.2 Permissions on Directories
Directories have the same permission scheme as files. However, the three permis-
sions are interpreted differently:

Read: The contents (i.e., the list of filenames) of the directory may be listed
(e.g., by ls).

If experimenting to verify the operation of the directory read permission bit,
be aware that some Linux distributions alias the ls command to include flags
(e.g., –F) that require access to i-node information for files in the directory,
and this requires execute permission on the directory. To ensure that we are
using an unadulterated ls, we can specify the full pathname of the command
(/bin/ls).

Write: Files may be created in and removed from the directory. Note that it is
not necessary to have any permission on a file itself in order to be able to
delete it.

Execute: Files within the directory may be accessed. Execute permission on a
directory is sometimes called search permission.

When accessing a file, execute permission is required on all of the directories listed
in the pathname. For example, reading the file /home/mtk/x would require execute
permission on /, /home, and /home/mtk (as well as read permission on the file x itself).
If the current working directory is /home/mtk/sub1 and we access the relative path-
name ../sub2/x, then we need execute permission on /home/mtk and /home/mtk/sub2
(but not on / or /home).

Read permission on a directory only lets us view the list of filenames in the
directory. We must have execute permission on the directory in order to access the
contents or the i-node information of files in the directory.

Conversely, if we have execute permission on a directory, but not read permission,
then we can access a file in the directory if we know its name, but we can’t list the
contents of (i.e., the other filenames in) the directory. This is a simple and fre-
quently used technique to control access to the contents of a public directory.

To add or remove files in a directory, we need both execute and write permis-
sions on the directory.

15.4.3 Permission-Checking Algorithm
The kernel checks file permissions whenever we specify a pathname in a system
call that accesses a file or directory. When the pathname given to the system call
includes a directory prefix, then, in addition to checking for the required permis-
sions on the file itself, the kernel also checks for execute permission on each of the
directories in this prefix. Permission checks are made using the process’s effective
user ID, effective group ID, and supplementary group IDs. (To be strictly accurate,
for file permission checks on Linux, the file-system user and group IDs are used
instead of the corresponding effective IDs, as described in Section 9.5.)

Once a file has been opened with open(), no permission checking is performed
by subsequent system calls that work with the returned file descriptor (such as
read(), write(), fstat(), fcntl(), and mmap()).
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The rules applied by the kernel when checking permissions are as follows:

1. If the process is privileged, all access is granted.

2. If the effective user ID of the process is the same as the user ID (owner) of the
file, then access is granted according to the owner permissions on the file. For
example, read access is granted if the owner-read permission bit is turned on in
the file permissions mask; otherwise, read access is denied.

3. If the effective group ID of the process or any of the process supplementary
group IDs matches the group ID (group owner) of the file, then access is
granted according to the group permissions on the file.

4. Otherwise, access is granted according to the other permissions on the file.

In the kernel code, the above tests are actually constructed so that the test to
see whether a process is privileged is performed only if the process is not
granted the permissions it needs via one of the other tests. This is done to
avoid unnecessarily setting the ASU process accounting flag, which indicates
that the process made use of superuser privileges (Section 28.1).

The checks against owner, group, and other permissions are done in order, and
checking stops as soon as the applicable rule is found. This can have an unexpected
consequence: if, for example, the permissions for group exceed those of owner,
then the owner will actually have fewer permissions on the file than members of
the file’s group, as illustrated by the following example:

$ echo 'Hello world' > a.txt
$ ls -l a.txt
-rw-r--r--   1 mtk    users    12 Jun 18 12:26 a.txt
$ chmod u-rw a.txt               Remove read and write permission from owner
$ ls -l a.txt
----r--r--   1 mtk    users    12 Jun 18 12:26 a.txt
$ cat a.txt
cat: a.txt: Permission denied    Owner can no longer read file
$ su avr                         Become someone else…
Password:
$ groups                         who is in the group owning the file…
users staff teach cs
$ cat a.txt                      and thus can read the file
Hello world

Similar remarks apply if other grants more permissions than owner or group.
Since file permissions and ownership information are maintained within a file

i-node, all filenames (links) that refer to the same i-node share this information.
Linux 2.6 provides access control lists (ACLs), which make it possible to define

file permissions on a per-user and per-group basis. If a file has an ACL, then a mod-
ified version of the above algorithm is used. We describe ACLs in Chapter 17.

Permission checking for privileged processes

Above, we said that if a process is privileged, all access is granted when checking
permissions. We need to add one proviso to this statement. For a file that is not a
directory, Linux grants execute permission to a privileged process only if that per-
mission is granted to at least one of the permission categories for the file. On some
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other UNIX implementations, a privileged process can execute a file even when no
permission category grants execute permission. When accessing a directory, a
privileged process is always granted execute (search) permission.

We can rephrase our description of a privileged process in terms of two
Linux process capabilities: CAP_DAC_READ_SEARCH and CAP_DAC_OVERRIDE (Section
39.2). A process with the CAP_DAC_READ_SEARCH capability always has read permis-
sion for any type of file, and always has read and execute permissions for a
directory (i.e., can always access files in a directory and read the list of files in a
directory). A process with the CAP_DAC_OVERRIDE capability always has read and
write permissions for any type of file, and also has execute permission if the
file is a directory or if execute permission is granted to at least one of the per-
mission categories for the file.

15.4.4 Checking File Accessibility: access()
As noted in Section 15.4.3, the effective user and group IDs, as well as supplemen-
tary group IDs, are used to determine the permissions a process has when access-
ing a file. It is also possible for a program (e.g., a set-user-ID or set-group-ID
program) to check file accessibility based on the real user and group IDs of the process.

The access() system call checks the accessibility of the file specified in pathname
based on a process’s real user and group IDs (and supplementary group IDs).

If pathname is a symbolic link, access() dereferences it.
The mode argument is a bit mask consisting of one or more of the constants

shown in Table 15-5, ORed (|) together. If all of the permissions specified in mode
are granted on pathname, then access() returns 0; if at least one of the requested per-
missions is not available (or an error occurred), then access() returns –1.

The time gap between a call to access() and a subsequent operation on a file means
that there is no guarantee that the information returned by access() will still be true
at the time of the later operation (no matter how brief the interval). This situation
could lead to security holes in some application designs.

Suppose, for example, that we have a set-user-ID-root program that uses access()
to check that a file is accessible to the real user ID of the program, and, if so, per-
forms an operation on the file (e.g., open() or exec()).

#include <unistd.h>

int access(const char *pathname, int mode);

Returns 0 if all permissions are granted, otherwise –1

Table 15-5: mode constants for access()

Constant Description

F_OK Does the file exist?
R_OK Can the file be read?
W_OK Can the file be written?
X_OK Can the file be executed?
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The problem is that if the pathname given to access() is a symbolic link, and a
malicious user manages to change the link so that it refers to a different file before
the second step, then the set-user-ID-root may end up operating on a file for which the
real user ID does not have permission. (This is an example of the type of time-of-
check, time-of-use race condition described in Section 38.6.) For this reason, recom-
mended practice is to avoid the use of access() altogether (see, for example,
[Borisov, 2005]). In the example just given, we can achieve this by temporarily
changing the effective (or file system) user ID of the set-user-ID process, attempting
the desired operation (e.g., open() or exec()), and then checking the return value and
errno to determine whether the operation failed because of a permissions problem.

The GNU C library provides an analogous, nonstandard function, euidaccess()
(or synonymously, eaccess()), that checks file access permissions using the effec-
tive user ID of the process.

15.4.5 Set-User-ID, Set-Group-ID, and Sticky Bits
As well as the 9 bits used for owner, group, and other permissions, the file permis-
sions mask contains 3 additional bits, known as the set-user-ID (bit 04000), set-group-
ID (bit 02000), and sticky (bit 01000) bits. We have already discussed the use of the
set-user-ID and set-group-ID permission bits for creating privileged programs in
Section 9.3. The set-group-ID bit also serves two other purposes that we describe
elsewhere: controlling the group ownership of new files created in a directory
mounted with the nogrpid option (Section 15.3.1), and enabling mandatory locking
on a file (Section 55.4). In the remainder of this section, we limit our discussion to
the use of the sticky bit.

On older UNIX implementations, the sticky bit was provided as a way of mak-
ing commonly used programs run faster. If the sticky bit was set on a program file,
then the first time the program was executed, a copy of the program text was saved
in the swap area—thus it sticks in swap, and loads faster on subsequent executions.
Modern UNIX implementations have more sophisticated memory-management
systems, which have rendered this use of the sticky permission bit obsolete.

The name of the constant for the sticky permission bit shown in Table 15-4,
S_ISVTX, derives from an alternative name for the sticky bit: the saved-text bit.

In modern UNIX implementations (including Linux), the sticky permission bit
serves another, quite different purpose. For directories, the sticky bit acts as the
restricted deletion flag. Setting this bit on a directory means that an unprivileged
process can unlink (unlink(), rmdir()) and rename (rename()) files in the directory
only if it has write permission on the directory and owns either the file or the directory.
(A process with the CAP_FOWNER capability can bypass the latter ownership check.)
This makes it possible to create a directory that is shared by many users, who can
each create and delete their own files in the directory but can’t delete files owned
by other users. The sticky permission bit is commonly set on the /tmp directory for
this reason.
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A file’s sticky permission bit is set via the chmod command (chmod +t file) or via
the chmod() system call. If the sticky bit for a file is set, ls –l shows a lowercase or
uppercase letter T in the other-execute permission field, depending on whether the
other-execute permission bit is on or off, as in the following:

$ touch tfile
$ ls -l tfile
-rw-r--r--   1 mtk    users     0 Jun 23 14:44 tfile
$ chmod +t tfile
$ ls -l tfile
-rw-r--r-T   1 mtk    users     0 Jun 23 14:44 tfile
$ chmod o+x tfile
$ ls -l tfile
-rw-r--r-t   1 mtk    users     0 Jun 23 14:44 tfile

15.4.6 The Process File Mode Creation Mask: umask()
We now consider in more detail the permissions that are placed on a newly created
file or directory. For new files, the kernel uses the permissions specified in the mode
argument to open() or creat(). For new directories, permissions are set according to
the mode argument to mkdir(). However, these settings are modified by the file
mode creation mask, also known simply as the umask. The umask is a process
attribute that specifies which permission bits should always be turned off when new
files or directories are created by the process.

Often, a process just uses the umask it inherits from its parent shell, with the
(usually desirable) consequence that the user can control the umask of programs
executed from the shell using the shell built-in command umask, which changes the
umask of the shell process.

The initialization files for most shells set the default umask to the octal value
022 (----w--w-). This value specifies that write permission should always be turned
off for group and other. Thus, assuming the mode argument in a call to open() is
0666 (i.e., read and write permitted for all users, which is typical), then new files are
created with read and write permissions for owner, and only read permission for
everyone else (displayed by ls –l as rw-r--r--). Correspondingly, assuming that the
mode argument to mkdir() is specified as 0777 (i.e., all permissions granted to all
users), new directories are created with all permissions granted for owner, and just
read and execute permissions for group and other (i.e., rwxr-xr-x).

The umask() system call changes a process’s umask to the value specified in mask.

The mask argument can be specified either as an octal number or by ORing (|)
together the constants listed in Table 15-4.

A call to umask() is always successful, and returns the previous umask.

#include <sys/stat.h>

mode_t umask(mode_t mask);

Always successfully returns the previous process umask
Fi le A t t r ibu tes 301



Listing 15-5 illustrates the use of umask() in conjunction with open() and
mkdir(). When we run this program, we see the following:

$ ./t_umask
Requested file perms: rw-rw----             This is what we asked for
Process umask:        ----wx-wx             This is what we are denied
Actual file perms:    rw-r-----             So this is what we end up with

Requested dir. perms: rwxrwxrwx
Process umask:        ----wx-wx
Actual dir. perms:    rwxr--r--

In Listing 15-5, we employ the mkdir() and rmdir() system calls to create and
remove a directory, and the unlink() system call to remove a file. We describe
these system calls in Chapter 18.

Listing 15-5: Using umask()
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  files/t_umask.c
#include <sys/stat.h>
#include <fcntl.h>
#include "file_perms.h"
#include "tlpi_hdr.h"

#define MYFILE "myfile"
#define MYDIR  "mydir"
#define FILE_PERMS    (S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP)
#define DIR_PERMS     (S_IRWXU | S_IRWXG | S_IRWXO)
#define UMASK_SETTING (S_IWGRP | S_IXGRP | S_IWOTH | S_IXOTH)

int
main(int argc, char *argv[])
{
    int fd;
    struct stat sb;
    mode_t u;

    umask(UMASK_SETTING);

    fd = open(MYFILE, O_RDWR | O_CREAT | O_EXCL, FILE_PERMS);
    if (fd == -1)
        errExit("open-%s", MYFILE);
    if (mkdir(MYDIR, DIR_PERMS) == -1)
        errExit("mkdir-%s", MYDIR);

    u = umask(0);               /* Retrieves (and clears) umask value */

    if (stat(MYFILE, &sb) == -1)
        errExit("stat-%s", MYFILE);
    printf("Requested file perms: %s\n", filePermStr(FILE_PERMS, 0));
    printf("Process umask:        %s\n", filePermStr(u, 0));
    printf("Actual file perms:    %s\n\n", filePermStr(sb.st_mode, 0));
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    if (stat(MYDIR, &sb) == -1)
        errExit("stat-%s", MYDIR);
    printf("Requested dir. perms: %s\n", filePermStr(DIR_PERMS, 0));
    printf("Process umask:        %s\n", filePermStr(u, 0));
    printf("Actual dir. perms:    %s\n", filePermStr(sb.st_mode, 0));

    if (unlink(MYFILE) == -1)
        errMsg("unlink-%s", MYFILE);
    if (rmdir(MYDIR) == -1)
        errMsg("rmdir-%s", MYDIR);
    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  files/t_umask.c

15.4.7 Changing File Permissions: chmod() and fchmod()
The chmod() and fchmod() system calls change the permissions of a file.

The chmod() system call changes the permissions of the file named in pathname. If
this argument is a symbolic link, chmod() changes the permissions of the file to
which it refers, rather than the permissions of the link itself. (A symbolic link is
always created with read, write, and execute permissions enabled for all users, and
these permission can’t be changed. These permissions are ignored when derefer-
encing the link.)

The fchmod() system call changes the permissions on the file referred to by the
open file descriptor fd.

The mode argument specifies the new permissions of the file, either numerically
(octal) or as a mask formed by ORing (|) the permission bits listed in Table 15-4. In
order to change the permissions on a file, either the process must be privileged
(CAP_FOWNER) or its effective user ID must match the owner (user ID) of the file. (To
be strictly accurate, on Linux, for an unprivileged process, it is the process’s file-
system user ID, rather than its effective user ID, that must match the user ID of the
file, as described in Section 9.5.)

To set the permissions on a file so that only read permission is granted to all
users, we could use the following call:

if (chmod("myfile", S_IRUSR | S_IRGRP | S_IROTH) == -1)
    errExit("chmod");
/* Or equivalently: chmod("myfile", 0444); */

#include <sys/stat.h>

int chmod(const char *pathname, mode_t mode);

#define _XOPEN_SOURCE 500     /* Or: #define _BSD_SOURCE */
#include <sys/stat.h>

int fchmod(int fd, mode_t mode);

Both return 0 on success, or –1 on error
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In order to modify selected bits of the file permissions, we first retrieve the existing
permissions using stat(), tweak the bits we want to change, and then use chmod() to
update the permissions:

struct stat sb;
mode_t mode;

if (stat("myfile", &sb) == -1)
    errExit("stat");
mode = (sb.st_mode | S_IWUSR) & ~S_IROTH;
       /* owner-write on, other-read off, remaining bits unchanged */
if (chmod("myfile", mode) == -1)
    errExit("chmod");

The above is equivalent to the following shell command:

$ chmod u+w,o-r myfile

In Section 15.3.1, we noted that if a directory resides on an ext2 system mounted
with the –o bsdgroups option, or on one mounted with the –o sysvgroups option and
the set-group-ID permission bit is turned on for the directory, then a newly created
file in the directory takes its ownership from the parent directory, not the effective
group ID of the creating process. It may be the case that the group ID of such a file
doesn’t match any of the group IDs of the creating process. For this reason, when
an unprivileged process (one that doesn’t have the CAP_FSETID capability) calls
chmod() (or fchmod()) on a file whose group ID is not equal to the effective group ID
or any of the supplementary group IDs of the process, the kernel always clears the
set-group-ID permission bit. This is a security measure designed to prevent a user
from creating a set-group-ID program for a group of which they are not a member.
The following shell commands show the attempted exploit that this measure prevents:

$ mount | grep test                Hmmm, /test is mounted with –o bsdgroups
/dev/sda9 on /test type ext3 (rw,bsdgroups)
$ ls -ld /test                     Directory has GID root, writable by anyone
drwxrwxrwx   3 root   root    4096 Jun 30 20:11 /test
$ id                               I’m an ordinary user, not part of root group
uid=1000(mtk) gid=100(users) groups=100(users),101(staff),104(teach)
$ cd /test
$ cp ~/myprog .                    Copy some mischievous program here
$ ls -l myprog                     Hey! It’s in the root group!
-rwxr-xr-x   1 mtk    root   19684 Jun 30 20:43 myprog
$ chmod g+s myprog                 Can I make it set-group-ID to root?
$ ls -l myprog                     Hmm, no…
-rwxr-xr-x   1 mtk    root   19684 Jun 30 20:43 myprog

15.5 I-node Flags (ext2 Extended File Attributes)

Some Linux file systems allow various i-node flags to be set on files and directories.
This feature is a nonstandard Linux extension.

The modern BSDs provide a similar feature to i-node flags in the form of file
flags set using chflags(1) and chflags(2).
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The first Linux file system to support i-node flags was ext2, and these flags are some-
times referred to as ext2 extended file attributes. Subsequently, support for i-node flags
has been added on other file systems, including Btrfs, ext3, ext4, Reiserfs (since
Linux 2.4.19), XFS (since Linux 2.4.25 and 2.6), and JFS (since Linux 2.6.17).

The range of i-node flags supported varies somewhat across file systems. In
order to use i-node flags on a Reiserfs file system, we must use the mount –o attrs
option when mounting the file system.

From the shell, i-node flags can be set and viewed using the chattr and lsattr com-
mands, as shown in the following example:

$ lsattr myfile
-------- myfile
$ chattr +ai myfile               Turn on Append Only and Immutable flags
$ lsattr myfile
----ia-- myfile

Within a program, i-node flags can be retrieved and modified using the ioctl() system
call, as detailed shortly.

I-node flags can be set on both regular files and directories. Most i-node flags
are intended for use with regular files, although some of them also (or only) have
meaning for directories. Table 15-6 summarizes the range of available i-node flags,
showing the corresponding flag name (defined in <linux/fs.h>) that is used from
programs in ioctl() calls, and the option letter that is used with the chattr command.

Before Linux 2.6.19, the FS_* constants shown in Table 15-6 were not defined
in <linux/fs.h>. Instead, there was a set of file system–specific header files that
defined file system–specific constant names, all with the same value. Thus, ext2
had EXT2_APPEND_FL, defined in <linux/ext2_fs.h>; Reiserfs had REISERFS_APPEND_FL,
defined with the same value in <linux/reiser_fs.h>; and so on. Since each of
the header files defines the corresponding constants with the same value, on
older systems that don’t provide the definitions in <linux/fs.h>, it is possible to
include any of the header files and use the file system–specific names.

Table 15-6: I-node flags

Constant chattr 
option

Purpose

FS_APPEND_FL a Append only (privilege required)
FS_COMPR_FL c Enable file compression (not implemented)
FS_DIRSYNC_FL D Synchronous directory updates (since Linux 2.6)
FS_IMMUTABLE_FL i Immutable (privilege required)
FS_JOURNAL_DATA_FL j Enable data journaling (privilege required)
FS_NOATIME_FL A Don’t update file last access time
FS_NODUMP_FL d No dump
FS_NOTAIL_FL t No tail packing
FS_SECRM_FL s Secure deletion (not implemented)
FS_SYNC_FL S Synchronous file (and directory) updates
FS_TOPDIR_FL T Treat as top-level directory for Orlov (since Linux 2.6)
FS_UNRM_FL u File can be undeleted (not implemented)
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The various FL_* flags and their meanings are as follows:

FS_APPEND_FL

The file can be opened for writing only if the O_APPEND flag is specified (thus
forcing all file updates to append to the end of the file). This flag could be
used for a log file, for example. Only privileged (CAP_LINUX_IMMUTABLE) pro-
cesses can set this flag.

FS_COMPR_FL

Store the file on disk in a compressed format. This feature is not imple-
mented as a standard part of any of the major native Linux file systems.
(There are packages that implement this feature for ext2 and ext3.) Given
the low cost of disk storage, the CPU overhead involved in compression
and decompression, and the fact that compressing a file means that it is no
longer a simple matter to randomly access the file’s contents (via lseek()),
file compression is undesirable for many applications.

FS_DIRSYNC_FL (since Linux 2.6)
Make directory updates (e.g., open(pathname, O_CREAT), link(), unlink(),
and mkdir()) synchronous. This is analogous to the synchronous file update
mechanism described in Section 13.3. As with synchronous file updates,
there is a performance impact associated with synchronous directory
updates. This setting can be applied only to directories. (The MS_DIRSYNC
mount flag described in Section 14.8.1 provides similar functionality, but
on a per-mount basis.)

FS_IMMUTABLE_FL

Make the file immutable. File data can’t be updated (write() and truncate())
and metadata changes are prevented (e.g., chmod(), chown(), unlink(), link(),
rename(), rmdir(), utime(), setxattr(), and removexattr()). Only privileged
(CAP_LINUX_IMMUTABLE) processes can set this flag for a file. When this flag is
set, even a privileged process can’t change the file contents or metadata.

FS_JOURNAL_DATA_FL

Enable journaling of data. This flag is supported only on the ext3 and ext4
file systems. These file systems provide three levels of journaling: journal,
ordered, and writeback. All modes journal updates to file metadata, but the
journal mode additionally journals updates to file data. On a file system
that is journaling in ordered or writeback mode, a privileged (CAP_SYS_RESOURCE)
process can enable journaling of data updates on a per-file basis by setting
this flag. (The mount(8) manual page describes the difference between the
ordered and writeback modes.)

FS_NOATIME_FL

Don’t update the file last access time when the file is accessed. This elimi-
nates the need to update the file’s i-node each time the file is accessed, thus
improving I/O performance (see the description of the MS_NOATIME flag in
Section 14.8.1).
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FS_NODUMP_FL

Don’t include this file in backups made using dump(8). The effect of this
flag is dependent on the –h option described in the dump(8) manual page.

FS_NOTAIL_FL

Disable tail packing. This flag is supported only on the Reiserfs file system.
It disables the Reiserfs tail-packing feature, which tries to pack small files
(and the final fragment of larger files) into the same disk block as the file
metadata. Tail packing can also be disabled for an entire Reiserfs file system
by mounting it with the mount –notail option.

FS_SECRM_FL

Delete the file securely. The intended purpose of this unimplemented feature
is that, when removed, a file is securely deleted, meaning that it is first
overwritten to prevent a disk-scanning program from reading or re-creating
it. (The issue of truly secure deletion is rather complex: it can actually
require multiple writes on magnetic media to securely erase previously
recorded data; see [Gutmann, 1996].)

FS_SYNC_FL

Make file updates synchronous. When applied to files, this flag causes
writes to the file to be synchronous (as though the O_SYNC flag was specified
on all opens of this file). When applied to a directory, this flag has the same
effect as the synchronous directory updates flag described above.

FS_TOPDIR_FL (since Linux 2.6)
This marks a directory for special treatment under the Orlov block-
allocation strategy. The Orlov strategy is a BSD-inspired modification of
the ext2 block-allocation strategy that tries to improve the chances that
related files (e.g., the files within a single directory) are placed close to each
other on disk, which can improve disk seek times. For details, see [Corbet,
2002] and [Kumar, et al. 2008]. FS_TOPDIR_FL has an effect only for ext2 and
its descendants, ext3 and ext4.

FS_UNRM_FL

Allow this file to be recovered (undeleted) if it is deleted. This feature is
not implemented, since it is possible to implement file-recovery mecha-
nisms outside the kernel.

Generally, when i-node flags are set on a directory, they are automatically inherited
by new files and subdirectories created in that directory. There are exceptions to
this rule:

The FS_DIRSYNC_FL (chattr +D) flag, which can be applied only to a directory, is
inherited only by subdirectories created in that directory.

When the FS_IMMUTABLE_FL (chattr +i) flag is applied to a directory, it is not inher-
ited by files and subdirectories created within that directory, since this flag pre-
vents new entries being added to the directory.
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Within a program, i-node flags can be retrieved and modified using the ioctl()
FS_IOC_GETFLAGS and FS_IOC_SETFLAGS operations. (These constants are defined in
<linux/fs.h>.) The following code shows how to enable the FS_NOATIME_FL flag on the
file referred to by the open file descriptor fd:

int attr;

if (ioctl(fd, FS_IOC_GETFLAGS, &attr) == -1)    /* Fetch current flags */
    errExit("ioctl");
attr |= FS_NOATIME_FL;
if (ioctl(fd, FS_IOC_SETFLAGS, &attr) == -1)    /* Update flags */
    errExit("ioctl");

In order to change the i-node flags of a file, either the effective user ID of the pro-
cess must match the user ID (owner) of the file, or the process must be privileged
(CAP_FOWNER). (To be strictly accurate, on Linux, for an unprivileged process it is the
process’s file-system user ID, rather than its effective user ID, that must match the user
ID of the file, as described in Section 9.5.)

15.6 Summary

The stat() system call retrieves information about a file (metadata), most of which is
drawn from the file i-node. This information includes file ownership, file permis-
sions, and file timestamps.

A program can update a file’s last access time and last modification time using
utime(), utimes(), and various similar interfaces.

Each file has an associated user ID (owner) and group ID, as well as a set of per-
mission bits. For permissions purposes, file users are divided into three categories:
owner (also known as user), group, and other. Three permissions may be granted to
each category of user: read, write, and execute. The same scheme is used with directo-
ries, although the permission bits have slightly different meanings. The chown() and
chmod() system calls change the ownership and permissions of a file. The umask()
system call sets a mask of permission bits that are always turned off when the call-
ing process creates a file.

Three additional permission bits are used for files and directories. The set-
user-ID and set-group-ID permission bits can be applied to program files to create
programs that cause the executing process to gain privilege by assuming a different
effective user or group identity (that of the program file). For directories residing
on file systems mounted using the nogrpid (sysvgroups) option, the set-group-ID per-
mission bit can be used to control whether new files created in the directory inherit
their group ID from the process’s effective group ID or from the parent directory’s
group ID. When applied to directories, the sticky permission bit acts as the
restricted deletion flag.

I-node flags control the various behaviors of files and directories. Although
originally defined for ext2, these flags are now supported on several other file systems.
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15.7 Exercises

15-1. Section 15.4 contained several statements about the permissions required for
various file-system operations. Use shell commands or write programs to verify or
answer the following:

a) Removing all owner permissions from a file denies the file owner access,
even though group and other do have access.

b) On a directory with read permission but not execute permission, the
names of files in the directory can be listed, but the files themselves can’t
be accessed, regardless of the permissions on them.

c) What permissions are required on the parent directory and the file itself in
order to create a new file, open a file for reading, open a file for writing,
and delete a file? What permissions are required on the source and target
directory to rename a file? If the target file of a rename operation already
exists, what permissions are required on that file? How does setting the
sticky permission bit (chmod +t) of a directory affect renaming and deletion
operations?

15-2. Do you expect any of a file’s three timestamps to be changed by the stat() system
call? If not, explain why.

15-3. On a system running Linux 2.6, modify the program in Listing 15-1 (t_stat.c) so
that the file timestamps are displayed with nanosecond accuracy.

15-4. The access() system call checks permissions using the process’s real user and group
IDs. Write a corresponding function that performs the checks according to the
process’s effective user and group IDs.

15-5. As noted in Section 15.4.6, umask() always sets the process umask and, at the same
time, returns a copy of the old umask. How can we obtain a copy of the current
process umask while leaving it unchanged?

15-6. The chmod a+rX file command enables read permission for all categories of user,
and likewise enables execute permission for all categories of user if file is a directory
or execute permission is enabled for any of the user categories for file, as
demonstrated in the following example:

$ ls -ld dir file prog
dr--------  2 mtk users    48 May  4 12:28 dir
-r--------  1 mtk users 19794 May  4 12:22 file
-r-x------  1 mtk users 19336 May  4 12:21 prog
$ chmod a+rX dir file prog
$ ls -ld dir file prog
dr-xr-xr-x  2 mtk users    48 May  4 12:28 dir
-r--r--r--  1 mtk users 19794 May  4 12:22 file
-r-xr-xr-x  1 mtk users 19336 May  4 12:21 prog

Write a program that uses stat() and chmod() to perform the equivalent of chmod a+rX.

15-7. Write a simple version of the chattr(1) command, which modifies file i-node flags.
See the chattr(1) man page for details of the chattr command-line interface. (You
don’t need to implement the –R, –V, and –v options.) 
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E X T E N D E D  A T T R I B U T E S

This chapter describes extended attributes (EAs), which allow arbitrary metadata,
in the form of name-value pairs, to be associated with file i-nodes. EAs were added
to Linux in version 2.6.

16.1 Overview

EAs are used to implement access control lists (Chapter 17) and file capabilities (Chap-
ter 39). However, the design of EAs is general enough to allow them to be used for
other purposes as well. For example, EAs could be used to record a file version
number, information about the MIME type or character set for the file, or (a
pointer to) a graphical icon.

EAs are not specified in SUSv3. However, a similar feature is provided on a
few other UNIX implementations, notably the modern BSDs (see extattr(2)) and
Solaris 9 and later (see fsattr(5)).

EAs require support from the underlying file system. This support is provided
in Btrfs, ext2, ext3, ext4, JFS, Reiserfs, and XFS.

Support for EAs is optional for each file system, and is controlled by kernel
configuration options under the File systems menu. EAs are supported on Reiserfs
since Linux 2.6.7.



EA namespaces

EAs have names of the form namespace.name. The namespace component serves to
separate EAs into functionally distinct classes. The name component uniquely iden-
tifies an EA within the given namespace.

Four values are supported for namespace: user, trusted, system, and security. These
four types of EAs are used as follows:

User EAs may be manipulated by unprivileged processes, subject to file permis-
sion checks: to retrieve the value of a user EA requires read permission on the
file; to change the value of a user EA requires write permission. (Lack of the
required permission results in an EACCES error.) In order to associate user EAs
with a file on ext2, ext3, ext4, or Reiserfs file systems, the underlying file system
must be mounted with the user_xattr option:

$ mount -o user_xattr device directory

Trusted EAs are like user EAs in that they can be manipulated by user processes.
The difference is that a process must be privileged (CAP_SYS_ADMIN) in order to
manipulate trusted EAs.

System EAs are used by the kernel to associate system objects with a file. Currently,
the only supported object type is an access control list (Chapter 17).

Security EAs are used to store file security labels for operating system security
modules, and to associate capabilities with executable files (Section 39.3.2).
Security EAs were initially devised to support Security-Enhanced Linux
(SELinux, http://www.nsa.gov/research/selinux/).

An i-node may have multiple associated EAs, in the same namespace or in different
namespaces. The EA names within each namespace are distinct sets. In the user and
trusted namespaces, EA names can be arbitrary strings. In the system namespace,
only names explicitly permitted by the kernel (e.g., those used for access control
lists) are allowed.

JFS supports another namespace, os2, that is not implemented in other file sys-
tems. The os2 namespace is provided to support legacy OS/2 file-system EAs.
A process doesn’t need to be privileged in order to create os2 EAs.

Creating and viewing EAs from the shell

From the shell, we can use the setfattr(1) and getfattr(1) commands to set and view
the EAs on a file:

$ touch tfile
$ setfattr -n user.x -v "The past is not dead." tfile
$ setfattr -n user.y -v "In fact, it's not even past." tfile
$ getfattr -n user.x tfile          Retrieve value of a single EA
# file: tfile                       Informational message from getfattr
user.x="The past is not dead."      The getfattr command prints a blank
                                    line after each file’s attributes
$ getfattr -d tfile                 Dump values of all user EAs
# file: tfile
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user.x="The past is not dead."
user.y="In fact, it's not even past."

$ setfattr -n user.x tfile          Change value of EA to be an empty string
$ getfattr -d tfile
# file: tfile
user.x
user.y="In fact, it's not even past."

$ setfattr -x user.y tfile          Remove an EA
$ getfattr -d tfile
# file: tfile
user.x

One of the points that the preceding shell session demonstrates is that the value of
an EA may be an empty string, which is not the same as an EA that is undefined.
(At the end of the shell session, the value of user.x is an empty string and user.y is
undefined.)

By default, getfattr lists only the values of user EAs. The –m option can be used
to specify a regular expression pattern that selects the EA names that are to be
displayed:

$ getfattr -m 'pattern' file

The default value for pattern is ^user\.. We can list all EAs on a file using the follow-
ing command:

$ getfattr -m - file

16.2 Extended Attribute Implementation Details

In this section, we extend the overview of the preceding section to fill in a few details
of the implementation of EAs.

Restrictions on user extended attributes

It is only possible to place user EAs on files and directories. Other file types are
excluded for the following reasons:

For a symbolic link, all permissions are enabled for all users, and these permis-
sions can’t be changed. (Symbolic link permissions have no meaning on Linux,
as detailed in Section 18.2.) This means that permissions can’t be used to pre-
vent arbitrary users from placing user EAs on a symbolic link. The resolution of
this problem is to prevent all users from creating user EAs on the symbolic link.

For device files, sockets, and FIFOs, the permissions control the access that
users are granted for the purpose of performing I/O on the underlying object.
Manipulating these permissions to control the creation of user EAs would con-
flict with this purpose.

Furthermore, it is not possible for an unprivileged process to place a user EA on a
directory owned by another user if the sticky bit (Section 15.4.5) is set on the directory.
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This prevents arbitrary users from attaching EAs to directories such as /tmp, which
are publicly writable (and so would allow arbitrary users to manipulate EAs on the
directory), but which have the sticky bit set to prevent users from deleting files
owned by other users in the directory.

Implementation limits

The Linux VFS imposes the following limits on EAs on all file systems:

The length of an EA name is limited to 255 characters.

An EA value is limited to 64 kB.

In addition, some file systems impose more restrictive limits on the size and number
of EAs that can be associated with a file:

On ext2, ext3, and ext4, the total bytes used by the names and values of all EAs
on a file is limited to the size of a single logical disk block (Section 14.3): 1024,
2048, or 4096 bytes.

On JFS, there is an upper limit of 128 kB on the total bytes used by the names
and values of all EAs on a file.

16.3 System Calls for Manipulating Extended Attributes

In this section, we look at the system calls used to update, retrieve, and remove EAs.

Creating and modifying EAs

The setxattr(), lsetxattr(), and fsetxattr() system calls set the value of one of a file’s EAs.

The differences between these three calls are analogous to those between stat(),
lstat(), and fstat() (Section 15.1):

setxattr() identifies a file by pathname, and dereferences the filename if it is a
symbolic link;

lsetxattr() identifies a file by pathname, but doesn’t dereference symbolic links;
and

fsetxattr() identifies a file by the open file descriptor fd.

The same distinction applies to the other groups of system calls described in the
remainder of this section.

#include <sys/xattr.h>

int setxattr(const char *pathname, const char *name, const void *value,
              size_t size, int f lags);
int lsetxattr(const char *pathname, const char *name, const void *value,
              size_t size, int f lags);
int fsetxattr(int fd, const char *name, const void *value,
              size_t size, int f lags);

All return 0 on success, or –1 on error
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The name argument is a null-terminated string that defines the name of the EA.
The value argument is a pointer to a buffer that defines the new value for the EA. The
size argument specifies the length of this buffer.

By default, these system calls create a new EA if one with the given name
doesn’t already exist, or replace the value of an EA if it does already exist. The flags
argument provides finer control over this behavior. It may be specified as 0 to
obtain the default behavior, or as one of the following constants:

XATTR_CREATE

Fail (EEXIST) if an EA with the given name already exists.

XATTR_REPLACE

Fail (ENODATA) if an EA with the given name doesn’t already exist.

Here an example of the use of setxattr() to create a user EA:

char *value;

value = "The past is not dead.";

if (setxattr(pathname, "user.x", value, strlen(value), 0) == -1)
    errExit("setxattr");

Retrieving the value of an EA

The getxattr(), lgetxattr(), and fgetxattr() system calls retrieve the value of an EA.

The name argument is a null-terminated string that identifies the EA whose value
we want to retrieve. The EA value is returned in the buffer pointed to by value. This
buffer must be allocated by the caller, and its length must be specified in size. On
success, these system calls return the number of bytes copied into value.

If the file doesn’t have an attribute with the given name, these system calls fail
with the error ENODATA. If size is too small, these system calls fail with the error ERANGE.

It is possible to specify size as 0, in which case value is ignored but the system
call still returns the size of the EA value. This provides a mechanism to determine
the size of the value buffer required for a subsequent call to actually retrieve the EA
value. Note, however, that we still have no guarantee that the returned size will be
big enough when subsequently trying to retrieve the value. Another process may
have assigned a bigger value to the attribute in the meantime, or removed the
attribute altogether.

#include <sys/xattr.h>

ssize_t getxattr(const char *pathname, const char *name, void *value,
                  size_t size);
ssize_t lgetxattr(const char *pathname, const char *name, void *value,
                  size_t size);
ssize_t fgetxattr(int fd, const char *name, void *value,

size_t size);

All return (nonnegative) size of EA value on success, or –1 on error
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Removing an EA

The removexattr(), lremovexattr(), and fremovexattr() system calls remove an EA from
a file.

The null-terminated string given in name identifies the EA that is to be removed.
An attempt to remove an EA that doesn’t exist fails with the error ENODATA.

Retrieving the names of all EAs associated with a file

The listxattr(), llistxattr(), and flistxattr() system calls return a list containing the
names of all of the EAs associated with a file.

The list of EA names is returned as a series of null-terminated strings in the buffer
pointed to by list. The size of this buffer must be specified in size. On success, these
system calls return the number of bytes copied into list.

As with getxattr(), it is possible to specify size as 0, in which case list is ignored,
but the system call returns the size of the buffer that would be required for a subse-
quent call to actually retrieve the EA name list (assuming it remains unchanged).

To retrieve a list of the EA names associated with a file requires only that the
file be accessible (i.e., that we have execute access to all of the directories included
in pathname). No permissions are required on the file itself.

For security reasons, the EA names returned in list may exclude attributes to
which the calling process doesn’t have access. For example, most file systems omit
trusted attributes from the list returned by a call to listxattr() in an unprivileged process.
But note the “may” in the earlier sentence, indicating that a file-system implemen-
tation is not obliged to do this. Therefore, we need to allow for the possibility that a
subsequent call to getxattr() using an EA name returned in list may fail because the
process doesn’t have the privilege required to obtain the value of that EA. (A similar
failure could also happen if another process deleted an attribute between the calls
to listxattr() and getxattr().)

#include <sys/xattr.h>

int removexattr(const char *pathname, const char *name);
int lremovexattr(const char *pathname, const char *name);
int fremovexattr(int fd, const char *name);

All return 0 on success, or –1 on error

#include <sys/xattr.h>

ssize_t listxattr(const char *pathname, char *list, size_t size);
ssize_t llistxattr(const char *pathname, char *list, size_t size);
ssize_t flistxattr(int fd, char *list, size_t size);

All return number of bytes copied into list on success, or –1 on error
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Example program

The program in Listing 16-1 retrieves and displays the names and values of all EAs
of the files listed on its command line. For each file, the program uses listxattr() to
retrieve the names of all EAs associated with the file, and then executes a loop
calling getxattr() once for each name, to retrieve the corresponding value. By
default, attribute values are displayed as plain text. If the –x option is supplied,
then the attribute values are displayed as hexadecimal strings. The following shell
session log demonstrates the use of this program:

$ setfattr -n user.x -v "The past is not dead." tfile
$ setfattr -n user.y -v "In fact, it's not even past." tfile
$ ./xattr_view tfile
tfile:
        name=user.x; value=The past is not dead.
        name=user.y; value=In fact, it's not even past.

Listing 16-1: Display file extended attributes

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– xattr/xattr_view.c

#include <sys/xattr.h>
#include "tlpi_hdr.h"

#define XATTR_SIZE 10000

static void
usageError(char *progName)
{
    fprintf(stderr, "Usage: %s [-x] file...\n", progName);
    exit(EXIT_FAILURE);
}

int
main(int argc, char *argv[])
{
    char list[XATTR_SIZE], value[XATTR_SIZE];
    ssize_t listLen, valueLen;
    int ns, j, k, opt;
    Boolean hexDisplay;

    hexDisplay = 0;
    while ((opt = getopt(argc, argv, "x")) != -1) {
        switch (opt) {
        case 'x': hexDisplay = 1;       break;
        case '?': usageError(argv[0]);
        }
    }

    if (optind >= argc + 2)
        usageError(argv[0]);
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    for (j = optind; j < argc; j++) {
        listLen = listxattr(argv[j], list, XATTR_SIZE);
        if (listLen == -1)
            errExit("listxattr");

        printf("%s:\n", argv[j]);

        /* Loop through all EA names, displaying name + value */

        for (ns = 0; ns < listLen; ns += strlen(&list[ns]) + 1) {
            printf("        name=%s; ", &list[ns]);

            valueLen = getxattr(argv[j], &list[ns], value, XATTR_SIZE);
            if (valueLen == -1) {
                printf("couldn't get value");
            } else if (!hexDisplay) {
                printf("value=%.*s", (int) valueLen, value);
            } else {
                printf("value=");
                for (k = 0; k < valueLen; k++)
                    printf("%02x ", (unsigned int) value[k]);
            }

            printf("\n");
        }

        printf("\n");
    }

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– xattr/xattr_view.c

16.4 Summary

From version 2.6 onward, Linux supports extended attributes, which allow arbi-
trary metadata to be associated with a file, in the form of name-value pairs.

16.5 Exercise

16-1. Write a program that can be used to create or modify a user EA for a file (i.e., a
simple version of setfattr(1)). The filename and the EA name and value should be
supplied as command-line arguments to the program.
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A C C E S S  C O N T R O L  L I S T S

Section 15.4 described the traditional UNIX (and Linux) file permissions scheme.
For many applications, this scheme is sufficient. However, some applications need
finer control over the permissions granted to specific users and groups. To meet
this requirement, many UNIX systems implement an extension to the traditional
UNIX file permissions model known as access control lists (ACLs). ACLs allow file
permissions to be specified per user or per group, for an arbitrary number of users
and groups. Linux provides ACLs from kernel 2.6 onward.

Support for ACLs is optional for each file system, and is controlled by kernel
configuration options under the File systems menu. Reiserfs support for ACLs
has been available since kernel 2.6.7.

In order to be able to create ACLs on an ext2, ext3, ext4, or Reiserfs file
system, the file system must be mounted with the mount –o acl option.

ACLs have never been formally standardized for UNIX systems. An attempt was
made to do this in the form of the POSIX.1e and POSIX.2c draft standards, which
aimed to specify, respectively, the application program interface (API) and the shell
commands for ACLs (as well as other features, such as capabilities). Ultimately, this
standardization attempt foundered, and these draft standards were withdrawn.
Nevertheless, many UNIX implementations (including Linux) base their ACL
implementations on these draft standards (usually on the final version, Draft 17).
However, because there are many variations across ACL implementations (in part



springing from the incompleteness of the draft standards), writing portable pro-
grams that use ACLs presents some difficulties.

This chapter provides a description of ACLs and a brief tutorial on their use. It
also describes some of the library functions used for manipulating and retrieving
ACLs. We won’t go into detail on all of these functions because there are so many
of them. (For the details, see the manual pages.)

17.1 Overview

An ACL is a series of ACL entries, each of which defines the file permissions for an
individual user or group of users (see Figure 17-1).

Figure 17-1: An access control list

ACL entries

Each ACL entry consists of the following parts:

a tag type, which indicates whether this entry applies to a user, to a group, or to
some other category of user;

an optional tag qualifier, which identifies a specific user or group (i.e., a user ID
or a group ID); and

a permission set, which specifies the permissions (read, write, and execute) that
are granted by the entry.

The tag type has one of the following values:

ACL_USER_OBJ

This entry specifies the permissions granted to the file owner. Each ACL
contains exactly one ACL_USER_OBJ entry. This entry corresponds to the tradi-
tional file owner (user) permissions.

ACL_USER

This entry specifies the permissions granted to the user identified by the
tag qualifier. An ACL may contain zero or more ACL_USER entries, but at
most one ACL_USER entry may be defined for a particular user.

Tag type Tag qualifier Permissions

ACL_USER_OBJ - rwx

ACL_GROUP_OBJ - rwx

ACL_GROUP 103 -w-

ACL_GROUP 109 --x

ACL_USER 1007 r--

ACL_USER 1010 rwx

ACL_MASK - rw-

ACL_OTHER - r--

ACL_GROUP 102 r--

Corresponds to
traditional owner
(user) permissions

Corresponds to
traditional group
permissions

Corresponds to
traditional other
permissions

Group
class

entries
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ACL_GROUP_OBJ

This entry specifies permissions granted to the file group. Each ACL contains
exactly one ACL_GROUP_OBJ entry. This entry corresponds to the traditional
file group permissions, unless the ACL also contains an ACL_MASK entry.

ACL_GROUP

This entry specifies the permissions granted to the group identified by the
tag qualifier. An ACL may contain zero or more ACL_GROUP entries, but at
most one ACL_GROUP entry may be defined for a particular group.

ACL_MASK

This entry specifies the maximum permissions that may be granted by
ACL_USER, ACL_GROUP_OBJ, and ACL_GROUP entries. An ACL contains at most
one ACL_MASK entry. If the ACL contains ACL_USER or ACL_GROUP entries, then
an ACL_MASK entry is mandatory. We say more about this tag type shortly.

ACL_OTHER

This entry specifies the permissions that are granted to users that don’t
match any other ACL entry. Each ACL contains exactly one ACL_OTHER
entry. This entry corresponds to the traditional file other permissions.

The tag qualifier is employed only for ACL_USER and ACL_GROUP entries. It specifies
either a user ID or a group ID.

Minimal and extended ACLs

A minimal ACL is one that is semantically equivalent to the traditional file permis-
sion set. It contains exactly three entries: one of each of the types ACL_USER_OBJ,
ACL_GROUP_OBJ, and ACL_OTHER. An extended ACL is one that additionally contains
ACL_USER, ACL_GROUP, and ACL_MASK entries.

One reason for drawing a distinction between minimal ACLs and extended
ACLs is that the latter provide a semantic extension to the traditional permissions
model. Another reason concerns the Linux implementation of ACLs. ACLs are
implemented as system extended attributes (Chapter 16). The extended attribute
used for maintaining a file access ACL is named system.posix_acl_access. This
extended attribute is required only if the file has an extended ACL. The permis-
sions information for a minimal ACL can be (and is) stored in the traditional file
permission bits.

17.2 ACL Permission-Checking Algorithm

Permission checking on a file that has an ACL is performed in the same circum-
stances as for the traditional file permissions model (Section 15.4.3). Checks are
performed in the following order, until one of the criteria is matched:

1. If the process is privileged, all access is granted. There is one exception to this
statement, analogous to the traditional permissions model described in Sec-
tion 15.4.3. When executing a file, a privileged process is granted execute per-
mission only if that permission is granted via at least one of the ACL entries on
the file.
Access Cont rol  L is ts 321



2. If the effective user ID of the process matches the owner (user ID) of the file,
then the process is granted the permissions specified in the ACL_USER_OBJ entry.
(To be strictly accurate, on Linux, it is the process’s file-system IDs, rather than
its effective IDs, that are used for the checks described in this section, as
described in Section 9.5.)

3. If the effective user ID of the process matches the tag qualifier in one of the
ACL_USER entries, then the process is granted the permissions specified in that
entry, masked (ANDed) against the value of the ACL_MASK entry.

4. If one of the process’s group IDs (i.e., the effective group ID or any of the sup-
plementary group IDs) matches the file group (this corresponds to the
ACL_GROUP_OBJ entry) or the tag qualifier of any of the ACL_GROUP entries, then
access is determined by checking each of the following, until a match is found:

a) If one of the process’s group IDs matches the file group, and the
ACL_GROUP_OBJ entry grants the requested permissions, then this entry deter-
mines the access granted to the file. The granted access is restricted by
masking (ANDing) against the value in the ACL_MASK entry, if present.

b) If one of the process’s group IDs matches the tag qualifier in an ACL_GROUP
entry for the file, and that entry grants the requested permissions, then
this entry determines the permissions granted. The granted access is
restricted by masking (ANDing) against the value in the ACL_MASK entry.

c) Otherwise, access is denied.

5. Otherwise, the process is granted the permissions specified in the ACL_OTHER
entry.

We can clarify the rules relating to group IDs with some examples. Suppose we
have a file whose group ID is 100, and that file is protected by the ACL shown in
Figure 17-1. If a process whose group ID is 100 makes the call access(file, R_OK),
then that call would succeed (i.e., return 0). (We describe access() in Section 15.4.4.)
On the other hand, even though the ACL_GROUP_OBJ entry grants all permissions, the
call access(file, R_OK | W_OK | X_OK) would fail (i.e., return –1, with errno set to
EACCES) because the ACL_GROUP_OBJ permissions are masked (ANDed) against the
ACL_MASK entry, and this entry denies execute permission.

As another example using Figure 17-1, suppose we have a process that has a group
ID of 102 and that also contains the group ID 103 in its supplementary group IDs.
For this process, the calls access(file, R_OK) and access(file, W_OK) would both succeed,
since they would match the ACL_GROUP entries for the group IDs 102 and 103, respec-
tively. On the other hand, the call access(file, R_OK | W_OK) would fail because
there is no matching ACL_GROUP entry that grants both read and write permissions.
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17.3 Long and Short Text Forms for ACLs

When manipulating ACLs using the setfacl and getfacl commands (described in a
moment) or certain ACL library functions, we specify textual representations of
the ACL entries. Two formats are permitted for these textual representations:

Long text form ACLs contain one ACL entry per line, and may include com-
ments, which are started by a # character and continue to the end-of-line. The
getfacl command displays ACLs in long text form. The setfacl –M acl-file option,
which takes an ACL specification from a file, expects the specification to be in
long text form.

Short text form ACLs consist of a sequence of ACL entries separated by commas.

In both forms, each ACL entry consists of three parts separated by colons:

tag-type:[tag-qualifier]: permissions

The tag-type is one of the values shown in the first column of Table 17-1. The tag-type
may optionally be followed by a tag-qualifier, which identifies a user or group, either
by name or numeric identifier. The tag-qualifier is present only for ACL_USER and
ACL_GROUP entries.

The following are all short text form ACLs corresponding to a traditional per-
missions mask of 0650:

u::rw-,g::r-x,o::---
u::rw,g::rx,o::-
user::rw,group::rx,other::-

The following short text form ACL includes two named users, a named group, and
a mask entry:

u::rw,u:paulh:rw,u:annabel:rw,g::r,g:teach:rw,m::rwx,o::-

Table 17-1: Interpretation of ACL entry text forms

Tag text
forms

Tag qualifier
present?

Corresponding
tag type

Entry for

u, user N ACL_USER_OBJ File owner (user)
u, user Y ACL_USER Specified user
g, group N ACL_GROUP_OBJ File group
g, group Y ACL_GROUP Specified group
m, mask N ACL_MASK Mask for group class
o, other N ACL_OTHER Other users
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17.4 The ACL_MASK Entry and the ACL Group Class

If an ACL contains ACL_USER or ACL_GROUP entries, then it must contain an ACL_MASK
entry. If the ACL doesn’t contain any ACL_USER or ACL_GROUP entries, then the ACL_MASK
entry is optional.

The ACL_MASK entry acts as an upper limit on the permissions granted by ACL
entries in the so-called group class. The group class is the set of all ACL_USER, ACL_GROUP,
and ACL_GROUP_OBJ entries in the ACL.

The purpose of the ACL_MASK entry is to provide consistent behavior when run-
ning ACL-unaware applications. As an example of why the mask entry is needed,
suppose that the ACL on a file includes the following entries:

user::rwx                       # ACL_USER_OBJ
user:paulh:r-x                  # ACL_USER
group::r-x                      # ACL_GROUP_OBJ
group:teach:--x                 # ACL_GROUP
other::--x                      # ACL_OTHER

Now suppose that a program executes the following chmod() call on this file:

chmod(pathname, 0700);      /* Set permissions to rwx------ */

In an ACL-unaware application, this means “Deny access to everyone except the
file owner.” These semantics should hold even in the presence of ACLs. In the
absence of an ACL_MASK entry, this behavior could be implemented in various ways,
but there are problems with each approach:

Simply modifying the ACL_GROUP_OBJ and ACL_USER_OBJ entries to have the mask
--- would be insufficient, since the user paulh and the group teach would still
have some permissions on the file.

Another possibility would be to apply the new group and other permission set-
tings (i.e., all permissions disabled) to all of the ACL_USER, ACL_GROUP,
ACL_GROUP_OBJ, and ACL_OTHER entries in the ACL:

user::rwx                       # ACL_USER_OBJ
user:paulh:---                  # ACL_USER
group::---                      # ACL_GROUP_OBJ
group:teach:---                 # ACL_GROUP
other::---                      # ACL_OTHER

The problem with this approach is that the ACL-unaware application would
thereby inadvertently destroy the file permission semantics established by
ACL-aware applications, since the following call (for example) would not
restore the ACL_USER and ACL_GROUP entries of the ACL to their former states:

chmod(pathname, 751);
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To avoid these problems, we might consider making the ACL_GROUP_OBJ entry the
limiting set for all ACL_USER and ACL_GROUP entries. However, this would mean
that the ACL_GROUP_OBJ permissions would always need to be set to the union of
all permissions allowed in all ACL_USER and ACL_GROUP entries. This would conflict
with the use of the ACL_GROUP_OBJ entry for determining the permissions
accorded to the file group.

The ACL_MASK entry was devised to solve these problems. It provides a mechanism
that allows the traditional meanings of chmod() operations to be implemented, without
destroying the file permission semantics established by ACL-aware applications.
When an ACL has an ACL_MASK entry:

all changes to traditional group permissions via chmod() change the setting of
the ACL_MASK entry (rather than the ACL_GROUP_OBJ entry); and

a call to stat() returns the ACL_MASK permissions (instead of the ACL_GROUP_OBJ permis-
sions) in the group permission bits of the st_mode field (Figure 15-1, on page 281).

While the ACL_MASK entry provides a way of preserving ACL information in the face
of ACL-unaware applications, the reverse is not guaranteed. The presence of ACLs
overrides the effect of traditional operations on file group permissions. For example,
suppose that we have placed the following ACL on a file:

user::rw-,group::---,mask::---,other::r--

If we then execute the command chmod g+rw on this file, the ACL becomes:

user::rw-,group::---,mask::rw-,other::r--

In this case, group still has no access to the file. One workaround for this is to modify
the ACL entry for group to grant all permissions. Consequently, group will then
always obtain whatever permissions are granted to the ACL_MASK entry.

17.5 The getfacl and setfacl Commands

From the shell, we can use the getfacl command to view the ACL on a file.

$ umask 022                         Set shell umask to known state
$ touch tfile                       Create a new file
$ getfacl tfile
# file: tfile
# owner: mtk
# group: users
user::rw-
group::r--
other::r--

From the output of the getfacl command, we see that the new file is created with a
minimal ACL. When displaying the text form of this ACL, getfacl precedes the ACL
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entries with three lines showing the name and ownership of the file. We can pre-
vent these lines from being displayed by specifying the ––omit–header option.

Next, we demonstrate that changes to a file’s permissions using the traditional
chmod command are carried through to the ACL.

$ chmod u=rwx,g=rx,o=x tfile
$ getfacl --omit-header tfile
user::rwx
group::r-x
other::--x

The setfacl command modifies a file ACL. Here, we use the setfacl –m command to
add an ACL_USER and an ACL_GROUP entry to the ACL:

$ setfacl -m u:paulh:rx,g:teach:x tfile
$ getfacl --omit-header tfile
user::rwx
user:paulh:r-x                      ACL_USER entry
group::r-x
group:teach:--x                     ACL_GROUP entry
mask::r-x                           ACL_MASK entry
other::--x

The setfacl –m option modifies existing ACL entries, or adds new entries if corre-
sponding entries with the given tag type and qualifier do not already exist. We can
additionally use the –R option to recursively apply the specified ACL to all of the
files in a directory tree.

From the output of the getfacl command, we can see that setfacl automatically
created an ACL_MASK entry for this ACL.

The addition of the ACL_USER and ACL_GROUP entries converts this ACL into an
extended ACL, and ls –l indicates this fact by appending a plus sign (+) after the tradi-
tional file permissions mask:

$ ls -l tfile
-rwxr-x--x+   1 mtk      users           0 Dec 3 15:42 tfile

We continue by using setfacl to disable all permissions except execute on the
ACL_MASK entry, and then view the ACL once more with getfacl:

$ setfacl -m m::x tfile
$ getfacl --omit-header tfile
user::rwx
user:paulh:r-x                  #effective:--x
group::r-x                      #effective:--x
group:teach:--x
mask::--x
other::--x

The #effective: comments that getfacl prints after the entries for the user paulh and
the file group (group::) inform us that after masking (ANDing) against the ACL_MASK
entry, the permissions granted by each of these entries will actually be less than
those specified in the entry.
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We then use ls –l to once more view the traditional permission bits of the file.
We see that the displayed group class permission bits reflect the permissions in the
ACL_MASK entry (--x), rather than those in the ACL_GROUP entry (r-x):

$ ls -l tfile
-rwx--x--x+   1 mtk      users           0 Dec 3 15:42 tfile

The setfacl –x command can be used to remove entries from an ACL. Here, we
remove the entries for the user paulh and the group teach (no permissions are spec-
ified when removing entries):

$ setfacl -x u:paulh,g:teach tfile
$ getfacl --omit-header tfile
user::rwx
group::r-x
mask::r-x
other::--x

Note that during the above operation, setfacl automatically adjusted the mask entry
to be the union of all of the group class entries. (There was just one such entry:
ACL_GROUP_OBJ.) If we want to prevent such adjustment, then we must specify the –n
option to setfacl.

Finally, we note that the setfacl –b option can be used to remove all extended
entries from an ACL, leaving just the minimal (i.e., user, group, and other) entries.

17.6 Default ACLs and File Creation

In the discussion of ACLs so far, we have been describing access ACLs. As its name
implies, an access ACL is used in determining the permissions that a process has
when accessing the file associated with the ACL. We can create a second type of
ACL on directories: a default ACL.

A default ACL plays no part in determining the permissions granted when
accessing the directory. Instead, its presence or absence determines the ACL(s)
and permissions that are placed on files and subdirectories that are created in the
directory. (A default ACL is stored as an extended attribute named
system.posix_acl_default.)

To view and set the default ACL of a directory, we use the –d option of the
getfacl and setfacl commands.

$ mkdir sub
$ setfacl -d -m u::rwx,u:paulh:rx,g::rx,g:teach:rwx,o::- sub
$ getfacl -d --omit-header sub
user::rwx
user:paulh:r-x
group::r-x
group:teach:rwx
mask::rwx                       setfacl generated ACL_MASK entry automatically
other::---

We can remove a default ACL from a directory using the setfacl –k option.
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If a directory has a default ACL, then:

A new subdirectory created in this directory inherits the directory’s default
ACL as its default ACL. In other words, default ACLs propagate down through
a directory tree as new subdirectories are created.

A new file or subdirectory created in this directory inherits the directory’s
default ACL as its access ACL. The ACL entries that correspond to the tradi-
tional file permission bits are masked (ANDed) against the corresponding bits
of the mode argument in the system call (open(), mkdir(), and so on) used to create
the file or subdirectory. By “corresponding ACL entries,” we mean:

– ACL_USER_OBJ;

– ACL_MASK or, if ACL_MASK is absent, then ACL_GROUP_OBJ; and

– ACL_OTHER.

When a directory has a default ACL, the process umask (Section 15.4.6) doesn’t
play a part in determining the permissions in the entries of the access ACL of a new
file created in that directory.

As an example of how a new file inherits its access ACL from the parent direc-
tory’s default ACL, suppose we used the following open() call to create a new file in
the directory created above:

open("sub/tfile", O_RDWR | O_CREAT,
        S_IRWXU | S_IXGRP | S_IXOTH);   /* rwx--x--x */

The new file would have the following access ACL:

$ getfacl --omit-header sub/tfile
user::rwx
user:paulh:r-x                  #effective:--x
group::r-x                      #effective:--x
group:teach:rwx                 #effective:--x
mask::--x
other::---

If a directory doesn’t have a default ACL, then:

New subdirectories created in this directory also do not have a default ACL.

The permissions of the new file or directory are set following the traditional
rules (Section 15.4.6): the file permissions are set to the value in the mode argu-
ment (given to open(), mkdir(), and so on), less the bits that are turned off by the
process umask. This results in a minimal ACL on the new file.

17.7 ACL Implementation Limits

The various file-system implementations impose limits on the number of entries in
an ACL:

On ext2, ext3, and ext4, the total number of ACLs on a file is governed by the
requirement that the bytes in all of the names and values of a file’s extended
attributes must be contained in a single logical disk block (Section 16.2). Each
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ACL entry requires 8 bytes, so that the maximum number of ACL entries for a
file is somewhat less (because of some overhead for the name of the extended
attribute for the ACL) than one-eighth of the block size. Thus, a 4096-byte
block size allows for a maximum of around 500 ACL entries. (Kernels before
2.6.11 imposed an arbitrary limitation of 32 entries for ACLs on ext2 and ext3.)

On XFS, an ACL is limited to 25 entries.

On Reiserfs and JFS, ACLs can contain up to 8191 entries. This limit is a conse-
quence of the size limitation (64 kB) imposed by the VFS on the value of an
extended attribute (Section 16.2).

At the time of writing, Btrfs limits ACLs to around 500 entries. However, since
Btrfs was still under heavy development, this limit may change.

Although most of the above file systems allow large numbers of entries to be created
in an ACL, this should be avoided for the following reasons:

The maintenance of lengthy ACLs becomes a complex and potentially error-
prone system administration task.

The amount of time required to scan the ACL for the matching entry (or
matching entries in the case of group ID checks) increases linearly with the
number of ACL entries.

Generally, we can keep the number of ACL entries on a file down to a reasonable
number by defining suitable groups in the system group file (Section 8.3) and using
those groups within the ACL.

17.8 The ACL API

The POSIX.1e draft standard defined a large suite of functions and data structures
for manipulating ACLs. Since they are so numerous, we won’t attempt to describe
the details of all of these functions. Instead, we provide an overview of their usage
and conclude with an example program.

Programs that use the ACL API should include <sys/acl.h>. It may also be neces-
sary to include <acl/libacl.h> if the program makes use of various Linux extensions
to the POSIX.1e draft standard. (A list of the Linux extensions is provided in the
acl(5) manual page.) Programs using this API must be compiled with the –lacl
option, in order to link against the libacl library.

As already noted, on Linux, ACLs are implemented using extended attributes,
and the ACL API is implemented as a set of library functions that manipulate
user-space data structures, and, where necessary, make calls to getxattr() and
setxattr() to retrieve and modify the on-disk system extended attribute that holds
the ACL representation. It is also possible (though not recommended) for an
application to use getxattr() and setxattr() to manipulate ACLs directly.
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Overview

The functions that constitute the ACL API are listed in the acl(5) manual page. At
first sight, this plethora of functions and data structures can seem bewildering.
Figure 17-2 provides an overview of the relationship between the various data
structures and indicates the use of many of the ACL functions.

Figure 17-2: Relationship between ACL library functions and data structures

From Figure 17-2, we can see that the ACL API considers an ACL as a hierarchical
object:

An ACL consists of one or more ACL entries.

Each ACL entry consists of a tag type, an optional tag qualifier, and a permis-
sion set.
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We now look briefly at the various ACL functions. In most cases, we don’t describe
the error returns from each function. Functions that return an integer (status) typi-
cally return 0 on success and –1 on error. Functions that return a handle (pointer)
return NULL on error. Errors can be diagnosed using errno in the usual manner.

A handle is an abstract term for some technique used to refer to an object or
data structure. The representation of a handle is private to the API implemen-
tation. It may be, for example, a pointer, an array index, or a hash key.

Fetching a file’s ACL into memory

The acl_get_file() function retrieves a copy of the ACL of the file identified by
pathname.

acl_t acl;

acl = acl_get_file(pathname, type);

This function retrieves either the access ACL or the default ACL, depending on
whether type is specified as ACL_TYPE_ACCESS or ACL_TYPE_DEFAULT. As its function result,
acl_get_file() returns a handle (of type acl_t) for use with other ACL functions.

Retrieving entries from an in-memory ACL

The acl_get_entry() function returns a handle (of type acl_entry_t) referring to one of
the ACL entries within the in-memory ACL referred to by its acl argument. This
handle is returned in the location pointed to by the final function argument.

acl_entry_t entry;

status = acl_get_entry(acl, entry_id, &entry);

The entry_id argument determines which entry’s handle is returned. If entry_id is
specified as ACL_FIRST_ENTRY, then a handle for the first entry in the ACL is returned.
If entry_id is specified as ACL_NEXT_ENTRY, then a handle is returned for the entry follow-
ing the last ACL entry that was retrieved. Thus, we can loop through all of the
entries in an ACL by specifying type as ACL_FIRST_ENTRY in the first call to acl_get_entry()
and specifying type as ACL_NEXT_ENTRY in subsequent calls.

The acl_get_entry() function returns 1 if it successfully fetches an ACL entry, 0 if
there are no more entries, or –1 on error.

Retrieving and modifying attributes in an ACL entry

The acl_get_tag_type() and acl_set_tag_type() functions retrieve and modify the tag
type in the ACL entry referred to by their entry argument.

acl_tag_t tag_type;

status = acl_get_tag_type(entry, &tag_type);
status = acl_set_tag_type(entry, tag_type);

The tag_type argument has the type acl_type_t (an integer type), and has one of the
values ACL_USER_OBJ, ACL_USER, ACL_GROUP_OBJ, ACL_GROUP, ACL_OTHER, or ACL_MASK.
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The acl_get_qualifier() and acl_set_qualifier() functions retrieve and modify the
tag qualifier in the ACL entry referred to by their entry argument. Here is an exam-
ple, in which we assume that we have already determined that this is an ACL_USER
entry by inspecting the tag type:

uid_t *qualp;               /* Pointer to UID */

qualp = acl_get_qualifier(entry);
status = acl_set_qualifier(entry, qualp);

The tag qualifier is valid only if the tag type of this entry is ACL_USER or ACL_GROUP. In
the former case, qualp is a pointer to a user ID (uid_t *); in the latter case, it is a
pointer to a group ID (gid_t *).

The acl_get_permset() and acl_set_permset() functions retrieve and modify the
permission set in the ACL entry referred to by their entry argument.

acl_permset_t permset;

status = acl_get_permset(entry, &permset);
status = acl_set_permset(entry, permset);

The acl_permset_t data type is a handle referring to a permission set.
The following functions are used to manipulate the contents of a permission set:

int is_set;

is_set = acl_get_perm(permset, perm);

status = acl_add_perm(permset, perm);
status = acl_delete_perm(permset, perm);
status = acl_clear_perms(permset);

In each of these calls, perm is specified as ACL_READ, ACL_WRITE, or ACL_EXECUTE, with the
obvious meanings. These functions are used as follows:

The acl_get_perm() function returns 1 (true) if the permission specified in perm
is enabled in the permission set referred to by permset, or 0 if it is not. This
function is a Linux extension to the POSIX.1e draft standard.

The acl_add_perm() function adds the permission specified in perm to the per-
mission set referred to by permset.

The acl_delete_perm() function removes the permission specified in perm from
the permission set referred to by permset. (It is not an error to remove a permis-
sion if it is not present in the set.)

The acl_clear_perms() function removes all permissions from the permission set
referred to by permset.

Creating and deleting ACL entries

The acl_create_entry() function creates a new entry in an existing ACL. A handle
referring to the new entry is returned in the location pointed to by the second func-
tion argument.
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acl_entry_t entry;

status = acl_create_entry(&acl, &entry);

The new entry can then be populated using the functions described previously.
The acl_delete_entry() function removes an entry from an ACL.

status = acl_delete_entry(acl, entry);

Updating a file’s ACL

The acl_set_file() function is the converse of acl_get_file(). It updates the on-disk
ACL with the contents of the in-memory ACL referred to by its acl argument.

int status;

status = acl_set_file(pathname, type, acl);

The type argument is either ACL_TYPE_ACCESS, to update the access ACL, or
ACL_TYPE_DEFAULT, to update a directory’s default ACL.

Converting an ACL between in-memory and text form

The acl_from_text() function translates a string containing a long or short text form
ACL into an in-memory ACL, and returns a handle that can be used to refer to
the ACL in subsequent function calls.

acl = acl_from_text(acl_string);

The acl_to_text() function performs the reverse conversion, returning a long text
form string corresponding to the ACL referred to by its acl argument.

char *str;
ssize_t len;

str = acl_to_text(acl, &len);

If the len argument is not specified as NULL, then the buffer it points to is used to
return the length of the string returned as the function result.

Other functions in the ACL API

The following paragraphs describe several other commonly used ACL functions
that are not shown in Figure 17-2.

The acl_calc_mask(&acl) function calculates and sets the permissions in the
ACL_MASK entry of the in-memory ACL whose handle is pointed to by its argument.
Typically, we use this function whenever we create or modify an ACL. The ACL_MASK
permissions are calculated as the union of the permissions in all ACL_USER, ACL_GROUP,
and ACL_GROUP_OBJ entries. A useful property of this function is that it creates the
ACL_MASK entry if it doesn’t already exist. This means that if we add ACL_USER and
ACL_GROUP entries to a previously minimal ACL, then we can use this function to
ensure the creation of the ACL_MASK entry.
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The acl_valid(acl) function returns 0 if the ACL referred to by its argument is
valid, or –1 otherwise. An ACL is valid if all of the following are true:

the ACL_USER_OBJ, ACL_GROUP_OBJ, and ACL_OTHER entries appear exactly once;

there is an ACL_MASK entry if any ACL_USER or ACL_GROUP entries are present;

there is at most one ACL_MASK entry;

each ACL_USER entry has a unique user ID; and

each ACL_GROUP entry has a unique group ID.

The acl_check() and acl_error() functions (the latter is a Linux extension) are
alternatives to acl_valid() that are less portable, but provide a more precise
description of the error in a malformed ACL. See the manual pages for details.

The acl_delete_def_file(pathname) function removes the default ACL on the direc-
tory referred to by pathname.

The acl_init(count) function creates a new, empty ACL structure that initially
contains space for at least count ACL entries. (The count argument is a hint to the
system about intended usage, not a hard limit.) A handle for the new ACL is
returned as the function result.

The acl_dup(acl) function creates a duplicate of the ACL referred to by acl and
returns a handle for the duplicate ACL as its function result.

The acl_free(handle) function frees memory allocated by other ACL functions.
For example, we must use acl_free() to free memory allocated by calls to acl_from_text(),
acl_to_text(), acl_get_file(), acl_init(), and acl_dup().

Example program

Listing 17-1 demonstrates the use of some of the ACL library functions. This program
retrieves and displays the ACL on a file (i.e., it provides a subset of the functionality
of the getfacl command). If the –d command-line option is specified, then the pro-
gram displays the default ACL (of a directory) instead of the access ACL.

Here is an example of the use of this program:

$ touch tfile
$ setfacl -m 'u:annie:r,u:paulh:rw,g:teach:r' tfile
$ ./acl_view tfile
user_obj             rw-
user        annie    r--
user        paulh    rw-
group_obj            r--
group       teach    r--
mask                 rw-
other                r--

The source code distribution of this book also includes a program, acl/
acl_update.c, that performs updates on an ACL (i.e., it provides a subset of the
functionality of the setfacl command).
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Listing 17-1: Display the access or default ACL on a file

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– acl/acl_view.c
#include <acl/libacl.h>
#include <sys/acl.h>
#include "ugid_functions.h"
#include "tlpi_hdr.h"

static void
usageError(char *progName)
{
    fprintf(stderr, "Usage: %s [-d] filename\n", progName);
    exit(EXIT_FAILURE);
}

int
main(int argc, char *argv[])
{
    acl_t acl;
    acl_type_t type;
    acl_entry_t entry;
    acl_tag_t tag;
    uid_t *uidp;
    gid_t *gidp;
    acl_permset_t permset;
    char *name;
    int entryId, permVal, opt;

    type = ACL_TYPE_ACCESS;
    while ((opt = getopt(argc, argv, "d")) != -1) {
        switch (opt) {
        case 'd': type = ACL_TYPE_DEFAULT;      break;
        case '?': usageError(argv[0]);
        }
    }

    if (optind + 1 != argc)
        usageError(argv[0]);

    acl = acl_get_file(argv[optind], type);
    if (acl == NULL)
        errExit("acl_get_file");

    /* Walk through each entry in this ACL */

    for (entryId = ACL_FIRST_ENTRY; ; entryId = ACL_NEXT_ENTRY) {

        if (acl_get_entry(acl, entryId, &entry) != 1)
            break;                      /* Exit on error or no more entries */
Access Cont rol  L is ts 335



        /* Retrieve and display tag type */

        if (acl_get_tag_type(entry, &tag) == -1)
            errExit("acl_get_tag_type");

        printf("%-12s", (tag == ACL_USER_OBJ) ?  "user_obj" :
                        (tag == ACL_USER) ?      "user" :
                        (tag == ACL_GROUP_OBJ) ? "group_obj" :
                        (tag == ACL_GROUP) ?     "group" :
                        (tag == ACL_MASK) ?      "mask" :
                        (tag == ACL_OTHER) ?     "other" : "???");

        /* Retrieve and display optional tag qualifier */

        if (tag == ACL_USER) {
            uidp = acl_get_qualifier(entry);
            if (uidp == NULL)
                errExit("acl_get_qualifier");

            name = groupNameFromId(*uidp);
            if (name == NULL)
                printf("%-8d ", *uidp);
            else
                printf("%-8s ", name);

            if (acl_free(uidp) == -1)
                errExit("acl_free");

        } else if (tag == ACL_GROUP) {
            gidp = acl_get_qualifier(entry);
            if (gidp == NULL)
                errExit("acl_get_qualifier");

            name = groupNameFromId(*gidp);
            if (name == NULL)
                printf("%-8d ", *gidp);
            else
                printf("%-8s ", name);

            if (acl_free(gidp) == -1)
                errExit("acl_free");

        } else {
            printf("         ");
        }

        /* Retrieve and display permissions */

        if (acl_get_permset(entry, &permset) == -1)
            errExit("acl_get_permset");

        permVal = acl_get_perm(permset, ACL_READ);
        if (permVal == -1)
            errExit("acl_get_perm - ACL_READ");
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        printf("%c", (permVal == 1) ? 'r' : '-');
        permVal = acl_get_perm(permset, ACL_WRITE);
        if (permVal == -1)
            errExit("acl_get_perm - ACL_WRITE");
        printf("%c", (permVal == 1) ? 'w' : '-');
        permVal = acl_get_perm(permset, ACL_EXECUTE);
        if (permVal == -1)
            errExit("acl_get_perm - ACL_EXECUTE");
        printf("%c", (permVal == 1) ? 'x' : '-');

        printf("\n");
    }

    if (acl_free(acl) == -1)
        errExit("acl_free");

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– acl/acl_view.c

17.9 Summary

From version 2.6 onward, Linux supports ACLs. ACLs extend the traditional
UNIX file permissions model, allowing file permissions to be controlled on a per-
user and per-group basis.

Further information

The final versions (Draft 17) of the draft POSIX.1e and POSIX.2c standards are
available online at http://wt.tuxomania.net/publications/posix.1e/.

The acl(5) manual page gives an overview of ACLs and some guidance on the
portability of the various ACL library functions implemented on Linux.

Details of the Linux implementation of ACLs and extended attributes can be
found in [Grünbacher, 2003]. Andreas Grünbacher maintains a web site contain-
ing information about ACLs at http://acl.bestbits.at/.

17.10 Exercise

17-1. Write a program that displays the permissions from the ACL entry that
corresponds to a particular user or group. The program should take two
command-line arguments. The first argument is either of the letters u or g,
indicating whether the second argument identifies a user or group. (The functions
defined in Listing 8-1, on page 159, can be used to allow the second command-line
argument to be specified numerically or as a name.) If the ACL entry that
corresponds to the given user or group falls into the group class, then the program
should additionally display the permissions that would apply after the ACL entry
has been modified by the ACL mask entry.
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D I R E C T O R I E S  A N D  L I N K S

In this chapter, we conclude our discussion of file-related topics by looking at direc-
tories and links. After an overview of their implementation, we describe the system
calls used to create and remove directories and links. We then look at library func-
tions that allow a program to scan the contents of a single directory and to walk
through (i.e., examine each file in) a directory tree.

Each process has two directory-related attributes: a root directory, which deter-
mines the point from which absolute pathnames are interpreted, and a current
working directory, which determines the point from which relative pathnames are
interpreted. We look at the system calls that allow a process to change both of these
attributes.

We finish the chapter with a discussion of library functions that are used to
resolve pathnames and to parse them into directory and filename components.

18.1 Directories and (Hard) Links

A directory is stored in the file system in a similar way to a regular file. Two things
distinguish a directory from a regular file:

A directory is marked with a different file type in its i-node entry (Section 14.4).

A directory is a file with a special organization. Essentially, it is a table consist-
ing of filenames and i-node numbers.



On most native Linux file systems, filenames can be up to 255 characters long. The
relationship between directories and i-nodes is illustrated in Figure 18-1, which
shows the partial contents of the file system i-node table and relevant directory files
that are maintained for an example file (/etc/passwd).

Although a process can open a directory, it can’t use read() to read the contents of
a directory. To retrieve the contents of a directory, a process must instead use
the system calls and library functions discussed later in this chapter. (On some
UNIX implementations, it is possible to perform a read() on a directory, but
this is not portable.) Nor can a process directly change a directory’s contents
with write(); it can only indirectly (i.e., request the kernel to) change the con-
tents using system calls such as open() (to create a new file), link(), mkdir(),
symlink(), unlink(), and rmdir(). (All of these system calls are described later in
this chapter, except open(), which was described in Section 4.3.)

The i-node table is numbered starting at 1, rather than 0, because 0 in the
i-node field of a directory entry indicates that the entry is unused. I-node 1 is
used to record bad blocks in the file system. The root directory (/) of a file system
is always stored in i-node entry 2 (as shown in Figure 18-1), so that the kernel
knows where to start when resolving a pathname.

Figure 18-1: Relationship between i-node and directory structures for the file /etc/passwd
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If we review the list of information stored in a file i-node (Section 14.4), we see that
the i-node doesn’t contain a filename; it is only the mapping within a directory list
that defines the name of a file. This has a useful consequence: we can create multi-
ple names—in the same or in different directories—each of which refers to the same
i-node. These multiple names are known as links, or sometimes as hard links to dis-
tinguish them from symbolic links, which we discuss shortly.

All native Linux and UNIX file systems support hard links. However, many
non-UNIX file systems (e.g., Microsoft’s VFAT) do not. (Microsoft’s NTFS file
system does support hard links.)

From the shell, we can create new hard links to an existing file using the ln com-
mand, as shown in the following shell session log:

$ echo -n 'It is good to collect things,' > abc
$ ls -li abc
 122232 -rw-r--r--   1 mtk      users          29 Jun 15 17:07 abc
$ ln abc xyz
$ echo ' but it is better to go on walks.' >> xyz
$ cat abc
It is good to collect things, but it is better to go on walks.
$ ls -li abc xyz
 122232 -rw-r--r--   2 mtk      users          63 Jun 15 17:07 abc
 122232 -rw-r--r--   2 mtk      users          63 Jun 15 17:07 xyz

The i-node numbers displayed (as the first column) by ls –li confirm what was
already clear from the output of the cat command: the names abc and xyz refer to
the same i-node entry, and hence to the same file. In the third field displayed by ls –li,
we can see the link count for the i-node. After the ln abc xyz command, the link
count of the i-node referred to by abc has risen to 2, since there are now two names
referring to the file. (The same link count is displayed for the file xyz, since it refers
to the same i-node.)

If one of these filenames is removed, the other name, and the file itself, con-
tinue to exist:

$ rm abc
$ ls -li xyz
 122232 -rw-r--r--   1 mtk      users          63 Jun 15 17:07 xyz

The i-node entry and data blocks for the file are removed (deallocated) only when
the i-node’s link count falls to 0—that is, when all of the names for the file have been
removed. To summarize: the rm command removes a filename from a directory
list, decrements the link count of the corresponding i-node by 1, and, if the link
count thereby falls to 0, deallocates the i-node and the data blocks to which it
refers.

All of the names (links) for a file are equivalent—none of the names (e.g., the
first) has priority over any of the others. As we saw in the above example, after the
first name associated with the file was removed, the physical file continued to exist,
but it was then accessible only by the other name.

A question often asked in online forums is “How can I find the filename associ-
ated with the file descriptor X in my program?” The short answer is that we can’t—
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at least not portably and unambiguously—since a file descriptor refers to an i-node,
and multiple filenames (or even, as described in Section 18.3, none at all) may refer
to this i-node.

On Linux, we can see which files a process currently has open by using
readdir() (Section 18.8) to scan the contents of the Linux-specific /proc/PID/fd
directory, which contains symbolic links for each of the file descriptors cur-
rently opened by the process. The lsof(1) and fuser(1) tools, which have been
ported to many UNIX systems, can also be useful in this regard.

Hard links have two limitations, both of which can be circumvented by the use of
symbolic links:

Because directory entries (hard links) refer to files using just an i-node num-
ber, and i-node numbers are unique only within a file system, a hard link must
reside on the same file system as the file to which it refers.

A hard link can’t be made to a directory. This prevents the creation of circular
links, which would confuse many system programs.

Early UNIX implementations permitted the superuser to create hard links to
directories. This was necessary because these implementations did not provide
a mkdir() system call. Instead, a directory was created using mknod(), and then
links for the . and .. entries were created ([Vahalia, 1996]). Although this fea-
ture is no longer needed, some modern UNIX implementations retain it for
backward compatibility.

An effect similar to hard links on directories can be achieved using bind
mounts (Section 14.9.4).

18.2 Symbolic (Soft) Links

A symbolic link, also sometimes called a soft link, is a special file type whose data is
the name of another file. Figure 18-2 illustrates the situation where two hard links,
/home/erena/this and /home/allyn/that, refer to the same file, and a symbolic link, /home/
kiran/other, refers to the name /home/erena/this.

From the shell, symbolic links are created using the ln –s command. The ls –F
command displays a trailing @ character at the end of symbolic links.

The pathname to which a symbolic link refers may be either absolute or rela-
tive. A relative symbolic link is interpreted relative to the location of the link itself.

Symbolic links don’t have the same status as hard links. In particular, a sym-
bolic link is not included in the link count of the file to which it refers. (Thus, the
link count of i-node 61 in Figure 18-2 is 2, not 3.) Therefore, if the filename to
which the symbolic link refers is removed, the symbolic link itself continues to exist,
even though it can no longer be dereferenced (followed). We say that it has
become a dangling link. It is even possible to create a symbolic link to a filename
that doesn’t exist at the time the link is created.

Symbolic links were introduced by 4.2BSD. Although they were not included
in POSIX.1-1990, they were subsequently incorporated into SUSv1, and thus
are in SUSv3.
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Figure 18-2: Representation of hard and symbolic links
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Some UNIX file systems perform an optimization not mentioned in the main
text nor shown in Figure 18-2. When the total length of the string forming the
symbolic link’s contents is small enough to fit in the part of the i-node that
would normally be used for data pointers, the link string is instead stored
there. This saves allocating a disk block and also speeds access to the symbolic
link information, since it is retrieved along with the file i-node. For example,
ext2, ext3, and ext4 employ this technique to fit short symbolic strings into the
60 bytes normally used for data block pointers. In practice, this can be a very
effective optimization. Of the 20,700 symbolic links on one system checked by
the author, 97% were 60 bytes or smaller.

Interpretation of symbolic links by system calls

Many system calls dereference (follow) symbolic links and thus work on the file to
which the link refers. Some system calls don’t dereference symbolic links, but
instead operate directly on the link file itself. As each system call is covered, we
describe its behavior with respect to symbolic links. This behavior is also summa-
rized in Table 18-1.

In a few cases where it is necessary to have similar functionality for both the file
to which a symbolic link refers and for the symbolic link itself, alternative system
calls are provided: one that dereferences the link and another that does not, with
the latter prefixed by the letter l; for example, stat() and lstat().

One point generally applies: symbolic links in the directory part of a pathname
(i.e., all of the components preceding the final slash) are always dereferenced.
Thus, in the pathname /somedir/somesubdir/file, somedir and somesubdir will always be
dereferenced if they are symbolic links, and file may be dereferenced, depending
on the system call to which the pathname is passed.

In Section 18.11, we describe a set of system calls, added in Linux 2.6.16, that
extend the functionality of some of the interfaces shown in Table 18-1. For
some of these system calls, the behavior with respect to following symbolic
links can be controlled by the flags argument to the call.

File permissions and ownership for symbolic links

The ownership and permissions of a symbolic link are ignored for most operations
(symbolic links are always created with all permissions enabled). Instead, the own-
ership and permissions of the file to which the link refers are used in determining
whether an operation is permitted. The ownership of a symbolic link is relevant
only when the link itself is being removed or renamed in a directory with the sticky
permission bit set (Section 15.4.5).

18.3 Creating and Removing (Hard) Links: link() and unlink()

The link() and unlink() system calls create and remove hard links.

#include <unistd.h>

int link(const char *oldpath, const char *newpath);

Returns 0 on success, or –1 on error
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Given the pathname of an existing file in oldpath, the link() system call creates a new
link, using the pathname specified in newpath. If newpath already exists, it is not
overwritten; instead, an error (EEXIST) results.

On Linux, the link() system call doesn’t dereference symbolic links. If oldpath is
a symbolic link, then newpath is created as a new hard link to the same symbolic link
file. (In other words, newpath is also a symbolic link to the same file to which oldpath
refers.) This behavior doesn’t conform to SUSv3, which says that all functions that
perform pathname resolution should dereference symbolic links unless other-
wise specified (and there is no exception specified for link()). Most other UNIX

Table 18-1: Interpretation of symbolic links by various functions

Function Follows links? Notes

access()
acct()
bind() UNIX domain sockets have pathnames
chdir()
chmod()
chown()
chroot()
creat()
exec()
getxattr()
lchown()
lgetxattr()
link() See Section 18.3
listxattr()
llistxattr()
lremovexattr()
lsetxattr()
lstat()
lutimes()
open() Unless O_NOFOLLOW or O_EXCL | O_CREAT specified
opendir()
pathconf()
pivot_root()
quotactl()
readlink()
removexattr()
rename() Links are not followed in either argument
rmdir() Fails with ENOTDIR if argument is a symbolic link
setxattr()
stat()
statfs(), statvfs()
swapon(), swapoff()
truncate()
unlink()
uselib()
utime(), utimes()
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implementations behave in the manner specified by SUSv3. One notable exception
is Solaris, which provides the same behavior as Linux by default, but provides
SUSv3-conformant behavior if appropriate compiler options are used. The upshot
of this inconsistency across implementations is that portable applications should
avoid specifying a symbolic link for the oldpath argument.

SUSv4 recognizes the inconsistency across existing implementations and spec-
ifies that the choice of whether or not link() dereferences symbolic links is
implementation-defined. SUSv4 also adds the specification of linkat(), which
performs the same task as link(), but has a flags argument that can be used to
control whether the call dereferences symbolic links. See Section 18.11 for
further details.

The unlink() system call removes a link (deletes a filename) and, if that is the last
link to the file, also removes the file itself. If the link specified in pathname doesn’t
exist, then unlink() fails with the error ENOENT.

We can’t use unlink() to remove a directory; that task requires rmdir() or
remove(), which we look at in Section 18.6.

SUSv3 says that if pathname specifies a directory, then unlink() should fail with
the error EPERM. However, on Linux, unlink() fails with the error EISDIR in this
case. (LSB explicitly permits this deviation from SUSv3.) A portable applica-
tion should be prepared to handle either value if checking for this case.

The unlink() system call doesn’t dereference symbolic links. If pathname is a sym-
bolic link, the link itself is removed, rather than the name to which it points.

An open file is deleted only when all file descriptors are closed

In addition to maintaining a link count for each i-node, the kernel also counts open
file descriptions for the file (see Figure 5-2, on page 95). If the last link to a file is
removed and any processes hold open descriptors referring to the file, the file
won’t actually be deleted until all of the descriptors are closed. This is a useful fea-
ture, because it permits us to unlink a file without needing to worry about whether
some other process has it open. (However, we can’t reattach a name to an open file
whose link count has fallen to 0.) In addition, we can perform tricks such as creat-
ing and opening a temporary file, unlinking it immediately, and then continuing to
use it within our program, relying on the fact that the file is destroyed only when
we close the file descriptor—either explicitly, or implicitly when the program exits.
(This is what the tmpfile() function described in Section 5.12 does.)

The program in Listing 18-1 demonstrates that even when the last link to a file
is removed, the file is deleted only when all open file descriptors that refer to it are
closed. 

#include <unistd.h>

int unlink(const char *pathname);

Returns 0 on success, or –1 on error
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Listing 18-1: Removing a link with unlink()
––––––––––––––––––––––––––––––––––––––––––––––––––––– dirs_links/t_unlink.c
#include <sys/stat.h>
#include <fcntl.h>
#include "tlpi_hdr.h"

#define CMD_SIZE 200
#define BUF_SIZE 1024

int
main(int argc, char *argv[])
{
    int fd, j, numBlocks;
    char shellCmd[CMD_SIZE];            /* Command to be passed to system() */
    char buf[BUF_SIZE];                 /* Random bytes to write to file */

    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s temp-file [num-1kB-blocks] \n", argv[0]);

    numBlocks = (argc > 2) ? getInt(argv[2], GN_GT_0, "num-1kB-blocks")
                           : 100000;

    fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, S_IRUSR | S_IWUSR);
    if (fd == -1)
        errExit("open");

    if (unlink(argv[1]) == -1)          /* Remove filename */
        errExit("unlink");

    for (j = 0; j < numBlocks; j++)     /* Write lots of junk to file */
        if (write(fd, buf, BUF_SIZE) != BUF_SIZE)
            fatal("partial/failed write");

    snprintf(shellCmd, CMD_SIZE, "df -k `dirname %s`", argv[1]);
    system(shellCmd);                   /* View space used in file system */

    if (close(fd) == -1)                /* File is now destroyed */
        errExit("close");
    printf("********** Closed file descriptor\n");

    system(shellCmd);                   /* Review space used in file system */
    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––– dirs_links/t_unlink.c

The program in Listing 18-1 accepts two command-line arguments. The first argu-
ment identifies the name of a file that the program should create. The program
opens this file and then immediately unlinks the filename. Although the filename
disappears, the file itself continues to exist. The program then writes random
blocks of data to the file. The number of these blocks is specified in the optional
second command-line argument of the program. At this point, the program
employs the df(1) command to display the amount of space used on the file system.
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The program then closes the file descriptor, at which the point the file is removed,
and uses df(1) once more to show that the amount of disk space in use has decreased.
The following shell session demonstrates the use of the program in Listing 18-1: 

$ ./t_unlink /tmp/tfile 1000000
Filesystem           1K-blocks      Used Available Use% Mounted on
/dev/sda10             5245020   3204044   2040976  62% /
********** Closed file descriptor
Filesystem           1K-blocks      Used Available Use% Mounted on
/dev/sda10             5245020   2201128   3043892  42% /

In Listing 18-1, we use the system() function to execute a shell command. We
describe system() in detail in Section 27.6.

18.4 Changing the Name of a File: rename()

The rename() system call can be used both to rename a file and to move it into
another directory on the same file system.

The oldpath argument is an existing pathname, which is renamed to the pathname
given in newpath.

The rename() call just manipulates directory entries; it doesn’t move file data.
Renaming a file doesn’t affect other hard links to the file, nor does it affect any pro-
cesses that hold open descriptors for the file, since these descriptors refer to open
file descriptions, which (after the open() call) have no connection with filenames.

The following rules apply to the use of rename():

If newpath already exists, it is overwritten.

If newpath and oldpath refer to the same file, then no changes are made (and
the call succeeds). This is rather counterintuitive. Following from the previous
point, we normally expect that if two filenames x and y exist, then the call
rename(“x”, “y”) would remove the name x. This is not the case if x and y are links
to the same file.

The rationale for this rule, which comes from the original BSD implementa-
tion, was probably to simplify the checks that the kernel must perform in order
to guarantee that calls such as rename(“x”, “x”), rename(“x”, “./x”), and
rename("x", "somedir/../x") don’t remove the file.

The rename() system call doesn’t dereference symbolic links in either of its
arguments. If oldpath is a symbolic link, then the symbolic link is renamed. If
newpath is a symbolic link, then it is treated as a normal pathname to which
oldpath is to be renamed (i.e., the existing newpath symbolic link is removed).

#include <stdio.h>

int rename(const char *oldpath, const char *newpath);

Returns 0 on success, or –1 on error
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If oldpath refers to a file other than a directory, then newpath can’t specify the
pathname of a directory (the error is EISDIR). To rename a file to a location
inside a directory (i.e., move the file to another directory), newpath must
include the new filename. The following call both moves a file into a different
directory and changes its name:

rename("sub1/x", "sub2/y");

Specifying the name of a directory in oldpath allows us to rename that direc-
tory. In this case, newpath either must not exist or must be the name of an
empty directory. If newpath is an existing file or an existing, nonempty directory,
then an error results (respectively, ENOTDIR and ENOTEMPTY).

If oldpath is a directory, then newpath can’t contain a directory prefix that is the
same as oldpath. For example, we could not rename /home/mtk to /home/mtk/bin
(the error is EINVAL).

The files referred to by oldpath and newpath must be on the same file system.
This is required because a directory is a list of hard links that refer to i-nodes in
the same file system as the directory. As stated earlier, rename() is merely
manipulating the contents of directory lists. Attempting to rename a file into a
different file system fails with the error EXDEV. (To achieve the desired result, we
must instead copy the contents of the file from one file system to another and
then delete the old file. This is what the mv command does in this case.)

18.5 Working with Symbolic Links: symlink() and readlink()

We now look at the system calls used to create symbolic links and examine their
contents.

The symlink() system call creates a new symbolic link, linkpath, to the pathname
specified in filepath. (To remove a symbolic link, we use unlink().)

If the pathname given in linkpath already exists, then the call fails (with errno set to
EEXIST). The pathname specified in filepath may be absolute or relative.

The file or directory named in filepath doesn’t need to exist at the time of the
call. Even if it exists at that time, there is nothing to prevent it from being removed
later. In this case, linkpath becomes a dangling link, and attempts to dereference it
in other system calls yield an error (usually ENOENT).

If we specify a symbolic link as the pathname argument to open(), it opens the
file to which the link refers. Sometimes, we would rather retrieve the content of
the link itself—that is, the pathname to which it refers. The readlink() system call
performs this task, placing a copy of the symbolic link string in the character array
pointed to by buffer.

#include <unistd.h>

int symlink(const char *filepath, const char *linkpath);

Returns 0 on success, or –1 on error
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The bufsiz argument is an integer used to tell readlink() the number of bytes avail-
able in buffer.

If no errors occur, then readlink() returns the number of bytes actually placed
in buffer. If the length of the link exceeds bufsiz, then a truncated string is placed in
buffer (and readlink() returns the size of that string—that is, bufsiz).

Because a terminating null byte is not placed at the end of buffer, there is no
way to distinguish the case where readlink() returns a truncated string from that
where it returns a string that exactly fills buffer. One way of checking if the latter has
occurred is to reallocate a larger buffer array and call readlink() again. Alternatively,
we can size pathname using the PATH_MAX constant (described in Section 11.1), which
defines the length of the longest pathname that a program should have to accom-
modate.

We demonstrate the use of readlink() in Listing 18-4.

SUSv3 defined a new limit, SYMLINK_MAX, that an implementation should define
to indicate the maximum number of bytes that can be stored in a symbolic
link. This limit is required to be at least 255 bytes. At the time of writing, Linux
doesn’t define this limit. In the main text, we suggest the use of PATH_MAX
because that limit should be at least as large as SYMLINK_MAX.

In SUSv2, the return type of readlink() was specified as int, and many
current implementations (as well as older glibc versions on Linux) follow that
specification. SUSv3 changed the return type to ssize_t.

18.6 Creating and Removing Directories: mkdir() and rmdir()

The mkdir() system call creates a new directory.

The pathname argument specifies the pathname of the new directory. This path-
name may be relative or absolute. If a file with this pathname already exists, then
the call fails with the error EEXIST.

The ownership of the new directory is set according to the rules described in
Section 15.3.1.

The mode argument specifies the permissions for the new directory. (We
describe the meanings of the permission bits for directories in Sections 15.3.1,
15.3.2, and 15.4.5.) This bit-mask value may be specified by ORing (|) together con-
stants from Table 15-4, on page 295, but, as with open(), it may also be specified as

#include <unistd.h>

ssize_t readlink(const char *pathname, char *buffer, size_t bufsiz);

Returns number of bytes placed in buffer on success, or –1 on error

#include <sys/stat.h>

int mkdir(const char *pathname, mode_t mode);

Returns 0 on success, or –1 on error
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an octal number. The value given in mode is ANDed against the process umask
(Section 15.4.6). In addition, the set-user-ID bit (S_ISUID) is always turned off, since
it has no meaning for directories.

If the sticky bit (S_ISVTX) is set in mode, then it will be set on the new directory.
The setting of the set-group-ID bit (S_ISGID) in mode is ignored. Instead, if the

set-group-ID bit is set on the parent directory, then it will also be set on the newly
created directory. In Section 15.3.1, we noted that setting the set-group-ID permis-
sion bit on a directory causes new files created in the directory to take their group
ID from the directory’s group ID, rather than the process’s effective group ID. The
mkdir() system call propagates the set-group-ID permission bit in the manner
described here so that all subdirectories under a directory will share the same
behavior.

SUSv3 explicitly notes that the manner in which mkdir() treats the set-user-ID,
set-group-ID, and sticky bits is implementation-defined. On some UNIX implemen-
tations, these 3 bits are always turned off on a new directory.

The newly created directory contains two entries: . (dot), which is a link to the
directory itself, and .. (dot-dot), which is a link to the parent directory.

SUSv3 doesn’t require directories to contain . and .. entries. It requires only
that an implementation correctly interpret . and .. when they appear in path-
names. A portable application should not rely on the existence of these entries
in a directory.

The mkdir() system call creates only the last component of pathname. In other
words, the call mkdir(“aaa/bbb/ccc”, mode) will succeed only if the directories aaa and
aaa/bbb already exist. (This corresponds to the default operation of the mkdir(1)
command, but mkdir(1) also provides the –p option to create all of the intervening
directory names if they don’t exist.)

The GNU C library provides the mkdtemp(template) function, which is the direc-
tory analog of the mkstemp() function. It creates a uniquely named directory
with read, write, and execute permissions enabled for the owner, and no per-
missions allowed for any other users. Instead of returning a file descriptor as
its result, mkdtemp() returns a pointer to a modified string containing the
actual directory name in template. SUSv3 doesn’t specify this function, and it is
not available on all UNIX implementations; it is specified in SUSv4.

The rmdir() system call removes the directory specified in pathname, which may be
an absolute or a relative pathname.

In order for rmdir() to succeed, the directory must be empty. If the final compo-
nent of pathname is a symbolic link, it is not dereferenced; instead, the error ENOTDIR
results.

#include <unistd.h>

int rmdir(const char *pathname);

Returns 0 on success, or –1 on error
Director ies and L inks 351



18.7 Removing a File or Directory: remove()

The remove() library function removes a file or an empty directory.

If pathname is a file, remove() calls unlink(); if pathname is a directory, remove() calls
rmdir().

Like unlink() and rmdir(), remove() doesn’t dereference symbolic links. If
pathname is a symbolic link, remove() removes the link itself, rather than the file to
which it refers.

If we want to remove a file in preparation for creating a new file with the same
name, then using remove() is simpler than code that checks whether a pathname
refers to a file or directory and calls unlink() or rmdir().

The remove() function was invented for the standard C library, which is imple-
mented on both UNIX and non-UNIX systems. Most non-UNIX systems don’t
support hard links, so removing files with a function named unlink() would not
make sense.

18.8 Reading Directories: opendir() and readdir()

The library functions described in this section can be used to open a directory and
retrieve the names of the files it contains one by one.

The library functions for reading directories are layered on top of the getdents()
system call (which is not part of SUSv3), but provide an interface that is easier
to use. Linux also provides a readdir(2) system call (as opposed to the readdir(3)
library function described here), which performs a similar task to, but is made
obsolete by, getdents().

The opendir() function opens a directory and returns a handle that can be used to
refer to the directory in later calls.

The opendir() function opens the directory specified by dirpath and returns a
pointer to a structure of type DIR. This structure is a so-called directory stream,
which is a handle that the caller passes to the other functions described below.
Upon return from opendir(), the directory stream is positioned at the first entry in
the directory list.

#include <stdio.h>

int remove(const char *pathname);

Returns 0 on success, or –1 on error

#include <dirent.h>

DIR *opendir(const char *dirpath);

Returns directory stream handle, or NULL on error
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The fdopendir() function is like opendir(), except that the directory for which a
stream is to be created is specified via the open file descriptor fd.

The fdopendir() function is provided so that applications can avoid the kinds of race
conditions described in Section 18.11.

After a successful call to fdopendir(), this file descriptor is under the control of
the system, and the program should not access it in any way other than by using the
functions described in the remainder of this section.

The fdopendir() function is specified in SUSv4 (but not in SUSv3).
The readdir() function reads successive entries from a directory stream.

Each call to readdir() reads the next directory from the directory stream referred to
by dirp and returns a pointer to a statically allocated structure of type dirent, con-
taining the following information about the entry:

struct dirent {
    ino_t d_ino;          /* File i-node number */
    char  d_name[];       /* Null-terminated name of file */
};

This structure is overwritten on each call to readdir().

We have omitted various nonstandard fields in the Linux dirent structure from
the above definition, since their use renders an application nonportable. The
most interesting of these nonstandard fields is d_type, which is also present on
BSD derivatives, but not on other UNIX implementations. This field holds a
value indicating the type of the file named in d_name, such as DT_REG (regular
file), DT_DIR (directory), DT_LNK (symbolic link), or DT_FIFO (FIFO). (These names
are analogous to the macros in Table 15-1, on page 282.) Using the informa-
tion in this field saves the cost of calling lstat() in order to discover the file type.
Note, however, that, at the time of writing, this field is fully supported only on
Btrfs, ext2, ext3, and ext4.

#include <dirent.h>

DIR *fdopendir(int fd);

Returns directory stream handle, or NULL on error

#include <dirent.h>

struct dirent *readdir(DIR *dirp);

Returns pointer to a statically allocated structure describing
next directory entry, or NULL on end-of-directory or error
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Further information about the file referred to by d_name can be obtained by calling
stat() on the pathname constructed using the dirpath argument that was specified to
opendir() concatenated with (a slash and) the value returned in the d_name field.

The filenames returned by readdir() are not in sorted order, but rather in the
order in which they happen to occur in the directory (this depends on the order in
which the file system adds files to the directory and how it fills gaps in the directory
list after files are removed). (The command ls –f lists files in the same unsorted
order that they would be retrieved by readdir().)

We can use the function scandir(3) to retrieve a sorted list of files matching
programmer-defined criteria; see the manual page for details. Although not
specified in SUSv3, scandir() is provided on most UNIX implementations.

On end-of-directory or error, readdir() returns NULL, in the latter case setting errno to
indicate the error. To distinguish these two cases, we can write the following:

errno = 0;
direntp = readdir(dirp);
if (direntp == NULL) {
    if (errno != 0) {
        /* Handle error */
    } else {
        /* We reached end-of-directory */
    }
}

If the contents of a directory change while a program is scanning it with readdir(),
the program might not see the changes. SUSv3 explicitly notes that it is unspecified
whether readdir() will return a filename that has been added to or removed from
the directory since the last call to opendir() or rewinddir(). All filenames that have
been neither added nor removed since the last such call are guaranteed to be
returned.

The rewinddir() function moves the directory stream back to the beginning so
that the next call to readdir() will begin again with the first file in the directory.

The closedir() function closes the open directory stream referred to by dirp, freeing
the resources used by the stream.

#include <dirent.h>

void rewinddir(DIR *dirp);
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Two further functions, telldir() and seekdir(), which are also specified in SUSv3,
allow random access within a directory stream. Refer to the manual pages for further
information about these functions.

Directory streams and file descriptors

A directory stream has an associated file descriptor. The dirfd() function returns
the file descriptor associated with the directory stream referred to by dirp. 

We might, for example, pass the file descriptor returned by dirfd() to fchdir() (Sec-
tion 18.10) in order to change the current working directory of the process to the
corresponding directory. Alternatively, we might pass the file descriptor as the dirfd
argument of one of the functions described in Section 18.11.

The dirfd() function also appears on the BSDs, but is present on few other
implementations. It is not specified in SUSv3, but is specified in SUSv4.

At this point, it is worth mentioning that opendir() automatically sets the
close-on-exec flag (FD_CLOEXEC) for the file descriptor associated with the directory
stream. This ensures that the file descriptor is automatically closed when an exec()
is performed. (SUSv3 requires this behavior.) We describe the close-on-exec flag
in Section 27.4.

Example program

Listing 18-2 uses opendir(), readdir(), and closedir() to list the contents of each of the
directories specified in its command line (or in the current working directory if no
arguments are supplied). Here is an example of the use of this program:

$ mkdir sub                             Create a test directory
$ touch sub/a sub/b                     Make some files in the test directory
$ ./list_files sub                      List contents of directory
sub/a
sub/b

#include <dirent.h>

int closedir(DIR *dirp);

Returns 0 on success, or –1 on error

#include <dirent.h>

int dirfd(DIR *dirp);

Returns file descriptor on success, or –1 on error
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Listing 18-2: Scanning a directory

––––––––––––––––––––––––––––––––––––––––––––––––––– dirs_links/list_files.c

#include <dirent.h>
#include "tlpi_hdr.h"

static void             /* List all files in directory 'dirPath' */
listFiles(const char *dirpath)
{
    DIR *dirp;
    struct dirent *dp;
    Boolean isCurrent;          /* True if 'dirpath' is "." */

    isCurrent = strcmp(dirpath, ".") == 0;

    dirp = opendir(dirpath);
    if (dirp  == NULL) {
        errMsg("opendir failed on '%s'", dirpath);
        return;
    }

    /* For each entry in this directory, print directory + filename */

    for (;;) {
        errno = 0;              /* To distinguish error from end-of-directory */
        dp = readdir(dirp);
        if (dp == NULL)
            break;

        if (strcmp(dp->d_name, ".") == 0 || strcmp(dp->d_name, "..") == 0)
            continue;           /* Skip . and .. */

        if (!isCurrent)
            printf("%s/", dirpath);
        printf("%s\n", dp->d_name);
    }

    if (errno != 0)
        errExit("readdir");

    if (closedir(dirp) == -1)
        errMsg("closedir");
}

int
main(int argc, char *argv[])
{
    if (argc > 1 && strcmp(argv[1], "--help") == 0)
        usageErr("%s [dir...]\n", argv[0]);

    if (argc == 1)              /* No arguments - use current directory */
        listFiles(".");
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    else
        for (argv++; *argv; argv++)
            listFiles(*argv);

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––– dirs_links/list_files.c

The readdir_r() function

The readdir_r() function is a variation on readdir(). The key semantic difference
between readdir_r() and readdir() is that the former is reentrant, while the latter is
not. This is because readdir_r() returns the file entry via the caller-allocated entry
argument, while readdir() returns information via a pointer to a statically allocated
structure. We discuss reentrancy in Sections 21.1.2 and 31.1.

Given dirp, which is a directory stream previously opened via opendir(), readdir_r()
places information about the next directory entry into the dirent structure referred
to by entry. In addition, a pointer to this structure is placed in result. If the end of
the directory stream is reached, then NULL is placed in result instead (and readdir_r()
returns 0). On error, readdir_r() doesn’t return –1, but instead returns a positive
integer corresponding to one of the errno values.

On Linux, the d_name field of the dirent structure is sized as an array of 256
bytes, which is long enough to hold the largest possible filename. Although several
other UNIX implementations define the same size for d_name, SUSv3 leaves this
point unspecified, and some UNIX implementations instead define the field as a
1-byte array, leaving the calling program with the task of allocating a structure of
the correct size. When doing this, we should size the d_name field as one greater
(for the terminating null byte) than the value of the constant NAME_MAX. Portable
applications should thus allocate the dirent structure as follows:

struct dirent *entryp;
size_t len;

len = offsetof(struct dirent, d_name) + NAME_MAX + 1;
entryp = malloc(len);
if (entryp == NULL)
    errExit("malloc");

Using the offsetof() macro (defined in <stddef.h>) avoids any implementation-
specific dependencies on the number and size of fields in the dirent structure pre-
ceding the d_name field (which is always the last field in the structure).

#include <dirent.h>

int readdir_r(DIR *dirp, struct dirent *entry, struct dirent **result);

Returns 0 on success, or a positive error number on error
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The offsetof() macro takes two arguments—a structure type and the name of a
field within that structure—and returns a value of type size_t that is the offset in
bytes of the field from the beginning of the structure. This macro is necessary
because a compiler may insert padding bytes in a structure to satisfy alignment
requirements for types such as int, with the result that a field’s offset within a
structure may be greater than the sum of the sizes of the fields that precede it.

18.9 File Tree Walking: nftw()

The nftw() function allows a program to recursively walk through an entire direc-
tory subtree performing some operation (i.e., calling some programmer-defined
function) for each file in the subtree.

The nftw() function is an enhancement of the older ftw() function, which per-
forms a similar task. New applications should use nftw() (new ftw) because it
provides more functionality, and predictable handling of symbolic links
(SUSv3 permits ftw() either to follow or not follow symbolic links). SUSv3 spec-
ifies both nftw() and ftw(), but the latter function is marked obsolete in SUSv4.

The GNU C library also provides the BSD-derived fts API (fts_open(),
fts_read(), fts_children(), fts_set(), and fts_close()). These functions perform a simi-
lar task to ftw() and nftw(), but offer greater flexibility to an application walking the
tree. However, this API is not standardized and is provided on few UNIX
implementations other than BSD descendants, so we omit discussion of it
here.

The nftw() function walks through the directory tree specified by dirpath and calls
the programmer-defined function func once for each file in the directory tree.

By default, nftw() performs an unsorted, preorder traversal of the given tree, pro-
cessing each directory before processing the files and subdirectories within that
directory.

While traversing the directory tree, nftw() opens at most one file descriptor for
each level of the tree. The nopenfd argument specifies the maximum number of file
descriptors that nftw() may use. If the depth of the directory tree exceeds this maxi-
mum, nftw() does some bookkeeping, and closes and reopens descriptors in order
to avoid holding open more than nopenfd descriptors simultaneously (and conse-
quently runs more slowly). The need for this argument was greater under older
UNIX implementations, some of which had a limit of 20 open file descriptors per
process. Modern UNIX implementations allow a process to open a large number of
file descriptors, and thus we can specify a generous number here (say 10 or more).

#define _XOPEN_SOURCE 500
#include <ftw.h>

int nftw(const char *dirpath,
    int (*func) (const char *pathname, const struct stat *statbuf,
                int typeflag, struct FTW *ftwbuf),
    int nopenfd, int flags);

Returns 0 after successful walk of entire tree, or –1 on error,
or the first nonzero value returned by a call to func
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The flags argument to nftw() is created by ORing (|) zero or more of the follow-
ing constants, which modify the operation of the function:

FTW_CHDIR

Do a chdir() into each directory before processing its contents. This is use-
ful if func is designed to do some work in the directory in which the file
specified by its pathname argument resides.

FTW_DEPTH

Do a postorder traversal of the directory tree. This means that nftw() calls
func on all of the files (and subdirectories) within a directory before execut-
ing func on the directory itself. (The name of this flag is somewhat mislead-
ing—nftw() always does a depth-first, rather than a breadth-first, traversal of
the directory tree. All that this flag does is convert the traversal from preorder
to postorder.)

FTW_MOUNT

Don’t cross over into another file system. Thus, if one of the subdirectories
of the tree is a mount point, it is not traversed.

FTW_PHYS

By default, nftw() dereferences symbolic links. This flag tells it not to do so.
Instead, a symbolic link is passed to func with a typeflag value of FTW_SL, as
described below.

For each file, nftw() passes four arguments when calling func. The first of these
arguments, pathname, is the pathname of the file. This pathname may be absolute,
if dirpath was specified as an absolute pathname, or relative to the current working
directory of the calling process at the time of the call to ntfw(), if dirpath was
expressed as a relative pathname. The second argument, statbuf, is a pointer to a
stat structure (Section 15.1) containing information about this file. The third argu-
ment, typeflag, provides further information about the file, and has one of the fol-
lowing symbolic values:

FTW_D

This is a directory.

FTW_DNR

This is a directory that can’t be read (and so nftw() doesn’t traverse any of
its descendants).

FTW_DP

We are doing a postorder traversal (FTW_DEPTH) of a directory, and the cur-
rent item is a directory whose files and subdirectories have already been
processed.

FTW_F

This is a file of any type other than a directory or symbolic link.

FTW_NS

Calling stat() on this file failed, probably because of permission restric-
tions. The value in statbuf is undefined.
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FTW_SL

This is a symbolic link. This value is returned only if nftw() is called with the
FTW_PHYS flag.

FTW_SLN

This item is a dangling symbolic link. This value occurs only if FTW_PHYS was
not specified in the flags argument.

The fourth argument to func, ftwbuf, is pointer to a structure defined as follows:

struct FTW {
    int base;       /* Offset to basename part of pathname */
    int level;      /* Depth of file within tree traversal */
};

The base field of this structure is the integer offset of the filename part (the compo-
nent after the last /) of the pathname argument of func. The level field is the depth of
this item relative to the starting point of the traversal (which is level 0).

Each time it is called, func must return an integer value, and this value is inter-
preted by nftw(). Returning 0 tells nftw() to continue the tree walk, and if all calls to
func return 0, nftw() itself returns 0 to its caller. Returning a nonzero value tells
nftw() to immediately stop the tree walk, in which case nftw() returns the same non-
zero value as its return value.

Because nftw() uses dynamically allocated data structures, the only way that a
program should ever prematurely terminate a directory tree walk is by returning a
nonzero value from func. Using longjmp() (Section 6.8) to exit from func may lead to
unpredictable results—at the very least, memory leaks in a program.

Example program

Listing 18-3 demonstrates the use of nftw(). 

Listing 18-3: Using nftw() to walk a directory tree

––––––––––––––––––––––––––––––––––––––––––––––––– dirs_links/nftw_dir_tree.c

#define _XOPEN_SOURCE 600       /* Get nftw() and S_IFSOCK declarations */
#include <ftw.h>
#include "tlpi_hdr.h"

static void
usageError(const char *progName, const char *msg)
{
    if (msg != NULL)
        fprintf(stderr, "%s\n", msg);
    fprintf(stderr, "Usage: %s [-d] [-m] [-p] [directory-path]\n", progName);
    fprintf(stderr, "\t-d Use FTW_DEPTH flag\n");
    fprintf(stderr, "\t-m Use FTW_MOUNT flag\n");
    fprintf(stderr, "\t-p Use FTW_PHYS flag\n");
    exit(EXIT_FAILURE);
}

static int                      /* Function called by nftw() */
dirTree(const char *pathname, const struct stat *sbuf, int type,
        struct FTW *ftwb)
360 Chapter 18



{
    switch (sbuf->st_mode & S_IFMT) {       /* Print file type */
    case S_IFREG:  printf("-"); break;
    case S_IFDIR:  printf("d"); break;
    case S_IFCHR:  printf("c"); break;
    case S_IFBLK:  printf("b"); break;
    case S_IFLNK:  printf("l"); break;
    case S_IFIFO:  printf("p"); break;
    case S_IFSOCK: printf("s"); break;
    default:       printf("?"); break;      /* Should never happen (on Linux) */
    }

    printf(" %s  ",
            (type == FTW_D)  ? "D  " : (type == FTW_DNR) ? "DNR" :
            (type == FTW_DP) ? "DP " : (type == FTW_F)   ? "F  " :
            (type == FTW_SL) ? "SL " : (type == FTW_SLN) ? "SLN" :
            (type == FTW_NS) ? "NS " : "  ");

    if (type != FTW_NS)
        printf("%7ld ", (long) sbuf->st_ino);
    else
        printf("        ");

    printf(" %*s", 4 * ftwb->level, "");        /* Indent suitably */
    printf("%s\n",  &pathname[ftwb->base]);     /* Print basename */
    return 0;                                   /* Tell nftw() to continue */
}

int
main(int argc, char *argv[])
{
    int flags, opt;

    flags = 0;
    while ((opt = getopt(argc, argv, "dmp")) != -1) {
        switch (opt) {
        case 'd': flags |= FTW_DEPTH;   break;
        case 'm': flags |= FTW_MOUNT;   break;
        case 'p': flags |= FTW_PHYS;    break;
        default:  usageError(argv[0], NULL);
        }
    }

    if (argc > optind + 1)
        usageError(argv[0], NULL);

    if (nftw((argc > optind) ? argv[optind] : ".", dirTree, 10, flags) == -1) {
        perror("nftw");
        exit(EXIT_FAILURE);
    }
    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––– dirs_links/nftw_dir_tree.c
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The program in Listing 18-3 displays an indented hierarchy of the filenames in a
directory tree, one file per line, as well as the file type and i-node number. Com-
mand-line options can be used to specify settings for the flags argument used to call
nftw(). The following shell session shows examples of what we see when we run this
program. We first create a new empty subdirectory, which we populate with vari-
ous types of files:

$ mkdir dir
$ touch dir/a dir/b                 Create some plain files
$ ln -s a dir/sl                    and a symbolic link
$ ln -s x dir/dsl                   and a dangling symbolic link
$ mkdir dir/sub                     and a subdirectory
$ touch dir/sub/x                   with a file of its own
$ mkdir dir/sub2                    and another subdirectory
$ chmod 0 dir/sub2                  that is not readable

We then use our program to invoke nftw() with a flags argument of 0:

$ ./nftw_dir_tree dir
d D    2327983  dir
- F    2327984      a
- F    2327985      b
- F    2327984      sl              The symbolic link sl was resolved to a
l SLN  2327987      dsl
d D    2327988      sub
- F    2327989          x
d DNR  2327994      sub2

In the above output, we can see that the symbolic link s1 was resolved.
We then use our program to invoke nftw() with a flags argument containing

FTW_PHYS and FTW_DEPTH:

$ ./nftw_dir_tree -p -d dir
- F    2327984      a
- F    2327985      b
l SL   2327986      sl              The symbolic link sl was not resolved
l SL   2327987      dsl
- F    2327989          x
d DP   2327988      sub
d DNR  2327994      sub2
d DP   2327983  dir

From the above output, we can see that the symbolic link s1 was not resolved.

The nftw() FTW_ACTIONRETVAL flag

Starting with version 2.3.3, glibc permits an additional, nonstandard flag to be spec-
ified in flags. This flag, FTW_ACTIONRETVAL, changes the way that nftw() interprets the
return value from calls to func(). When this flag is specified, func() should return
one of the following values:

FTW_CONTINUE

Continue processing entries in the directory tree, as with the traditional 0
return from func().
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FTW_SKIP_SIBLINGS

Don’t process any further entries in the current directory; resume process-
ing in the parent directory.

FTW_SKIP_SUBTREE

If pathname is a directory (i.e., typeflag is FTW_D), then don’t call func() for
entries under that directory. Processing resumes with the next sibling of
this directory.

FTW_STOP

Don’t process any further entries in the directory tree, as with the tradi-
tional nonzero return from func(). The value FTW_STOP is returned to the
caller of nftw().

The _GNU_SOURCE feature test macro must be defined in order to obtain the defini-
tion of FTW_ACTIONRETVAL from <ftw.h>.

18.10 The Current Working Directory of a Process

A process’s current working directory defines the starting point for the resolution of
relative pathnames referred to by the process. A new process inherits its current
working directory from its parent.

Retrieving the current working directory

A process can retrieve its current working directory using getcwd().

The getcwd() function places a null-terminated string containing the absolute path-
name of the current working directory into the allocated buffer pointed to by
cwdbuf. The caller must allocate the cwdbuf buffer to be at least size bytes in length.
(Normally, we would size cwdbuf using the PATH_MAX constant.)

On success, getcwd() returns a pointer to cwdbuf as its function result. If the
pathname for the current working directory exceeds size bytes, then getcwd()
returns NULL, with errno set to ERANGE.

On Linux/x86-32, getcwd() returns a maximum of 4096 (PATH_MAX) bytes. If the
current working directory (and cwdbuf and size) exceeds this limit, then the path-
name is silently truncated, removing complete directory prefixes from the
beginning of the string (which is still null-terminated). In other words, we can’t use
getcwd() reliably when the length of the absolute pathname for the current working
directory exceeds this limit.

In fact, the Linux getcwd() system call internally allocates a virtual memory page
for the returned pathname. On the x86-32 architecture, the page size is 4096
bytes, but on architectures with larger page sizes (e.g., Alpha with a page size
of 8192 bytes), getcwd() can return larger pathnames.

#include <unistd.h>

char *getcwd(char *cwdbuf, size_t size);

Returns cwdbuf on success, or NULL on error
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If the cwdbuf argument is NULL and size is 0, then the glibc wrapper function for
getcwd() allocates a buffer as large as required and returns a pointer to that buffer
as its function result. To avoid memory leaks, the caller must later deallocate this
buffer with free(). Reliance on this feature should be avoided in portable applications.
Most other implementations provide a simpler extension of the SUSv3 specifica-
tion: if cwdbuf is NULL, then getcwd() allocates size bytes and uses this buffer to return
the result to the caller. The glibc getcwd() implementation also provides this feature.

The GNU C library also provides two other functions for obtaining the current
working directory. The BSD-derived getwd(path) function is vulnerable to
buffer overruns, since it provides no method of specifying an upper limit for
the size of the returned pathname. The get_current_dir_name() function returns
a string containing the current working directory name as its function result.
This function is easy to use, but it is not portable. For security and portability,
getcwd() is preferred over these two functions (as long as we avoid using the
GNU extensions).

With suitable permissions (roughly, we own the process or have the CAP_SYS_PTRACE
capability), we can determine the current working directory of any process by read-
ing (readlink()) the contents of the Linux-specific /proc/PID/cwd symbolic link.

Changing the current working directory

The chdir() system call changes the calling process’s current working directory to
the relative or absolute pathname specified in pathname (which is dereferenced if it
is a symbolic link).

The fchdir() system call does the same as chdir(), except that the directory is speci-
fied via a file descriptor previously obtained by opening the directory with open().

We can use fchdir() to change the process’s current working directory to another
location, and then later return to the original location, as follows:

int fd;

fd = open(".", O_RDONLY);       /* Remember where we are */
chdir(somepath);                /* Go somewhere else */
fchdir(fd);                     /* Return to original directory */
close(fd);

#include <unistd.h>

int chdir(const char *pathname);

Returns 0 on success, or –1 on error

#define _XOPEN_SOURCE 500     /* Or: #define _BSD_SOURCE */
#include <unistd.h>

int fchdir(int fd);

Returns 0 on success, or –1 on error
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The equivalent using chdir() is as follows:

char buf[PATH_MAX];

getcwd(buf, PATH_MAX);          /* Remember where we are */
chdir(somepath);                /* Go somewhere else */
chdir(buf);                     /* Return to original directory */

18.11 Operating Relative to a Directory File Descriptor

Starting with kernel 2.6.16, Linux provides a range of new system calls that perform
similar tasks to various traditional system calls, but provide additional functionality
that is useful to some applications. These system calls are summarized in Table 18-2.
We describe these system calls in this chapter because they provide variations on
the traditional semantics of the process’s current working directory.

In order to describe these system calls, we’ll use a specific example: openat().

Table 18-2: System calls that use a directory file descriptor to interpret relative pathnames

New
interface

Traditional
analog

Notes

faccessat() access() Supports AT_EACCESS and AT_SYMLINK_NOFOLLOW flags
fchmodat() chmod()
fchownat() chown() Supports AT_SYMLINK_NOFOLLOW flag
fstatat() stat() Supports AT_SYMLINK_NOFOLLOW flag
linkat() link() Supports (since Linux 2.6.18) AT_SYMLINK_FOLLOW flag 
mkdirat() mkdir()
mkfifoat() mkfifo() Library function layered on top of mknodat()
mknodat() mknod()
openat() open()
readlinkat() readlink()
renameat() rename()
symlinkat() symlink()
unlinkat() unlink() Supports AT_REMOVEDIR flag
utimensat() utimes() Supports AT_SYMLINK_NOFOLLOW flag

#define _XOPEN_SOURCE 700     /* Or define _POSIX_C_SOURCE >= 200809 */
#include <fcntl.h>

int openat(int dirfd, const char *pathname, int flags, ... /* mode_t mode */);

Returns file descriptor on success, or –1 on error
Director ies and L inks 365



The openat() system call is similar to the traditional open() system call, but adds an
argument, dirfd, that is used as follows:

If pathname specifies a relative pathname, then it is interpreted relative to the
directory referred to by the open file descriptor dirfd, rather than relative to
the process’s current working directory.

If pathname specifies a relative pathname, and dirfd contains the special value
AT_FDCWD, then pathname is interpreted relative to the process’s current working
directory (i.e., the same behavior as open(2)).

If pathname specifies an absolute pathname, then dirfd is ignored.

The flags argument of openat() serves the same purpose as for open(). However,
some of the system calls listed in Table 18-2 support a flags argument that is not
provided by the corresponding traditional system call, and the purpose of this
argument is to modify the semantics of the call. The most frequently provided flag
is AT_SYMLINK_NOFOLLOW, which specifies that if pathname is a symbolic link, then the
system call should operate on the link, rather than the file to which it refers. (The
linkat() system call provides the AT_SYMLINK_FOLLOW flag, which performs the converse
action, changing the default behavior of linkat() so that it dereferences oldpath if it
is a symbolic link.) For details of the other flags, refer to the corresponding manual
pages.

The system calls listed in Table 18-2 are supported for two reasons (again, we
explain using the example of openat()):

Using openat() allows an application to avoid certain race conditions that can
occur when open() is used to open files in locations other than the current
working directory. These races can occur because some component of the
directory prefix of pathname could be changed in parallel with the open() call.
By opening a file descriptor for the target directory, and passing that descrip-
tor to openat(), such races can be avoided.

In Chapter 29, we’ll see that the working directory is a process attribute that is
shared by all threads of the process. For some applications, it is useful for dif-
ferent threads to have different “virtual” working directories. An application
can emulate this functionality using openat() in conjunction with directory file
descriptors maintained by the application.

These system calls are not standardized in SUSv3, but are included in SUSv4. In
order to expose the declaration of each of these system calls, the _XOPEN_SOURCE fea-
ture test macro must be defined with a value greater than or equal to 700 before
including the appropriate header file (e.g., <fcntl.h> for open()). Alternatively, the
_POSIX_C_SOURCE macro can be defined with a value greater than or equal to 200809.
(Before glibc 2.10, the _ATFILE_SOURCE macro needed to be defined to expose the dec-
larations of these system calls.)

Solaris 9 and later provide versions of some of the interfaces listed in Table 18-2,
with slightly different semantics.
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18.12 Changing the Root Directory of a Process: chroot()

Every process has a root directory, which is the point from which absolute pathnames
(i.e., those beginning with /) are interpreted. By default, this is the real root directory
of the file system. (A new process inherits its parent’s root directory.) On occasion, it
is useful for a process to change its root directory, and a privileged (CAP_SYS_CHROOT)
process can do this using the chroot() system call.

The chroot() system call changes the process’s root directory to the directory speci-
fied by pathname (which is dereferenced if it is a symbolic link). Thereafter, all
absolute pathnames are interpreted as starting from that location in the file system.
This is sometimes referred to as setting up a chroot jail, since the program is then
confined to a particular area of the file system.

SUSv2 contained a specification for chroot() (marked LEGACY), but this was
removed in SUSv3. Nevertheless, chroot() appears on most UNIX implementations.

The chroot() system call is employed by the chroot command, which enables us
to execute shell commands in a chroot jail.

The root directory of any process can be found by reading (readlink()) the
contents of the Linux-specific /proc/PID/root symbolic link.

The classic example of the use of chroot() is in the ftp program. As a security mea-
sure, when a user logs in anonymously under FTP, the ftp program uses chroot() to
set the root directory for the new process to the directory specifically reserved for
anonymous logins. After the chroot() call, the user is limited to the file-system subtree
under their new root directory, so they can’t roam around the entire file system.
(This relies on the fact that the root directory is its own parent; that is, /.. is a link
to /, so that changing directory to / and then attempting a cd .. leaves the user in the
same directory.)

Some UNIX implementations (but not Linux) allow multiple hard links to a
directory, so that it is possible to create a hard link within a subdirectory to its
parent (or a further removed ancestor). On implementations permitting this,
the presence of a hard link that reaches outside the jail directory tree compro-
mises the jail. Symbolic links to directories outside the jail don’t pose a problem—
because they are interpreted within the framework of the process’s new root
directory, they can’t reach outside the chroot jail.

Normally, we can’t execute arbitrary programs within a chroot jail. This is because
most programs are dynamically linked against shared libraries. Therefore, we must
either limit ourselves to executing statically linked programs, or replicate a stan-
dard set of system directories containing shared libraries (including, for example, /lib
and /usr/lib) within the jail (in this regard, the bind mount feature described in
Section 14.9.4 can be useful).

#define _BSD_SOURCE
#include <unistd.h>

int chroot(const char *pathname);

Returns 0 on success, or –1 on error
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The chroot() system call was not conceived as a completely secure jail mecha-
nism. To begin with, there are various ways in which a privileged program can sub-
sequently use a further chroot() call to break out of the jail. For example, a
privileged (CAP_MKNOD) program can use mknod() to create a memory device file (sim-
ilar to /dev/mem) giving access to the contents of RAM, and, from that point, any-
thing is possible. In general, it is advisable not to include set-user-ID-root programs
within a chroot jail file system.

Even with unprivileged programs, we must take care to prevent the following
possible routes for breaking out of a chroot jail:

Calling chroot() doesn’t change the process’s current working directory. Thus, a
call to chroot() is typically preceded or followed by a call to chdir() (e.g., chdir(“/”)
after the chroot() call). If this is not done, then a process can use relative path-
names to access files and directories outside the jail. (Some BSD derivatives
prevent this possibility—if the current working directory lies outside the new
root directory tree, then it is changed by the chroot() call to be the same as the
root directory.)

If a process holds an open file descriptor for a directory outside the jail, then
the combination of fchdir() plus chroot() can be used to break out of the jail, as
shown in the following code sample:

int fd;

fd = open("/", O_RDONLY);
chroot("/home/mtk");            /* Jailed */
fchdir(fd);
chroot(".");                    /* Out of jail */

To prevent this possibility, we must close all open file descriptors referring to
directories outside the jail. (Some other UNIX implementations provide the
fchroot() system call, which can be used to achieve a similar result to the above
code snippet.)

Even preventing the preceding possibilities is insufficient to stop an arbitrary
unprivileged program (i.e., one whose operation we don’t have control over)
from breaking out of the jail. The jailed process can still use a UNIX domain
socket to receive a file descriptor (from another process) referring to a direc-
tory outside the jail. (We briefly explain the concept of passing file descriptors
between processes via a socket in Section 61.13.3.) By specifying this file
descriptor in a call to fchdir(), the program can set its current working directory
outside the jail and then access arbitrary files and directories using relative
pathnames.

Some BSD derivatives provide a jail() system call, which addresses the points
described above, as well as several others, to create a jail that is secure even for
a privileged process.
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18.13 Resolving a Pathname: realpath()

The realpath() library function dereferences all symbolic links in pathname (a
null-terminated string) and resolves all references to /. and /.. to produce a null-
terminated string containing the corresponding absolute pathname.

The resulting string is placed in the buffer pointed to by resolved_path, which
should be a character array of at least PATH_MAX bytes. On success, realpath() also
returns a pointer to this resolved string.

The glibc implementation of realpath() allows the caller to specify resolved_path
as NULL. In this case, realpath() allocates a buffer of up to PATH_MAX bytes for the
resolved pathname and returns a pointer to that buffer as the function result. (The
caller must deallocate this buffer using free().) SUSv3 doesn’t specify this extension,
but it is specified in SUSv4.

The program in Listing 18-4 uses readlink() and realpath() to read the contents
of a symbolic link and to resolve the link to an absolute pathname. Here is an
example of the use of this program:

$ pwd                                       Where are we?
/home/mtk
$ touch x                                   Make a file
$ ln -s x y                                 and a symbolic link to it
$ ./view_symlink y
readlink: y --> x
realpath: y --> /home/mtk/x

Listing 18-4: Read and resolve a symbolic link

–––––––––––––––––––––––––––––––––––––––––––––––––– dirs_links/view_symlink.c

#include <sys/stat.h>
#include <limits.h>             /* For definition of PATH_MAX */
#include "tlpi_hdr.h"

#define BUF_SIZE PATH_MAX

int
main(int argc, char *argv[])
{
    struct stat statbuf;
    char buf[BUF_SIZE];
    ssize_t numBytes;

    if (argc != 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s pathname\n", argv[0]);

#include <stdlib.h>

char *realpath(const char *pathname, char *resolved_path);

Returns pointer to resolved pathname on success, or NULL on error
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    if (lstat(argv[1], &statbuf) == -1)
        errExit("lstat");

    if (!S_ISLNK(statbuf.st_mode))
        fatal("%s is not a symbolic link", argv[1]);

    numBytes = readlink(argv[1], buf, BUF_SIZE - 1);
    if (numBytes == -1)
        errExit("readlink");
    buf[numBytes] = '\0';                       /* Add terminating null byte */
    printf("readlink: %s --> %s\n", argv[1], buf);

    if (realpath(argv[1], buf) == NULL)
        errExit("realpath");
    printf("realpath: %s --> %s\n", argv[1], buf);

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––– dirs_links/view_symlink.c

18.14 Parsing Pathname Strings: dirname() and basename()

The dirname() and basename() functions break a pathname string into directory and
filename parts. (These functions perform a similar task to the dirname(1) and
basename(1) commands.)

For example, given the pathname /home/britta/prog.c, dirname() returns /home/britta
and basename() returns prog.c. Concatenating the string returned by dirname(), a
slash (/), and the string returned by basename() yields a complete pathname.

Note the following points regarding the operation of dirname() and basename():

Trailing slash characters in pathname are ignored.

If pathname doesn’t contain a slash, then dirname() returns the string . (dot)
and basename() returns pathname.

If pathname consists of just a slash, then both dirname() and basename() return
the string /. Applying the concatenation rule above to create a pathname from
these returned strings would yield the string ///. This is a valid pathname.
Because multiple consecutive slashes are equivalent to a single slash, the path-
name /// is equivalent to the pathname /.

#include <libgen.h>

char *dirname(char *pathname);
char *basename(char *pathname);

Both return a pointer to a null-terminated (and possibly
statically allocated) string
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If pathname is a NULL pointer or an empty string, then both dirname() and
basename() return the string . (dot). (Concatenating these strings yields the
pathname ./., which is equivalent to ., the current directory.)

Table 18-3 shows the strings returned by dirname() and basename() for various example
pathnames.

Listing 18-5: Using dirname() and basename()
––––––––––––––––––––––––––––––––––––––––––––––––– dirs_links/t_dirbasename.c

#include <libgen.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    char *t1, *t2;
    int j;

    for (j = 1; j < argc; j++)  {
        t1 = strdup(argv[j]);
        if (t1 == NULL)
            errExit("strdup");
        t2 = strdup(argv[j]);
        if (t2 == NULL)
            errExit("strdup");

        printf("%s ==> %s + %s\n", argv[j], dirname(t1), basename(t2));

        free(t1);
        free(t2);
    }

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––– dirs_links/t_dirbasename.c

Table 18-3: Examples of strings returned by dirname() and basename()

Pathname string dirname() basename()

/ / /

/usr/bin/zip /usr/bin zip

/etc/passwd//// /etc passwd

/etc////passwd /etc passwd

etc/passwd etc passwd

passwd . passwd

passwd/ . passwd

.. . ..

NULL . .
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Both dirname() and basename() may modify the string pointed to by pathname.
Therefore, if we wish to preserve a pathname string, we must pass copies of it to
dirname() and basename(), as shown in Listing 18-5 (page 371). This program uses
strdup() (which calls malloc()) to make copies of the strings to be passed to dirname()
and basename(), and then uses free() to deallocate the duplicate strings.

Finally, note that both dirname() and basename() can return pointers to statically
allocated strings that may be modified by future calls to the same functions.

18.15 Summary

An i-node doesn’t contain a file’s name. Instead, files are assigned names via entries
in directories, which are tables listing filename and i-node number correspon-
dences. These directory entries are called (hard) links. A file may have multiple
links, all of which enjoy equal status. Links are created and removed using link()
and unlink(). A file can be renamed using the rename() system call.

A symbolic (or soft) link is created using symlink(). Symbolic links are similar to
hard links in some respects, with the differences that symbolic links can cross file-
system boundaries and can refer to directories. A symbolic link is just a file containing
the name of another file; this name may be retrieved using readlink(). A symbolic
link is not included in the (target) i-node’s link count, and it may be left dangling if
the filename to which it refers is removed. Some system calls automatically derefer-
ence (follow) symbolic links; others do not. In some cases, two versions of a system
call are provided: one that dereferences symbolic links and another that does not.
Examples are stat() and lstat().

Directories are created with mkdir() and removed using rmdir(). To scan the con-
tents of a directory, we can use opendir(), readdir(), and related functions. The nftw()
function allows a program to walk an entire directory tree, calling a programmer-
defined function to operate on each file in the tree.

The remove() function can be used to remove a file (i.e., a link) or an empty
directory.

Each process has a root directory, which determines the point from which
absolute pathnames are interpreted, and a current working directory, which deter-
mines the point from which relative pathnames are interpreted. The chroot() and
chdir() system calls are used to change these attributes. The getcwd() function
returns a process’s current working directory.

Linux provides a set of system calls (e.g., openat()) that behave like their tradi-
tional counterparts (e.g., open()), except that relative pathnames can be interpreted
with respect to the directory specified by a file descriptor supplied to the call
(instead of using the process’s current working directory). This is useful for avoid-
ing certain types of race conditions and for implementing per-thread virtual work-
ing directories.

The realpath() function resolves a pathname—dereferencing all symbolic links
and resolving all references to . and .. to corresponding directories—to yield a
corresponding absolute pathname. The dirname() and basename() functions can be
used to parse a pathname into directory and filename components.
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18.16 Exercises

18-1. In Section 4.3.2, we noted that it is not possible to open a file for writing if it is
currently being executed (open() returns –1, with errno set to ETXTBSY). Nevertheless,
it is possible to do the following from the shell:

$ cc -o longrunner longrunner.c
$ ./longrunner &                        Leave running in background
$ vi longrunner.c                       Make some changes to the source code
$ cc -o longrunner longrunner.c

The last command overwrites the existing executable of the same name. How is this
possible? (For a clue, use ls –li to look at the i-node number of the executable file
after each compilation.)

18-2. Why does the call to chmod() in the following code fail?

mkdir("test", S_IRUSR | S_IWUSR | S_IXUSR);
chdir("test");
fd = open("myfile", O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
symlink("myfile", "../mylink");
chmod("../mylink", S_IRUSR);

18-3. Implement realpath().

18-4. Modify the program in Listing 18-2 (list_files.c) to use readdir_r() instead of readdir().

18-5. Implement a function that performs the equivalent of getcwd(). A useful tip for
solving this problem is that you can find the name of the current working directory
by using opendir() and readdir() to walk through each of the entries in the parent
directory (..) to find an entry with the same i-node and device number as the
current working directory (i.e., respectively, the st_ino and st_dev fields in the stat
structure returned by stat() and lstat()). Thus, it is possible to construct the
directory path by walking up the directory tree (chdir(“..”)) one step at a time and
performing such scans. The walk can be finished when the parent directory is the
same as the current working directory (recall that /.. is the same as /). The caller
should be left in the same directory in which it started, regardless of whether your
getcwd() function succeeds or fails (open() plus fchdir() are handy for this purpose).

18-6. Modify the program in Listing 18-3 (nftw_dir_tree.c) to use the FTW_DEPTH flag. Note
the difference in the order in which the directory tree is traversed.

18-7. Write a program that uses nftw() to traverse a directory tree and finishes by
printing out counts and percentages of the various types (regular, directory,
symbolic link, and so on) of files in the tree.

18-8. Implement nftw(). (This will require the use of the opendir(), readdir(), closedir(), and
stat() system calls, among others.)

18-9. In Section 18.10, we showed two different techniques (using fchdir() and chdir(),
respectively) to return to the previous current working directory after changing the
current working directory to another location. Suppose we are performing such an
operation repeatedly. Which method do you expect to be more efficient? Why?
Write a program to confirm your answer.
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M O N I T O R I N G  F I L E  E V E N T S

Some applications need to be able to monitor files or directories in order to deter-
mine whether events have occurred for the monitored objects. For example, a
graphical file manager needs to be able to determine when files are added or
removed from the directory that is currently being displayed, or a daemon may
want to monitor its configuration file in order to know if the file has been changed.

Starting with kernel 2.6.13, Linux provides the inotify mechanism, which allows
an application to monitor file events. This chapter describes the use of inotify.

The inotify mechanism replaces an older mechanism, dnotify, which provided a
subset of the functionality of inotify. We describe dnotify briefly at the end of this
chapter, focusing on why inotify is better.

The inotify and dnotify mechanisms are Linux-specific. (A few other systems
provide similar mechanisms. For example, the BSDs provide the kqueue API.)

A few libraries provide an API that is more abstract and portable than inotify
and dnotify. The use of these libraries may be preferable for some applications.
Some of these libraries employ inotify or dnotify, on systems where they are
available. Two such libraries are FAM (File Alteration Monitor, http://
oss.sgi.com/projects/fam/) and Gamin (http://www.gnome.org/~veillard/gamin/).



19.1 Overview

The key steps in the use of the inotify API are as follows:

1. The application uses inotify_init() to create an inotify instance. This system call
returns a file descriptor that is used to refer to the inotify instance in later
operations.

2. The application informs the kernel about which files are of interest by using
inotify_add_watch() to add items to the watch list of the inotify instance created
in the previous step. Each watch item consists of a pathname and an associated
bit mask. The bit mask specifies the set of events to be monitored for the path-
name. As its function result, inotify_add_watch() returns a watch descriptor, which
is used to refer to the watch in later operations. (The inotify_rm_watch() system
call performs the converse task, removing a watch that was previously added to
an inotify instance.)

3. In order to obtain event notifications, the application performs read() opera-
tions on the inotify file descriptor. Each successful read() returns one or more
inotify_event structures, each containing information about an event that
occurred on one of the pathnames being watched via this inotify instance.

4. When the application has finished monitoring, it closes the inotify file descriptor.
This automatically removes all watch items associated with the inotify instance.

The inotify mechanism can be used to monitor files or directories. When monitor-
ing a directory, the application will be informed about events for the directory
itself and for files inside the directory.

The inotify monitoring mechanism is not recursive. If an application wants to
monitor events within an entire directory subtree, it must issue inotify_add_watch()
calls for each directory in the tree.

An inotify file descriptor can be monitored using select(), poll(), epoll, and, since
Linux 2.6.25, signal-driven I/O. If events are available to be read, then these inter-
faces indicate the inotify file descriptor as being readable. See Chapter 63 for fur-
ther details of these interfaces.

The inotify mechanism is an optional Linux kernel component that is config-
ured via the options CONFIG_INOTIFY and CONFIG_INOTIFY_USER.

19.2 The inotify API

The inotify_init() system call creates a new inotify instance.

As its function result, inotify_init() returns a file descriptor. This file descriptor is
the handle that is used to refer to the inotify instance in subsequent operations.

#include <sys/inotify.h>

int inotify_init(void);

Returns file descriptor on success, or –1 on error
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Starting with kernel 2.6.27, Linux supports a new, nonstandard system call,
inotify_init1(). This system call performs the same task as inotify_init(), but provides
an additional argument, flags, that can be used to modify the behavior of the
system call. Two flags are supported. The IN_CLOEXEC flag causes the kernel to
enable the close-on-exec flag (FD_CLOEXEC) for the new file descriptor. This flag is
useful for the same reasons as the open() O_CLOEXEC flag described in Section 4.3.1.
The IN_NONBLOCK flag causes the kernel to enable the O_NONBLOCK flag on the
underlying open file description, so that future reads will be nonblocking. This
saves additional calls to fcntl() to achieve the same result.

The inotify_add_watch() system call either adds a new watch item to or modifies an
existing watch item in the watch list for the inotify instance referred to by the file
descriptor fd. (Refer to Figure 19-1.)

Figure 19-1: An inotify instance and associated kernel data structures

The pathname argument identifies the file for which a watch item is to be created or
modified. The caller must have read permission for this file. (The file permission
check is performed once, at the time of the inotify_add_watch() call. As long as the
watch item continues to exist, the caller will continue to receive file notifications
even if the file permissions are later changed so that the caller no longer has read
permission on the file.)

The mask argument is a bit mask that specifies the events to be monitored for
pathname. We say more about the bit values that can be specified in mask shortly.

If pathname has not previously been added to the watch list for fd, then
inotify_add_watch() creates a new watch item in the list and returns a new, nonnega-
tive watch descriptor, which is used to refer to the watch item in later operations.
This watch descriptor is unique for this inotify instance.

If pathname has previously been added to the watch list for fd, then
inotify_add_watch() modifies the mask of the existing watch item for pathname and
returns the watch descriptor for that item. (This watch descriptor will be the same
as that returned by the inotify_add_watch() call that initially added pathname to this
watch list.) We say more about how the mask may be modified when we describe
the IN_MASK_ADD flag in the next section.

#include <sys/inotify.h>

int inotify_add_watch(int fd, const char *pathname, uint32_t mask);

Returns watch descriptor on success, or –1 on error

path maskwatch descriptor 1

watch descriptor 2

watch descriptor 3
path mask

path mask

inotify
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The inotify_rm_watch() system call removes the watch item specified by wd from
the inotify instance referred to by the file descriptor fd.

The wd argument is a watch descriptor returned by a previous call to
inotify_add_watch(). (The uint32_t data type is an unsigned 32-bit integer.)

Removing a watch causes an IN_IGNORED event to be generated for this watch
descriptor. We say more about this event shortly.

19.3 inotify Events

When we create or modify a watch using inotify_add_watch(), the mask bit-mask
argument identifies the events to be monitored for the given pathname. The event
bits that may be specified in mask are indicated by the In column of Table 19-1.

#include <sys/inotify.h>

int inotify_rm_watch(int fd, uint32_t wd);

Returns 0 on success, or –1 on error

Table 19-1: inotify events

Bit value In Out Description

IN_ACCESS h h File was accessed (read())
IN_ATTRIB h h File metadata changed
IN_CLOSE_WRITE h h File opened for writing was closed
IN_CLOSE_NOWRITE h h File opened read-only was closed
IN_CREATE h h File/directory created inside watched directory
IN_DELETE h h File/directory deleted from within watched directory
IN_DELETE_SELF h h Watched file/directory was itself deleted
IN_MODIFY h h File was modified 
IN_MOVE_SELF h h Watched file/directory was itself moved
IN_MOVED_FROM h h File moved out of watched directory
IN_MOVED_TO h h File moved into watched directory
IN_OPEN h h File was opened

IN_ALL_EVENTS h Shorthand for all of the above input events
IN_MOVE h Shorthand for IN_MOVED_FROM | IN_MOVED_TO
IN_CLOSE h Shorthand for IN_CLOSE_WRITE | IN_CLOSE_NOWRITE

IN_DONT_FOLLOW h Don’t dereference symbolic link (since Linux 2.6.15)
IN_MASK_ADD h Add events to current watch mask for pathname
IN_ONESHOT h Monitor pathname for just one event
IN_ONLYDIR h Fail if pathname is not a directory (since Linux 2.6.15)

IN_IGNORED h Watch was removed by application or by kernel
IN_ISDIR h Filename returned in name is a directory
IN_Q_OVERFLOW h Overflow on event queue
IN_UNMOUNT h File system containing object was unmounted
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The meanings of most of the bits in Table 19-1 are evident from their names. The
following list clarifies a few details:

The IN_ATTRIB event occurs when file metadata such as permissions, ownership,
link count, extended attributes, user ID, or group ID, is changed.

The IN_DELETE_SELF event occurs when an object (i.e., a file or a directory) that is
being monitored is deleted. The IN_DELETE event occurs when the monitored
object is a directory and one of the files that it contains is deleted.

The IN_MOVE_SELF event occurs when an object that is being monitored is renamed.
The IN_MOVED_FROM and IN_MOVED_TO events occur when an object is renamed within
monitored directories. The former event occurs for the directory containing the
old name, and the latter event occurs for the directory containing the new name.

The IN_DONT_FOLLOW, IN_MASK_ADD, IN_ONESHOT, and IN_ONLYDIR bits don’t specify
events to be monitored. Instead, they control the operation of the
inotify_add_watch() call.

IN_DONT_FOLLOW specifies that pathname should not be dereferenced if it is a sym-
bolic link. This permits an application to monitor a symbolic link, rather than
the file to which it refers.

If we perform an inotify_add_watch() call that specifies a pathname that is
already being watched via this inotify file descriptor, then, by default, the given
mask is used to replace the current mask for this watch item. If IN_MASK_ADD is
specified, then the current mask is instead modified by ORing it with the value
given in mask.

IN_ONESHOT permits an application to monitor pathname for a single event. After
that event, the watch item is automatically removed from the watch list.

IN_ONLYDIR permits an application to monitor a pathname only if it is a direc-
tory. If pathname is not a directory, then inotify_add_watch() fails with the error
ENOTDIR. Using this flag prevents race conditions that could otherwise occur if
we wanted to ensure that we are monitoring a directory.

19.4 Reading inotify Events

Having registered items in the watch list, an application can determine which
events have occurred by using read() to read events from the inotify file descriptor.
If no events have occurred so far, then read() blocks until an event occurs (unless
the O_NONBLOCK status flag has been set for the file descriptor, in which case the read()
fails immediately with the error EAGAIN if no events are available).

After events have occurred, each read() returns a buffer (see Figure 19-2) con-
taining one or more structures of the following type:

struct inotify_event {
    int      wd;          /* Watch descriptor on which event occurred */
    uint32_t mask;        /* Bits describing event that occurred */
    uint32_t cookie;      /* Cookie for related events (for rename()) */
    uint32_t len;         /* Size of 'name' field */
    char     name[];      /* Optional null-terminated filename */
};
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Figure 19-2: An input buffer containing three inotify_event structures

The wd field tells us the watch descriptor for which this event occurred. This field
contains one of the values returned by a previous call to inotify_add_watch(). The wd
field is useful when an application is monitoring multiple files or directories via the
same inotify file descriptor. It provides the link that allows the application to deter-
mine the particular file or directory for which the event occurred. (To do this, the
application must maintain a bookkeeping data structure that relates watch descrip-
tors to pathnames.)

The mask field returns a bit mask that describes the event. The range of bits
that can appear in mask is indicated via the Out column of Table 19-1. Note the fol-
lowing additional details about specific bits:

An IN_IGNORED event is generated when a watch is removed. This can occur for
two reasons: the application used an inotify_rm_watch() call to explicitly remove
the watch, or the watch was implicitly removed by the kernel because the mon-
itored object was deleted or the file system where it resides was unmounted.
An IN_IGNORED event is not generated when a watch that was established with
IN_ONESHOT is automatically removed because an event was triggered.

If the subject of the event is a directory, then, in addition to some other bit, the
IN_ISDIR bit will be set in mask.
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The IN_UNMOUNT event informs the application that the file system containing the
monitored object has been unmounted. After this event, a further event con-
taining the IN_IGNORED bit will be delivered.

We describe the IN_Q_OVERFLOW in Section 19.5, which discusses limits on queued
inotify events.

The cookie field is used to tie related events together. Currently, this field is used
only when a file is renamed. When this happens, an IN_MOVED_FROM event is generated
for the directory from which the file is renamed, and then an IN_MOVED_TO is gener-
ated for the directory to which the file is renamed. (If a file is given a new name
within the same directory, then both events occur for the same directory.) These
two events will have the same unique value in their cookie field, thus allowing the
application to associate them.

When an event occurs for a file within a monitored directory, the name field is
used to return a null-terminated string that identifies the file. If the event occurs
for the monitored object itself, then the name field is unused, and the len field will
contain 0.

The len field indicates how many bytes are actually allocated for the name field.
This field is necessary because there may be additional padding bytes between the
end of the string stored in name and the start of the next inotify_event structure con-
tained in the buffer returned by read() (see Figure 19-2). The length of an individual
inotify event is thus sizeof(struct inotify_event) + len.

If the buffer passed to read() is too small to hold the next inotify_event structure,
then read() fails with the error EINVAL to warn the application of this fact. (In kernels
before 2.6.21, read() returned 0 for this case. The change to the use of an EINVAL
error provides a clearer indication that a programming error has been made.) The
application could respond by performing another read() with a larger buffer. How-
ever, the problem can be avoided altogether by ensuring that the buffer is always
large enough to hold at least one event: the buffer given to read() should be at least
(sizeof(struct inotify_event) + NAME_MAX + 1) bytes, where NAME_MAX is the maximum
length of a filename, plus one for the terminating null byte.

Using a larger buffer size than the minimum allows an application to efficiently
retrieve multiple events with a single read(). A read() from an inotify file descriptor
returns the minimum of the number of events that are available and the number of
events that will fit in the supplied buffer.

The call ioctl(fd, FIONREAD, &numbytes) returns the number of bytes that are
currently available to read from the inotify instance referred to by the file
descriptor fd.

The events read from an inotify file descriptor form an ordered queue. Thus, for
example, it is guaranteed that when a file is renamed, the IN_MOVED_FROM event will be
read before the IN_MOVED_TO event.
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When appending a new event to the end of the event queue, the kernel will
coalesce that event with the event at the tail of the queue (so that the new event is
not in fact queued), if the two events have the same values for wd, mask, cookie, and
name. This is done because many applications don’t need to know about repeated
instances of the same event, and dropping the excess events reduces the amount of
(kernel) memory required for the event queue. However, this means we can’t use
inotify to reliably determine how many times or how often a recurrent event occurs.

Example program

Although there is a lot of detail in the preceding description, the inotify API is actu-
ally quite simple to use. Listing 19-1 demonstrates the use of inotify. 

Listing 19-1: Using the inotify API

––––––––––––––––––––––––––––––––––––––––––––––––––––  inotify/demo_inotify.c
#include <sys/inotify.h>
#include <limits.h>
#include "tlpi_hdr.h"

static void             /* Display information from inotify_event structure */
displayInotifyEvent(struct inotify_event *i)
{
    printf("    wd =%2d; ", i->wd);
    if (i->cookie > 0)
        printf("cookie =%4d; ", i->cookie);

    printf("mask = ");
    if (i->mask & IN_ACCESS)        printf("IN_ACCESS ");
    if (i->mask & IN_ATTRIB)        printf("IN_ATTRIB ");
    if (i->mask & IN_CLOSE_NOWRITE) printf("IN_CLOSE_NOWRITE ");
    if (i->mask & IN_CLOSE_WRITE)   printf("IN_CLOSE_WRITE ");
    if (i->mask & IN_CREATE)        printf("IN_CREATE ");
    if (i->mask & IN_DELETE)        printf("IN_DELETE ");
    if (i->mask & IN_DELETE_SELF)   printf("IN_DELETE_SELF ");
    if (i->mask & IN_IGNORED)       printf("IN_IGNORED ");
    if (i->mask & IN_ISDIR)         printf("IN_ISDIR ");
    if (i->mask & IN_MODIFY)        printf("IN_MODIFY ");
    if (i->mask & IN_MOVE_SELF)     printf("IN_MOVE_SELF ");
    if (i->mask & IN_MOVED_FROM)    printf("IN_MOVED_FROM ");
    if (i->mask & IN_MOVED_TO)      printf("IN_MOVED_TO ");
    if (i->mask & IN_OPEN)          printf("IN_OPEN ");
    if (i->mask & IN_Q_OVERFLOW)    printf("IN_Q_OVERFLOW ");
    if (i->mask & IN_UNMOUNT)       printf("IN_UNMOUNT ");
    printf("\n");

    if (i->len > 0)
        printf("        name = %s\n", i->name);
}
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#define BUF_LEN (10 * (sizeof(struct inotify_event) + NAME_MAX + 1))

int
main(int argc, char *argv[])
{
    int inotifyFd, wd, j;
    char buf[BUF_LEN];
    ssize_t numRead;
    char *p;
    struct inotify_event *event;

    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s pathname... \n", argv[0]);

q inotifyFd = inotify_init();                 /* Create inotify instance */
    if (inotifyFd == -1)
        errExit("inotify_init");

    for (j = 1; j < argc; j++) {
w wd = inotify_add_watch(inotifyFd, argv[j], IN_ALL_EVENTS);

        if (wd == -1)
            errExit("inotify_add_watch");

        printf("Watching %s using wd %d\n", argv[j], wd);
    }

    for (;;) {                                  /* Read events forever */
e numRead = read(inotifyFd, buf, BUF_LEN);

        if (numRead == 0)
            fatal("read() from inotify fd returned 0!");

        if (numRead == -1)
            errExit("read");

        printf("Read %ld bytes from inotify fd\n", (long) numRead);

        /* Process all of the events in buffer returned by read() */

        for (p = buf; p < buf + numRead; ) {
            event = (struct inotify_event *) p;

r displayInotifyEvent(event);

p += sizeof(struct inotify_event) + event->len;
        }
    }

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––  inotify/demo_inotify.c
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The program in Listing 19-1 performs the following steps:

Use inotify_init() to create an inotify file descriptor q.

Use inotify_add_watch() to add a watch item for each of the files named in the
command-line argument of the program w. Each watch item watches for all
possible events.

Execute an infinite loop that:

– Reads a buffer of events from the inotify file descriptor e.

– Calls the displayInotifyEvent() function to display the contents of each of the
inotify_event structures within that buffer r.

The following shell session demonstrates the use of the program in Listing 19-1.
We start an instance of the program that runs in the background monitoring two
directories:

$ ./demo_inotify dir1 dir2 &
[1] 5386
Watching dir1 using wd 1
Watching dir2 using wd 2

Then we execute commands that generate events in the two directories. We begin
by creating a file using cat(1):

$ cat > dir1/aaa
Read 64 bytes from inotify fd
    wd = 1; mask = IN_CREATE
        name = aaa
    wd = 1; mask = IN_OPEN
        name = aaa

The above output produced by the background program shows that read() fetched
a buffer containing two events. We continue by typing some input for the file and
then the terminal end-of-file character:

Hello world
Read 32 bytes from inotify fd
    wd = 1; mask = IN_MODIFY
        name = aaa
Type Control-D
Read 32 bytes from inotify fd
    wd = 1; mask = IN_CLOSE_WRITE
        name = aaa

We then rename the file into the other monitored directory. This results in two
events, one for the directory from which the file moves (watch descriptor 1), and
the other for the destination directory (watch descriptor 2):

$ mv dir1/aaa dir2/bbb
Read 64 bytes from inotify fd
    wd = 1; cookie = 548; mask = IN_MOVED_FROM
        name = aaa
    wd = 2; cookie = 548; mask = IN_MOVED_TO
        name = bbb
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These two events share the same cookie value, allowing the application to link them.
When we create a subdirectory under one of the monitored directories, the

mask in the resulting event includes the IN_ISDIR bit, indicating that the subject of
the event is a directory:

$ mkdir dir2/ddd
Read 32 bytes from inotify fd
    wd = 1; mask = IN_CREATE IN_ISDIR
        name = ddd

At this point, it is worth repeating that inotify monitoring is not recursive. If the
application wanted to monitor events in the newly created subdirectory, then it
would need to issue a further inotify_add_watch() call specifying the pathname of
the subdirectory.

Finally, we remove one of the monitored directories:

$ rmdir dir1
Read 32 bytes from inotify fd
    wd = 1; mask = IN_DELETE_SELF
    wd = 1; mask = IN_IGNORED

The last event, IN_IGNORED, was generated to inform the application that the kernel
has removed this watch item from the watch list.

19.5 Queue Limits and /proc Files

Queuing inotify events requires kernel memory. For this reason, the kernel places
various limits on the operation of the inotify mechanism. The superuser can config-
ure these limits via three files in the directory /proc/sys/fs/inotify:

max_queued_events

When inotify_init() is called, this value is used to set an upper limit on the
number of events that can be queued on the new inotify instance. If this
limit is reached, then an IN_Q_OVERFLOW event is generated and excess events
are discarded. The wd field for the overflow event will have the value –1.

max_user_instances

This is a limit on the number of inotify instances that can be created per
real user ID.

max_user_watches

This is a limit on the number of watch items that can be created per real
user ID.

Typical default values for these three files are 16,384, 128, and 8192, respectively.
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19.6 An Older System for Monitoring File Events: dnotify

Linux provides another mechanism for monitoring file events. This mechanism,
known as dnotify, has been available since kernel 2.4, but has been made obsolete by
inotify. The dnotify mechanism suffers a number of limitations compared with inotify:

The dnotify mechanism provides notification of events by sending signals to the
application. Using signals as a notification mechanism complicates application
design (Section 22.12). It also makes the use of dnotify within a library difficult,
since the calling program might change the disposition of the notification sig-
nal(s). The inotify mechanism doesn’t use signals.

The monitoring unit of dnotify is a directory. The application is informed when
an operation is performed on any file in that directory. By contrast, inotify can
be used to monitor directories or individual files.

In order to monitor a directory, dnotify requires the application to open a file
descriptor for that directory. The use of file descriptors causes two problems.
First, because it is busy, the file system containing the directory can’t be
unmounted. Second, because one file descriptor is required for each directory,
an application can end up consuming a large number of file descriptors.
Because inotify doesn’t use file descriptors, it avoids these problems.

The information provided by dnotify about file events is less precise than that
provided by inotify. When a file is changed inside a monitored directory, dnotify
tells us that an event has occurred, but doesn’t tell us which file was involved
in the event. The application must determine this by caching information
about the directory contents. Furthermore, inotify provides more detailed
information than dnotify about the type of event that has occurred.

In some circumstances, dnotify doesn’t provide reliable notification of file events.

Further information about dnotify can be found under the description of the
F_NOTIFY operation in the fcntl(2) manual page, and in the kernel source file
Documentation/dnotify.txt.

19.7 Summary

The Linux-specific inotify mechanism allows an application to obtain notifications
when events (files are opened, closed, created, deleted, modified, renamed, and so
on) occur for a set of monitored files and directories. The inotify mechanism super-
sedes the older dnotify mechanism.

19.8 Exercise

19-1. Write a program that logs all file creations, deletions, and renames under the
directory named in its command-line argument. The program should monitor
events in all of the subdirectories under the specified directory. To obtain a list of
all of these subdirectories, you will need to make use of nftw() (Section 18.9). When
a new subdirectory is added under the tree or a directory is deleted, the set of
monitored subdirectories should be updated accordingly.
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S I G N A L S :
F U N D A M E N T A L  C O N C E P T S

This chapter and next two chapters discuss signals. Although the fundamental con-
cepts are simple, our discussion is quite lengthy, since there are many details to cover.

This chapter covers the following topics:

the various different signals and their purposes;

the circumstances in which the kernel may generate a signal for a process, and the
system calls that one process may use to send a signal to another process;

how a process responds to a signal by default, and the means by which a process
can change its response to a signal, in particular, through the use of a signal
handler, a programmer-defined function that is automatically invoked on
receipt of a signal;

the use of a process signal mask to block signals, and the associated notion of
pending signals; and

how a process can suspend execution and wait for the delivery of a signal.



20.1 Concepts and Overview

A signal is a notification to a process that an event has occurred. Signals are some-
times described as software interrupts. Signals are analogous to hardware interrupts
in that they interrupt the normal flow of execution of a program; in most cases, it is
not possible to predict exactly when a signal will arrive.

One process can (if it has suitable permissions) send a signal to another process.
In this use, signals can be employed as a synchronization technique, or even as a
primitive form of interprocess communication (IPC). It is also possible for a pro-
cess to send a signal to itself. However, the usual source of many signals sent to a
process is the kernel. Among the types of events that cause the kernel to generate a
signal for a process are the following:

A hardware exception occurred, meaning that the hardware detected a fault
condition that was notified to the kernel, which in turn sent a corresponding
signal to the process concerned. Examples of hardware exceptions include
executing a malformed machine-language instruction, dividing by 0, or refer-
encing a part of memory that is inaccessible.

The user typed one of the terminal special characters that generate signals.
These characters include the interrupt character (usually Control-C) and the
suspend character (usually Control-Z).

A software event occurred. For example, input became available on a file
descriptor, the terminal window was resized, a timer went off, the process’s
CPU time limit was exceeded, or a child of this process terminated.

Each signal is defined as a unique (small) integer, starting sequentially from 1.
These integers are defined in <signal.h> with symbolic names of the form SIGxxxx.
Since the actual numbers used for each signal vary across implementations, it is
these symbolic names that are always used in programs. For example, when the
user types the interrupt character, SIGINT (signal number 2) is delivered to a process.

Signals fall into two broad categories. The first set constitutes the traditional or
standard signals, which are used by the kernel to notify processes of events. On
Linux, the standard signals are numbered from 1 to 31. We describe the standard
signals in this chapter. The other set of signals consists of the realtime signals, whose
differences from standard signals are described in Section 22.8.

A signal is said to be generated by some event. Once generated, a signal is later
delivered to a process, which then takes some action in response to the signal.
Between the time it is generated and the time it is delivered, a signal is said to be
pending.

Normally, a pending signal is delivered to a process as soon as it is next sched-
uled to run, or immediately if the process is already running (e.g., if the process
sent a signal to itself). Sometimes, however, we need to ensure that a segment of
code is not interrupted by the delivery of a signal. To do this, we can add a signal to
the process’s signal mask—a set of signals whose delivery is currently blocked. If a signal
is generated while it is blocked, it remains pending until it is later unblocked
(removed from the signal mask). Various system calls allow a process to add and
remove signals from its signal mask.
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Upon delivery of a signal, a process carries out one of the following default
actions, depending on the signal:

The signal is ignored; that is, it is discarded by the kernel and has no effect on
the process. (The process never even knows that it occurred.)

The process is terminated (killed). This is sometimes referred to as abnormal
process termination, as opposed to the normal process termination that occurs
when a process terminates using exit().

A core dump file is generated, and the process is terminated. A core dump file
contains an image of the virtual memory of the process, which can be loaded
into a debugger in order to inspect the state of the process at the time that it
terminated.

The process is stopped—execution of the process is suspended.

Execution of the process is resumed after previously being stopped.

Instead of accepting the default for a particular signal, a program can change the
action that occurs when the signal is delivered. This is known as setting the disposition
of the signal. A program can set one of the following dispositions for a signal:

The default action should occur. This is useful to undo an earlier change of the
disposition of the signal to something other than its default.

The signal is ignored. This is useful for a signal whose default action would be to
terminate the process.

A signal handler is executed.

A signal handler is a function, written by the programmer, that performs appropri-
ate tasks in response to the delivery of a signal. For example, the shell has a handler
for the SIGINT signal (generated by the interrupt character, Control-C) that causes it to
stop what it is currently doing and return control to the main input loop, so that
the user is once more presented with the shell prompt. Notifying the kernel that a
handler function should be invoked is usually referred to as installing or establishing
a signal handler. When a signal handler is invoked in response to the delivery of a
signal, we say that the signal has been handled or, synonymously, caught.

Note that it isn’t possible to set the disposition of a signal to terminate or dump
core (unless one of these is the default disposition of the signal). The nearest we can
get to this is to install a handler for the signal that then calls either exit() or abort().
The abort() function (Section 21.2.2) generates a SIGABRT signal for the process,
which causes it to dump core and terminate.

The Linux-specific /proc/PID/status file contains various bit-mask fields that
can be inspected to determine a process’s treatment of signals. The bit masks
are displayed as hexadecimal numbers, with the least significant bit represent-
ing signal 1, the next bit to the left representing signal 2, and so on. These
fields are SigPnd (per-thread pending signals), ShdPnd (process-wide pending
signals; since Linux 2.6), SigBlk (blocked signals), SigIgn (ignored signals), and
SigCgt (caught signals). (The difference between the SigPnd and ShdPnd fields
will become clear when we describe the handling of signals in multithreaded
processes in Section 33.2.) The same information can also be obtained using
various options to the ps(1) command.
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Signals appeared in very early UNIX implementations, but have gone through
some significant changes since their inception. In early implementations, signals
could be lost (i.e., not delivered to the target process) in certain circumstances. Further-
more, although facilities were provided to block delivery of signals while critical
code was executed, in some circumstances, blocking was not reliable. These problems
were remedied in 4.2BSD, which provided so-called reliable signals. (One further
BSD innovation was the addition of extra signals to support shell job control, which
we describe in Section 34.7.)

System V also added reliable semantics to signals, but employed a model
incompatible with BSD. These incompatibilities were resolved only with the arrival
of the POSIX.1-1990 standard, which adopted a specification for reliable signals
largely based on the BSD model.

We consider the details of reliable and unreliable signals in Section 22.7, and
briefly describe the older BSD and System V signal APIs in Section 22.13.

20.2 Signal Types and Default Actions

Earlier, we mentioned that the standard signals are numbered from 1 to 31 on
Linux. However, the Linux signal(7) manual page lists more than 31 signal names.
The excess names can be accounted for in a variety of ways. Some of the names are
simply synonyms for other names, and are defined for source compatibility with
other UNIX implementations. Other names are defined but unused. The following
list describes the various signals:

SIGABRT

A process is sent this signal when it calls the abort() function (Section 21.2.2).
By default, this signal terminates the process with a core dump. This
achieves the intended purpose of the abort() call: to produce a core dump
for debugging.

SIGALRM

The kernel generates this signal upon the expiration of a real-time timer
set by a call to alarm() or setitimer(). A real-time timer is one that counts
according to wall clock time (i.e., the human notion of elapsed time). For
further details, see Section 23.1.

SIGBUS

This signal (“bus error”) is generated to indicate certain kinds of memory-
access errors. One such error can occur when using memory mappings cre-
ated with mmap(), if we attempt to access an address that lies beyond the end
of the underlying memory-mapped file, as described in Section 49.4.3.

SIGCHLD

This signal is sent (by the kernel) to a parent process when one of its children
terminates (either by calling exit() or as a result of being killed by a signal). It
may also be sent to a process when one of its children is stopped or
resumed by a signal. We consider SIGCHLD in detail in Section 26.3.
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SIGCLD

This is a synonym for SIGCHLD.

SIGCONT

When sent to a stopped process, this signal causes the process to resume
(i.e., to be rescheduled to run at some later time). When received by a pro-
cess that is not currently stopped, this signal is ignored by default. A process
may catch this signal, so that it carries out some action when it resumes.
This signal is covered in more detail in Sections 22.2 and 34.7.

SIGEMT

In UNIX systems generally, this signal is used to indicate an implementation-
dependent hardware error. On Linux, this signal is used only in the Sun
SPARC implementation. The suffix EMT derives from emulator trap, an assem-
bler mnemonic on the Digital PDP-11.

SIGFPE

This signal is generated for certain types of arithmetic errors, such as
divide-by-zero. The suffix FPE is an abbreviation for floating-point exception,
although this signal can also be generated for integer arithmetic errors.
The precise details of when this signal is generated depend on the hard-
ware architecture and the settings of CPU control registers. For example,
on x86-32, integer divide-by-zero always yields a SIGFPE, but the handling of
floating-point divide-by-zero depends on whether the FE_DIVBYZERO excep-
tion has been enabled. If this exception is enabled (using feenableexcept()),
then a floating-point divide-by-zero generates SIGFPE; otherwise, it yields the
IEEE-standard result for the operands (a floating-point representation of
infinity). See the fenv(3) manual page and <fenv.h> for further information.

SIGHUP

When a terminal disconnect (hangup) occurs, this signal is sent to the con-
trolling process of the terminal. We describe the concept of a controlling
process and the various circumstances in which SIGHUP is sent in Section 34.6.
A second use of SIGHUP is with daemons (e.g., init, httpd, and inetd). Many
daemons are designed to respond to the receipt of SIGHUP by reinitializing
themselves and rereading their configuration files. The system administra-
tor triggers these actions by manually sending SIGHUP to the daemon,
either by using an explicit kill command or by executing a program or
script that does the same.

SIGILL

This signal is sent to a process if it tries to execute an illegal (i.e., incor-
rectly formed) machine-language instruction.

SIGINFO

On Linux, this signal name is a synonym for SIGPWR. On BSD systems, the
SIGINFO signal, generated by typing Control-T, is used to obtain status infor-
mation about the foreground process group.
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SIGINT

When the user types the terminal interrupt character (usually Control-C), the
terminal driver sends this signal to the foreground process group. The
default action for this signal is to terminate the process.

SIGIO

Using the fcntl() system call, it is possible to arrange for this signal to be
generated when an I/O event (e.g., input becoming available) occurs on
certain types of open file descriptors, such as those for terminals and sockets.
This feature is described further in Section 63.3.

SIGIOT

On Linux, this is a synonym for SIGABRT. On some other UNIX implementa-
tions, this signal indicates an implementation-defined hardware fault.

SIGKILL

This is the sure kill signal. It can’t be blocked, ignored, or caught by a handler,
and thus always terminates a process.

SIGLOST

This signal name exists on Linux, but is unused. On some other UNIX
implementations, the NFS client sends this signal to local processes hold-
ing locks if the NSF client fails to regain locks held by the those processes
following the recovery of a remote NFS server that crashed. (This feature is
not standardized in NFS specifications.)

SIGPIPE

This signal is generated when a process tries to write to a pipe, a FIFO, or a
socket for which there is no corresponding reader process. This normally
occurs because the reading process has closed its file descriptor for the
IPC channel. See Section 44.2 for further details.

SIGPOLL

This signal, which is derived from System V, is a synonym for SIGIO on
Linux.

SIGPROF

The kernel generates this signal upon the expiration of a profiling timer
set by a call to setitimer() (Section 23.1). A profiling timer is one that counts
the CPU time used by a process. Unlike a virtual timer (see SIGVTALRM
below), a profiling timer counts CPU time used in both user mode and ker-
nel mode.

SIGPWR

This is the power failure signal. On systems that have an uninterruptible
power supply (UPS), it is possible to set up a daemon process that monitors
the backup battery level in the event of a power failure. If the battery
power is about to run out (after an extended power outage), then the mon-
itoring process sends SIGPWR to the init process, which interprets this signal
as a request to shut down the system in a quick and orderly fashion.
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SIGQUIT

When the user types the quit character (usually Control-\) on the keyboard,
this signal is sent to the foreground process group. By default, this signal
terminates a process and causes it to produce a core dump, which can then
be used for debugging. Using SIGQUIT in this manner is useful with a pro-
gram that is stuck in an infinite loop or is otherwise not responding. By
typing Control-\ and then loading the resulting core dump with the gdb
debugger and using the backtrace command to obtain a stack trace, we can
find out which part of the program code was executing. ([Matloff, 2008]
describes the use of gdb.)

SIGSEGV

This very popular signal is generated when a program makes an invalid mem-
ory reference. A memory reference may be invalid because the referenced
page doesn’t exist (e.g., it lies in an unmapped area somewhere between
the heap and the stack), the process tried to update a location in read-only
memory (e.g., the program text segment or a region of mapped memory
marked read-only), or the process tried to access a part of kernel memory
while running in user mode (Section 2.1). In C, these events often result
from dereferencing a pointer containing a bad address (e.g., an uninitial-
ized pointer) or passing an invalid argument in a function call. The name
of this signal derives from the term segmentation violation.

SIGSTKFLT

Documented in signal(7) as “stack fault on coprocessor,” this signal is
defined, but is unused on Linux.

SIGSTOP

This is the sure stop signal. It can’t be blocked, ignored, or caught by a handler;
thus, it always stops a process.

SIGSYS

This signal is generated if a process makes a “bad” system call. This means that
the process executed an instruction that was interpreted as a system call trap,
but the associated system call number was not valid (refer to Section 3.1).

SIGTERM

This is the standard signal used for terminating a process and is the default
signal sent by the kill and killall commands. Users sometimes explicitly
send the SIGKILL signal to a process using kill –KILL or kill –9. However,
this is generally a mistake. A well-designed application will have a handler
for SIGTERM that causes the application to exit gracefully, cleaning up tem-
porary files and releasing other resources beforehand. Killing a process
with SIGKILL bypasses the SIGTERM handler. Thus, we should always first
attempt to terminate a process using SIGTERM, and reserve SIGKILL as a last
resort for killing runaway processes that don’t respond to SIGTERM.
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SIGTRAP

This signal is used to implement debugger breakpoints and system call
tracing, as performed by strace(1) (Appendix A). See the ptrace(2) manual
page for further information.

SIGTSTP

This is the job-control stop signal, sent to stop the foreground process
group when the user types the suspend character (usually Control-Z) on the
keyboard. Chapter 34 describes process groups (jobs) and job control in
detail, as well as details of when and how a program may need to handle
this signal. The name of this signal derives from “terminal stop.”

SIGTTIN

When running under a job-control shell, the terminal driver sends this signal
to a background process group when it attempts to read() from the termi-
nal. This signal stops a process by default.

SIGTTOU

This signal serves an analogous purpose to SIGTTIN, but for terminal output
by background jobs. When running under a job-control shell, if the TOSTOP
(terminal output stop) option has been enabled for the terminal (perhaps via
the command stty tostop), the terminal driver sends SIGTTOU to a background
process group when it attempts to write() to the terminal (see Section 34.7.1).
This signal stops a process by default.

SIGUNUSED

As the name implies, this signal is unused. On Linux 2.4 and later, this signal
name is synonymous with SIGSYS on many architectures. In other words,
this signal number is no longer unused on those architectures, although
the signal name remains for backward compatibility.

SIGURG

This signal is sent to a process to indicate the presence of out-of-band (also
known as urgent) data on a socket (Section 61.13.1).

SIGUSR1

This signal and SIGUSR2 are available for programmer-defined purposes.
The kernel never generates these signals for a process. Processes may use
these signals to notify one another of events or to synchronize with each
other. In early UNIX implementations, these were the only two signals that
could be freely used in applications. (In fact, processes can send one
another any signal, but this has the potential for confusion if the kernel
also generates one of the signals for a process.) Modern UNIX implemen-
tations provide a large set of realtime signals that are also available for
programmer-defined purposes (Section 22.8).
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SIGUSR2

See the description of SIGUSR1.

SIGVTALRM

The kernel generates this signal upon expiration of a virtual timer set by a
call to setitimer() (Section 23.1). A virtual timer is one that counts the user-
mode CPU time used by a process.

SIGWINCH

In a windowing environment, this signal is sent to the foreground process
group when the terminal window size changes (as a consequence either of
the user manually resizing it, or of a program resizing it via a call to ioctl(),
as described in Section 62.9). By installing a handler for this signal, pro-
grams such as vi and less can know to redraw their output after a change in
window size.

SIGXCPU

This signal is sent to a process when it exceeds its CPU time resource limit
(RLIMIT_CPU, described in Section 36.3).

SIGXFSZ

This signal is sent to a process if it attempts (using write() or truncate()) to
increase the size of a file beyond the process’s file size resource limit
(RLIMIT_FSIZE, described in Section 36.3).

Table 20-1 summarizes a range of information about signals on Linux. Note the fol-
lowing points about this table:

The signal number column shows the number assigned to this signal on various
hardware architectures. Except where otherwise indicated, signals have the
same number on all architectures. Architectural differences in signal numbers
are indicated in parentheses, and occur on the Sun SPARC and SPARC64 (S),
HP/Compaq/Digital Alpha (A), MIPS (M), and HP PA-RISC (P) architectures.
In this column, undef indicates that a symbol is undefined on the indicated
architectures.

The SUSv3 column indicates whether the signal is standardized in SUSv3.

The Default column indicates the default action of the signal: term means that
the signal terminates the process, core means that the process produces a core
dump file and terminates, ignore means that the signal is ignored, stop means
that the signal stops the process, and cont means that the signal resumes a
stopped process.

Certain of the signals listed previously are not shown in Table 20-1: SIGCLD (syn-
onym for SIGCHLD), SIGINFO (unused), SIGIOT (synonym for SIGABRT), SIGLOST
(unused), and SIGUNUSED (synonym for SIGSYS on many architectures).
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Note the following points regarding the default behavior shown for certain signals
in Table 20-1:

On Linux 2.2, the default action for the signals SIGXCPU, SIGXFSZ, SIGSYS, and
SIGBUS is to terminate the process without producing a core dump. From kernel 2.4
onward, Linux conforms to the requirements of SUSv3, with these signals caus-
ing termination with a core dump. On several other UNIX implementations,
SIGXCPU and SIGXFSZ are treated in the same way as on Linux 2.2.

SIGPWR is typically ignored by default on those other UNIX implementations
where it appears.

Table 20-1: Linux signals

Name Signal number Description SUSv3 Default

SIGABRT 6 Abort process • core
SIGALRM 14 Real-time timer expired • term
SIGBUS 7 (SAMP=10) Memory access error • core
SIGCHLD 17 (SA=20, MP=18) Child terminated or stopped • ignore
SIGCONT 18 (SA=19, M=25, P=26) Continue if stopped • cont
SIGEMT undef (SAMP=7) Hardware fault term
SIGFPE 8 Arithmetic exception • core
SIGHUP 1 Hangup • term
SIGILL 4 Illegal instruction • core
SIGINT 2 Terminal interrupt • term
SIGIO /
SIGPOLL

29 (SA=23, MP=22) I/O possible • term

SIGKILL 9 Sure kill • term
SIGPIPE 13 Broken pipe • term
SIGPROF 27 (M=29, P=21) Profiling timer expired • term
SIGPWR 30 (SA=29, MP=19) Power about to fail term
SIGQUIT 3 Terminal quit • core
SIGSEGV 11 Invalid memory reference • core
SIGSTKFLT 16 (SAM=undef, P=36) Stack fault on coprocessor term
SIGSTOP 19 (SA=17, M=23, P=24) Sure stop • stop
SIGSYS 31 (SAMP=12) Invalid system call • core
SIGTERM 15 Terminate process • term
SIGTRAP 5 Trace/breakpoint trap • core
SIGTSTP 20 (SA=18, M=24, P=25) Terminal stop • stop
SIGTTIN 21 (M=26, P=27) Terminal read from BG • stop
SIGTTOU 22 (M=27, P=28) Terminal write from BG • stop
SIGURG 23 (SA=16, M=21, P=29) Urgent data on socket • ignore
SIGUSR1 10 (SA=30, MP=16) User-defined signal 1 • term
SIGUSR2 12 (SA=31, MP=17) User-defined signal 2 • term
SIGVTALRM 26 (M=28, P=20) Virtual timer expired • term
SIGWINCH 28 (M=20, P=23) Terminal window size change ignore
SIGXCPU 24 (M=30, P=33) CPU time limit exceeded • core
SIGXFSZ 25 (M=31, P=34) File size limit exceeded • core
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SIGIO is ignored by default on several UNIX implementations (particularly BSD
derivatives).

Although not specified by any standards, SIGEMT appears on most UNIX imple-
mentations. However, this signal typically results in termination with a core
dump on other implementations.

In SUSv1, the default action for SIGURG was specified as process termination,
and this is the default in some older UNIX implementations. SUSv2 adopted
the current specification (ignore).

20.3 Changing Signal Dispositions: signal()

UNIX systems provide two ways of changing the disposition of a signal: signal() and
sigaction(). The signal() system call, which is described in this section, was the origi-
nal API for setting the disposition of a signal, and it provides a simpler interface
than sigaction(). On the other hand, sigaction() provides functionality that is not
available with signal(). Furthermore, there are variations in the behavior of signal()
across UNIX implementations (Section 22.7), which mean that it should never be
used for establishing signal handlers in portable programs. Because of these porta-
bility issues, sigaction() is the (strongly) preferred API for establishing a signal handler.
After we explain the use of sigaction() in Section 20.13, we’ll always employ that call
when establishing signal handlers in our example programs.

Although documented in section 2 of the Linux manual pages, signal() is actu-
ally implemented in glibc as a library function layered on top of the sigaction()
system call.

The function prototype for signal() requires some decoding. The first argument,
sig, identifies the signal whose disposition we wish to change. The second argu-
ment, handler, is the address of the function that should be called when this signal
is delivered. This function returns nothing (void) and takes one integer argument.
Thus, a signal handler has the following general form:

void
handler(int sig)
{
    /* Code for the handler */
}

We describe the purpose of the sig argument to the handler function in Section 20.4.
The return value of signal() is the previous disposition of the signal. Like the

handler argument, this is a pointer to a function returning nothing and taking one
integer argument. In other words, we could write code such as the following to

#include <signal.h>

void ( *signal(int sig, void (*handler)(int)) ) (int);

Returns previous signal disposition on success, or SIG_ERR on error
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temporarily establish a handler for a signal, and then reset the disposition of the
signal to whatever it was previously:

void (*oldHandler)(int);

oldHandler = signal(SIGINT, newHandler);
if (oldHandler == SIG_ERR)
    errExit("signal");

/* Do something else here. During this time, if SIGINT is
   delivered, newHandler will be used to handle the signal. */

if (signal(SIGINT, oldHandler) == SIG_ERR)
    errExit("signal");

It is not possible to use signal() to retrieve the current disposition of a signal
without at the same time changing that disposition. To do that, we must use
sigaction().

We can make the prototype for signal() much more comprehensible by using the
following type definition for a pointer to a signal handler function:

typedef void (*sighandler_t)(int);

This enables us to rewrite the prototype for signal() as follows:

sighandler_t signal(int sig, sighandler_t handler);

If the _GNU_SOURCE feature test macro is defined, then glibc exposes the non-
standard sighandler_t data type in the <signal.h> header file.

Instead of specifying the address of a function as the handler argument of signal(),
we can specify one of the following values:

SIG_DFL

Reset the disposition of the signal to its default (Table 20-1). This is useful
for undoing the effect of an earlier call to signal() that changed the disposi-
tion for the signal.

SIG_IGN

Ignore the signal. If the signal is generated for this process, the kernel
silently discards it. The process never even knows that the signal occurred.

A successful call to signal() returns the previous disposition of the signal, which
may be the address of a previously installed handler function, or one of the con-
stants SIG_DFL or SIG_IGN. On error, signal() returns the value SIG_ERR.

20.4 Introduction to Signal Handlers

A signal handler (also called a signal catcher) is a function that is called when a speci-
fied signal is delivered to a process. We describe the fundamentals of signal handlers
in this section, and then go into the details in Chapter 21.
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Invocation of a signal handler may interrupt the main program flow at any
time; the kernel calls the handler on the process’s behalf, and when the handler
returns, execution of the program resumes at the point where the handler inter-
rupted it. This sequence is illustrated in Figure 20-1.

Figure 20-1: Signal delivery and handler execution

Although signal handlers can do virtually anything, they should, in general, be
designed to be as simple as possible. We expand on this point in Section 21.1.

Listing 20-1: Installing a handler for SIGINT

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– signals/ouch.c
#include <signal.h>
#include "tlpi_hdr.h"

static void
sigHandler(int sig)
{
    printf("Ouch!\n");                  /* UNSAFE (see Section 21.1.2) */
}

int
main(int argc, char *argv[])
{
    int j;

    if (signal(SIGINT, sigHandler) == SIG_ERR)
        errExit("signal");
    
    for (j = 0; ; j++) {
        printf("%d\n", j);
        sleep(3);                       /* Loop slowly... */
    }
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– signals/ouch.c

start of program

instruction m

instruction m+1

Main program

Code of
signal handler
is executed

return

Signal handler

Program
resumes at
point of interruption

1

Delivery
of signal 2

4

Kernel calls signal
handler on behalf
of process

exit()

3

flow
 of execution
Signals:  Fundamenta l  Concepts 399



Listing 20-1 (on page 399) shows a simple example of a signal handler function and
a main program that establishes it as the handler for the SIGINT signal. (The termi-
nal driver generates this signal when we type the terminal interrupt character, usually
Control-C.) The handler simply prints a message and returns.

The main program continuously loops. On each iteration, the program incre-
ments a counter whose value it prints, and then the program sleeps for a few sec-
onds. (To sleep in this manner, we use the sleep() function, which suspends the
execution of its caller for a specified number of seconds. We describe this function
in Section 23.4.1.)

When we run the program in Listing 20-1, we see the following:

$ ./ouch
0                         Main program loops, displaying successive integers
Type Control-C
Ouch!                     Signal handler is executed, and returns
1                         Control has returned to main program
2
Type Control-C again
Ouch!
3
Type Control-\ (the terminal quit character)
Quit (core dumped)

When the kernel invokes a signal handler, it passes the number of the signal that
caused the invocation as an integer argument to the handler. (This is the sig argu-
ment in the handler of Listing 20-1). If a signal handler catches only one type of signal,
then this argument is of little use. We can, however, establish the same handler to
catch different types of signals and use this argument to determine which signal
caused the handler to be invoked.

This is illustrated in Listing 20-2, a program that establishes the same handler
for SIGINT and SIGQUIT. (SIGQUIT is generated by the terminal driver when we type the
terminal quit character, usually Control-\.) The code of the handler distinguishes
the two signals by examining the sig argument, and takes different actions for each
signal. In the main() function, we use pause() (described in Section 20.14) to block
the process until a signal is caught.

The following shell session log demonstrates the use of this program:

$ ./intquit
Type Control-C
Caught SIGINT (1)
Type Control-C again
Caught SIGINT (2)
and again
Caught SIGINT (3)
Type Control-\
Caught SIGQUIT - that's all folks!

In Listing 20-1 and Listing 20-2, we use printf() to display the message from the sig-
nal handler. For reasons that we discuss in Section 21.1.2, real-world applications
should generally never call stdio functions from within a signal handler. However, in
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various example programs, we’ll nevertheless call printf() from a signal handler as a
simple means of seeing when the handler is called.

Listing 20-2: Establishing the same handler for two different signals

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– signals/intquit.c

#include <signal.h>
#include "tlpi_hdr.h"

static void
sigHandler(int sig)
{
    static int count = 0;

    /* UNSAFE: This handler uses non-async-signal-safe functions
       (printf(), exit(); see Section 21.1.2) */

    if (sig == SIGINT) {
        count++;
        printf("Caught SIGINT (%d)\n", count);
        return;                 /* Resume execution at point of interruption */
    }

    /* Must be SIGQUIT - print a message and terminate the process */

    printf("Caught SIGQUIT - that's all folks!\n");
    exit(EXIT_SUCCESS);
}

int
main(int argc, char *argv[])
{
    /* Establish same handler for SIGINT and SIGQUIT */

    if (signal(SIGINT, sigHandler) == SIG_ERR)
        errExit("signal");
    if (signal(SIGQUIT, sigHandler) == SIG_ERR)
        errExit("signal");

    for (;;)                    /* Loop forever, waiting for signals */
        pause();                /* Block until a signal is caught */
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– signals/intquit.c

20.5 Sending Signals: kill()

One process can send a signal to another process using the kill() system call, which
is the analog of the kill shell command. (The term kill was chosen because the
default action of most of the signals that were available on early UNIX implementa-
tions was to terminate the process.)
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The pid argument identifies one or more processes to which the signal specified by
sig is to be sent. Four different cases determine how pid is interpreted:

If pid is greater than 0, the signal is sent to the process with the process ID spec-
ified by pid.

If pid equals 0, the signal is sent to every process in the same process group as
the calling process, including the calling process itself. (SUSv3 states that the
signal should be sent to all processes in the same process group, excluding an
“unspecified set of system processes” and adds the same qualification to each
of the remaining cases.)

If pid is less than –1, the signal is sent to all of the processes in the process group
whose ID equals the absolute value of pid. Sending a signal to all of the processes
in a process group finds particular use in shell job control (Section 34.7).

If pid equals –1, the signal is sent to every process for which the calling process
has permission to send a signal, except init (process ID 1) and the calling pro-
cess. If a privileged process makes this call, then all processes on the system will
be signaled, except for these last two. For obvious reasons, signals sent in this
way are sometimes called broadcast signals. (SUSv3 doesn’t require that the call-
ing process be excluded from receiving the signal; Linux follows the BSD
semantics in this regard.)

If no process matches the specified pid, kill() fails and sets errno to ESRCH (“No such
process”).

A process needs appropriate permissions to be able send a signal to another
process. The permission rules are as follows:

A privileged (CAP_KILL) process may send a signal to any process.

The init process (process ID 1), which runs with user and group of root, is a
special case. It can be sent only signals for which it has a handler installed. This
prevents the system administrator from accidentally killing init, which is funda-
mental to the operation of the system.

An unprivileged process can send a signal to another process if the real or
effective user ID of the sending process matches the real user ID or saved set-
user-ID of the receiving process, as shown in Figure 20-2. This rule allows users
to send signals to set-user-ID programs that they have started, regardless of the
current setting of the target process’s effective user ID. Excluding the effective
user ID of the target from the check serves a complementary purpose: it prevents
one user from sending signals to another user’s process that is running a set-
user-ID program belonging to the user trying to send the signal. (SUSv3 mandates
the rules shown in Figure 20-2, but Linux followed slightly different rules in
kernel versions before 2.0, as described in the kill(2) manual page.)

#include <signal.h>

int kill(pid_t pid, int sig);

Returns 0 on success, or –1 on error
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The SIGCONT signal is treated specially. An unprivileged process may send this
signal to any other process in the same session, regardless of user ID checks.
This rule allows job-control shells to restart stopped jobs (process groups),
even if the processes of the job have changed their user IDs (i.e., they are privi-
leged processes that have used the system calls described in Section 9.7 to
change their credentials).

Figure 20-2: Permissions required for an unprivileged process to send a signal

If a process doesn’t have permissions to send a signal to the requested pid, then
kill() fails, setting errno to EPERM. Where pid specifies a set of processes (i.e., pid is
negative), kill() succeeds if at least one of them could be signaled.

We demonstrate the use of kill() in Listing 20-3.

20.6 Checking for the Existence of a Process
The kill() system call can serve another purpose. If the sig argument is specified as 0
(the so-called null signal), then no signal is sent. Instead, kill() merely performs
error checking to see if the process can be signaled. Read another way, this means
we can use the null signal to test if a process with a specific process ID exists. If
sending a null signal fails with the error ESRCH, then we know the process doesn’t
exist. If the call fails with the error EPERM (meaning the process exists, but we don’t
have permission to send a signal to it) or succeeds (meaning we do have permission
to send a signal to the process), then we know that the process exists.

Verifying the existence of a particular process ID doesn’t guarantee that a par-
ticular program is still running. Because the kernel recycles process IDs as pro-
cesses are born and die, the same process ID may, over time, refer to a different
process. Furthermore, a particular process ID may exist, but be a zombie (i.e., a
process that has died, but whose parent has not yet performed a wait() to obtain its
termination status, as described in Section 26.2).

Various other techniques can also be used to check whether a particular pro-
cess is running, including the following:

The wait() system calls: These calls are described in Chapter 26. They can be
employed only if the monitored process is a child of the caller.

Semaphores and exclusive file locks: If the process that is being monitored contin-
uously holds a semaphore or a file lock, then, if we can acquire the semaphore
or lock, we know the process has terminated. We describe semaphores in
Chapters 47 and 53 and file locks in Chapter 55.

Receiving process

real user ID

Sending process

saved set-user-ID

effective user ID

real user ID

saved set-user-ID

effective user ID

indicates that if IDs match, 
then sender has permission
to send a signal to receiver
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IPC channels such as pipes and FIFOs: We set up the monitored process so that it
holds a file descriptor open for writing on the channel as long as it is alive.
Meanwhile, the monitoring process holds open a read descriptor for the chan-
nel, and it knows that the monitored process has terminated when the write
end of the channel is closed (because it sees end-of-file). The monitoring pro-
cess can determine this either by reading from its file descriptor or by monitor-
ing the descriptor using one of the techniques described in Chapter 63.

The /proc/PID interface: For example, if a process with the process ID 12345
exists, then the directory /proc/12345 will exist, and we can check this using a
call such as stat().

All of these techniques, except the last, are unaffected by recycling of process IDs.
Listing 20-3 demonstrates the use of kill(). This program takes two command-

line arguments, a signal number and a process ID, and uses kill() to send the signal
to the specified process. If signal 0 (the null signal) is specified, then the program
reports on the existence of the target process.

20.7 Other Ways of Sending Signals: raise() and killpg()

Sometimes, it is useful for a process to send a signal to itself. (We see an example of
this in Section 34.7.3.) The raise() function performs this task.

In a single-threaded program, a call to raise() is equivalent to the following call to kill():

kill(getpid(), sig);

On a system that supports threads, raise(sig) is implemented as:

pthread_kill(pthread_self(), sig)

We describe the pthread_kill() function in Section 33.2.3, but for now it is sufficient
to say that this implementation means that the signal will be delivered to the specific
thread that called raise(). By contrast, the call kill(getpid(), sig) sends a signal to the
calling process, and that signal may be delivered to any thread in the process.

The raise() function originates from C89. The C standards don’t cover operating
system details such as process IDs, but raise() can be specified within the C
standard because it doesn’t require reference to process IDs.

When a process sends itself a signal using raise() (or kill()), the signal is delivered
immediately (i.e., before raise() returns to the caller).

Note that raise() returns a nonzero value (not necessarily –1) on error. The only
error that can occur with raise() is EINVAL, because sig was invalid. Therefore, where
we specify one of the SIGxxxx constants, we don’t check the return status of this
function.

#include <signal.h>

int raise(int sig);

Returns 0 on success, or nonzero on error
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Listing 20-3: Using the kill() system call

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––– signals/t_kill.c

#include <signal.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int s, sig;

    if (argc != 3 || strcmp(argv[1], "--help") == 0)
        usageErr("%s sig-num pid\n", argv[0]);

    sig = getInt(argv[2], 0, "sig-num");

    s = kill(getLong(argv[1], 0, "pid"), sig);

    if (sig != 0) {
        if (s == -1)
            errExit("kill");

    } else {                    /* Null signal: process existence check */
        if (s == 0) {
            printf("Process exists and we can send it a signal\n");
        } else {
            if (errno == EPERM)
                printf("Process exists, but we don't have "
                       "permission to send it a signal\n");
            else if (errno == ESRCH)
                printf("Process does not exist\n");
            else
                errExit("kill");
        }
    }

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––– signals/t_kill.c

The killpg() function sends a signal to all of the members of a process group.

A call to killpg() is equivalent to the following call to kill():

kill(-pgrp, sig);

If pgrp is specified as 0, then the signal is sent to all processes in the same process
group as the caller. SUSv3 leaves this point unspecified, but most UNIX implemen-
tations interpret this case in the same way as Linux.

#include <signal.h>

int killpg(pid_t pgrp, int sig);

Returns 0 on success, or –1 on error
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20.8 Displaying Signal Descriptions

Each signal has an associated printable description. These descriptions are listed in
the array sys_siglist. For example, we can refer to sys_siglist[SIGPIPE] to get the
description for SIGPIPE (broken pipe). However, rather than using the sys_siglist
array directly, the strsignal() function is preferable.

The strsignal() function performs bounds checking on the sig argument, and then
returns a pointer to a printable description of the signal, or a pointer to an error
string if the signal number was invalid. (On some other UNIX implementations,
strsignal() returns NULL if sig is invalid.)

Aside from bounds checking, another advantage of strsignal() over the direct
use of sys_siglist is that strsignal() is locale-sensitive (Section 10.4), so that signal
descriptions will be displayed in the local language.

An example of the use of strsignal() is shown in Listing 20-4.
The psignal() function displays (on standard error) the string given in its argu-

ment msg, followed by a colon, and then the signal description corresponding to
sig. Like strsignal(), psignal() is locale-sensitive.

Although psignal(), strsignal(), and sys_siglist are not standardized as part of SUSv3,
they are nevertheless available on many UNIX implementations. (SUSv4 adds specifi-
cations for psignal() and strsignal().)

20.9 Signal Sets

Many signal-related system calls need to be able to represent a group of different sig-
nals. For example, sigaction() and sigprocmask() allow a program to specify a group of
signals that are to be blocked by a process, while sigpending() returns a group of sig-
nals that are currently pending for a process. (We describe these system calls shortly.)

#define _BSD_SOURCE
#include <signal.h>

extern const char *const sys_siglist[];

#define _GNU_SOURCE
#include <string.h>

char *strsignal(int sig);

Returns pointer to signal description string

#include <signal.h>

void psignal(int sig, const char *msg);
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Multiple signals are represented using a data structure called a signal set, pro-
vided by the system data type sigset_t. SUSv3 specifies a range of functions for
manipulating signal sets, and we now describe these functions.

On Linux, as on most UNIX implementations, the sigset_t data type is a bit
mask. However, SUSv3 doesn’t require this. A signal set could conceivably be
represented using some other kind of structure. SUSv3 requires only that the
type of sigset_t be assignable. Thus, it must be implemented using either some
scalar type (e.g., an integer) or a C structure (perhaps containing an array of
integers).

The sigemptyset() function initializes a signal set to contain no members. The
sigfillset() function initializes a set to contain all signals (including all realtime signals).

One of sigemptyset() or sigaddset() must be used to initialize a signal set. This is
because C doesn’t initialize automatic variables, and the initialization of static vari-
ables to 0 can’t portably be relied upon as indicating an empty signal set, since signal
sets may be implemented using structures other than bit masks. (For the same
reason, it is incorrect to use memset(3) to zero the contents of a signal set in order to
mark it as empty.)

After initialization, individual signals can be added to a set using sigaddset() and
removed using sigdelset().

For both sigaddset() and sigdelset(), the sig argument is a signal number.
The sigismember() function is used to test for membership of a set.

The sigismember() function returns 1 (true) if sig is a member of set, and 0 (false)
otherwise.

#include <signal.h>

int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);

Both return 0 on success, or –1 on error

#include <signal.h>

int sigaddset(sigset_t *set, int sig);
int sigdelset(sigset_t *set, int sig);

Both return 0 on success, or –1 on error

#include <signal.h>

int sigismember(const sigset_t *set, int sig);

Returns 1 if sig is a member of set, otherwise 0
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The GNU C library implements three nonstandard functions that perform
tasks that are complementary to the standard signal set functions just described.

These functions perform the following tasks:

sigandset() places the intersection of the sets left and right in the set dest;

sigorset() places the union of the sets left and right in the set dest; and

sigisemptyset() returns true if set contains no signals.

Example program

Using the functions described in this section, we can write the functions shown in
Listing 20-4, which we employ in various later programs. The first of these, printSigset(),
displays the signals that are members of the specified signal set. This function uses
the NSIG constant, which is defined in <signal.h> to be one greater than the highest
signal number. We use NSIG as the upper bound in a loop that tests all signal numbers
for membership of a set.

Although NSIG is not specified in SUSv3, it is defined on most UNIX implemen-
tations. However, it may be necessary to use implementation-specific compiler
options to make it visible. For example, on Linux, we must define one of the
feature test macros _BSD_SOURCE, _SVID_SOURCE, or _GNU_SOURCE.

The printSigMask() and printPendingSigs() functions employ printSigset() to display,
respectively, the process signal mask and the set of currently pending signals. The
printSigMask() and printPendingSigs() functions use the sigprocmask() and sigpending()
system calls, respectively. We describe the sigprocmask() and sigpending() system calls
in Sections 20.10 and 20.11.

Listing 20-4: Functions for displaying signal sets

––––––––––––––––––––––––––––––––––––––––––––––––– signals/signal_functions.c

#define _GNU_SOURCE
#include <string.h>
#include <signal.h>
#include "signal_functions.h"           /* Declares functions defined here */
#include "tlpi_hdr.h"

/* NOTE: All of the following functions employ fprintf(), which
   is not async-signal-safe (see Section 21.1.2). As such, these

#define _GNU_SOURCE
#include <signal.h>

int sigandset(sigset_t *set, sigset_t *left, sigset_t *right);
int sigorset(sigset_t *dest, sigset_t *left, sigset_t *right);

Both return 0 on success, or –1 on error

int sigisemptyset(const sigset_t *set);

Returns 1 if sig is empty, otherwise 0
408 Chapter 20



   functions are also not async-signal-safe (i.e., beware of
   indiscriminately calling them from signal handlers). */

void                    /* Print list of signals within a signal set */
printSigset(FILE *of, const char *prefix, const sigset_t *sigset)
{
    int sig, cnt;

    cnt = 0;
    for (sig = 1; sig < NSIG; sig++) {
        if (sigismember(sigset, sig)) {
            cnt++;
            fprintf(of, "%s%d (%s)\n", prefix, sig, strsignal(sig));
        }
    }

    if (cnt == 0)
        fprintf(of, "%s<empty signal set>\n", prefix);
}

int                     /* Print mask of blocked signals for this process */
printSigMask(FILE *of, const char *msg)
{
    sigset_t currMask;

    if (msg != NULL)
        fprintf(of, "%s", msg);

    if (sigprocmask(SIG_BLOCK, NULL, &currMask) == -1)
        return -1;

    printSigset(of, "\t\t", &currMask);

    return 0;
}

int                     /* Print signals currently pending for this process */
printPendingSigs(FILE *of, const char *msg)
{
    sigset_t pendingSigs;

    if (msg != NULL)
        fprintf(of, "%s", msg);

    if (sigpending(&pendingSigs) == -1)
        return -1;

    printSigset(of, "\t\t", &pendingSigs);

    return 0;
}

––––––––––––––––––––––––––––––––––––––––––––––––– signals/signal_functions.c
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20.10 The Signal Mask (Blocking Signal Delivery)

For each process, the kernel maintains a signal mask—a set of signals whose delivery
to the process is currently blocked. If a signal that is blocked is sent to a process,
delivery of that signal is delayed until it is unblocked by being removed from the
process signal mask. (In Section 33.2.1, we’ll see that the signal mask is actually a
per-thread attribute, and that each thread in a multithreaded process can indepen-
dently examine and modify its signal mask using the pthread_sigmask() function.)

A signal may be added to the signal mask in the following ways:

When a signal handler is invoked, the signal that caused its invocation can be
automatically added to the signal mask. Whether or not this occurs depends on
the flags used when the handler is established using sigaction().

When a signal handler is established with sigaction(), it is possible to specify an
additional set of signals that are to be blocked when the handler is invoked.

The sigprocmask() system call can be used at any time to explicitly add signals to,
and remove signals from, the signal mask.

We delay discussion of the first two cases until we examine sigaction() in Section 20.13,
and discuss sigprocmask() now.

We can use sigprocmask() to change the process signal mask, to retrieve the existing
mask, or both. The how argument determines the changes that sigprocmask() makes
to the signal mask:

SIG_BLOCK

The signals specified in the signal set pointed to by set are added to the sig-
nal mask. In other words, the signal mask is set to the union of its current
value and set.

SIG_UNBLOCK

The signals in the signal set pointed to by set are removed from the signal
mask. Unblocking a signal that is not currently blocked doesn’t cause an
error to be returned.

SIG_SETMASK

The signal set pointed to by set is assigned to the signal mask.

In each case, if the oldset argument is not NULL, it points to a sigset_t buffer that is
used to return the previous signal mask.

If we want to retrieve the signal mask without changing it, then we can specify
NULL for the set argument, in which case the how argument is ignored.

#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

Returns 0 on success, or –1 on error
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To temporarily prevent delivery of a signal, we can use the series of calls shown
in Listing 20-5 to block the signal, and then unblock it by resetting the signal mask
to its previous state.

Listing 20-5: Temporarily blocking delivery of a signal

    sigset_t blockSet, prevMask;

    /* Initialize a signal set to contain SIGINT */

    sigemptyset(&blockSet);
    sigaddset(&blockSet, SIGINT);

    /* Block SIGINT, save previous signal mask */

    if (sigprocmask(SIG_BLOCK, &blockSet, &prevMask) == -1)
        errExit("sigprocmask1");

    /* ... Code that should not be interrupted by SIGINT ... */

    /* Restore previous signal mask, unblocking SIGINT */

    if (sigprocmask(SIG_SETMASK, &prevMask, NULL) == -1)
        errExit("sigprocmask2");

SUSv3 specifies that if any pending signals are unblocked by a call to sigprocmask(),
then at least one of those signals will be delivered before the call returns. In other
words, if we unblock a pending signal, it is delivered to the process immediately.

Attempts to block SIGKILL and SIGSTOP are silently ignored. If we attempt to block
these signals, sigprocmask() neither honors the request nor generates an error. This
means that we can use the following code to block all signals except SIGKILL and SIGSTOP:

sigfillset(&blockSet);
if (sigprocmask(SIG_BLOCK, &blockSet, NULL) == -1)
    errExit("sigprocmask");

20.11 Pending Signals

If a process receives a signal that it is currently blocking, that signal is added to the
process’s set of pending signals. When (and if) the signal is later unblocked, it is
then delivered to the process. To determine which signals are pending for a pro-
cess, we can call sigpending().

#include <signal.h>

int sigpending(sigset_t *set);

Returns 0 on success, or –1 on error
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The sigpending() system call returns the set of signals that are pending for the call-
ing process in the sigset_t structure pointed to by set. We can then examine set using
the sigismember() function described in Section 20.9.

If we change the disposition of a pending signal, then, when the signal is later
unblocked, it is handled according to its new disposition. Although not often used,
one application of this technique is to prevent the delivery of a pending signal by
setting its disposition to SIG_IGN, or to SIG_DFL if the default action for the signal is
ignore. As a result, the signal is removed from the process’s set of pending signals
and thus not delivered.

20.12 Signals Are Not Queued

The set of pending signals is only a mask; it indicates whether or not a signal has
occurred, but not how many times it has occurred. In other words, if the same sig-
nal is generated multiple times while it is blocked, then it is recorded in the set of
pending signals, and later delivered, just once. (One of the differences between
standard and realtime signals is that realtime signals are queued, as discussed in
Section 22.8.)

Listing 20-6 and Listing 20-7 show two programs that can be used to observe that
signals are not queued. The program in Listing 20-6 takes up to four command-line
arguments, as follows:

$ ./sig_sender PID num-sigs sig-num [sig-num-2]

The first argument is the process ID of a process to which the program should send
signals. The second argument specifies the number of signals to be sent to the tar-
get process. The third argument specifies the signal number that is to be sent to
the target process. If a signal number is supplied as the fourth argument, then the
program sends one instance of that signal after sending the signals specified by the
previous arguments. In the example shell session below, we use this final argument
to send a SIGINT signal to the target process; the purpose of sending this signal will
become clear in a moment.

Listing 20-6: Sending multiple signals

–––––––––––––––––––––––––––––––––––––––––––––––––––––– signals/sig_sender.c
#include <signal.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int numSigs, sig, j;
    pid_t pid;

    if (argc < 4 || strcmp(argv[1], "--help") == 0)
        usageErr("%s pid num-sigs sig-num [sig-num-2]\n", argv[0]);
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    pid = getLong(argv[1], 0, "PID");
    numSigs = getInt(argv[2], GN_GT_0, "num-sigs");
    sig = getInt(argv[3], 0, "sig-num");

    /* Send signals to receiver */

    printf("%s: sending signal %d to process %ld %d times\n",
            argv[0], sig, (long) pid, numSigs);

    for (j = 0; j < numSigs; j++)
        if (kill(pid, sig) == -1)
            errExit("kill");

    /* If a fourth command-line argument was specified, send that signal */

    if (argc > 4)
        if (kill(pid, getInt(argv[4], 0, "sig-num-2")) == -1)
            errExit("kill");

    printf("%s: exiting\n", argv[0]);
    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– signals/sig_sender.c

The program shown in Listing 20-7 is designed to catch and report statistics on sig-
nals sent by the program in Listing 20-6. This program performs the following steps:

The program sets up a single handler to catch all signals w. (It isn’t possible to
catch SIGKILL and SIGSTOP, but we ignore the error that occurs when trying to
establish a handler for these signals.) For most types of signals, the handler q
simply counts the signal using an array. If SIGINT is received, the handler sets a
flag (gotSigint) that causes the program to exit its main loop (the while loop
described below). (We explain the use of the volatile qualifier and the
sig_atomic_t data type used to declare the gotSigint variable in Section 21.1.3.)

If a command-line argument was supplied to the program, then the program
blocks all signals for the number of seconds specified by that argument, and
then, prior to unblocking the signals, displays the set of pending signals e. This
allows us to send signals to the process before it commences the following step.

The program executes a while loop that consumes CPU time until gotSigint is
set r. (Sections 20.14 and 22.9 describe the use of pause() and sigsuspend(),
which are more CPU-efficient ways of waiting for the arrival of a signal.)

After exiting the while loop, the program displays counts of all signals received t.

We first use these two programs to illustrate that a blocked signal is delivered only
once, no matter how many times it is generated. We do this by specifying a sleep
interval for the receiver and sending all signals before the sleep interval completes.

$ ./sig_receiver 15 &                     Receiver blocks signals for 15 secs
[1] 5368
./sig_receiver: PID is 5368
./sig_receiver: sleeping for 15 seconds
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$ ./sig_sender 5368 1000000 10 2          Send SIGUSR1 signals, plus a SIGINT
./sig_sender: sending signal 10 to process 5368 1000000 times
./sig_sender: exiting
./sig_receiver: pending signals are:
                2 (Interrupt)
                10 (User defined signal 1)
./sig_receiver: signal 10 caught 1 time
[1]+  Done                    ./sig_receiver 15

The command-line arguments to the sending program specified the SIGUSR1 and
SIGINT signals, which are signals 10 and 2, respectively, on Linux/x86.

From the output above, we can see that even though one million signals were
sent, only one was delivered to the receiver.

Even if a process doesn’t block signals, it may receive fewer signals than are
sent to it. This can happen if the signals are sent so fast that they arrive before the
receiving process has a chance to be scheduled for execution by the kernel, with
the result that the multiple signals are recorded just once in the process’s pending
signal set. If we execute the program in Listing 20-7 with no command-line argu-
ments (so that it doesn’t block signals and sleep), we see the following:

$ ./sig_receiver &
[1] 5393
./sig_receiver: PID is 5393
$ ./sig_sender 5393 1000000 10 2
./sig_sender: sending signal 10 to process 5393 1000000 times
./sig_sender: exiting
./sig_receiver: signal 10 caught 52 times
[1]+  Done                    ./sig_receiver

Of the million signals sent, just 52 were caught by the receiving process. (The pre-
cise number of signals caught will vary depending on the vagaries of decisions
made by the kernel scheduling algorithm.) The reason for this is that each time the
sending program is scheduled to run, it sends multiple signals to the receiver. How-
ever, only one of these signals is marked as pending and then delivered when the
receiver has a chance to run.

Listing 20-7: Catching and counting signals

––––––––––––––––––––––––––––––––––––––––––––––––––––– signals/sig_receiver.c
#define _GNU_SOURCE
#include <signal.h>
#include "signal_functions.h"           /* Declaration of printSigset() */
#include "tlpi_hdr.h"

static int sigCnt[NSIG];                /* Counts deliveries of each signal */
static volatile sig_atomic_t gotSigint = 0;
                                        /* Set nonzero if SIGINT is delivered */

static void
q handler(int sig)

{
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    if (sig == SIGINT)
        gotSigint = 1;
    else
        sigCnt[sig]++;
}

int
main(int argc, char *argv[])
{
    int n, numSecs;
    sigset_t pendingMask, blockingMask, emptyMask;

    printf("%s: PID is %ld\n", argv[0], (long) getpid());

w     for (n = 1; n < NSIG; n++)          /* Same handler for all signals */
        (void) signal(n, handler);      /* Ignore errors */

    /* If a sleep time was specified, temporarily block all signals,
       sleep (while another process sends us signals), and then
       display the mask of pending signals and unblock all signals */

e     if (argc > 1) {
        numSecs = getInt(argv[1], GN_GT_0, NULL);

        sigfillset(&blockingMask);
        if (sigprocmask(SIG_SETMASK, &blockingMask, NULL) == -1)
            errExit("sigprocmask");

        printf("%s: sleeping for %d seconds\n", argv[0], numSecs);
        sleep(numSecs);

        if (sigpending(&pendingMask) == -1)
            errExit("sigpending");

        printf("%s: pending signals are: \n", argv[0]);
        printSigset(stdout, "\t\t", &pendingMask);

        sigemptyset(&emptyMask);        /* Unblock all signals */
        if (sigprocmask(SIG_SETMASK, &emptyMask, NULL) == -1)
            errExit("sigprocmask");
    }

r     while (!gotSigint)                  /* Loop until SIGINT caught */
        continue;

t for (n = 1; n < NSIG; n++)          /* Display number of signals received */
        if (sigCnt[n] != 0)
            printf("%s: signal %d caught %d time%s\n", argv[0], n,
                    sigCnt[n], (sigCnt[n] == 1) ? "" : "s");

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––  signals/sig_receiver.c
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20.13 Changing Signal Dispositions: sigaction()

The sigaction() system call is an alternative to signal() for setting the disposition of a
signal. Although sigaction() is somewhat more complex to use than signal(), in
return it provides greater flexibility. In particular, sigaction() allows us to retrieve
the disposition of a signal without changing it, and to set various attributes control-
ling precisely what happens when a signal handler is invoked. Additionally, as we’ll
elaborate in Section 22.7, sigaction() is more portable than signal() when establish-
ing a signal handler.

The sig argument identifies the signal whose disposition we want to retrieve or
change. This argument can be any signal except SIGKILL or SIGSTOP.

The act argument is a pointer to a structure specifying a new disposition for the
signal. If we are interested only in finding the existing disposition of the signal,
then we can specify NULL for this argument. The oldact argument is a pointer to a
structure of the same type, and is used to return information about the signal’s pre-
vious disposition. If we are not interested in this information, then we can specify
NULL for this argument. The structures pointed to by act and oldact are of the follow-
ing type:

struct sigaction {
    void   (*sa_handler)(int);    /* Address of handler */
    sigset_t sa_mask;             /* Signals blocked during handler
                                     invocation */
    int      sa_flags;            /* Flags controlling handler invocation */
    void   (*sa_restorer)(void);  /* Not for application use */
};

The sigaction structure is actually somewhat more complex than shown here.
We consider further details in Section 21.4.

The sa_handler field corresponds to the handler argument given to signal(). It speci-
fies the address of a signal handler, or one of the constants SIG_IGN or SIG_DFL. The
sa_mask and sa_flags fields, which we discuss in a moment, are interpreted only if
sa_handler is the address of a signal handler—that is, a value other than SIG_IGN or
SIG_DFL. The remaining field, sa_restorer, is not intended for use in applications (and
is not specified by SUSv3).

The sa_restorer field is used internally to ensure that on completion of a signal
handler, a call is made to the special-purpose sigreturn() system call, which
restores the process’s execution context so that it can continue execution at
the point where it was interrupted by the signal handler. An example of this
usage can be found in the glibc source file sysdeps/unix/sysv/linux/i386/
sigaction.c.

#include <signal.h>

int sigaction(int sig, const struct sigaction *act, struct sigaction *oldact);

Returns 0 on success, or –1 on error
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The sa_mask field defines a set of signals that are to be blocked during invocation of
the handler defined by sa_handler. When the signal handler is invoked, any signals in
this set that are not currently part of the process signal mask are automatically
added to the mask before the handler is called. These signals remain in the process
signal mask until the signal handler returns, at which time they are automatically
removed. The sa_mask field allows us to specify a set of signals that aren’t permitted
to interrupt execution of this handler. In addition, the signal that caused the han-
dler to be invoked is automatically added to the process signal mask. This means
that a signal handler won’t recursively interrupt itself if a second instance of the
same signal arrives while the handler is executing. Because blocked signals are not
queued, if any of these signals are repeatedly generated during the execution of the
handler, they are (later) delivered only once.

The sa_flags field is a bit mask specifying various options controlling how the
signal is handled. The following bits may be ORed (|) together in this field:

SA_NOCLDSTOP

If sig is SIGCHLD, don’t generate this signal when a child process is stopped or
resumed as a consequence of receiving a signal. Refer to Section 26.3.2.

SA_NOCLDWAIT

(since Linux 2.6) If sig is SIGCHLD, don’t transform children into zombies
when they terminate. For further details, see Section 26.3.3.

SA_NODEFER

When this signal is caught, don’t automatically add it to the process signal
mask while the handler is executing. The name SA_NOMASK is provided as a
historical synonym for SA_NODEFER, but the latter name is preferable because
it is standardized in SUSv3.

SA_ONSTACK

Invoke the handler for this signal using an alternate stack installed by
sigaltstack(). Refer to Section 21.3.

SA_RESETHAND

When this signal is caught, reset its disposition to the default (i.e., SIG_DFL)
before invoking the handler. (By default, a signal handler remains estab-
lished until it is explicitly disestablished by a further call to sigaction().) The
name SA_ONESHOT is provided as a historical synonym for SA_RESETHAND, but
the latter name is preferable because it is standardized in SUSv3.

SA_RESTART

Automatically restart system calls interrupted by this signal handler. See
Section 21.5.

SA_SIGINFO

Invoke the signal handler with additional arguments providing further
information about the signal. We describe this flag in Section 21.4.

All of the above options are specified in SUSv3.
An example of the use of sigaction() is shown in Listing 21-1.
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20.14 Waiting for a Signal: pause()

Calling pause() suspends execution of the process until the call is interrupted by a
signal handler (or until an unhandled signal terminates the process).

When a signal is handled, pause() is interrupted and always returns –1 with errno set
to EINTR. (We say more about the EINTR error in Section 21.5.)

An example of the use of pause() is provided in Listing 20-2.
In Sections 22.9, 22.10, and 22.11, we look at various other ways that a pro-

gram can suspend execution while waiting for a signal.

20.15 Summary

A signal is a notification that some kind of event has occurred, and may be sent to a
process by the kernel, by another process, or by itself. There is a range of standard
signal types, each of which has a unique number and purpose.

Signal delivery is typically asynchronous, meaning that the point at which the
signal interrupts execution of the process is unpredictable. In some cases (e.g.,
hardware-generated signals), signals are delivered synchronously, meaning that
delivery occurs predictably and reproducibly at a certain point in the execution of a
program.

By default, a signal either is ignored, terminates a process (with or without a
core dump), stops a running process, or restarts a stopped process. The particular
default action depends on the signal type. Alternatively, a program can use signal()
or sigaction() to explicitly ignore a signal or to establish a programmer-defined signal
handler function that is invoked when the signal is delivered. For portability reasons,
establishing a signal handler is best performed using sigaction().

A process (with suitable permissions) can send a signal to another process
using kill(). Sending the null signal (0) is a way of determining if a particular pro-
cess ID is in use.

Each process has a signal mask, which is the set of signals whose delivery is cur-
rently blocked. Signals can be added to and removed from the signal mask using
sigprocmask().

If a signal is received while it is blocked, then it remains pending until it is
unblocked. Standard signals can’t be queued; that is, a signal can be marked as
pending (and thus later delivered) only once. A process can use the sigpending() sys-
tem call to retrieve a signal set (a data structure used to represent multiple different
signals) identifying the signals that it has pending.

#include <unistd.h>

int pause(void);

Always returns –1 with errno set to EINTR
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The sigaction() system call provides more control and flexibility than signal()
when setting the disposition of a signal. First, we can specify a set of additional sig-
nals to be blocked when a handler is invoked. In addition, various flags can be used
to control the actions that occur when a signal handler is invoked. For example,
there are flags that select the older unreliable signal semantics (not blocking the
signal causing invocation of a handler, and having the disposition of the signal
reset to its default before the handler is called).

Using pause(), a process can suspend execution until a signal arrives.

Further information

[Bovet & Cesati, 2005] and [Maxwell, 1999] provide background on the imple-
mentation of signals in Linux. [Goodheart & Cox, 1994] details the implementa-
tion of signals on System V Release 4. The GNU C library manual (available
online at http://www.gnu.org/) contains an extensive description of signals.

20.16 Exercises

20-1. As noted in Section 20.3, sigaction() is more portable than signal() for establishing a
signal handler. Replace the use of signal() by sigaction() in the program in Listing 20-7
(sig_receiver.c).

20-2. Write a program that shows that when the disposition of a pending signal is
changed to be SIG_IGN, the program never sees (catches) the signal.

20-3. Write programs that verify the effect of the SA_RESETHAND and SA_NODEFER flags when
establishing a signal handler with sigaction().

20-4. Implement siginterrupt() using sigaction().
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S I G N A L S :  S I G N A L  H A N D L E R S

This chapter continues the description of signals begun in the previous chapter. It
focuses on signal handlers, and extends the discussion started in Section 20.4.
Among the topics we consider are the following:

how to design a signal handler, which necessitates a discussion of reentrancy
and async-signal-safe functions;

alternatives to performing a normal return from a signal handler, in particular,
the use of a nonlocal goto for this purpose;

handling of signals on an alternate stack;

the use of the sigaction() SA_SIGINFO flag to allow a signal handler to obtain more
detailed information about the signal that caused its invocation; and

how a blocking system call may be interrupted by a signal handler, and how the
call can be restarted if desired.



21.1 Designing Signal Handlers

In general, it is preferable to write simple signal handlers. One important reason
for this is to reduce the risk of creating race conditions. Two common designs for
signal handlers are the following:

The signal handler sets a global flag and exits. The main program periodically
checks this flag and, if it is set, takes appropriate action. (If the main program
cannot perform such periodic checks because it needs to monitor one or more
file descriptors to see if I/O is possible, then the signal handler can also write a
single byte to a dedicated pipe whose read end is included among the file
descriptors monitored by the main program. We show an example of this tech-
nique in Section 63.5.2.)

The signal handler performs some type of cleanup and then either terminates
the process or uses a nonlocal goto (Section 21.2.1) to unwind the stack and
return control to a predetermined location in the main program.

In the following sections, we explore these ideas, as well as other concepts that are
important in the design of signal handlers.

21.1.1 Signals Are Not Queued (Revisited)
In Section 20.10, we noted that delivery of a signal is blocked during the execution
of its handler (unless we specify the SA_NODEFER flag to sigaction()). If the signal is
(again) generated while the handler is executing, then it is marked as pending and
later delivered when the handler returns. We also already noted that signals are not
queued. If the signal is generated more than once while the handler is executing,
then it is still marked as pending, and it will later be delivered only once.

That signals can “disappear” in this way has implications for how we design sig-
nal handlers. To begin with, we can’t reliably count the number of times a signal is
generated. Furthermore, we may need to code our signal handlers to deal with the
possibility that multiple events of the type corresponding to the signal have
occurred. We’ll see an example of this when we consider the use of the SIGCHLD signal
in Section 26.3.1.

21.1.2 Reentrant and Async-Signal-Safe Functions
Not all system calls and library functions can be safely called from a signal handler.
To understand why requires an explanation of two concepts: reentrant functions
and async-signal-safe functions.

Reentrant and nonreentrant functions

To explain what a reentrant function is, we need to first distinguish between single-
threaded and multithreaded programs. Classical UNIX programs have a single
thread of execution: the CPU processes instructions for a single logical flow of execution
through the program. In a multithreaded program, there are multiple, indepen-
dent, concurrent logical flows of execution within the same process.

In Chapter 29, we’ll see how to explicitly create programs that contain multiple
threads of execution. However, the concept of multiple threads of execution is also
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relevant for programs that employ signal handlers. Because a signal handler may
asynchronously interrupt the execution of a program at any point in time, the main
program and the signal handler in effect form two independent (although not con-
current) threads of execution within the same process.

A function is said to be reentrant if it can safely be simultaneously executed by
multiple threads of execution in the same process. In this context, “safe” means
that the function achieves its expected result, regardless of the state of execution of
any other thread of execution.

The SUSv3 definition of a reentrant function is one “whose effect, when called
by two or more threads, is guaranteed to be as if the threads each executed the
function one after the other in an undefined order, even if the actual execu-
tion is interleaved.”

A function may be nonreentrant if it updates global or static data structures. (A func-
tion that employs only local variables is guaranteed to be reentrant.) If two invoca-
tions of (i.e., two threads executing) the function simultaneously attempt to update
the same global variable or data structure, then these updates are likely to interfere
with each other and produce incorrect results. For example, suppose that one thread
of execution is in the middle of updating a linked list data structure to add a new
list item when another thread also attempts to update the same linked list. Since
adding a new item to the list requires updating multiple pointers, if another thread
interrupts these steps and updates the same pointers, chaos will result.

Such possibilities are in fact rife within the standard C library. For example, we
already noted in Section 7.1.3 that malloc() and free() maintain a linked list of freed
memory blocks available for reallocation from the heap. If a call to malloc() in the
main program is interrupted by a signal handler that also calls malloc(), then this
linked list can be corrupted. For this reason, the malloc() family of functions, and
other library functions that use them, are nonreentrant.

Other library functions are nonreentrant because they return information
using statically allocated memory. Examples of such functions (described else-
where in this book) include crypt(), getpwnam(), gethostbyname(), and getservbyname().
If a signal handler also uses one of these functions, then it will overwrite informa-
tion returned by any earlier call to the same function from within the main pro-
gram (or vice versa).

Functions can also be nonreentrant if they use static data structures for their
internal bookkeeping. The most obvious examples of such functions are the mem-
bers of the stdio library (printf(), scanf(), and so on), which update internal data
structures for buffered I/O. Thus, when using printf() from within a signal handler,
we may sometimes see strange output—or even a program crash or data corruption—
if the handler interrupts the main program in the middle of executing a call to
printf() or another stdio function.

Even if we are not using nonreentrant library functions, reentrancy issues can
still be relevant. If a signal handler updates programmer-defined global data struc-
tures that are also updated within the main program, then we can say that the sig-
nal handler is nonreentrant with respect to the main program.

If a function is nonreentrant, then its manual page will normally provide an
explicit or implicit indication of this fact. In particular, watch out for statements
that the function uses or returns information in statically allocated variables.
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Example program

Listing 21-1 demonstrates the nonreentrant nature of the crypt() function (Section 8.5).
As command-line arguments, this program accepts two strings. The program per-
forms the following steps:

1. Call crypt() to encrypt the string in the first command-line argument, and copy
this string to a separate buffer using strdup().

2. Establish a handler for SIGINT (generated by typing Control-C). The handler calls
crypt() to encrypt the string supplied in the second command-line argument.

3. Enter an infinite for loop that uses crypt() to encrypt the string in the first
command-line argument and check that the returned string is the same as that
saved in step 1.

In the absence of a signal, the strings will always match in step 3. However, if a
SIGINT signal arrives and the execution of the signal handler interrupts the main
program just after the execution of the crypt() call in the for loop, but before the
check to see if the strings match, then the main program will report a mismatch.
When we run the program, this is what we see:

$ ./non_reentrant abc def
Repeatedly type Control-C to generate SIGINT
Mismatch on call 109871 (mismatch=1 handled=1)
Mismatch on call 128061 (mismatch=2 handled=2)
Many lines of output removed
Mismatch on call 727935 (mismatch=149 handled=156)
Mismatch on call 729547 (mismatch=150 handled=157)
Type Control-\ to generate SIGQUIT
Quit (core dumped)

Comparing the mismatch and handled values in the above output, we see that in the
majority of cases where the signal handler is invoked, it overwrites the statically
allocated buffer between the call to crypt() and the string comparison in main().

Listing 21-1: Calling a nonreentrant function from both main() and a signal handler

––––––––––––––––––––––––––––––––––––––––––––––––––––  signals/nonreentrant.c
#define _XOPEN_SOURCE 600
#include <unistd.h>
#include <signal.h>
#include <string.h>
#include "tlpi_hdr.h"

static char *str2;              /* Set from argv[2] */
static int handled = 0;         /* Counts number of calls to handler */

static void
handler(int sig)
{
    crypt(str2, "xx");
    handled++;
}
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int
main(int argc, char *argv[])
{
    char *cr1;
    int callNum, mismatch;
    struct sigaction sa;

    if (argc != 3)
        usageErr("%s str1 str2\n", argv[0]);

    str2 = argv[2];                      /* Make argv[2] available to handler */
    cr1 = strdup(crypt(argv[1], "xx"));  /* Copy statically allocated string
                                            to another buffer */
    if (cr1 == NULL)
        errExit("strdup");

    sigemptyset(&sa.sa_mask);
    sa.sa_flags = 0;
    sa.sa_handler = handler;
    if (sigaction(SIGINT, &sa, NULL) == -1)
        errExit("sigaction");

    /* Repeatedly call crypt() using argv[1]. If interrupted by a
       signal handler, then the static storage returned by crypt()
       will be overwritten by the results of encrypting argv[2], and
       strcmp() will detect a mismatch with the value in 'cr1'. */

    for (callNum = 1, mismatch = 0; ; callNum++) {
        if (strcmp(crypt(argv[1], "xx"), cr1) != 0) {
            mismatch++;
            printf("Mismatch on call %d (mismatch=%d handled=%d)\n",
                    callNum, mismatch, handled);
        }
    }
}

––––––––––––––––––––––––––––––––––––––––––––––––––––  signals/nonreentrant.c

Standard async-signal-safe functions

An async-signal-safe function is one that the implementation guarantees to be safe
when called from a signal handler. A function is async-signal-safe either because it
is reentrant or because it is not interruptible by a signal handler.

Table 21-1 lists the functions that various standards require to be async-signal-
safe. In this table, the functions whose names are not followed by a v2 or v3 were
specified as async-signal-safe in POSIX.1-1990. SUSv2 added the functions marked
v2 to the list, and those marked v3 were added by SUSv3. Individual UNIX imple-
mentations may make other functions async-signal-safe, but all standards-conform-
ant UNIX implementations must ensure that at least these functions are async-
signal-safe (if they are provided by the implementation; not all of these functions
are provided on Linux).

SUSv4 makes the following changes to Table 21-1:

The following functions are removed: fpathconf(), pathconf(), and sysconf().
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The following functions are added: execl(), execv(), faccessat(), fchmodat(),
fchownat(), fexecve(), fstatat(), futimens(), linkat(), mkdirat(), mkfifoat(), mknod(),
mknodat(), openat(), readlinkat(), renameat(), symlinkat(), unlinkat(), utimensat(),
and utimes().

Table 21-1: Functions required to be async-signal-safe by POSIX.1-1990, SUSv2, and SUSv3

_Exit() (v3)
_exit()
abort() (v3)
accept() (v3)
access()
aio_error() (v2)
aio_return() (v2)
aio_suspend() (v2)
alarm()
bind() (v3)
cfgetispeed()
cfgetospeed()
cfsetispeed()
cfsetospeed()
chdir()
chmod()
chown()
clock_gettime() (v2)
close()
connect() (v3)
creat()
dup()
dup2()
execle()
execve()
fchmod() (v3)
fchown() (v3)
fcntl()
fdatasync() (v2)
fork()
fpathconf() (v2)
fstat()
fsync() (v2)
ftruncate() (v3)
getegid()
geteuid()
getgid()
getgroups()
getpeername() (v3)
getpgrp()

getpid()
getppid()
getsockname() (v3)
getsockopt() (v3)
getuid()
kill()
link()
listen() (v3)
lseek()
lstat() (v3)
mkdir()
mkfifo()
open()
pathconf()
pause()
pipe()
poll() (v3)
posix_trace_event() (v3)
pselect() (v3)
raise() (v2)
read()
readlink() (v3)
recv() (v3)
recvfrom() (v3)
recvmsg() (v3)
rename()
rmdir()
select() (v3)
sem_post() (v2)
send() (v3)
sendmsg() (v3)
sendto() (v3)
setgid()
setpgid()
setsid()
setsockopt() (v3)
setuid()
shutdown() (v3)
sigaction()
sigaddset()

sigdelset()
sigemptyset()
sigfillset()
sigismember()
signal() (v2)
sigpause() (v2)
sigpending()
sigprocmask()
sigqueue() (v2)
sigset() (v2)
sigsuspend()
sleep()
socket() (v3)
sockatmark() (v3)
socketpair() (v3)
stat()
symlink() (v3)
sysconf()
tcdrain()
tcflow()
tcflush()
tcgetattr()
tcgetpgrp()
tcsendbreak()
tcsetattr()
tcsetpgrp()
time()
timer_getoverrun() (v2)
timer_gettime() (v2)
timer_settime() (v2)
times()
umask()
uname()
unlink()
utime()
wait()
waitpid()
write()
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SUSv3 notes that all functions not listed in Table 21-1 are considered to be unsafe
with respect to signals, but points out that a function is unsafe only when invoca-
tion of a signal handler interrupts the execution of an unsafe function, and the han-
dler itself also calls an unsafe function. In other words, when writing signal
handlers, we have two choices:

Ensure that the code of the signal handler itself is reentrant and that it calls
only async-signal-safe functions.

Block delivery of signals while executing code in the main program that calls
unsafe functions or works with global data structures also updated by the sig-
nal handler.

The problem with the second approach is that, in a complex program, it can be dif-
ficult to ensure that a signal handler will never interrupt the main program while it
is calling an unsafe function. For this reason, the above rules are often simplified to
the statement that we must not call unsafe functions from within a signal handler.

If we set up the same handler function to deal with several different signals or
use the SA_NODEFER flag to sigaction(), then a handler may interrupt itself. As a
consequence, the handler may be nonreentrant if it updates global (or static)
variables, even if they are not used by the main program.

Use of errno inside signal handlers

Because they may update errno, use of the functions listed in Table 21-1 can never-
theless render a signal handler nonreentrant, since they may overwrite the errno
value that was set by a function called from the main program. The workaround is
to save the value of errno on entry to a signal handler that uses any of the functions
in Table 21-1 and restore the errno value on exit from the handler, as in the follow-
ing example:

void
handler(int sig)
{
    int savedErrno;

    savedErrno = errno;

    /* Now we can execute a function that might modify errno */

    errno = savedErrno;
}

Use of unsafe functions in example programs in this book

Although printf() is not async-signal-safe, we use it in signal handlers in various
example programs in this book. We do so because printf() provides an easy and
concise way to demonstrate that a signal handler has been called, and to display the
contents of relevant variables within the handler. For similar reasons, we occasion-
ally use a few other unsafe functions in signal handlers, including other stdio func-
tions and strsignal().
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Real-world applications should avoid calling non-async-signal-safe functions
from signal handlers. To make this clear, each signal handler in the example pro-
grams that uses one of these functions is marked with a comment indicating that
the usage is unsafe:

printf("Some message\n");           /* UNSAFE */

21.1.3 Global Variables and the sig_atomic_t Data Type
Notwithstanding reentrancy issues, it can be useful to share global variables
between the main program and a signal handler. This can be safe as long as the
main program correctly handles the possibility that the signal handler may change
the global variable at any time. For example, one common design is to make a signal
handler’s sole action the setting of a global flag. This flag is periodically checked by
the main program, which then takes appropriate action in response to the delivery
of the signal (and clears the flag). When global variables are accessed in this way
from a signal handler, we should always declare them using the volatile attribute
(see Section 6.8) in order to prevent the compiler from performing optimizations
that result in the variable being stored in a register.

Reading and writing global variables may involve more than one machine-
language instruction, and a signal handler may interrupt the main program in the
middle of such an instruction sequence. (We say that access to the variable is
nonatomic.) For this reason, the C language standards and SUSv3 specify an integer
data type, sig_atomic_t, for which reads and writes are guaranteed to be atomic.
Thus, a global flag variable that is shared between the main program and a signal
handler should be declared as follows:

volatile sig_atomic_t flag;

We show an example of the use of the sig_atomic_t data type in Listing 22-5, on
page 466.

Note that the C increment (++) and decrement (--) operators don’t fall within
the guarantee provided for sig_atomic_t. On some hardware architectures, these
operations may not be atomic (refer to Section 30.1 for more details). All that we
are guaranteed to be safely allowed to do with a sig_atomic_t variable is set it within
the signal handler, and check it in the main program (or vice versa).

C99 and SUSv3 specify that an implementation should define two constants (in
<stdint.h>), SIG_ATOMIC_MIN and SIG_ATOMIC_MAX, that define the range of values that
may be assigned to variables of type sig_atomic_t. The standards require that this
range be at least –127 to 127 if sig_atomic_t is represented as a signed value, or 0 to 255
if it is represented as an unsigned value. On Linux, these two constants equate to
the negative and positive limits for signed 32-bit integers.

21.2 Other Methods of Terminating a Signal Handler

All of the signal handlers that we have looked at so far complete by returning to the
main program. However, simply returning from a signal handler sometimes isn’t
desirable, or in some cases, isn’t even useful. (We’ll see an example of where
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returning from a signal handler isn’t useful when we discuss hardware-generated
signals in Section 22.4.)

There are various other ways of terminating a signal handler:

Use _exit() to terminate the process. Beforehand, the handler may carry out
some cleanup actions. Note that we can’t use exit() to terminate a signal handler,
because it is not one of safe functions listed in Table 21-1. It is unsafe because it
flushes stdio buffers prior to calling _exit(), as described in Section 25.1.

Use kill() or raise() to send a signal that kills the process (i.e., a signal whose
default action is process termination).

Perform a nonlocal goto from the signal handler.

Use the abort() function to terminate the process with a core dump.

The last two of these options are described in further detail in the following sections.

21.2.1 Performing a Nonlocal Goto from a Signal Handler
Section 6.8 described the use of setjmp() and longjmp() to perform a nonlocal goto
from a function to one of its callers. We can also use this technique from a signal
handler. This provides a way to recover after delivery of a signal caused by a hard-
ware exception (e.g., a memory access error), and also allows us to catch a signal
and return control to a particular point in a program. For example, upon receipt of
a SIGINT signal (normally generated by typing Control-C), the shell performs a nonlocal
goto to return control to its main input loop (and thus read a new command).

However, there is a problem with using the standard longjmp() function to exit
from a signal handler. We noted earlier that, upon entry to the signal handler, the
kernel automatically adds the invoking signal, as well as any signals specified in the
act.sa_mask field, to the process signal mask, and then removes these signals from
the mask when the handler does a normal return.

What happens to the signal mask if we exit the signal handler using longjmp()?
The answer depends on the genealogy of the particular UNIX implementation.
Under System V, longjmp() doesn’t restore the signal mask, so that blocked signals
are not unblocked upon leaving the handler. Linux follows the System V behavior.
(This is usually not what we want, since it leaves the signal that caused invocation of
the handler blocked.) Under BSD-derived implementations, setjmp() saves the sig-
nal mask in its env argument, and the saved signal mask is restored by longjmp().
(BSD-derived implementations also provide two other functions, _setjmp() and
_longjmp(), which have the System V semantics.) In other words, we can’t portably
use longjmp() to exit a signal handler.

If we define the _BSD_SOURCE feature test macro when compiling a program,
then (the glibc) setjmp() follows the BSD semantics.

Because of this difference in the two main UNIX variants, POSIX.1-1990 chose not
to specify the handling of the signal mask by setjmp() and longjmp(). Instead, it
defined a pair of new functions, sigsetjmp() and siglongjmp(), that provide explicit
control of the signal mask when performing a nonlocal goto.
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The sigsetjmp() and siglongjmp() functions operate similarly to setjmp() and longjmp().
The only differences are in the type of the env argument (sigjmp_buf instead of
jmp_buf) and the extra savesigs argument to sigsetjmp(). If savesigs is nonzero, then
the process signal mask that is current at the time of the sigsetjmp() call is saved in
env and restored by a later siglongjmp() call specifying the same env argument. If
savesigs is 0, then the process signal mask is not saved and restored.

The longjmp() and siglongjmp() functions are not listed among the async-signal-
safe functions in Table 21-1. This is because calling any non-async-signal-safe func-
tion after performing a nonlocal goto carries the same risks as calling that function
from within the signal handler. Furthermore, if a signal handler interrupts the
main program while it is part-way through updating a data structure, and the han-
dler exits by performing a nonlocal goto, then the incomplete update may leave
that data structure in an inconsistent state. One technique that can help to avoid
problems is to use sigprocmask() to temporarily block the signal while sensitive
updates are being performed.

Example program

Listing 21-2 demonstrates the difference in signal mask handling for the two types
of nonlocal gotos. This program establishes a handler for SIGINT. The program is
designed to allow either setjmp() plus longjmp() or sigsetjmp() plus siglongjmp() to be
used to exit the signal handler, depending on whether the program is compiled
with the USE_SIGSETJMP macro defined. The program displays the current settings of
the signal mask both on entry to the signal handler and after the nonlocal goto has
transferred control from the handler back to the main program.

When we build the program so that longjmp() is used to exit the signal handler,
this is what we see when we run the program:

$ make -s sigmask_longjmp         Default compilation causes setjmp() to be used
$ ./sigmask_longjmp
Signal mask at startup:
                <empty signal set>
Calling setjmp()
Type Control-C to generate SIGINT
Received signal 2 (Interrupt), signal mask is:
                2 (Interrupt)
After jump from handler, signal mask is:
                2 (Interrupt)
(At this point, typing Control-C again has no effect, since SIGINT is blocked)
Type Control-\ to kill the program
Quit

#include <setjmp.h>

int sigsetjmp(sigjmp_buf env, int savesigs);

Returns 0 on initial call, nonzero on return via siglongjmp()

void siglongjmp(sigjmp_buf env, int val);
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From the program output, we can see that, after a longjmp() from the signal
handler, the signal mask remains set to the value to which it was set on entry to
the signal handler.

In the above shell session, we built the program using the makefile supplied
with the source code distribution for this book. The –s option tells make not to
echo the commands that it is executing. We use this option to avoid cluttering
the session log. ([Mecklenburg, 2005] provides a description of the GNU make
program.)

When we compile the same source file to build an executable that uses siglongjmp()
to exit the handler, we see the following:

$ make -s sigmask_siglongjmp      Compiles using cc –DUSE_SIGSETJMP
$ ./sigmask_siglongjmp x
Signal mask at startup:
                <empty signal set>
Calling sigsetjmp()
Type Control-C
Received signal 2 (Interrupt), signal mask is:
                2 (Interrupt)
After jump from handler, signal mask is:
                <empty signal set>

At this point, SIGINT is not blocked, because siglongjmp() restored the signal mask to
its original state. Next, we type Control-C again, so that the handler is once more
invoked:

Type Control-C
Received signal 2 (Interrupt), signal mask is:
                2 (Interrupt)
After jump from handler, signal mask is:
                <empty signal set>
Type Control-\ to kill the program
Quit

From the above output, we can see that siglongjmp() restores the signal mask to the
value it had at the time of the sigsetjmp() call (i.e., an empty signal set).

Listing 21-2 also demonstrates a useful technique for use with a signal handler
that performs a nonlocal goto. Because a signal can be generated at any time, it
may actually occur before the target of the goto has been set up by sigsetjmp() (or
setjmp()). To prevent this possibility (which would cause the handler to perform a
nonlocal goto using an uninitialized env buffer), we employ a guard variable,
canJump, to indicate whether the env buffer has been initialized. If canJump is false,
then instead of doing a nonlocal goto, the handler simply returns. An alternative
approach is to arrange the program code so that the call to sigsetjmp() (or setjmp())
occurs before the signal handler is established. However, in complex programs, it
may be difficult to ensure that these two steps are performed in that order, and the
use of a guard variable may be simpler.
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Note that using #ifdef was the simplest way of writing the program in Listing 21-2
in a standards-conformant fashion. In particular, we could not have replaced the
#ifdef with the following run-time check:

if (useSiglongjmp)
    s = sigsetjmp(senv, 1);
else
    s = setjmp(env);
if (s == 0)
    ...

This is not permitted because SUSv3 doesn’t allow setjmp() and sigsetjmp() to be used
within an assignment statement (see Section 6.8).

Listing 21-2: Performing a nonlocal goto from a signal handler

–––––––––––––––––––––––––––––––––––––––––––––––––– signals/sigmask_longjmp.c

#define _GNU_SOURCE     /* Get strsignal() declaration from <string.h> */
#include <string.h>
#include <setjmp.h>
#include <signal.h>
#include "signal_functions.h"           /* Declaration of printSigMask() */
#include "tlpi_hdr.h"

static volatile sig_atomic_t canJump = 0;
                        /* Set to 1 once "env" buffer has been
                           initialized by [sig]setjmp() */
#ifdef USE_SIGSETJMP
static sigjmp_buf senv;
#else
static jmp_buf env;
#endif

static void
handler(int sig)
{
    /* UNSAFE: This handler uses non-async-signal-safe functions
       (printf(), strsignal(), printSigMask(); see Section 21.1.2) */

    printf("Received signal %d (%s), signal mask is:\n", sig,
            strsignal(sig));
    printSigMask(stdout, NULL);

    if (!canJump) {
        printf("'env' buffer not yet set, doing a simple return\n");
        return;
    }

#ifdef USE_SIGSETJMP
    siglongjmp(senv, 1);
#else
    longjmp(env, 1);
#endif
}
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int
main(int argc, char *argv[])
{
    struct sigaction sa;

    printSigMask(stdout, "Signal mask at startup:\n");

    sigemptyset(&sa.sa_mask);
    sa.sa_flags = 0;
    sa.sa_handler = handler;
    if (sigaction(SIGINT, &sa, NULL) == -1)
        errExit("sigaction");

#ifdef USE_SIGSETJMP
    printf("Calling sigsetjmp()\n");
    if (sigsetjmp(senv, 1) == 0)
#else
    printf("Calling setjmp()\n");
    if (setjmp(env) == 0)
#endif
        canJump = 1;                    /* Executed after [sig]setjmp() */

    else                                /* Executed after [sig]longjmp() */
        printSigMask(stdout, "After jump from handler, signal mask is:\n" );

    for (;;)                            /* Wait for signals until killed */
        pause();
}

–––––––––––––––––––––––––––––––––––––––––––––––––– signals/sigmask_longjmp.c

21.2.2 Terminating a Process Abnormally: abort()
The abort() function terminates the calling process and causes it to produce a
core dump.

The abort() function terminates the calling process by raising a SIGABRT signal. The
default action for SIGABRT is to produce a core dump file and terminate the process.
The core dump file can then be used within a debugger to examine the state of the
program at the time of the abort() call.

SUSv3 requires that abort() override the effect of blocking or ignoring SIGABRT.
Furthermore, SUSv3 specifies that abort() must terminate the process unless the
process catches the signal with a handler that doesn’t return. This last statement
requires a moment’s thought. Of the methods of terminating a signal handler
described in Section 21.2, the one that is relevant here is the use of a nonlocal goto
to exit the handler. If this is done, then the effect of abort() will be nullified; otherwise,

#include <stdlib.h>

void abort(void);
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abort() always terminates the process. In most implementations, termination is
guaranteed as follows: if the process still hasn’t terminated after raising SIGABRT
once (i.e., a handler catches the signal and returns, so that execution of abort() is
resumed), abort() resets the handling of SIGABRT to SIG_DFL and raises a second
SIGABRT, which is guaranteed to kill the process.

If abort() does successfully terminate the process, then it also flushes and closes
stdio streams.

An example of the use of abort() is provided in the error-handling functions of
Listing 3-3, on page 54.

21.3 Handling a Signal on an Alternate Stack: sigaltstack()

Normally, when a signal handler is invoked, the kernel creates a frame for it on the
process stack. However, this may not be possible if a process attempts to extend
the stack beyond the maximum possible size. For example, this may occur
because the stack grows so large that it encounters a region of mapped memory
(Section 48.5) or the upwardly growing heap, or it reaches the RLIMIT_STACK resource
limit (Section 36.3).

When a process attempts to grow its stack beyond the maximum possible size,
the kernel generates a SIGSEGV signal for the process. However, since the stack space
is exhausted, the kernel can’t create a frame for any SIGSEGV handler that the pro-
gram may have established. Consequently, the handler is not invoked, and the pro-
cess is terminated (the default action for SIGSEGV).

If we instead need to ensure that the SIGSEGV signal is handled in these circum-
stances, we can do the following:

1. Allocate an area of memory, called an alternate signal stack, to be used for the
stack frame of a signal handler.

2. Use the sigaltstack() system call to inform the kernel of the existence of the
alternate signal stack.

3. When establishing the signal handler, specify the SA_ONSTACK flag, to tell the kernel
that the frame for this handler should be created on the alternate stack.

The sigaltstack() system call both establishes an alternate signal stack and returns
information about any alternate signal stack that is already established.

The sigstack argument points to a structure specifying the location and attributes of
the new alternate signal stack. The old_sigstack argument points to a structure used
to return information about the previously established alternate signal stack (if
there was one). Either one of these arguments can be specified as NULL. For example,
we can find out about the existing alternate signal stack, without changing it, by

#include <signal.h>

int sigaltstack(const stack_t *sigstack, stack_t *old_sigstack);

Returns 0 on success, or –1 on error
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specifying NULL for the sigstack argument. Otherwise, each of these arguments
points to a structure of the following type:

typedef struct {
    void  *ss_sp;         /* Starting address of alternate stack */
    int    ss_flags;      /* Flags: SS_ONSTACK, SS_DISABLE */
    size_t ss_size;       /* Size of alternate stack */
} stack_t;

The ss_sp and ss_size fields specify the size and location of the alternate signal stack.
When actually using the alternate signal stack, the kernel automatically takes care
of aligning the value given in ss_sp to an address boundary that is suitable for the
hardware architecture.

Typically, the alternate signal stack is either statically allocated or dynamically
allocated on the heap. SUSv3 specifies the constant SIGSTKSZ to be used as a typical
value when sizing the alternate stack, and MINSIGSTKSZ as the minimum size required
to invoke a signal handler. On Linux/x86-32, these constants are defined with the
values 8192 and 2048, respectively.

The kernel doesn’t resize an alternate signal stack. If the stack overflows the
space we have allocated for it, then chaos results (e.g., overwriting of variables
beyond the limits of the stack). This is not usually a problem—because we normally
use an alternate signal stack to handle the special case of the standard stack over-
flowing, typically only one or a few frames are allocated on the stack. The job of the
SIGSEGV handler is either to perform some cleanup and terminate the process or to
unwind the standard stack using a nonlocal goto.

The ss_flags field contains one of the following values:

SS_ONSTACK

If this flag is set when retrieving information about the currently estab-
lished alternate signal stack (old_sigstack), it indicates that the process is
currently executing on the alternate signal stack. Attempts to establish a
new alternate signal stack while the process is already running on an alter-
nate signal stack result in an error (EPERM) from sigaltstack().

SS_DISABLE

Returned in old_sigstack, this flag indicates that there is no currently estab-
lished alternate signal stack. When specified in sigstack, this disables a
currently established alternate signal stack.

Listing 21-3 demonstrates the establishment and use of an alternate signal stack.
After establishing an alternate signal stack and a handler for SIGSEGV, this program
calls a function that infinitely recurses, so that the stack overflows and the process
is sent a SIGSEGV signal. When we run the program, this is what we see:

$ ulimit -s unlimited
$ ./t_sigaltstack
Top of standard stack is near 0xbffff6b8
Alternate stack is at          0x804a948-0x804cfff
Call    1 - top of stack near 0xbff0b3ac
Call    2 - top of stack near 0xbfe1714c
Many intervening lines of output removed
Call 2144 - top of stack near 0x4034120c
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Call 2145 - top of stack near 0x4024cfac
Caught signal 11 (Segmentation fault)
Top of handler stack near      0x804c860

In this shell session, the ulimit command is used to remove any RLIMIT_STACK
resource limit that may have been set in the shell. We explain this resource limit in
Section 36.3.

Listing 21-3: Using sigaltstack()
–––––––––––––––––––––––––––––––––––––––––––––––––––– signals/t_sigaltstack.c

#define _GNU_SOURCE  /* Get strsignal() declaration from <string.h> */
#include <string.h>
#include <signal.h>
#include "tlpi_hdr.h"

static void
sigsegvHandler(int sig)
{
    int x;

    /* UNSAFE: This handler uses non-async-signal-safe functions
       (printf(), strsignal(), fflush(); see Section 21.1.2) */

    printf("Caught signal %d (%s)\n", sig, strsignal(sig));
    printf("Top of handler stack near     %10p\n", (void *) &x);
    fflush(NULL);

    _exit(EXIT_FAILURE);                /* Can't return after SIGSEGV */
}

static void             /* A recursive function that overflows the stack */
overflowStack(int callNum)
{
    char a[100000];                     /* Make this stack frame large */

    printf("Call %4d - top of stack near %10p\n", callNum, &a[0]);
    overflowStack(callNum+1);
}

int
main(int argc, char *argv[])
{
    stack_t sigstack;
    struct sigaction sa;
    int j;

    printf("Top of standard stack is near %10p\n", (void *) &j);

    /* Allocate alternate stack and inform kernel of its existence */

    sigstack.ss_sp = malloc(SIGSTKSZ);
    if (sigstack.ss_sp == NULL)
        errExit("malloc");
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    sigstack.ss_size = SIGSTKSZ;
    sigstack.ss_flags = 0;
    if (sigaltstack(&sigstack, NULL) == -1)
        errExit("sigaltstack");
    printf("Alternate stack is at         %10p-%p\n",
            sigstack.ss_sp, (char *) sbrk(0) - 1);

    sa.sa_handler = sigsegvHandler;     /* Establish handler for SIGSEGV */
    sigemptyset(&sa.sa_mask);
    sa.sa_flags = SA_ONSTACK;           /* Handler uses alternate stack */
    if (sigaction(SIGSEGV, &sa, NULL) == -1)
        errExit("sigaction");

    overflowStack(1);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––– signals/t_sigaltstack.c

21.4 The SA_SIGINFO Flag

Setting the SA_SIGINFO flag when establishing a handler with sigaction() allows the
handler to obtain additional information about a signal when it is delivered. In
order to obtain this information, we must declare the handler as follows:

void handler(int sig, siginfo_t *siginfo, void *ucontext);

The first argument, sig, is the signal number, as for a standard signal handler. The
second argument, siginfo, is a structure used to provide the additional information
about the signal. We describe this structure below. The last argument, ucontext, is
also described below.

Since the above signal handler has a different prototype from a standard signal
handler, C typing rules mean that we can’t use the sa_handler field of the sigaction
structure to specify the address of the handler. Instead, we must use an alternative
field: sa_sigaction. In other words, the definition of the sigaction structure is some-
what more complex than was shown in Section 20.13. In full, the structure is
defined as follows:

struct sigaction {
    union {
        void (*sa_handler)(int);
        void (*sa_sigaction)(int, siginfo_t *, void *);
    } __sigaction_handler;
    sigset_t   sa_mask;
    int        sa_flags;
    void     (*sa_restorer)(void);
};

/* Following defines make the union fields look like simple fields
   in the parent structure */

#define sa_handler __sigaction_handler.sa_handler
#define sa_sigaction __sigaction_handler.sa_sigaction
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The sigaction structure uses a union to combine the sa_sigaction and sa_handler
fields. (Most other UNIX implementations similarly use a union for this purpose.)
Using a union is possible because only one of these fields is required during a par-
ticular call to sigaction(). (However, this can lead to strange bugs if we naively
expect to be able to set the sa_handler and sa_sigaction fields independently of one
another, perhaps because we reuse a single sigaction structure in multiple sigaction()
calls to establish handlers for different signals.)

Here is an example of the use of SA_SIGINFO to establish a signal handler:

struct sigaction act;

sigemptyset(&act.sa_mask);
act.sa_sigaction = handler;
act.sa_flags = SA_SIGINFO;

if (sigaction(SIGINT, &act, NULL) == -1)
    errExit("sigaction");

For complete examples of the use of the SA_SIGINFO flag, see Listing 22-3 (page 462)
and Listing 23-5 (page 500).

The siginfo_t structure

The siginfo_t structure passed as the second argument to a signal handler that is
established with SA_SIGINFO has the following form:

typedef struct {
    int     si_signo;         /* Signal number */
    int     si_code;          /* Signal code */
    int     si_trapno;        /* Trap number for hardware-generated signal
                                 (unused on most architectures) */
    union sigval si_value;    /* Accompanying data from sigqueue() */
    pid_t   si_pid;           /* Process ID of sending process */
    uid_t   si_uid;           /* Real user ID of sender */
    int     si_errno;         /* Error number (generally unused) */
    void   *si_addr;          /* Address that generated signal
                                 (hardware-generated signals only) */
    int     si_overrun;       /* Overrun count (Linux 2.6, POSIX timers) */
    int     si_timerid;       /* (Kernel-internal) Timer ID
                                 (Linux 2.6, POSIX timers) */
    long    si_band;          /* Band event (SIGPOLL/SIGIO) */
    int     si_fd;            /* File descriptor (SIGPOLL/SIGIO) */
    int     si_status;        /* Exit status or signal (SIGCHLD) */
    clock_t si_utime;         /* User CPU time (SIGCHLD) */
    clock_t si_stime;         /* System CPU time (SIGCHLD) */
} siginfo_t;

The _POSIX_C_SOURCE feature test macro must be defined with a value greater than or
equal to 199309 in order to make the declaration of the siginfo_t structure visible
from <signal.h>.

On Linux, as on most UNIX implementations, many of the fields in the
siginfo_t structure are combined into a union, since not all of the fields are needed
for each signal. (See <bits/siginfo.h> for details.)
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Upon entry to a signal handler, the fields of the siginfo_t structure are set as follows:

si_signo
This field is set for all signals. It contains the number of the signal causing
invocation of the handler—that is, the same value as the sig argument to the
handler.

si_code
This field is set for all signals. It contains a code providing further informa-
tion about the origin of the signal, as shown in Table 21-1.

si_value
This field contains the accompanying data for a signal sent via sigqueue().
We describe sigqueue() in Section 22.8.1.

si_pid
For signals sent via kill() or sigqueue(), this field is set to the process ID of
the sending process.

si_uid
For signals sent via kill() or sigqueue(), this field is set to the real user ID of
the sending process. The system provides the real user ID of the sending
process because that is more informative than providing the effective user
ID. Consider the permission rules for sending signals described in
Section 20.5: if the effective user ID grants the sender permission to send
the signal, then that user ID must either be 0 (i.e., a privileged process), or
be the same as the real user ID or saved set-user-ID of the receiving pro-
cess. In this case, it could be useful for the receiver to know the sender’s
real user ID, which may be different from the effective user ID (e.g., if the
sender is a set-user-ID program).

si_errno
If this field is set to a nonzero value, then it contains an error number (like
errno) that identifies the cause of the signal. This field is generally unused
on Linux.

si_addr
This field is set only for hardware-generated SIGBUS, SIGSEGV, SIGILL, and
SIGFPE signals. For the SIGBUS and SIGSEGV signals, this field contains the
address that caused the invalid memory reference. For the SIGILL and
SIGFPE signals, this field contains the address of the program instruction
that caused the signal.

The following fields, which are nonstandard Linux extensions, are set only on the
delivery of a signal generated on expiration of a POSIX timer (see Section 23.6):

si_timerid
This field contains an ID that the kernel uses internally to identify the timer.

si_overrun
This field is set to the overrun count for the timer.
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The following two fields are set only for the delivery of a SIGIO signal (Section 63.3):

si_band
This field contains the “band event” value associated with the I/O event.
(In versions of glibc up until 2.3.2, si_band was typed as int.)

si_fd
This field contains the number of the file descriptor associated with the I/O
event. This field is not specified in SUSv3, but it is present on many other
implementations.

The following fields are set only for the delivery of a SIGCHLD signal (Section 26.3):

si_status
This field contains either the exit status of the child (if si_code is CLD_EXITED)
or the number of the signal sent to the child (i.e., the number of the signal that
terminated or stopped the child, as described in Section 26.1.3).

si_utime
This field contains the user CPU time used by the child process. In kernels
before 2.6, and since 2.6.27, this is measured in system clock ticks (divide
by sysconf(_SC_CLK_TCK)). In 2.6 kernels before 2.6.27, a bug meant that
this field reported times measured in (user-configurable) jiffies (see Sec-
tion 10.6). This field is not specified in SUSv3, but it is present on many
other implementations.

si_stime
This field contains the system CPU time used by the child process. See the
description of the si_utime field. This field is not specified in SUSv3, but it
is present on many other implementations.

The si_code field provides further information about the origin of the signal, using
the values shown in Table 21-2. Not all of the signal-specific values shown in the second
column of this table occur on all UNIX implementations and hardware architec-
tures (especially in the case of the four hardware-generated signals SIGBUS, SIGSEGV,
SIGILL, and SIGFPE), although all of these constants are defined on Linux and most
appear in SUSv3. 

Note the following additional points about the values shown in Table 21-2:

The values SI_KERNEL and SI_SIGIO are Linux-specific. They are not specified in
SUSv3 and do not appear on other UNIX implementations.

SI_SIGIO is employed only in Linux 2.2. From kernel 2.4 onward, Linux instead
employs the POLL_* constants shown in the table.

SUSv4 specifies the psiginfo() function, whose purpose is similar to psignal()
(Section 20.8). The psiginfo() function takes two arguments: a pointer to a
siginfo_t structure and a message string. It prints the message string on stan-
dard error, followed by information about the signal described in the siginfo_t
structure. The psiginfo() function is provided by glibc since version 2.10. The
glibc implementation prints the signal description, the origin of the signal (as
indicated by the si_code field), and, for some signals, other fields from the
siginfo_t structure. The psiginfo() function is new in SUSv4, and it is not avail-
able on all systems.
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Table 21-2: Values returned in the si_code field of the siginfo_t structure

Signal si_code value Origin of signal

Any SI_ASYNCIO Completion of an asynchronous I/O (AIO) operation
SI_KERNEL Sent by the kernel (e.g., a signal from terminal driver)
SI_MESGQ Message arrival on POSIX message queue (since Linux 2.6.6)
SI_QUEUE A realtime signal from a user process via sigqueue()
SI_SIGIO SIGIO signal (Linux 2.2 only)
SI_TIMER Expiration of a POSIX (realtime) timer
SI_TKILL A user process via tkill() or tgkill() (since Linux 2.4.19)
SI_USER A user process via kill() or raise()

SIGBUS BUS_ADRALN Invalid address alignment
BUS_ADRERR Nonexistent physical address
BUS_MCEERR_AO Hardware memory error; action optional (since Linux 2.6.32)
BUS_MCEERR_AR Hardware memory error; action required (since Linux 2.6.32)
BUS_OBJERR Object-specific hardware error

SIGCHLD CLD_CONTINUED Child continued by SIGCONT (since Linux 2.6.9)
CLD_DUMPED Child terminated abnormally, with core dump
CLD_EXITED Child exited
CLD_KILLED Child terminated abnormally, without core dump
CLD_STOPPED Child stopped
CLD_TRAPPED Traced child has stopped

SIGFPE FPE_FLTDIV Floating-point divide-by-zero
FPE_FLTINV Invalid floating-point operation
FPE_FLTOVF Floating-point overflow
FPE_FLTRES Floating-point inexact result
FPE_FLTUND Floating-point underflow
FPE_INTDIV Integer divide-by-zero
FPE_INTOVF Integer overflow
FPE_SUB Subscript out of range

SIGILL ILL_BADSTK Internal stack error
ILL_COPROC Coprocessor error
ILL_ILLADR Illegal addressing mode
ILL_ILLOPC Illegal opcode
ILL_ILLOPN Illegal operand
ILL_ILLTRP Illegal trap
ILL_PRVOPC Privileged opcode
ILL_PRVREG Privileged register

SIGPOLL/
SIGIO

POLL_ERR I/O error
POLL_HUP Device disconnected
POLL_IN Input data available
POLL_MSG Input message available
POLL_OUT Output buffers available
POLL_PRI High-priority input available

SIGSEGV SEGV_ACCERR Invalid permissions for mapped object
SEGV_MAPERR Address not mapped to object

(continued)
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The ucontext argument

The final argument passed to a handler established with the SA_SIGINFO flag,
ucontext, is a pointer to a structure of type ucontext_t (defined in <ucontext.h>).
(SUSv3 uses a void pointer for this argument because it doesn’t specify any of the
details of the argument.) This structure provides so-called user-context information
describing the process state prior to invocation of the signal handler, including the
previous process signal mask and saved register values (e.g., program counter and
stack pointer). This information is rarely used in signal handlers, so we don’t go
into further details.

Another use of ucontext_t structures is with the functions getcontext(),
makecontext(), setcontext(), and swapcontext(), which allow a process to retrieve,
create, change, and swap execution contexts, respectively. (These operations
are somewhat like setjmp() and longjmp(), but more general.) These functions
can be used to implement coroutines, where the thread of execution of a pro-
cess alternates between two (or more) functions. SUSv3 specifies these func-
tions, but marks them obsolete. SUSv4 removes the specifications, and
suggests that applications should be rewritten to use POSIX threads instead.
The glibc manual provides further information about these functions.

21.5 Interruption and Restarting of System Calls

Consider the following scenario:

1. We establish a handler for some signal.
2. We make a blocking system call, for example, a read() from a terminal device,

which blocks until input is supplied.
3. While the system call is blocked, the signal for which we established a handler

is delivered, and its signal handler is invoked.

What happens after the signal handler returns? By default, the system call fails with
the error EINTR (“Interrupted function”). This can be a useful feature. In Section 23.3,
we’ll see how to use a timer (which results in the delivery of a SIGALRM signal) to set a
timeout on a blocking system call such as read().

Often, however, we would prefer to continue the execution of an interrupted
system call. To do this, we could use code such as the following to manually restart
a system call in the event that it is interrupted by a signal handler:

while ((cnt = read(fd, buf, BUF_SIZE)) == -1 && errno == EINTR)
    continue;                 /* Do nothing loop body */

if (cnt == -1)                /* read() failed with other than EINTR */
    errExit("read");

SIGTRAP TRAP_BRANCH Process branch trap
TRAP_BRKPT Process breakpoint
TRAP_HWBKPT Hardware breakpoint/watchpoint
TRAP_TRACE Process trace trap

Table 21-2: Values returned in the si_code field of the siginfo_t structure (continued)

Signal si_code value Origin of signal
442 Chapter 21



If we frequently write code such as the above, it can be useful to define a macro
such as the following:

#define NO_EINTR(stmt) while ((stmt) == -1 && errno == EINTR);

Using this macro, we can rewrite the earlier read() call as follows:

NO_EINTR(cnt = read(fd, buf, BUF_SIZE));

if (cnt == -1)                /* read() failed with other than EINTR */
    errExit("read");

The GNU C library provides a (nonstandard) macro with the same purpose as
our NO_EINTR() macro in <unistd.h>. The macro is called TEMP_FAILURE_RETRY()
and is made available if the _GNU_SOURCE feature test macro is defined.

Even if we employ a macro like NO_EINTR(), having signal handlers interrupt system
calls can be inconvenient, since we must add code to each blocking system call
(assuming that we want to restart the call in each case). Instead, we can specify the
SA_RESTART flag when establishing the signal handler with sigaction(), so that system
calls are automatically restarted by the kernel on the process’s behalf. This means
that we don’t need to handle a possible EINTR error return for these system calls.

The SA_RESTART flag is a per-signal setting. In other words, we can allow handlers
for some signals to interrupt blocking system calls, while others permit automatic
restarting of system calls.

System calls (and library functions) for which SA_RESTART is effective

Unfortunately, not all blocking system calls automatically restart as a result of spec-
ifying SA_RESTART. The reasons for this are partly historical:

Restarting of system calls was introduced in 4.2BSD, and covered interrupted
calls to wait() and waitpid(), as well as the following I/O system calls: read(),
readv(), write(), writev(), and blocking ioctl() operations. The I/O system calls
are interruptible, and hence automatically restarted by SA_RESTART only when
operating on a “slow” device. Slow devices include terminals, pipes, FIFOs, and
sockets. On these file types, various I/O operations may block. (By contrast,
disk files don’t fall into the category of slow devices, because disk I/O opera-
tions generally can be immediately satisfied via the buffer cache. If a disk I/O
is required, the kernel puts the process to sleep until the I/O completes.)

A number of other blocking system calls are derived from System V, which did
not initially provide for restarting of system calls.

On Linux, the following blocking system calls (and library functions layered on top
of system calls) are automatically restarted if interrupted by a signal handler estab-
lished using the SA_RESTART flag:

The system calls used to wait for a child process (Section 26.1): wait(), waitpid(),
wait3(), wait4(), and waitid().

The I/O system calls read(), readv(), write(), writev(), and ioctl() when applied to
“slow” devices. In cases where data has already been partially transferred at the
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time of signal delivery, the input and output system calls will be interrupted,
but return a success status: an integer indicating how many bytes were success-
fully transferred.

The open() system call, in cases where it can block (e.g., when opening FIFOs,
as described in Section 44.7).

Various system calls used with sockets: accept(), accept4(), connect(), send(),
sendmsg(), sendto(), recv(), recvfrom(), and recvmsg(). (On Linux, these system calls
are not automatically restarted if a timeout has been set on the socket using
setsockopt(). See the signal(7) manual page for details.)

The system calls used for I/O on POSIX message queues: mq_receive(),
mq_timedreceive(), mq_send(), and mq_timedsend().

The system calls and library functions used to place file locks: flock(), fcntl(),
and lockf().

The FUTEX_WAIT operation of the Linux-specific futex() system call.

The sem_wait() and sem_timedwait() functions used to decrement a POSIX sema-
phore. (On some UNIX implementations, sem_wait() is restarted if the SA_RESTART
flag is specified.)

The functions used to synchronize POSIX threads: pthread_mutex_lock(),
pthread_mutex_trylock(), pthread_mutex_timedlock(), pthread_cond_wait(), and
pthread_cond_timedwait().

In kernels before 2.6.22, futex(), sem_wait(), and sem_timedwait() always failed with
the error EINTR when interrupted, regardless of the setting of the SA_RESTART flag.

The following blocking system calls (and library functions layered on top of sys-
tem calls) are never automatically restarted (even if SA_RESTART is specified):

The poll(), ppoll(), select(), and pselect() I/O multiplexing calls. (SUSv3 explicitly
states that the behavior of select() and pselect() when interrupted by a signal
handler is unspecified, regardless of the setting of SA_RESTART.)

The Linux-specific epoll_wait() and epoll_pwait() system calls.

The Linux-specific io_getevents() system call.

The blocking system calls used with System V message queues and semaphores:
semop(), semtimedop(), msgrcv(), and msgsnd(). (Although System V did not origi-
nally provide automatic restarting of system calls, on some UNIX implementa-
tions, these system calls are restarted if the SA_RESTART flag is specified.)

A read() from an inotify file descriptor.

The system calls and library functions designed to suspend execution of a pro-
gram for a specified period: sleep(), nanosleep(), and clock_nanosleep().

The system calls designed specifically to wait until a signal is delivered: pause(),
sigsuspend(), sigtimedwait(), and sigwaitinfo().

Modifying the SA_RESTART flag for a signal

The siginterrupt() function changes the SA_RESTART setting associated with a signal.
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If flag is true (1), then a handler for the signal sig will interrupt blocking system
calls. If flag is false (0), then blocking system calls will be restarted after execution
of a handler for sig.

The siginterrupt() function works by using sigaction() to fetch a copy of the signal’s
current disposition, tweaking the SA_RESTART flag in the returned oldact structure,
and then calling sigaction() once more to update the signal’s disposition.

SUSv4 marks siginterrupt() obsolete, recommending the use of sigaction()
instead for this purpose.

Unhandled stop signals can generate EINTR for some Linux system calls

On Linux, certain blocking system calls can return EINTR even in the absence of a
signal handler. This can occur if the system call is blocked and the process is
stopped by a signal (SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU), and then resumed by delivery
of a SIGCONT signal.

The following system calls and functions exhibit this behavior: epoll_pwait(),
epoll_wait(), read() from an inotify file descriptor, semop(), semtimedop(), sigtimedwait(),
and sigwaitinfo().

In kernels before 2.6.24, poll() also exhibited this behavior, as did sem_wait(),
sem_timedwait(), futex(FUTEX_WAIT), in kernels before 2.6.22, msgrcv() and msgsnd()
in kernels before 2.6.9, and nanosleep() in Linux 2.4 and earlier.

In Linux 2.4 and earlier, sleep() can also be interrupted in this manner, but,
instead of returning an error, it returns the number of remaining unslept seconds.

The upshot of this behavior is that if there is a chance that our program may be
stopped and restarted by signals, then we may need to include code to restart these
system calls, even in a program that doesn’t install handlers for the stop signals.

21.6 Summary

In this chapter, we considered a range of factors that affect the operation and
design of signal handlers.

Because signals are not queued, a signal handler must sometimes be coded to
deal with the possibility that multiple events of a particular type have occurred,
even though only one signal was delivered. The issue of reentrancy affects how we
can update global variables and limits the set of functions that we can safely call
from a signal handler.

Instead of returning, a signal handler can terminate in a variety of other ways,
including calling _exit(), terminating the process by sending a signal (kill(), raise(),
or abort()), or performing a nonlocal goto. Using sigsetjmp() and siglongjmp() pro-
vides a program with explicit control of the treatment of the process signal mask
when a nonlocal goto is performed.

#include <signal.h>

int siginterrupt(int sig, int flag);

Returns 0 on success, or –1 on error
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We can use sigaltstack() to define an alternate signal stack for a process. This is
an area of memory that is used instead of the standard process stack when invoking
a signal handler. An alternate signal stack is useful in cases where the standard
stack has been exhausted by growing too large (at which point the kernel sends a
SIGSEGV signal to the process).

The sigaction() SA_SIGINFO flag allows us to establish a signal handler that
receives additional information about a signal. This information is supplied via a
siginfo_t structure whose address is passed as an argument to the signal handler.

When a signal handler interrupts a blocked system call, the system call fails
with the error EINTR. We can take advantage of this behavior to, for example, set a
timer on a blocking system call. Interrupted system calls can be manually restarted
if desired. Alternatively, establishing the signal handler with the sigaction()
SA_RESTART flag causes many (but not all) system calls to be automatically restarted.

Further information

See the sources listed in Section 20.15.

21.7 Exercise

21-1. Implement abort().
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S I G N A L S :  A D V A N C E D  F E A T U R E S

This chapter completes the discussion of signals that we began in Chapter 20, cover-
ing a number of more advanced topics, including the following:

core dump files;

special cases regarding signal delivery, disposition, and handling;

synchronous and asynchronous generation of signals;

when and in what order signals are delivered;

interruption of system calls by signal handlers, and how to automatically restart
interrupted system calls;

realtime signals;

the use of sigsuspend() to set the process signal mask and wait for a signal to arrive;

the use of sigwaitinfo() (and sigtimedwait()) to synchronously wait for a signal
to arrive;

the use of signalfd() to receive a signal via file descriptor; and

the older BSD and System V signal APIs.



22.1 Core Dump Files

Certain signals cause a process to create a core dump and terminate (Table 20-1,
page 396). A core dump is a file containing a memory image of the process at the
time it terminated. (The term core derives from an old memory technology.) This
memory image can be loaded into a debugger in order to examine the state of a
program’s code and data at the moment when the signal arrived.

One way of causing a program to produce a core dump is to type the quit char-
acter (usually Control-\), which causes the SIGQUIT signal to be generated:

$ ulimit -c unlimited                       Explained in main text
$ sleep 30
Type Control-\
Quit (core dumped)
$ ls -l core                                Shows core dump file for sleep(1)
-rw-------   1 mtk    users     57344 Nov 30 13:39 core

In this example, the message Quit (core dumped) is printed by the shell, which
detects that its child (the process running sleep) was killed by SIGQUIT and did a core
dump.

The core dump file was created in the working directory of the process, with
the name core. This is the default location and name for a core dump file; shortly,
we explain how these defaults can be changed.

Many implementations provide a tool (e.g., gcore on FreeBSD and Solaris) to
obtain a core dump of a running process. Similar functionality is available on
Linux by attaching to a running process using gdb and then using the gcore
command.

Circumstances in which core dump files are not produced

A core dump is not produced in the following circumstances:

The process doesn’t have permission to write the core dump file. This could
happen because the process doesn’t have write permission for the directory in
which the core dump file is to be created, or because a file with the same name
already exists and either is not writable or is not a regular file (e.g., it is a direc-
tory or a symbolic link).

A regular file with the same name already exists, and is writable, but there is
more than one (hard) link to the file.

The directory in which the core dump file is to be created doesn’t exist.

The process resource limit on the size of a core dump file is set to 0. This limit,
RLIMIT_CORE, is discussed in more detail in Section 36.3. In the example above,
we used the ulimit command (limit in the C shell) to ensure that there is no
limit on the size of core files.

The process resource limit on the size of a file that may be produced by the
process is set to 0. We describe this limit, RLIMIT_FSIZE, in Section 36.3.

The binary executable file that the process is executing doesn’t have read per-
mission enabled. This prevents users from using a core dump to obtain a copy
of the code of a program that they would otherwise be unable to read.
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The file system on which the current working directory resides is mounted
read-only, is full, or has run out of i-nodes. Alternatively, the user has reached
their quota limit on the file system.

Set-user-ID (set-group-ID) programs executed by a user other than the file
owner (group owner) don’t generate core dumps. This prevents malicious
users from dumping the memory of a secure program and examining it for
sensitive information such as passwords.

Using the PR_SET_DUMPABLE operation of the Linux-specific prctl() system call, we
can set the dumpable flag for a process, so that when a set-user-ID (set-group-
ID) program is run by a user other than the owner (group owner), a core
dump can be produced. The PR_SET_DUMPABLE operation is available from Linux
2.4 onward. See the prctl(2) manual page for further details. In addition, since
kernel 2.6.13, the /proc/sys/fs/suid_dumpable file provides system-wide control
over whether or not set-user-ID and set-group-ID processes produce core
dumps. For details, see the proc(5) manual page.

Since kernel 2.6.23, the Linux-specific /proc/PID/coredump_filter can be used on a
per-process basis to determine which types of memory mappings are written to a core
dump file. (We explain memory mappings in Chapter 49.) The value in this file is a
mask of four bits corresponding to the four types of memory mappings: private
anonymous mappings, private file mappings, shared anonymous mappings, and
shared file mappings. The default value of the file provides traditional Linux behav-
ior: only private anonymous and shared anonymous mappings are dumped. See
the core(5) manual page for further details.

Naming the core dump file: /proc/sys/kernel/core_pattern

Starting with Linux 2.6, the format string contained in the Linux-specific /proc/sys/
kernel/core_pattern file controls the naming of all core dump files produced on the
system. By default, this file contains the string core. A privileged user can define this
file to include any of the format specifiers shown in Table 22-1. These format spec-
ifiers are replaced by the value indicated in the right column of the table. Addition-
ally, the string may include slashes (/). In other words, we can control not just the
name of the core file, but also the (absolute or relative) directory in which it is cre-
ated. After all format specifiers have been replaced, the resulting pathname string
is truncated to a maximum of 128 characters (64 characters before Linux 2.6.19).

Since kernel 2.6.19, Linux supports an additional syntax in the core_pattern file.
If this file contains a string starting with the pipe symbol (|), then the remaining
characters in the file are interpreted as a program—with optional arguments that
may include the % specifiers shown in Table 22-1—that is to be executed when a pro-
cess dumps core. The core dump is written to the standard input of that program
instead of to a file. See the core(5) manual page for further details.

Some other UNIX implementations provide facilities similar to core_pattern.
For example, in BSD derivatives, the program name is appended to the file-
name, thus core.progname. Solaris provides a tool (coreadm) that allows the user
to choose the filename and directory where core dump files are placed.
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22.2 Special Cases for Delivery, Disposition, and Handling

For certain signals, special rules apply regarding delivery, disposition, and han-
dling, as described in this section.

SIGKILL and SIGSTOP

It is not possible to change the default action for SIGKILL, which always terminates a
process, and SIGSTOP, which always stops a process. Both signal() and sigaction()
return an error on attempts to change the disposition of these signals. These two
signals also can’t be blocked. This is a deliberate design decision. Disallowing
changes to the default actions of these signals means that they can always be used
to kill or stop a runaway process.

SIGCONT and stop signals

As noted earlier, the SIGCONT signal is used to continue a process previously stopped
by one of the stop signals (SIGSTOP, SIGTSTP, SIGTTIN, and SIGTTOU). Because of their
unique purpose, in certain situations the kernel deals with these signals differently
from other signals.

If a process is currently stopped, the arrival of a SIGCONT signal always causes the
process to resume, even if the process is currently blocking or ignoring SIGCONT.
This feature is necessary because it would otherwise be impossible to resume such
stopped processes. (If the stopped process was blocking SIGCONT, and had estab-
lished a handler for SIGCONT, then, after the process is resumed, the handler is
invoked only when SIGCONT is later unblocked.)

If any other signal is sent to a stopped process, the signal is not actually delivered
to the process until it is resumed via receipt of a SIGCONT signal. The one excep-
tion is SIGKILL, which always kills a process—even one that is currently stopped.

Whenever SIGCONT is delivered to a process, any pending stop signals for the process
are discarded (i.e., the process never sees them). Conversely, if any of the stop signals
is delivered to a process, then any pending SIGCONT signal is automatically discarded.
These steps are taken in order to prevent the action of a SIGCONT signal from being
subsequently undone by a stop signal that was actually sent beforehand, and vice versa.

Table 22-1: Format specifiers for /proc/sys/kernel/core_pattern

Specifier Replaced by

%c Core file size soft resource limit (bytes; since Linux 2.6.24)
%e Executable filename (without path prefix)
%g Real group ID of dumped process
%h Name of host system
%p Process ID of dumped process
%s Number of signal that terminated process
%t Time of dump, in seconds since the Epoch
%u Real user ID of dumped process
%% A single % character
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Don’t change the disposition of ignored terminal-generated signals

If, at the time it was execed, a program finds that the disposition of a terminal-
generated signals has been set to SIG_IGN (ignore), then generally the program
should not attempt to change the disposition of the signal. This is not a rule
enforced by the system, but rather a convention that should be followed when writ-
ing applications. We explain the reasons for this in Section 34.7.3. The signals for
which this convention is relevant are SIGHUP, SIGINT, SIGQUIT, SIGTTIN, SIGTTOU, and
SIGTSTP.

22.3 Interruptible and Uninterruptible Process Sleep States

We need to add a proviso to our earlier statement that SIGKILL and SIGSTOP always
act immediately on a process. At various times, the kernel may put a process to
sleep, and two sleep states are distinguished:

TASK_INTERRUPTIBLE: The process is waiting for some event. For example, it is
waiting for terminal input, for data to be written to a currently empty pipe, or
for the value of a System V semaphore to be increased. A process may spend
an arbitrary length of time in this state. If a signal is generated for a process in
this state, then the operation is interrupted and the process is woken up by the
delivery of a signal. When listed by ps(1), processes in the TASK_INTERRUPTIBLE
state are marked by the letter S in the STAT (process state) field.

TASK_UNINTERRUPTIBLE: The process is waiting on certain special classes of event,
such as the completion of a disk I/O. If a signal is generated for a process in
this state, then the signal is not delivered until the process emerges from this
state. Processes in the TASK_UNINTERRUPTIBLE state are listed by ps(1) with a D in
the STAT field.

Because a process normally spends only very brief periods in the TASK_UNINTERRUPTIBLE
state, the fact that a signal is delivered only when the process leaves this state is
invisible. However, in rare circumstances, a process may remain hung in this state,
perhaps as the result of a hardware failure, an NFS problem, or a kernel bug. In
such cases, SIGKILL won’t terminate the hung process. If the underlying problem
can’t otherwise be resolved, then we must restart the system in order to eliminate
the process.

The TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE states are present on most
UNIX implementations. Starting with kernel 2.6.25, Linux adds a third state to
address the hanging process problem just described:

TASK_KILLABLE: This state is like TASK_UNINTERRUPTIBLE, but wakes the process if a
fatal signal (i.e., one that would kill the process) is received. By converting rele-
vant parts of the kernel code to use this state, various scenarios where a hung
process requires a system restart can be avoided. Instead, the process can be
killed by sending it a fatal signal. The first piece of kernel code to be converted
to use TASK_KILLABLE was NFS.
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22.4 Hardware-Generated Signals

SIGBUS, SIGFPE, SIGILL, and SIGSEGV can be generated as a consequence of a hardware
exception or, less usually, by being sent by kill(). In the case of a hardware excep-
tion, SUSv3 specifies that the behavior of a process is undefined if it returns from a
handler for the signal, or if it ignores or blocks the signal. The reasons for this are
as follows:

Returning from the signal handler: Suppose that a machine-language instruction
generates one of these signals, and a signal handler is consequently invoked.
On normal return from the handler, the program attempts to resume execu-
tion at the point where it was interrupted. But this is the very instruction that
generated the signal in the first place, so the signal is generated once more.
The consequence is usually that the program goes into an infinite loop, repeat-
edly calling the signal handler.

Ignoring the signal: It makes little sense to ignore a hardware-generated signal,
as it is unclear how a program should continue execution after, say, an arith-
metic exception. When one of these signals is generated as a consequence of a
hardware exception, Linux forces its delivery, even if the program has
requested that the signal be ignored.

Blocking the signal: As with the previous case, it makes little sense to block a
hardware-generated signal, as it is unclear how a program should then con-
tinue execution. On Linux 2.4 and earlier, the kernel simply ignores attempts
to block a hardware-generated signal; the signal is delivered to the process any-
way, and then either terminates the process or is caught by a signal handler, if
one has been established. Starting with Linux 2.6, if the signal is blocked, then
the process is always immediately killed by that signal, even if the process has
installed a handler for the signal. (The rationale for the Linux 2.6 change in the
treatment of blocked hardware-generated signals was that the Linux 2.4 behav-
ior hid bugs and could cause deadlocks in threaded programs.)

The signals/demo_SIGFPE.c program in the source code distribution for this
book can be used to demonstrate the results of ignoring or blocking SIGFPE or
catching the signal with a handler that performs a normal return.

The correct way to deal with hardware-generated signals is either to accept their
default action (process termination) or to write handlers that don’t perform a nor-
mal return. Other than returning normally, a handler can complete execution by
calling _exit() to terminate the process or by calling siglongjmp() (Section 21.2.1) to
ensure that control passes to some point in the program other than the instruction
that generated the signal.

22.5 Synchronous and Asynchronous Signal Generation

We have already seen that a process generally can’t predict when it will receive a
signal. We now need to qualify this observation by distinguishing between
synchronous and asynchronous signal generation.
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The model we have implicitly considered so far is asynchronous signal genera-
tion, in which the signal is sent either by another process or generated by the kernel
for an event that occurs independently of the execution of the process (e.g., the
user types the interrupt character or a child of this process terminates). For asyn-
chronously generated signals, the earlier statement that a process can’t predict
when the signal will be delivered holds true.

However, in some cases, a signal is generated while the process itself is execut-
ing. We have already seen two examples of this:

The hardware-generated signals (SIGBUS, SIGFPE, SIGILL, SIGSEGV, and SIGEMT)
described in Section 22.4 are generated as a consequence of executing a specific
machine-language instruction that results in a hardware exception.

A process can use raise(), kill(), or killpg() to send a signal to itself.

In these cases, the generation of the signal is synchronous—the signal is delivered
immediately (unless it is blocked, but see Section 22.4 for a discussion of what happens
when blocking hardware-generated signals). In other words, the earlier statement
about the unpredictability of the delivery of a signal doesn’t apply. For synchro-
nously generated signals, delivery is predictable and reproducible.

Note that synchronicity is an attribute of how a signal is generated, rather than
of the signal itself. All signals may be generated synchronously (e.g., when a pro-
cess sends itself a signal using kill()) or asynchronously (e.g., when the signal is sent
by another process using kill()).

22.6 Timing and Order of Signal Delivery

As the first topic of this section, we consider exactly when a pending signal is deliv-
ered. We then consider what happens if multiple pending blocked signals are
simultaneously unblocked.

When is a signal delivered?

As noted in Section 22.5, synchronously generated signals are delivered immedi-
ately. For example, a hardware exception triggers an immediate signal, and when a
process sends itself a signal using raise(), the signal is delivered before the raise()
call returns.

When a signal is generated asynchronously, there may be a (small) delay while
the signal is pending between the time when it was generated and the time it is
actually delivered, even if we have not blocked the signal. The reason for this is that
the kernel delivers a pending signal to a process only at the next switch from kernel
mode to user mode while executing that process. In practice, this means the signal
is delivered at one of the following times:

when the process is rescheduled after it earlier timed out (i.e., at the start of a
time slice); or

at completion of a system call (delivery of the signal may cause a blocking sys-
tem call to complete prematurely).
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Order of delivery of multiple unblocked signals

If a process has multiple pending signals that are unblocked using sigprocmask(),
then all of these signals are immediately delivered to the process.

As currently implemented, the Linux kernel delivers the signals in ascending
order. For example, if pending SIGINT (signal 2) and SIGQUIT (signal 3) signals were
both simultaneously unblocked, then the SIGINT signal would be delivered before
SIGQUIT, regardless of the order in which the two signals were generated.

We can’t, however, rely on (standard) signals being delivered in any particular
order, since SUSv3 says that the delivery order of multiple signals is implementation-
defined. (This statement applies only to standard signals. As we’ll see in Section 22.8,
the standards governing realtime signals do provide guarantees about the order in
which multiple unblocked realtime signals are delivered.)

When multiple unblocked signals are awaiting delivery, if a switch between
kernel mode and user mode occurs during the execution of a signal handler, then
the execution of that handler will be interrupted by the invocation of a second signal
handler (and so on), as shown in Figure 22-1.

Figure 22-1: Delivery of multiple unblocked signals

22.7 Implementation and Portability of signal()

In this section, we show how to implement signal() using sigaction(). The implemen-
tation is straightforward, but needs to account for the fact that, historically and
across different UNIX implementations, signal() has had different semantics. In
particular, early implementations of signals were unreliable, meaning that:

On entry to a signal handler, the disposition of the signal was reset to its
default. (This corresponds to the SA_RESETHAND flag described in Section 20.13.)
In order to have the signal handler invoked again for a subsequent delivery of
the same signal, the programmer needed to make a call to signal() from within the
handler to explicitly reestablish the handler. The problem in this scenario is
that there is a small window of time between entering the signal handler and
reestablishment of the handler, during which, if the signal arrives a second
time, it would be processed according to its default disposition.
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Delivery of further occurrences of a signal was not blocked during execution
of a signal handler. (This corresponds to the SA_NODEFER flag described in Sec-
tion 20.13.) This meant that if the signal was delivered again while the handler
was still executing, then the handler would be recursively invoked. Given a suf-
ficiently rapid stream of signals, the resulting recursive invocations of the han-
dler could overflow the stack.

As well as being unreliable, early UNIX implementations did not provide auto-
matic restarting of system calls (i.e., the behavior described for the SA_RESTART flag in
Section 21.5).

The 4.2BSD reliable signals implementation rectified these limitations, and
several other UNIX implementations followed suit. However, the older semantics
live on today in the System V implementation of signal(), and even contemporary
standards such as SUSv3 and C99 leave these aspects of signal() deliberately
unspecified.

Tying the above information together, we implement signal() as shown in List-
ing 22-1. By default, this implementation provides the modern signal semantics. If
compiled with –DOLD_SIGNAL, then it provides the earlier unreliable signal
semantics and doesn’t enable automatic restarting of system calls.

Listing 22-1: An implementation of signal()
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––– signals/signal.c

#include <signal.h>

typedef void (*sighandler_t)(int);

sighandler_t
signal(int sig, sighandler_t handler)
{
    struct sigaction newDisp, prevDisp;

    newDisp.sa_handler = handler;
    sigemptyset(&newDisp.sa_mask);
#ifdef OLD_SIGNAL
    newDisp.sa_flags = SA_RESETHAND | SA_NODEFER;
#else
    newDisp.sa_flags = SA_RESTART;
#endif

    if (sigaction(sig, &newDisp, &prevDisp) == -1)
        return SIG_ERR;
    else
        return prevDisp.sa_handler;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––– signals/signal.c

Some glibc details

The glibc implementation of the signal() library function has changed over time. In
newer versions of the library (glibc 2 and later), the modern semantics are provided
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by default. In older versions of the library, the earlier unreliable (System V-compatible)
semantics are provided.

The Linux kernel contains an implementation of signal() as a system call. This
implementation provides the older, unreliable semantics. However, glibc
bypasses this system call by providing a signal() library function that calls
sigaction().

If we want to obtain unreliable signal semantics with modern versions of glibc, we
can explicitly replace our calls to signal() with calls to the (nonstandard) sysv_signal()
function.

The sysv_signal() function takes the same arguments as signal().
If the _BSD_SOURCE feature test macro is not defined when compiling a program,

glibc implicitly redefines all calls to signal() to be calls to sysv_signal(), meaning that
signal() has unreliable semantics. By default, _BSD_SOURCE is defined, but it is disabled
(unless also explicitly defined) if other feature test macros such as _SVID_SOURCE or
_XOPEN_SOURCE are defined when compiling a program.

sigaction() is the preferred API for establishing a signal handler

Because of the System V versus BSD (and old versus recent glibc) portability issues
described above, it is good practice always to use sigaction(), rather than signal(), to
establish signal handlers. We follow this practice throughout the remainder of this
book. (An alternative is to write our own version of signal(), probably similar to List-
ing 22-1, specifying exactly the flags that we require, and employ that version with
our applications.) Note, however, that it is portable (and shorter) to use signal() to set
the disposition of a signal to SIG_IGN or SIG_DFL, and we’ll often use signal() for that
purpose.

22.8 Realtime Signals

Realtime signals were defined in POSIX.1b to remedy a number of limitations of
standard signals. They have the following advantages over standard signals:

Realtime signals provide an increased range of signals that can be used for
application-defined purposes. Only two standard signals are freely available for
application-defined purposes: SIGUSR1 and SIGUSR2.

Realtime signals are queued. If multiple instances of a realtime signal are sent
to a process, then the signal is delivered multiple times. By contrast, if we send
further instances of a standard signal that is already pending for a process, that
signal is delivered only once.

#define _GNU_SOURCE
#include <signal.h>

void ( *sysv_signal(int sig, void (*handler)(int)) ) (int);

Returns previous signal disposition on success, or SIG_ERR on error
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When sending a realtime signal, it is possible to specify data (an integer or
pointer value) that accompanies the signal. The signal handler in the receiving
process can retrieve this data.

The order of delivery of different realtime signals is guaranteed. If multiple dif-
ferent realtime signals are pending, then the lowest-numbered signal is deliv-
ered first. In other words, signals are prioritized, with lower-numbered signals
having higher priority. When multiple signals of the same type are queued,
they are delivered—along with their accompanying data—in the order in which
they were sent.

SUSv3 requires that an implementation provide a minimum of _POSIX_RTSIG_MAX
(defined as 8) different realtime signals. The Linux kernel defines 32 different real-
time signals, numbered from 32 to 63. The <signal.h> header file defines the con-
stant RTSIG_MAX to indicate the number of available realtime signals, and the
constants SIGRTMIN and SIGRTMAX to indicate the lowest and highest available realtime
signal numbers.

On systems employing the LinuxThreads threading implementation, SIGRTMIN
is defined as 35 (rather than 32) to allow for the fact that LinuxThreads makes
internal use of the first three realtime signals. On systems employing the
NPTL threading implementation, SIGRTMIN is defined as 34 to allow for the fact
that NPTL makes internal use of the first two realtime signals.

Realtime signals are not individually identified by different constants in the man-
ner of standard signals. However, an application should not hard-code integer val-
ues for them, since the range used for realtime signals varies across UNIX
implementations. Instead, a realtime signal number can be referred to by adding a
value to SIGRTMIN; for example, the expression (SIGRTMIN + 1) refers to the second
realtime signal.

Be aware that SUSv3 doesn’t require SIGRTMAX and SIGRTMIN to be simple integer
values. They may be defined as functions (as they are on Linux). This means that
we can’t write code for the preprocessor such as the following:

#if SIGRTMIN+100 > SIGRTMAX             /* WRONG! */
#error "Not enough realtime signals"
#endif

Instead, we must perform equivalent checks at run time.

Limits on the number of queued realtime signals

Queuing realtime signals (with associated data) requires that the kernel maintain
data structures listing the signals queued to each process. Since these data struc-
tures consume kernel memory, the kernel places limits on the number of realtime
signals that may be queued.

SUSv3 allows an implementation to place an upper limit on the number of real-
time signals (of all types) that may be queued to a process, and requires that this
limit be at least _POSIX_SIGQUEUE_MAX (defined as 32). An implementation can define
the constant SIGQUEUE_MAX to indicate the number of realtime signals it allows to be
queued. It can also make this information available through the following call:

lim = sysconf(_SC_SIGQUEUE_MAX);
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On Linux, this call returns –1. The reason for this is that Linux employs a different
model for limiting the number of realtime signals that may be queued to a process. In
Linux versions up to and including 2.6.7, the kernel enforces a system-wide limit on the
total number of realtime signals that may be queued to all processes. This limit can be
viewed and (with privilege) changed via the Linux-specific /proc/sys/kernel/rtsig-max
file. The default value in this file is 1024. The number of currently queued realtime sig-
nals can be found in the Linux-specific /proc/sys/kernel/rtsig-nr  file.

Starting with Linux 2.6.8, this model was changed, and the aforementioned /proc
interfaces were removed. Under the new model, the RLIMIT_SIGPENDING soft resource
limit defines a limit on the number of signals that can be queued to all processes
owned by a particular real user ID. We describe this limit further in Section 36.3.

Using realtime signals

In order for a pair of processes to send and receive realtime signals, SUSv3
requires the following:

The sending process sends the signal plus its accompanying data using the
sigqueue() system call.

A realtime signal can also be sent using kill(), killpg(), and raise(). However,
SUSv3 leaves it as implementation-dependent whether realtime signals sent
using these interfaces are queued. On Linux, these interfaces do queue real-
time signals, but on many other UNIX implementations, they do not.

The receiving process establishes a handler for the signal using a call to
sigaction() that specifies the SA_SIGINFO flag. This causes the signal handler to be
invoked with additional arguments, one of which includes the data accompany-
ing the realtime signal.

On Linux, it is possible to queue realtime signals even if the receiving process
doesn’t specify the SA_SIGINFO flag when establishing the signal handler
(although it is not then possible to obtain the data associated with the signal in
this case). However, SUSv3 doesn’t require implementations to guarantee this
behavior, so we can’t portably rely on it.

22.8.1 Sending Realtime Signals
The sigqueue() system call sends the realtime signal specified by sig to the process
specified by pid.

The same permissions are required to send a signal using sigqueue() as are required
with kill() (see Section 20.5). A null signal (i.e., signal 0) can be sent, with the same
meaning as for kill(). (Unlike kill(), we can’t use sigqueue() to send a signal to an
entire process group by specifying a negative value in pid.)

#define _POSIX_C_SOURCE 199309
#include <signal.h>

int sigqueue(pid_t pid, int sig, const union sigval value);

Returns 0 on success, or –1 on error
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Listing 22-2: Using sigqueue() to send realtime signals

–––––––––––––––––––––––––––––––––––––––––––––––––––––– signals/t_sigqueue.c
#define _POSIX_C_SOURCE 199309
#include <signal.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int sig, numSigs, j, sigData;
    union sigval sv;

    if (argc < 4 || strcmp(argv[1], "--help") == 0)
        usageErr("%s pid sig-num data [num-sigs]\n", argv[0]);

    /* Display our PID and UID, so that they can be compared with the
       corresponding fields of the siginfo_t argument supplied to the
       handler in the receiving process */

    printf("%s: PID is %ld, UID is %ld\n", argv[0],
            (long) getpid(), (long) getuid());

    sig = getInt(argv[2], 0, "sig-num");
    sigData = getInt(argv[3], GN_ANY_BASE, "data");
    numSigs = (argc > 4) ? getInt(argv[4], GN_GT_0, "num-sigs") : 1;

    for (j = 0; j < numSigs; j++) {
        sv.sival_int = sigData + j;
        if (sigqueue(getLong(argv[1], 0, "pid"), sig, sv) == -1)
            errExit("sigqueue %d", j);
    }

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– signals/t_sigqueue.c

The value argument specifies the data to accompany the signal. This argument has
the following form:

union sigval {
    int   sival_int;      /* Integer value for accompanying data */
    void *sival_ptr;      /* Pointer value for accompanying data */
};

The interpretation of this argument is application-dependent, as is the choice of
whether to set the sival_int or the sival_ptr field of the union. The sival_ptr field is
seldom useful with sigqueue(), since a pointer value that is useful in one process is
rarely meaningful in another process. However, this field is useful in other functions
that employ sigval unions, as we’ll see when we consider POSIX timers in Section 23.6
and POSIX message queue notification in Section 52.6.

Several UNIX implementations, including Linux, define a sigval_t data type as a
synonym for union sigval. However, this type is not specified in SUSv3 and is not
available on some implementations. Portable applications should avoid using it.
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A call to sigqueue() may fail if the limit on the number of queued signals has been
reached. In this case, errno is set to EAGAIN, indicating that we need to send the signal
again (at some later time when some of the currently queued signals have been
delivered).

An example of the use of sigqueue() is provided in Listing 22-2 (page 459). This
program takes up to four arguments, of which the first three are mandatory: a sig-
nal number, a target process ID, and an integer value to accompany the realtime
signal. If more than one instance of the specified signal is to be sent, the optional
fourth argument specifies the number of instances; in this case, the accompanying
integer data value is incremented by one for each successive signal. We demon-
strate the use of this program in Section 22.8.2.

22.8.2 Handling Realtime Signals
We can handle realtime signals just like standard signals, using a normal (single-
argument) signal handler. Alternatively, we can handle a realtime signal using a
three-argument signal handler established using the SA_SIGINFO flag (Section 21.4).
Here is an example of using SA_SIGINFO to establish a handler for the sixth realtime
signal:

struct sigaction act;

sigemptyset(&act.sa_mask);
act.sa_sigaction = handler;
act.sa_flags = SA_RESTART | SA_SIGINFO;

if (sigaction(SIGRTMIN + 5, &act, NULL) == -1)
    errExit("sigaction");

When we employ the SA_SIGINFO flag, the second argument passed to the signal han-
dler is a siginfo_t structure that contains additional information about the realtime
signal. We described this structure in detail in Section 21.4. For a realtime signal,
the following fields are set in the siginfo_t structure:

The si_signo field is the same value as is passed in the first argument of the sig-
nal handler.

The si_code field indicates the source of the signal, and contains one of the values
shown in Table 21-2 (page 441). For a realtime signal sent via sigqueue(), this
field always has the value SI_QUEUE.

The si_value field contains the data specified in the value argument (the sigval
union) by the process that sent the signal using sigqueue(). As noted already, the
interpretation of this data is application-defined. (The si_value field doesn’t
contain valid information if the signal was sent using kill().)

The si_pid and si_uid fields contain, respectively, the process ID and real user
ID of the process sending the signal.

Listing 22-3 provides an example of handling realtime signals. This program
catches signals and displays various fields from the siginfo_t structure passed to the
signal handler. The program takes two optional integer command-line arguments.
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If the first argument is supplied, the main program blocks all signals, and then
sleeps for the number of seconds specified by this argument. During this time, we
can queue multiple realtime signals to the process and observe what happens when
the signals are unblocked. The second argument specifies the number of seconds
that the signal handler should sleep before returning. Specifying a nonzero value
(the default is 1 second) is useful for slowing down the program so that we can
more easily see what is happening when multiple signals are handled.

We can use the program in Listing 22-3, along with the program in Listing 22-2
(t_sigqueue.c) to explore the behavior of realtime signals, as shown in the following
shell session log:

$ ./catch_rtsigs 60 &
[1] 12842
$ ./catch_rtsigs: PID is 12842        Shell prompt mixed with program output
./catch_rtsigs: signals blocked - sleeping 60 seconds
Press Enter to see next shell prompt
$ ./t_sigqueue 12842 54 100 3         Send signal three times
./t_sigqueue: PID is 12843, UID is 1000
$ ./t_sigqueue 12842 43 200
./t_sigqueue: PID is 12844, UID is 1000
$ ./t_sigqueue 12842 40 300
./t_sigqueue: PID is 12845, UID is 1000

Eventually, the catch_rtsigs program completes sleeping, and displays messages as
the signal handler catches various signals. (We see a shell prompt mixed with the
next line of the program’s output because the catch_rtsigs program is writing output
from the background.) We first observe that realtime signals are delivered lowest-
numbered signal first, and that the siginfo_t structure passed to the handler
includes the process ID and user ID of the process that sent the signal:

$ ./catch_rtsigs: sleep complete
caught signal 40
    si_signo=40, si_code=-1 (SI_QUEUE), si_value=300
    si_pid=12845, si_uid=1000
caught signal 43
    si_signo=43, si_code=-1 (SI_QUEUE), si_value=200
    si_pid=12844, si_uid=1000

The remaining output is produced by the three instances of the same realtime signal.
Looking at the si_value values, we can see that these signals were delivered in the
order they were sent:

caught signal 54
    si_signo=54, si_code=-1 (SI_QUEUE), si_value=100
    si_pid=12843, si_uid=1000
caught signal 54
    si_signo=54, si_code=-1 (SI_QUEUE), si_value=101
    si_pid=12843, si_uid=1000
caught signal 54
    si_signo=54, si_code=-1 (SI_QUEUE), si_value=102
    si_pid=12843, si_uid=1000
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We continue by using the shell kill command to send a signal to the catch_rtsigs pro-
gram. As before, we see that the siginfo_t structure received by the handler includes
the process ID and user ID of the sending process, but in this case, the si_code value
is SI_USER:

Press Enter to see next shell prompt
$ echo $$                             Display PID of shell
12780
$ kill -40 12842                      Uses kill(2) to send a signal
$ caught signal 40
    si_signo=40, si_code=0 (SI_USER), si_value=0
    si_pid=12780, si_uid=1000         PID is that of the shell
Press Enter to see next shell prompt
$ kill 12842                          Kill catch_rtsigs by sending SIGTERM
Caught 6 signals
Press Enter to see notification from shell about terminated background job
[1]+  Done                    ./catch_rtsigs 60

Listing 22-3: Handling realtime signals

––––––––––––––––––––––––––––––––––––––––––––––––––––– signals/catch_rtsigs.c
#define _GNU_SOURCE
#include <string.h>
#include <signal.h>
#include "tlpi_hdr.h"

static volatile int handlerSleepTime;
static volatile int sigCnt = 0;         /* Number of signals received */
static volatile int allDone = 0;

static void             /* Handler for signals established using SA_SIGINFO */
siginfoHandler(int sig, siginfo_t *si, void *ucontext)
{
    /* UNSAFE: This handler uses non-async-signal-safe functions
       (printf()); see Section 21.1.2) */

    /* SIGINT or SIGTERM can be used to terminate program */

    if (sig == SIGINT || sig == SIGTERM) {
        allDone = 1;
        return;
    }

    sigCnt++;
    printf("caught signal %d\n", sig);

    printf("    si_signo=%d, si_code=%d (%s), ", si->si_signo, si->si_code,
            (si->si_code == SI_USER) ? "SI_USER" :
            (si->si_code == SI_QUEUE) ? "SI_QUEUE" : "other");
    printf("si_value=%d\n", si->si_value.sival_int);
    printf("    si_pid=%ld, si_uid=%ld\n", (long) si->si_pid, (long) si->si_uid);

    sleep(handlerSleepTime);
}

462 Chapter 22



int
main(int argc, char *argv[])
{
    struct sigaction sa;
    int sig;
    sigset_t prevMask, blockMask;

    if (argc > 1 && strcmp(argv[1], "--help") == 0)
        usageErr("%s [block-time [handler-sleep-time]]\n", argv[0]);

    printf("%s: PID is %ld\n", argv[0], (long) getpid());

    handlerSleepTime = (argc > 2) ?
                getInt(argv[2], GN_NONNEG, "handler-sleep-time") : 1;

    /* Establish handler for most signals. During execution of the handler,
       mask all other signals to prevent handlers recursively interrupting
       each other (which would make the output hard to read). */

    sa.sa_sigaction = siginfoHandler;
    sa.sa_flags = SA_SIGINFO;
    sigfillset(&sa.sa_mask);

    for (sig = 1; sig < NSIG; sig++)
        if (sig != SIGTSTP && sig != SIGQUIT)
            sigaction(sig, &sa, NULL);

    /* Optionally block signals and sleep, allowing signals to be
       sent to us before they are unblocked and handled */

    if (argc > 1) {
        sigfillset(&blockMask);
        sigdelset(&blockMask, SIGINT);
        sigdelset(&blockMask, SIGTERM);

        if (sigprocmask(SIG_SETMASK, &blockMask, &prevMask) == -1)
            errExit("sigprocmask");

        printf("%s: signals blocked - sleeping %s seconds\n", argv[0], argv[1]);
        sleep(getInt(argv[1], GN_GT_0, "block-time"));
        printf("%s: sleep complete\n", argv[0]);

        if (sigprocmask(SIG_SETMASK, &prevMask, NULL) == -1)
            errExit("sigprocmask");
    }

    while (!allDone)                    /* Wait for incoming signals */
        pause();
}

––––––––––––––––––––––––––––––––––––––––––––––––––––  signals/catch_rtsigs.c
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22.9 Waiting for a Signal Using a Mask: sigsuspend()

Before we explain what sigsuspend() does, we first describe a situation where we
need to use it. Consider the following scenario that is sometimes encountered
when programming with signals:

1. We temporarily block a signal so that the handler for the signal doesn’t inter-
rupt the execution of some critical section of code.

2. We unblock the signal, and then suspend execution until the signal is delivered.

In order to do this, we might try using code such as that shown in Listing 22-4.

Listing 22-4: Incorrectly unblocking and waiting for a signal

    sigset_t prevMask, intMask;
    struct sigaction sa;

    sigemptyset(&intMask);
    sigaddset(&intMask, SIGINT);

    sigemptyset(&sa.sa_mask);
    sa.sa_flags = 0;
    sa.sa_handler = handler;

    if (sigaction(SIGINT, &sa, NULL) == -1)
        errExit("sigaction");

    /* Block SIGINT prior to executing critical section. (At this
       point we assume that SIGINT is not already blocked.) */

    if (sigprocmask(SIG_BLOCK, &intMask, &prevMask) == -1)
        errExit("sigprocmask - SIG_BLOCK");

    /* Critical section: do some work here that must not be
       interrupted by the SIGINT handler */

    /* End of critical section - restore old mask to unblock SIGINT */

    if (sigprocmask(SIG_SETMASK, &prevMask, NULL) == -1)
        errExit("sigprocmask - SIG_SETMASK");

    /* BUG: what if SIGINT arrives now... */

    pause();                            /* Wait for SIGINT */

There is a problem with the code in Listing 22-4. Suppose that the SIGINT signal is
delivered after execution of the second sigprocmask(), but before the pause() call.
(The signal might actually have been generated at any time during the execution of
the critical section, and then be delivered only when it is unblocked.) Delivery of the
SIGINT signal will cause the handler to be invoked, and after the handler returns
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and the main program resumes, the pause() call will block until a second instance
of SIGINT is delivered. This defeats the purpose of the code, which was to unblock
SIGINT and then wait for its first occurrence.

Even if the likelihood of SIGINT being generated between the start of the critical
section (i.e., the first sigprocmask() call) and the pause() call is small, this nevertheless
constitutes a bug in the above code. This time-dependent bug is an example of a
race condition (Section 5.1). Normally, race conditions occur where two processes
or threads share common resources. However, in this case, the main program is
racing against its own signal handler.

To avoid this problem, we require a means of atomically unblocking a signal
and suspending the process. That is the purpose of the sigsuspend() system call.

The sigsuspend() system call replaces the process signal mask by the signal set
pointed to by mask, and then suspends execution of the process until a signal is
caught and its handler returns. Once the handler returns, sigsuspend() restores the
process signal mask to the value it had prior to the call.

Calling sigsuspend() is equivalent to atomically performing these operations:

sigprocmask(SIG_SETMASK, &mask, &prevMask);     /* Assign new mask */
pause();
sigprocmask(SIG_SETMASK, &prevMask, NULL);      /* Restore old mask */

Although restoring the old signal mask (i.e., the last step in the above sequence)
may at first appear inconvenient, it is essential to avoid race conditions in situations
where we need to repeatedly wait for signals. In such situations, the signals must
remain blocked except during the sigsuspend() calls. If we later need to unblock the
signals that were blocked prior to the sigsuspend() call, we can employ a further call
to sigprocmask().

When sigsuspend() is interrupted by delivery of a signal, it returns –1, with errno set
to EINTR. If mask doesn’t point to a valid address, sigsuspend() fails with the error EFAULT.

Example program

Listing 22-5 demonstrates the use of sigsuspend(). This program performs the fol-
lowing steps:

Display the initial value of the process signal mask using the printSigMask()
function (Listing 20-4, on page 408) q.

Block SIGINT and SIGQUIT, and save the original process signal mask w.

Establish the same handler for both SIGINT and SIGQUIT e. This handler displays
a message, and, if it was invoked via delivery of SIGQUIT, sets the global variable
gotSigquit.

#include <signal.h>

int sigsuspend(const sigset_t *mask);

(Normally) returns –1 with errno set to EINTR
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Loop until gotSigquit is set r. Each loop iteration performs the following steps:

– Display the current value of the signal mask using our printSigMask() function.

– Simulate a critical section by executing a CPU busy loop for a few seconds.

– Display the mask of pending signals using our printPendingSigs() function
(Listing 20-4).

– Uses sigsuspend() to unblock SIGINT and SIGQUIT and wait for a signal (if one
is not already pending).

Use sigprocmask() to restore the process signal mask to its original state t, and
then display the signal mask using printSigMask() y.

Listing 22-5: Using sigsuspend()
––––––––––––––––––––––––––––––––––––––––––––––––––––  signals/t_sigsuspend.c
#define _GNU_SOURCE     /* Get strsignal() declaration from <string.h> */
#include <string.h>
#include <signal.h>
#include <time.h>
#include "signal_functions.h"           /* Declarations of printSigMask()
                                           and printPendingSigs() */
#include "tlpi_hdr.h"

static volatile sig_atomic_t gotSigquit = 0;

static void
handler(int sig)
{
    printf("Caught signal %d (%s)\n", sig, strsignal(sig));
                                        /* UNSAFE (see Section 21.1.2) */
    if (sig == SIGQUIT)
        gotSigquit = 1;
}

int
main(int argc, char *argv[])
{
    int loopNum;
    time_t startTime;
    sigset_t origMask, blockMask;
    struct sigaction sa;

q     printSigMask(stdout, "Initial signal mask is:\n");

    sigemptyset(&blockMask);
    sigaddset(&blockMask, SIGINT);
    sigaddset(&blockMask, SIGQUIT);

w     if (sigprocmask(SIG_BLOCK, &blockMask, &origMask) == -1)
        errExit("sigprocmask - SIG_BLOCK");

    sigemptyset(&sa.sa_mask);
    sa.sa_flags = 0;
    sa.sa_handler = handler;
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e     if (sigaction(SIGINT, &sa, NULL) == -1)
        errExit("sigaction");
    if (sigaction(SIGQUIT, &sa, NULL) == -1)
        errExit("sigaction");

r     for (loopNum = 1; !gotSigquit; loopNum++) {
        printf("=== LOOP %d\n", loopNum);

        /* Simulate a critical section by delaying a few seconds */

        printSigMask(stdout, "Starting critical section, signal mask is:\n");
        for (startTime = time(NULL); time(NULL) < startTime + 4; )
            continue;                   /* Run for a few seconds elapsed time */

        printPendingSigs(stdout,
                "Before sigsuspend() - pending signals:\n");
        if (sigsuspend(&origMask) == -1 && errno != EINTR)
            errExit("sigsuspend");
    }

t     if (sigprocmask(SIG_SETMASK, &origMask, NULL) == -1)
        errExit("sigprocmask - SIG_SETMASK");

y     printSigMask(stdout, "=== Exited loop\nRestored signal mask to:\n");

    /* Do other processing... */

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––  signals/t_sigsuspend.c

The following shell session log shows an example of what we see when running the
program in Listing 22-5:

$ ./t_sigsuspend
Initial signal mask is:
                <empty signal set>
=== LOOP 1
Starting critical section, signal mask is:
                2 (Interrupt)
                3 (Quit)
Type Control-C; SIGINT is generated, but remains pending because it is blocked
Before sigsuspend() - pending signals:
                2 (Interrupt)
Caught signal 2 (Interrupt)         sigsuspend() is called, signals are unblocked

The last line of output appeared when the program called sigsuspend(), which
caused SIGINT to be unblocked. At that point, the signal handler was called and dis-
played that line of output.
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The main program continues its loop:

=== LOOP 2
Starting critical section, signal mask is:
                2 (Interrupt)
                3 (Quit)
Type Control-\ to generate SIGQUIT
Before sigsuspend() - pending signals:
                3 (Quit)
Caught signal 3 (Quit)              sigsuspend() is called, signals are unblocked
=== Exited loop                     Signal handler set gotSigquit
Restored signal mask to:
                <empty signal set>

This time, we typed Control-\, which caused the signal handler to set the gotSigquit
flag, which in turn caused the main program to terminate its loop.

22.10 Synchronously Waiting for a Signal
In Section 22.9, we saw how to use a signal handler plus sigsuspend() to suspend exe-
cution of a process until a signal is delivered. However, the need to write a signal
handler and to handle the complexities of asynchronous delivery makes this
approach cumbersome for some applications. Instead, we can use the sigwaitinfo()
system call to synchronously accept a signal.

The sigwaitinfo() system call suspends execution of the process until one of the sig-
nals in the signal set pointed to by set is delivered. If one of the signals in set is
already pending at the time of the call, sigwaitinfo() returns immediately. The deliv-
ered signal is removed from the process’s list of pending signals, and the signal
number is returned as the function result. If the info argument is not NULL, then it
points to a siginfo_t structure that is initialized to contain the same information pro-
vided to a signal handler taking a siginfo_t argument (Section 21.4).

The delivery order and queuing characteristics of signals accepted by
sigwaitinfo() are the same as for signals caught by a signal handler; that is, standard
signals are not queued, and realtime signals are queued and delivered lowest signal
number first.

As well as saving us the extra baggage of writing a signal handler, waiting for
signals using sigwaitinfo() is somewhat faster than the combination of a signal han-
dler plus sigsuspend() (see Exercise 22-3.).

It usually makes sense to use sigwaitinfo() only in conjunction with blocking the
set of signals for which we were interested in waiting. (We can fetch a pending signal
with sigwaitinfo() even while that signal is blocked.) If we fail to do this and a signal
arrives before the first, or between successive calls to sigwaitinfo(), then the signal
will be handled according to its current disposition.

#define _POSIX_C_SOURCE 199309
#include <signal.h>

int sigwaitinfo(const sigset_t *set, siginfo_t *info);

Returns number of delivered signal on success, or –1 on error
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An example of the use of sigwaitinfo() is shown in Listing 22-6. This program
first blocks all signals, then delays for the number of seconds specified in its
optional command-line argument. This allows signals to be sent to the program
before sigwaitinfo(). The program then loops continuously using sigwaitinfo() to
accept incoming signals, until SIGINT or SIGTERM is received.

The following shell session log demonstrates the use of the program in
Listing 22-6. We run the program in the background, specifying that it should
delay 60 seconds before calling sigwaitinfo(), and then send it two signals:

$ ./t_sigwaitinfo 60 &
./t_sigwaitinfo: PID is 3837
./t_sigwaitinfo: signals blocked
./t_sigwaitinfo: about to delay 60 seconds
[1] 3837
$ ./t_sigqueue 3837 43 100                  Send signal 43
./t_sigqueue: PID is 3839, UID is 1000
$ ./t_sigqueue 3837 42 200                  Send signal 42
./t_sigqueue: PID is 3840, UID is 1000

Eventually, the program completes its sleep interval, and the sigwaitinfo() loop
accepts the queued signals. (We see a shell prompt mixed with the next line of the
program’s output because the t_sigwaitinfo program is writing output from the
background.) As with realtime signals caught with a handler, we see that signals are
delivered lowest number first, and that the siginfo_t structure passed to the signal
handler allows us to obtain the process ID and user ID of the sending process:

$ ./t_sigwaitinfo: finished delay
got signal: 42
    si_signo=42, si_code=-1 (SI_QUEUE), si_value=200
    si_pid=3840, si_uid=1000
got signal: 43
    si_signo=43, si_code=-1 (SI_QUEUE), si_value=100
    si_pid=3839, si_uid=1000

We continue, using the shell kill command to send a signal to the process. This
time, we see that the si_code field is set to SI_USER (instead of SI_QUEUE):

Press Enter to see next shell prompt
$ echo $$                                   Display PID of shell
3744
$ kill -USR1 3837                           Shell sends SIGUSR1 using kill()
$ got signal: 10                            Delivery of SIGUSR1
    si_signo=10, si_code=0 (SI_USER), si_value=100
    si_pid=3744, si_uid=1000                3744 is PID of shell
Press Enter to see next shell prompt
$ kill %1                                   Terminate program with SIGTERM
$
Press Enter to see notification of background job termination
[1]+  Done                    ./t_sigwaitinfo 60
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In the output for the accepted SIGUSR1 signal, we see that the si_value field has the
value 100. This is the value to which the field was initialized by the preceding signal
that was sent using sigqueue(). We noted earlier that the si_value field contains valid
information only for signals sent using sigqueue().

Listing 22-6: Synchronously waiting for a signal with sigwaitinfo()
––––––––––––––––––––––––––––––––––––––––––––––––––– signals/t_sigwaitinfo.c

#define _GNU_SOURCE
#include <string.h>
#include <signal.h>
#include <time.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int sig;
    siginfo_t si;
    sigset_t allSigs;

    if (argc > 1 && strcmp(argv[1], "--help") == 0)
        usageErr("%s [delay-secs]\n", argv[0]);

    printf("%s: PID is %ld\n", argv[0], (long) getpid());

    /* Block all signals (except SIGKILL and SIGSTOP) */

    sigfillset(&allSigs);
    if (sigprocmask(SIG_SETMASK, &allSigs, NULL) == -1)
        errExit("sigprocmask");
    printf("%s: signals blocked\n", argv[0]);

    if (argc > 1) {             /* Delay so that signals can be sent to us */
        printf("%s: about to delay %s seconds\n", argv[0], argv[1]);
        sleep(getInt(argv[1], GN_GT_0, "delay-secs"));
        printf("%s: finished delay\n", argv[0]);
    }

    for (;;) {                  /* Fetch signals until SIGINT (^C) or SIGTERM */
        sig = sigwaitinfo(&allSigs, &si);
        if (sig == -1)
            errExit("sigwaitinfo");

        if (sig == SIGINT || sig == SIGTERM)
            exit(EXIT_SUCCESS);

        printf("got signal: %d (%s)\n", sig, strsignal(sig));
        printf("    si_signo=%d, si_code=%d (%s), si_value=%d\n",
                si.si_signo, si.si_code,
                (si.si_code == SI_USER) ? "SI_USER" :
                    (si.si_code == SI_QUEUE) ? "SI_QUEUE" : "other",
                si.si_value.sival_int);
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        printf("    si_pid=%ld, si_uid=%ld\n",
                (long) si.si_pid, (long) si.si_uid);
    }
}

––––––––––––––––––––––––––––––––––––––––––––––––––– signals/t_sigwaitinfo.c

The sigtimedwait() system call is a variation on sigwaitinfo(). The only difference is
that sigtimedwait() allows us to specify a time limit for waiting.

The timeout argument specifies the maximum time that sigtimedwait() should wait
for a signal. It is a pointer to a structure of the following type:

struct timespec {
    time_t tv_sec;      /* Seconds ('time_t' is an integer type) */
    long   tv_nsec;     /* Nanoseconds */
};

The fields of the timespec structure are filled in to specify the maximum number of
seconds and nanoseconds that sigtimedwait() should wait. Specifying both fields of
the structure as 0 causes an immediate timeout—that is, a poll to check if any of the
specified set of signals is pending. If the call times out without a signal being deliv-
ered, sigtimedwait() fails with the error EAGAIN.

If the timeout argument is specified as NULL, then sigtimedwait() is exactly equiva-
lent to sigwaitinfo(). SUSv3 leaves the meaning of a NULL timeout unspecified, and
some UNIX implementations instead interpret this as a poll request that returns
immediately.

22.11 Fetching Signals via a File Descriptor

Starting with kernel 2.6.22, Linux provides the (nonstandard) signalfd() system call,
which creates a special file descriptor from which signals directed to the caller can
be read. The signalfd mechanism provides an alternative to the use of sigwaitinfo()
for synchronously accepting signals.

#define _POSIX_C_SOURCE 199309
#include <signal.h>

int sigtimedwait(const sigset_t *set, siginfo_t *info,
                 const struct timespec *timeout);

Returns number of delivered signal on success,
or –1 on error or timeout (EAGAIN)

#include <sys/signalfd.h>

int signalfd(int fd, const sigset_t *mask, int flags);

Returns file descriptor on success, or –1 on error
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The mask argument is a signal set that specifies the signals that we want to be able
to read via the signalfd file descriptor. As with sigwaitinfo(), we should normally also
block all of the signals in mask using sigprocmask(), so that the signals don’t get han-
dled according to their default dispositions before we have a chance to read them.

If fd is specified as –1, then signalfd() creates a new file descriptor that can be
used to read the signals in mask; otherwise, it modifies the mask associated with fd,
which must be a file descriptor created by a previous call to signalfd().

In the initial implementation, the flags argument was reserved for future use
and had to be specified as 0. However, since Linux 2.6.27, two flags are supported:

SFD_CLOEXEC

Set the close-on-exec flag (FD_CLOEXEC) for the new file descriptor. This flag
is useful for the same reasons as the open() O_CLOEXEC flag described in
Section 4.3.1.

SFD_NONBLOCK

Set the O_NONBLOCK flag on the underlying open file description, so that
future reads will be nonblocking. This saves additional calls to fcntl() to achieve
the same result.

Having created the file descriptor, we can then read signals from it using read().
The buffer given to read() must be large enough to hold at least one signalfd_siginfo
structure, defined as follows in <sys/signalfd.h>:

struct signalfd_siginfo {
    uint32_t  ssi_signo;    /* Signal number */
    int32_t   ssi_errno;    /* Error number (generally unused) */
    int32_t   ssi_code;     /* Signal code */
    uint32_t  ssi_pid;      /* Process ID of sending process */
    uint32_t  ssi_uid;      /* Real user ID of sender */
    int32_t   ssi_fd;       /* File descriptor (SIGPOLL/SIGIO) */
    uint32_t  ssi_tid;      /* Kernel timer ID (POSIX timers) */
    uint32_t  ssi_band;     /* Band event (SIGPOLL/SIGIO) */
    uint32_t  ssi_tid;      /* (Kernel-internal) timer ID (POSIX timers) */
    uint32_t  ssi_overrun;  /* Overrun count (POSIX timers) */
    uint32_t  ssi_trapno;   /* Trap number */
    int32_t   ssi_status;   /* Exit status or signal (SIGCHLD) */
    int32_t   ssi_int;      /* Integer sent by sigqueue() */
    uint64_t  ssi_ptr;      /* Pointer sent by sigqueue() */
    uint64_t  ssi_utime;    /* User CPU time (SIGCHLD) */
    uint64_t  ssi_stime;    /* System CPU time (SIGCHLD) */
    uint64_t  ssi_addr;     /* Address that generated signal
                               (hardware-generated signals only) */
};

The fields in this structure return the same information as the similarly named
fields in the traditional siginfo_t structure (Section 21.4).

Each call to read() returns as many signalfd_siginfo structures as there are signals
pending and will fit in the supplied buffer. If no signals are pending at the time of
the call, then read() blocks until a signal arrives. We can also use the fcntl() F_SETFL
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operation (Section 5.3) to set the O_NONBLOCK flag for the file descriptor, so that reads
are nonblocking and will fail with the error EAGAIN if no signals are pending.

When a signal is read from a signalfd file descriptor, it is consumed and ceases
to be pending for the process.

Listing 22-7: Using signalfd() to read signals

–––––––––––––––––––––––––––––––––––––––––––––––––– signals/signalfd_sigval.c

#include <sys/signalfd.h>
#include <signal.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    sigset_t mask;
    int sfd, j;
    struct signalfd_siginfo fdsi;
    ssize_t s;

    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s sig-num...\n", argv[0]);

    printf("%s: PID = %ld\n", argv[0], (long) getpid());

    sigemptyset(&mask);
    for (j = 1; j < argc; j++)
        sigaddset(&mask, atoi(argv[j]));

    if (sigprocmask(SIG_BLOCK, &mask, NULL) == -1)
        errExit("sigprocmask");

    sfd = signalfd(-1, &mask, 0);
    if (sfd == -1)
        errExit("signalfd");

    for (;;) {
        s = read(sfd, &fdsi, sizeof(struct signalfd_siginfo));
        if (s != sizeof(struct signalfd_siginfo))
            errExit("read");

        printf("%s: got signal %d", argv[0], fdsi.ssi_signo);
        if (fdsi.ssi_code == SI_QUEUE) {
            printf("; ssi_pid = %d; ", fdsi.ssi_pid);
            printf("ssi_int = %d", fdsi.ssi_int);
        }
        printf("\n");
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––– signals/signalfd_sigval.c
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A signalfd file descriptor can be monitored along with other descriptors using
select(), poll(), and epoll (described in Chapter 63). Among other uses, this feature pro-
vides an alternative to the self-pipe trick described in Section 63.5.2. If signals are
pending, then these techniques indicate the file descriptor as being readable.

When we no longer require a signalfd file descriptor, we should close it, in
order to release the associated kernel resources.

Listing 22-7 (on page 473) demonstrates the use of signalfd(). This program cre-
ates a mask of the signal numbers specified in its command-line arguments, blocks
those signals, and then creates a signalfd file descriptor to read those signals. It then
loops, reading signals from the file descriptor and displaying some of the informa-
tion from the returned signalfd_siginfo structure. In the following shell session, we
run the program in Listing 22-7 in the background and send it a realtime signal
with accompanying data using the program in Listing 22-2 (t_sigqueue.c):

$ ./signalfd_sigval 44 &
./signalfd_sigval: PID = 6267
[1] 6267
$ ./t_sigqueue 6267 44 123          Send signal 44 with data 123 to PID 6267
./t_sigqueue: PID is 6269, UID is 1000
./signalfd_sigval: got signal 44; ssi_pid=6269; ssi_int=123
$ kill %1                           Kill program running in background

22.12 Interprocess Communication with Signals

From one viewpoint, we can consider signals as a form of interprocess communication
(IPC). However, signals suffer a number of limitations as an IPC mechanism. First, by
comparison with other methods of IPC that we examine in later chapters, program-
ming with signals is cumbersome and difficult. The reasons for this are as follows:

The asynchronous nature of signals means that we face various problems,
including reentrancy requirements, race conditions, and the correct handling
of global variables from signal handlers. (Most of these problems do not occur
if we are using sigwaitinfo() or signalfd() to synchronously fetch signals.)

Standard signals are not queued. Even for realtime signals, there are upper limits
on the number of signals that may be queued. This means that in order to
avoid loss of information, the process receiving the signals must have a method
of informing the sender that it is ready to receive another signal. The most
obvious method of doing this is for the receiver to send a signal to the sender.

A further problem is that signals carry only a limited amount of information: the
signal number, and in the case of realtime signals, a word (an integer or a pointer)
of additional data. This low bandwidth makes signals slow by comparison with
other methods of IPC such as pipes.

As a consequence of the above limitations, signals are rarely used for IPC.
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22.13 Earlier Signal APIs (System V and BSD)

Our discussion of signals has focused on the POSIX signal API. We now briefly
look at the historical APIs provided by System V and BSD. Although all new appli-
cations should use the POSIX API, we may encounter these obsolete APIs when
porting (usually older) applications from other UNIX implementations. Because
Linux (like many other UNIX implementations) provides System V and BSD com-
patibility APIs, often all that is required to port programs using these older APIs is
to recompile them on Linux.

The System V signal API

As noted earlier, one important difference in the System V signal API is that when
a handler is established with signal(), we get the older, unreliable signal semantics.
This means that the signal is not added to the process signal mask, the disposition
of the signal is reset to the default when the handler is called, and system calls are
not automatically restarted.

Below, we briefly describe the functions in the System V signal API. The man-
ual pages provide full details. SUSv3 specifies all of these functions, but notes that
the modern POSIX equivalents are preferred. SUSv4 marks these functions obsolete. 

To establish a signal handler with reliable semantics, System V provided the sigset()
call (with a prototype similar to that of signal()). As with signal(), the handler argu-
ment for sigset() can be specified as SIG_IGN, SIG_DFL, or the address of a signal handler.
Alternatively, it can be specified as SIG_HOLD, to add the signal to the process signal
mask while leaving the disposition of the signal unchanged.

If handler is specified as anything other than SIG_HOLD, sig is removed from the
process signal mask (i.e., if sig was blocked, it is unblocked).

The sighold() function adds a signal to the process signal mask. The sigrelse() func-
tion removes a signal from the signal mask. The sigignore() function sets a signal’s

#define _XOPEN_SOURCE 500
#include <signal.h>

void (*sigset(int sig, void (*handler)(int)))(int);

On success: returns the previous disposition of sig, or SIG_HOLD
if sig was previously blocked; on error –1 is returned

#define _XOPEN_SOURCE 500
#include <signal.h>

int sighold(int sig);
int sigrelse(int sig);
int sigignore(int sig);

All return 0 on success, or –1 on error
int sigpause(int sig);

Always returns –1 with errno set to EINTR
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disposition to ignore. The sigpause() function is similar to sigsuspend(), but removes
just one signal from the process signal mask before suspending the process until
the arrival of a signal.

The BSD signal API

The POSIX signal API drew heavily on the 4.2BSD API, so the BSD functions are
mainly direct analogs of those in POSIX.

As with the functions in the System V signal API described above, we present
the prototypes of the functions in the BSD signal API, and briefly explain the oper-
ation of each function. Once again, the manual pages provide full details.

The sigvec() function is analogous to sigaction(). The vec and ovec arguments are
pointers to structures of the following type:

struct sigvec {
    void (*sv_handler)();
    int  sv_mask;
    int  sv_flags;
};

The fields of the sigvec structure correspond closely with those of the sigaction struc-
ture. The first notable difference is that the sv_mask field (the analog of sa_mask)
was an integer rather than a sigset_t, which meant that, on 32-bit architectures,
there was a maximum of 31 different signals. The other difference is the use of the
SV_INTERRUPT flag in the sv_flags field (the analog of sa_flags). Since system call
restarting was the default on 4.2BSD, this flag was used to specify that slow system
calls should be interrupted by signal handlers. (This contrasts with the POSIX API,
where we must explicitly specify SA_RESTART in order to enable restarting of system
calls when establishing a signal handler with sigaction().)

#define _BSD_SOURCE
#include <signal.h>

int sigvec(int sig, struct sigvec *vec, struct sigvec *ovec);

Returns 0 on success, or –1 on error

#define _BSD_SOURCE
#include <signal.h>

int sigblock(int mask);
int sigsetmask(int mask);

Both return previous signal mask
int sigpause(int sigmask);

Always returns –1 with errno set to EINTR
int sigmask(sig);

Returns signal mask value with bit sig set
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The sigblock() function adds a set of signals to the process signal mask. It is analo-
gous to the sigprocmask() SIG_BLOCK operation. The sigsetmask() call specifies an abso-
lute value for the signal mask. It is analogous to the sigprocmask() SIG_SETMASK
operation.

The sigpause() function is analogous to sigsuspend(). Note that this function is
defined with different calling signatures in the System V and BSD APIs. The GNU
C library provides the System V version by default, unless we specify the _BSD_SOURCE
feature test macro when compiling a program.

The sigmask() macro turns a signal number into the corresponding 32-bit mask
value. Such bit masks can then be ORed together to create a set of signals, as in the
following:

sigblock(sigmask(SIGINT) | sigmask(SIGQUIT));

22.14 Summary

Certain signals cause a process to create a core dump and terminate. This file con-
tains information that can be used by a debugger to inspect the state of a process at
the time that it terminated. By default, a core dump file is named core, but Linux
provides the /proc/sys/kernel/core_pattern file to control the naming of core dump files.

A signal may be generated asynchronously or synchronously. Asynchronous
generation occurs when a signal is sent a process by the kernel or by another pro-
cess. A process can’t predict precisely when an asynchronously generated signal
will be delivered. (We noted that asynchronous signals are normally delivered the
next time the receiving process switches from kernel mode to user mode.) Synchro-
nous generation occurs when the process itself executes code that directly generates
the signal—for example, by executing an instruction that causes a hardware exception
or by calling raise(). The delivery of a synchronously generated signal is precisely
predictable (it occurs immediately).

Realtime signals are a POSIX addition to the original signal model, and differ
from standard signals in that they are queued, have a specified delivery order, and
can be sent with an accompanying piece of data. Realtime signals are designed to
be used for application-defined purposes. A realtime signal is sent using the
sigqueue() system call, and an additional argument (the siginfo_t structure) is sup-
plied to the signal handler so that it can obtain the data accompanying the signal, as
well as the process ID and real user ID of the sending process.

The sigsuspend() system call allows a program to atomically modify the process
signal mask and suspend execution until a signal arrives, The atomicity of
sigsuspend() is essential to avoid race conditions when unblocking a signal and then
suspending execution until that signal arrives.

We can use sigwaitinfo() and sigtimedwait() to synchronously wait for a signal.
This saves us the work of designing and writing a signal handler, which may be
unnecessary if our only aim is to wait for the delivery of a signal.

Like sigwaitinfo() and sigtimedwait(), the Linux-specific signalfd() system call can
be used to synchronously wait for a signal. The distinctive feature of this interface
is that signals can be read via a file descriptor. This file descriptor can also be mon-
itored using select(), poll(), and epoll.
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Although signals can be viewed as a method of IPC, many factors make them
generally unsuitable for this purpose, including their asynchronous nature, the fact
that they are not queued, and their low bandwidth. More usually, signals are used
as a method of process synchronization and for a variety of other purposes (e.g.,
event notification, job control, and timer expiration).

Although the fundamental signal concepts are straightforward, our discussion
has stretched over three chapters, since there were many details to cover. Signals
play an important role in various parts of the system call API, and we’ll revisit their
use in several later chapters. In addition, various signal-related functions are spe-
cific to threads (e.g., pthread_kill() and pthread_sigmask()), and we defer discussion
of these functions until Section 33.2.

Further information

See the sources listed in Section 20.15.

22.15 Exercises

22-1. Section 22.2 noted that if a stopped process that has established a handler for and
blocked SIGCONT is later resumed as a consequence of receiving a SIGCONT, then the
handler is invoked only when SIGCONT is unblocked. Write a program to verify this.
Recall that a process can be stopped by typing the terminal suspend character
(usually Control-Z) and can be sent a SIGCONT signal using the command kill –CONT
(or implicitly, using the shell fg command).

22-2. If both a realtime and a standard signal are pending for a process, SUSv3 leaves it
unspecified which is delivered first. Write a program that shows what Linux does in
this case. (Have the program set up a handler for all signals, block signals for a
period time so that you can send various signals to it, and then unblock all signals.)

22-3. Section 22.10 stated that accepting signals using sigwaitinfo() is faster than the use
of a signal handler plus sigsuspend(). The program signals/sig_speed_sigsuspend.c,
supplied in the source code distribution for this book, uses sigsuspend() to
alternately send signals back and forward between a parent and a child process.
Time the operation of this program to exchange one million signals between the
two processes. (The number of signals to exchange is provided as a command-line
argument to the program.) Create a modified version of the program that instead
uses sigwaitinfo(), and time that version. What is the speed difference between the
two programs?

22-4. Implement the System V functions sigset(), sighold(), sigrelse(), sigignore(), and
sigpause() using the POSIX signal API.
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T I M E R S  A N D  S L E E P I N G

A timer allows a process to schedule a notification for itself to occur at some time
in the future. Sleeping allows a process (or thread) to suspend execution for a
period of time. This chapter describes the interfaces used for setting timers and for
sleeping. It covers the following topics:

the classical UNIX APIs for setting interval timers (setitimer() and alarm()) to
notify a process when a certain amount of time has passed;

the APIs that allow a process to sleep for a specified interval;

the POSIX.1b clocks and timers APIs; and

the Linux-specific timerfd facility, which allows the creation of timers whose
expirations can be read from a file descriptor.

23.1 Interval Timers

The setitimer() system call establishes an interval timer, which is a timer that expires
at a future point in time and (optionally) at regular intervals after that.



Using setitimer(), a process can establish three different types of timers, by specify-
ing which as one of the following:

ITIMER_REAL

Create a timer that counts down in real (i.e., wall clock) time. When the
timer expires, a SIGALRM signal is generated for the process.

ITIMER_VIRTUAL

Create a timer that counts down in process virtual time (i.e., user-mode
CPU time). When the timer expires, a SIGVTALRM signal is generated for the
process.

ITIMER_PROF

Create a profiling timer. A profiling timer counts in process time (i.e., the
sum of both user-mode and kernel-mode CPU time). When the timer
expires, a SIGPROF signal is generated for the process.

The default disposition of all of the timer signals is to terminate the process. Unless
this is the desired result, we must to establish a handler for the signal delivered by
the timer.

The new_value and old_value arguments are pointers to itimerval structures,
defined as follows:

struct itimerval {
    struct timeval it_interval;     /* Interval for periodic timer */
    struct timeval it_value;        /* Current value (time until
                                       next expiration) */
};

Each of the fields in the itimerval structure is in turn a structure of type timeval, con-
taining seconds and microseconds fields:

struct timeval {
    time_t      tv_sec;             /* Seconds */
    suseconds_t tv_usec;            /* Microseconds (long int) */
};

The it_value substructure of the new_value argument specifies the delay until the
timer is to expire. The it_interval substructure specifies whether this is to be a peri-
odic timer. If both fields of it_interval are set to 0, then the timer is expires just
once, at the time given by it_value. If one or both of the it_interval fields are non-
zero, then, after each expiration of the timer, the timer will be reset to expire again
at the specified interval.

A process has only one of each of the three types of timers. If we call setitimer()
a second time, it will change the characteristics of any existing timer corresponding

#include <sys/time.h>

int setitimer(int which, const struct itimerval *new_value,
              struct itimerval *old_value);

Returns 0 on success, or –1 on error
480 Chapter 23



to which. If we call setitimer() with both fields of new_value.it_value set to 0, then any
existing timer is disabled.

If old_value is not NULL, then it points to an itimerval structure that is used to
return the previous value of the timer. If both fields of old_value.it_value are 0, then
the timer was previously disabled. If both fields of old_value.it_interval are 0, then the
previous timer was set to expire just once, at the time given by old_value.it_value.
Retrieving the previous settings of the timer can be useful if we want to restore the
settings after the new timer has expired. If we are not interested in the previous
value of the timer, we can specify old_value as NULL.

As a timer progresses, it counts down from the initial value (it_value) toward 0.
When the timer reaches 0, the corresponding signal is sent to the process, and
then, if the interval (it_interval) is nonzero, the timer value (it_value) is reloaded,
and counting down toward 0 recommences.

At any time, we can use getitimer() to retrieve the current state of the timer in
order to see how much time is left before it next expires.

The getitimer() system call returns the current state of the timer specified by which,
in the buffer pointed to by curr_value. This is exactly the same information as is
returned via the old_value argument of setitimer(), with the difference that we don’t
need to change the timer settings in order to retrieve the information. The
curr_value.it_value substructure returns the amount of time remaining until the
timer next expires. This value changes as the timer counts down, and is reset on
timer expiration if a nonzero it_interval value was specified when the timer was set.
The curr_value.it_interval substructure returns the interval for this timer; this value
remains unchanged until a subsequent call to setitimer().

Timers established using setitimer() (and alarm(), which we discuss shortly) are
preserved across exec(), but are not inherited by a child created by fork().

SUSv4 marks getitimer() and setitimer() obsolete, noting that the POSIX timers
API (Section 23.6) is preferred.

Example program

Listing 23-1 demonstrates the use of setitimer() and getitimer(). This program per-
forms the following steps:

Establish a handler for the SIGALRM signal e.

Set the value and interval fields for a real (ITIMER_REAL) timer using the values
supplied in its command-line arguments r. If these arguments are absent, the
program sets a timer that expires just once, after 2 seconds.

Execute a continuous loop t, consuming CPU time and periodically calling
the function displayTimes() q, which displays the elapsed real time since the
program began, as well as the current state of the ITIMER_REAL timer.

#include <sys/time.h>

int getitimer(int which, struct itimerval *curr_value);

Returns 0 on success, or –1 on error
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Each time the timer expires, the SIGALRM handler is invoked, and it sets a global flag,
gotAlarm w. Whenever this flag is set, the loop in the main program calls displayTimes()
in order to show when the handler was called and the state of the timer y. (We
designed the signal handler in this manner to avoid calling non-async-signal-functions
from within the handler, for the reasons described in Section 21.1.2.) If the timer
has a zero interval, then the program exits on delivery of the first signal; otherwise,
it catches up to three signals before terminating u.

When we run the program in Listing 23-1, we see the following:

$ ./real_timer 1 800000 1 0         Initial value 1.8 seconds, interval 1 second
       Elapsed   Value  Interval
START:    0.00
Main:     0.50    1.30    1.00      Timer counts down until expiration
Main:     1.00    0.80    1.00
Main:     1.50    0.30    1.00
ALARM:    1.80    1.00    1.00      On expiration, timer is reloaded from interval
Main:     2.00    0.80    1.00
Main:     2.50    0.30    1.00
ALARM:    2.80    1.00    1.00
Main:     3.00    0.80    1.00
Main:     3.50    0.30    1.00
ALARM:    3.80    1.00    1.00
That's all folks

Listing 23-1: Using a real-time timer

–––––––––––––––––––––––––––––––––––––––––––––––––––––– timers/real_timer.c

#include <signal.h>
#include <sys/time.h>
#include <time.h>
#include "tlpi_hdr.h"

static volatile sig_atomic_t gotAlarm = 0;
                        /* Set nonzero on receipt of SIGALRM */

/* Retrieve and display the real time, and (if 'includeTimer' is
   TRUE) the current value and interval for the ITIMER_REAL timer */

static void
q displayTimes(const char *msg, Boolean includeTimer)

{
    struct itimerval itv;
    static struct timeval start;
    struct timeval curr;
    static int callNum = 0;             /* Number of calls to this function */

    if (callNum == 0)                   /* Initialize elapsed time meter */
        if (gettimeofday(&start, NULL) == -1)
            errExit("gettimeofday");

    if (callNum % 20 == 0)              /* Print header every 20 lines */
        printf("       Elapsed   Value Interval\n");
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    if (gettimeofday(&curr, NULL) == -1)
        errExit("gettimeofday");
    printf("%-7s %6.2f", msg, curr.tv_sec - start.tv_sec +
                        (curr.tv_usec - start.tv_usec) / 1000000.0);

    if (includeTimer) {
        if (getitimer(ITIMER_REAL, &itv) == -1)
            errExit("getitimer");
        printf("  %6.2f  %6.2f",
                itv.it_value.tv_sec + itv.it_value.tv_usec / 1000000.0,
                itv.it_interval.tv_sec + itv.it_interval.tv_usec / 1000000.0);
    }

    printf("\n");
    callNum++;
}

static void
sigalrmHandler(int sig)
{

w     gotAlarm = 1;
}

int
main(int argc, char *argv[])
{
    struct itimerval itv;
    clock_t prevClock;
    int maxSigs;                /* Number of signals to catch before exiting */
    int sigCnt;                 /* Number of signals so far caught */
    struct sigaction sa;

    if (argc > 1 && strcmp(argv[1], "--help") == 0)
        usageErr("%s [secs [usecs [int-secs [int-usecs]]]]\n", argv[0]);

    sigCnt = 0;

    sigemptyset(&sa.sa_mask);
    sa.sa_flags = 0;
    sa.sa_handler = sigalrmHandler;

e     if (sigaction(SIGALRM, &sa, NULL) == -1)
        errExit("sigaction");

    /* Exit after 3 signals, or on first signal if interval is 0 */

    maxSigs = (itv.it_interval.tv_sec == 0 &&
                itv.it_interval.tv_usec == 0) ? 1 : 3;

    displayTimes("START:", FALSE);

    /* Set timer from the command-line arguments */

    itv.it_value.tv_sec = (argc > 1) ? getLong(argv[1], 0, "secs") : 2;
    itv.it_value.tv_usec = (argc > 2) ? getLong(argv[2], 0, "usecs") : 0;
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    itv.it_interval.tv_sec = (argc > 3) ? getLong(argv[3], 0, "int-secs") : 0;
    itv.it_interval.tv_usec = (argc > 4) ? getLong(argv[4], 0, "int-usecs") : 0;

r     if (setitimer(ITIMER_REAL, &itv, 0) == -1)
        errExit("setitimer");

    prevClock = clock();
    sigCnt = 0;

t     for (;;) {

        /* Inner loop consumes at least 0.5 seconds CPU time */

        while (((clock() - prevClock) * 10 / CLOCKS_PER_SEC) < 5) {
y             if (gotAlarm) {                     /* Did we get a signal? */

                gotAlarm = 0;
                displayTimes("ALARM:", TRUE);

                sigCnt++;
u                 if (sigCnt >= maxSigs) {

                    printf("That's all folks\n");
                    exit(EXIT_SUCCESS);
                }
            }
        }

        prevClock = clock();
        displayTimes("Main: ", TRUE);
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– timers/real_timer.c

A simpler timer interface: alarm()

The alarm() system call provides a simple interface for establishing a real-time timer
that expires once, with no repeating interval. (Historically, alarm() was the original
UNIX API for setting a timer.)

The seconds argument specifies the number of seconds in the future when the timer
is to expire. At that time, a SIGALRM signal is delivered to the calling process.

Setting a timer with alarm() overrides any previously set timer. We can disable
an existing timer using the call alarm(0).

As its return value, alarm() gives us the number of seconds remaining until the
expiration of any previously set timer, or 0 if no timer was set.

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

Always succeeds, returning number of seconds remaining on
any previously set timer, or 0 if no timer previously was set
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An example of the use of alarm() is shown in Section 23.3.

In some later example programs in this book, we use alarm() to start a timer
without establishing a corresponding SIGALRM handler, as a technique for
ensuring that a process is killed if it is not otherwise terminated.

Interactions between setitimer() and alarm()

On Linux, alarm() and setitimer() share the same per-process real-time timer, which
means that setting a timer with one of these functions changes any timer previously
set by either of the functions. This may not be the case on other UNIX implementa-
tions (i.e., these functions could control independent timers). SUSv3 explicitly
leaves unspecified the interactions between setitimer() and alarm(), as well as the
interactions of these functions with the sleep() function described in Section 23.4.1.
For maximum portability, we should ensure that our applications use only one of
setitimer() and alarm() for setting real-time timers.

23.2 Scheduling and Accuracy of Timers

Depending on system load and the scheduling of processes, a process may not be
scheduled to run until some short time (i.e., usually some small fraction of a sec-
ond) after actual expiration of the timer. Notwithstanding this, the expiration of a
periodic timer established by setitimer(), or the other interfaces described later in
this chapter, will remain regular. For example, if a real-time timer is set to expire
every 2 seconds, then the delivery of individual timer events may be subject to the
delays just described, but the scheduling of subsequent expirations will neverthe-
less be at exactly the next 2-second interval. In other words, interval timers are not
subject to creeping errors.

Although the timeval structure used by setitimer() allows for microsecond preci-
sion, the accuracy of a timer has traditionally been limited by the frequency of the
software clock (Section 10.6). If a timer value does not exactly match a multiple of the
granularity of the software clock, then the timer value is rounded up. This means that
if, for example, we specified an interval timer to go off each 19,100 microseconds (i.e.,
just over 19 milliseconds), then, assuming a jiffy value of 4 milliseconds, we would
actually get a timer that expired every 20 milliseconds.

High-resolution timers

On modern Linux kernels, the preceding statement that timer resolution is limited
by the frequency of the software clock no longer holds true. Since kernel 2.6.21,
Linux optionally supports high-resolution timers. If this support is enabled (via the
CONFIG_HIGH_RES_TIMERS kernel configuration option), then the accuracy of the vari-
ous timer and sleep interfaces that we describe in this chapter is no longer con-
strained by the size of the kernel jiffy. Instead, these calls can be as accurate as the
underlying hardware allows. On modern hardware, accuracy down to a microsec-
ond is typical.

The availability of high-resolution timers can be determined by examining the
clock resolution returned by clock_getres(), described in Section 23.5.1.
Timers and Sleeping 485



23.3 Setting Timeouts on Blocking Operations

One use of real-time timers is to place an upper limit on the time for which a block-
ing system call can remain blocked. For example, we may wish to cancel a read()
from a terminal if the user has not entered a line of input within a certain time. We
can do this as follows:

1. Call sigaction() to establish a handler for SIGALRM, omitting the SA_RESTART flag, so
that system calls are not restarted (refer to Section 21.5).

2. Call alarm() or setitimer() to establish a timer specifying the upper limit of time
for which we wish the system call to block.

3. Make the blocking system call.

4. After the system call returns, call alarm() or setitimer() once more to disable the
timer (in case the system call completed before the timer expired).

5. Check to see whether the blocking system call failed with errno set to EINTR
(interrupted system call).

Listing 23-2 demonstrates this technique for read(), using alarm() to establish the
timer.

Listing 23-2: Performing a read() with timeout

–––––––––––––––––––––––––––––––––––––––––––––––––––––– timers/timed_read.c

#include <signal.h>
#include "tlpi_hdr.h"

#define BUF_SIZE 200

static void     /* SIGALRM handler: interrupts blocked system call */
handler(int sig)
{
    printf("Caught signal\n");          /* UNSAFE (see Section 21.1.2) */
}

int
main(int argc, char *argv[])
{
    struct sigaction sa;
    char buf[BUF_SIZE];
    ssize_t numRead;
    int savedErrno;

    if (argc > 1 && strcmp(argv[1], "--help") == 0)
        usageErr("%s [num-secs [restart-flag]]\n", argv[0]);

    /* Set up handler for SIGALRM. Allow system calls to be interrupted,
       unless second command-line argument was supplied. */

    sa.sa_flags = (argc > 2) ? SA_RESTART : 0;
    sigemptyset(&sa.sa_mask);
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    sa.sa_handler = handler;
    if (sigaction(SIGALRM, &sa, NULL) == -1)
        errExit("sigaction");

    alarm((argc > 1) ? getInt(argv[1], GN_NONNEG, "num-secs") : 10);

    numRead = read(STDIN_FILENO, buf, BUF_SIZE - 1);

    savedErrno = errno;                 /* In case alarm() changes it */
    alarm(0);                           /* Ensure timer is turned off */
    errno = savedErrno;

/* Determine result of read() */

    if (numRead == -1) {
        if (errno == EINTR)
            printf("Read timed out\n");
        else
            errMsg("read");
    } else {
        printf("Successful read (%ld bytes): %.*s",
                (long) numRead, (int) numRead, buf);
    }

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– timers/timed_read.c

Note that there is a theoretical race condition in the program in Listing 23-2. If the
timer expires after the call to alarm(), but before the read() call is started, then the
read() call won’t be interrupted by the signal handler. Since the timeout value used
in scenarios like this is normally relatively large (at least several seconds) this is
highly unlikely to occur, so that, in practice, this is a viable technique. [Stevens &
Rago, 2005] proposes an alternative technique using longjmp(). A further alterna-
tive when dealing with I/O system calls is to use the timeout feature of the select()
or poll() system calls (Chapter 63), which also have the advantage of allowing us to
simultaneously wait for I/O on multiple descriptors.

23.4 Suspending Execution for a Fixed Interval (Sleeping)

Sometimes, we want to suspend execution of a process for a fixed amount of time.
While it is possible to do this using a combination of sigsuspend() and the timer
functions already described, it is easier to use one of the sleep functions instead.

23.4.1 Low-Resolution Sleeping: sleep()
The sleep() function suspends execution of the calling process for the number of
seconds specified in the seconds argument or until a signal is caught (thus interrupt-
ing the call).
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If the sleep completes, sleep() returns 0. If the sleep is interrupted by a signal, sleep()
returns the number of remaining (unslept) seconds. As with timers set by alarm()
and setitimer(), system load may mean that the process is rescheduled only at some
(normally short) time after the completion of the sleep() call.

SUSv3 leaves possible interactions of sleep() with alarm() and setitimer() unspeci-
fied. On Linux, sleep() is implemented as a call to nanosleep() (Section 23.4.2), with
the consequence that there is no interaction between sleep() and the timer func-
tions. However, on many implementations, especially older ones, sleep() is imple-
mented using alarm() and a handler for the SIGALRM signal. For portability, we
should avoid mixing the use of sleep() with alarm() and setitimer().

23.4.2 High-Resolution Sleeping: nanosleep()
The nanosleep() function performs a similar task to sleep(), but provides a number of
advantages, including finer resolution when specifying the sleep interval.

The request argument specifies the duration of the sleep interval and is a pointer to
a structure of the following form:

struct timespec {
    time_t tv_sec;         /* Seconds */
    long   tv_nsec;        /* Nanoseconds */
};

The tv_nsec field specifies a nanoseconds value. It must be a number in the range 0
to 999,999,999.

A further advantage of nanosleep() is that SUSv3 explicitly specifies that it
should not be implemented using signals. This means that, unlike the situation with
sleep(), we can portably mix calls to nanosleep() with calls to alarm() or setitimer().

Although it is not implemented using signals, nanosleep() may still be interrupted
by a signal handler. In this case, nanosleep() returns –1, with errno set to the usual EINTR
and, if the argument remain is not NULL, the buffer it points to returns the remaining
unslept time. If desired, we can use the returned value to restart the system call and
complete the sleep. This is demonstrated in Listing 23-3. As command-line arguments,

#include <unistd.h>

unsigned int sleep(unsigned int seconds);

Returns 0 on normal completion, or number of
unslept seconds if prematurely terminated

#define _POSIX_C_SOURCE 199309
#include <time.h>

int nanosleep(const struct timespec *request, struct timespec *remain);

Returns 0 on successfully completed sleep,
or –1 on error or interrupted sleep
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this program expects seconds and nanosecond values for nanosleep(). The program
loops repeatedly, executing nanosleep() until the total sleep interval is passed. If
nanosleep() is interrupted by the handler for SIGINT (generated by typing Control-C),
then the call is restarted using the value returned in remain. When we run this pro-
gram, we see the following:

$ ./t_nanosleep 10 0                      Sleep for 10 seconds
Type Control-C
Slept for:  1.853428 secs
Remaining:  8.146617000
Type Control-C
Slept for:  4.370860 secs
Remaining:  5.629800000
Type Control-C
Slept for:  6.193325 secs
Remaining:  3.807758000
Slept for: 10.008150 secs
Sleep complete

Although nanosleep() allows nanosecond precision when specifying the sleep interval,
the accuracy of the sleep interval is limited to the granularity of the software clock
(Section 10.6). If we specify an interval that is not a multiple of the software clock,
then the interval is rounded up.

As noted earlier, on systems that support high-resolution timers, the accuracy
of the sleep interval can be much finer than the granularity of the software
clock.

This rounding behavior means that if signals are received at a high rate, then there
is a problem with the approach employed in the program in Listing 23-3. The problem
is that each restart of nanosleep() will be subject to rounding errors, since the returned
remain time is unlikely to be an exact multiple of the granularity of the software
clock. Consequently, each restarted nanosleep() will sleep longer than the value
returned in remain by the previous call. In the case of an extremely high rate of signal
delivery (i.e., as or more frequent than the software clock granularity), the process
may never be able to complete its sleep. On Linux 2.6, this problem can be avoided
by making use of clock_nanosleep() with the TIMER_ABSTIME option. We describe
clock_nanosleep() in Section 23.5.4.

In Linux 2.4 and earlier, there is an eccentricity in the implementation of
nanosleep(). Suppose that a process performing a nanosleep() call is stopped by a
signal. When the process is later resumed via delivery of SIGCONT, then the
nanosleep() call fails with the error EINTR, as expected. However, if the program
subsequently restarts the nanosleep() call, then the time that the process has
spent in the stopped state is not counted against the sleep interval, so that the
process will sleep longer than expected. This eccentricity is eliminated in
Linux 2.6, where the nanosleep() call automatically resumes on delivery of the
SIGCONT signal, and the time spent in the sleep state is counted against the sleep
interval.
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Listing 23-3: Using nanosleep()
–––––––––––––––––––––––––––––––––––––––––––––––––––––– timers/t_nanosleep.c

#define _POSIX_C_SOURCE 199309
#include <sys/time.h>
#include <time.h>
#include <signal.h>
#include "tlpi_hdr.h"

static void
sigintHandler(int sig)
{
    return;                     /* Just interrupt nanosleep() */
}

int
main(int argc, char *argv[])
{
    struct timeval start, finish;
    struct timespec request, remain;
    struct sigaction sa;
    int s;

    if (argc != 3 || strcmp(argv[1], "--help") == 0)
        usageErr("%s secs nanosecs\n", argv[0]);

    request.tv_sec = getLong(argv[1], 0, "secs");
    request.tv_nsec = getLong(argv[2], 0, "nanosecs");

    /* Allow SIGINT handler to interrupt nanosleep() */

    sigemptyset(&sa.sa_mask);
    sa.sa_flags = 0;
    sa.sa_handler = sigintHandler;
    if (sigaction(SIGINT, &sa, NULL) == -1)
        errExit("sigaction");

    if (gettimeofday(&start, NULL) == -1)
        errExit("gettimeofday");

    for (;;) {
        s = nanosleep(&request, &remain);
        if (s == -1 && errno != EINTR)
            errExit("nanosleep");

        if (gettimeofday(&finish, NULL) == -1)
            errExit("gettimeofday");
        printf("Slept for: %9.6f secs\n", finish.tv_sec - start.tv_sec +
                        (finish.tv_usec - start.tv_usec) / 1000000.0);

        if (s == 0)
            break;                      /* nanosleep() completed */

        printf("Remaining: %2ld.%09ld\n", (long) remain.tv_sec,
                remain.tv_nsec);
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        request = remain;               /* Next sleep is with remaining time */
    }

    printf("Sleep complete\n");
    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– timers/t_nanosleep.c

23.5 POSIX Clocks

POSIX clocks (originally defined in POSIX.1b) provide an API for accessing clocks
that measure time with nanosecond precision. Nanosecond time values are repre-
sented using the same timespec structure as is used by nanosleep() (Section 23.4.2).

On Linux, programs using this API must be compiled with the –lrt option, in
order to link against the librt (realtime) library.

The main system calls in the POSIX clocks API are clock_gettime(), which
retrieves the current value of a clock; clock_getres(), which returns the resolution of
a clock; and clock_settime(), which updates a clock.

23.5.1 Retrieving the Value of a Clock: clock_gettime()
The clock_gettime() system call returns the time according to the clock specified in
clockid.

The time value is returned in the timespec structure pointed to by tp. Although the
timespec structure affords nanosecond precision, the granularity of the time value
returned by clock_gettime() may be coarser than this. The clock_getres() system call
returns a pointer to a timespec structure containing the resolution of the clock spec-
ified in clockid.

The clockid_t data type is a type specified by SUSv3 for representing a clock
identifier. The first column of Table 23-1 lists the values that can be specified for
clockid.

#define _POSIX_C_SOURCE 199309
#include <time.h>

int clock_gettime(clockid_t clockid, struct timespec *tp);
int clock_getres(clockid_t clockid, struct timespec *res);

Both return 0 on success, or –1 on error

Table 23-1: POSIX.1b clock types

Clock ID Description

CLOCK_REALTIME Settable system-wide real-time clock
CLOCK_MONOTONIC Nonsettable monotonic clock
CLOCK_PROCESS_CPUTIME_ID Per-process CPU-time clock (since Linux 2.6.12)
CLOCK_THREAD_CPUTIME_ID Per-thread CPU-time clock (since Linux 2.6.12)
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The CLOCK_REALTIME clock is a system-wide clock that measures wall-clock time. By
contrast with the CLOCK_MONOTONIC clock, the setting of this clock can be changed.

SUSv3 specifies that the CLOCK_MONOTONIC clock measures time since some
“unspecified point in the past” that doesn’t change after system startup. This clock
is useful for applications that must not be affected by discontinuous changes to the
system clock (e.g., a manual change to the system time). On Linux, this clock mea-
sures the time since system startup.

The CLOCK_PROCESS_CPUTIME_ID clock measures the user and system CPU time con-
sumed by the calling process. The CLOCK_THREAD_CPUTIME_ID clock performs the analogous
task for an individual thread within a process.

All of the clocks in Table 23-1 are specified in SUSv3, but only CLOCK_REALTIME is
mandatory and widely supported on UNIX implementations.

Linux 2.6.28 adds a new clock type, CLOCK_MONOTONIC_RAW, to those listed in
Table 23-1. This is a nonsettable clock that is similar to CLOCK_MONOTONIC, but it
gives access to a pure hardware-based time that is unaffected by NTP adjust-
ments. This nonstandard clock is intended for use in specialized clock-
synchronization applications.

Linux 2.6.32 adds two more new clocks to those listed in Table 23-1:
CLOCK_REALTIME_COARSE and CLOCK_MONOTIC_COARSE. These clocks are similar to
CLOCK_REALTIME and CLOCK_MONOTONIC, but intended for applications that want to
obtain lower-resolution timestamps at minimal cost. These nonstandard clocks
don’t cause any access to the hardware clock (which can be expensive for some
hardware clock sources), and the resolution of the returned value is the jiffy
(Section 10.6).

23.5.2 Setting the Value of a Clock: clock_settime()
The clock_settime() system call sets the clock specified by clockid to the time supplied
in the buffer pointed to by tp.

If the time specified by tp is not a multiple of the clock resolution as returned by
clock_getres(), the time is rounded downward.

A privileged (CAP_SYS_TIME) process may set the CLOCK_REALTIME clock. The initial
value of this clock is typically the time since the Epoch. None of the other clocks in
Table 23-1 are modifiable.

According to SUSv3, an implementation may allow the CLOCK_PROCESS_CPUTIME_ID
and CLOCK_THREAD_CPUTIME_ID clocks to be settable. At the time of writing, these
clocks are read-only on Linux.

#define _POSIX_C_SOURCE 199309
#include <time.h>

int clock_settime(clockid_t clockid, const struct timespec *tp);

Returns 0 on success, or –1 on error
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23.5.3 Obtaining the Clock ID of a Specific Process or Thread
The functions described in this section allow us to obtain the ID of a clock that
measures the CPU time consumed by a particular process or thread. We can use
the returned clock ID in a call to clock_gettime() in order to find out the CPU time
consumed by the process or thread.

The clock_getcpuclockid() function returns the identifier of the CPU-time clock
of the process whose ID is pid, in the buffer pointed to by clockid.

If pid is 0, clock_getcpuclockid() returns the ID of the CPU-time clock of the calling
process.

The pthread_getcpuclockid() function is the POSIX threads analog of the
clock_getcpuclockid() function. It returns the identifier of the clock measuring the
CPU time consumed by a specific thread of the calling process.

The thread argument is a POSIX thread ID that identifies the thread whose CPU-
time clock ID we want to obtain. The clock ID is returned in the buffer pointed to
by clockid.

23.5.4 Improved High-Resolution Sleeping: clock_nanosleep()
Like nanosleep(), the Linux-specific clock_nanosleep() system call suspends the calling
process until either a specified interval of time has passed or a signal arrives. In this
section, we describe the features that distinguish clock_nanosleep() from nanosleep().

#define _XOPEN_SOURCE 600
#include <time.h>

int clock_getcpuclockid(pid_t pid, clockid_t *clockid);

Returns 0 on success, or a positive error number on error

#define _XOPEN_SOURCE 600
#include <pthread.h>
#include <time.h>

int pthread_getcpuclockid(pthread_t thread, clockid_t *clockid);

Returns 0 on success, or a positive error number on error

#define _XOPEN_SOURCE 600
#include <time.h>

int clock_nanosleep(clockid_t clockid, int flags,
       const struct timespec *request, struct timespec *remain);

Returns 0 on successfully completed sleep,
or a positive error number on error or interrupted sleep
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The request and remain arguments serve similar purposes to the analogous argu-
ments for nanosleep().

By default (i.e., if flags is 0), the sleep interval specified in request is relative
(like nanosleep()). However, if we specify TIMER_ABSTIME in flags (see the example in
Listing 23-4), then request specifies an absolute time as measured by the clock iden-
tified by clockid. This feature is essential in applications that need to sleep accu-
rately until a specific time. If we instead try retrieving the current time, calculating
the difference until the desired target time, and doing a relative sleep, then there is
a possibility that the process may be preempted in the middle of these steps, and
consequently sleep for longer than desired.

As described in Section 23.4.2, this “oversleeping” problem is particularly
marked for a process that uses a loop to restart a sleep that is interrupted by a sig-
nal handler. If signals are delivered at a high rate, then a relative sleep (of the type
performed by nanosleep()) can lead to large inaccuracies in the time a process
spends sleeping. We can avoid the oversleeping problem by making an initial call
to clock_gettime() to retrieve the time, adding the desired amount to that time, and
then calling clock_nanosleep() with the TIMER_ABSTIME flag (and restarting the system
call if it is interrupted by a signal handler).

When the TIMER_ABSTIME flag is specified, the remain argument is unused (it is
unnecessary). If the clock_nanosleep() call is interrupted by a signal handler, then the
sleep can be restarted by repeating the call with the same request argument.

Another feature that distinguishes clock_nanosleep() from nanosleep() is that we
can choose the clock that is used to measure the sleep interval. We specify the
desired clock in clockid: CLOCK_REALTIME, CLOCK_MONOTONIC, or CLOCK_PROCESS_CPUTIME_ID.
See Table 23-1 for a description of these clocks.

Listing 23-4 demonstrates the use of clock_nanosleep() to sleep for 20 seconds
against the CLOCK_REALTIME clock using an absolute time value.

Listing 23-4: Using clock_nanosleep()

    struct timespec request;

    /* Retrieve current value of CLOCK_REALTIME clock */

    if (clock_gettime(CLOCK_REALTIME, &request) == -1) 
        errExit("clock_gettime");

    request.tv_sec += 20;               /* Sleep for 20 seconds from now */

    s = clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &request, NULL); 
    if (s != 0) {
        if (s == EINTR)
            printf("Interrupted by signal handler\n");
        else
            errExitEN(s, "clock_nanosleep");
    }
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23.6 POSIX Interval Timers

The classical UNIX interval timers set by setitimer() suffer a number of limitations:

We can set only one timer of each of the three types, ITIMER_REAL, ITIMER_VIRTUAL,
and ITIMER_PROF.

The only way of being notified of timer expiration is via delivery of a signal.
Furthermore, we can’t change the signal that is generated when the timer
expires.

If an interval timer expires multiple times while the corresponding signal is
blocked, then the signal handler is called only once. In other words, we have no
way of knowing whether there was a timer overrun.

Timers are limited to microsecond resolution. However, some systems have
hardware clocks that provide finer resolution than this, and, on such systems, it
is desirable to have software access to this greater resolution.

POSIX.1b defined an API to address these limitations, and this API is implemented
in Linux 2.6.

On older Linux systems, an incomplete version of this API was provided via a
threads-based implementation in glibc. However, this user-space implementa-
tion doesn’t provide all of the features described here.

The POSIX timer API divides the life of a timer into the following steps:

The timer_create() system call creates a new timer and defines the method by
which it will notify the process when it expires.

The timer_settime() system call arms (starts) or disarms (stops) a timer.

The timer_delete() system call deletes a timer that is no longer required.

POSIX timers are not inherited by a child created by fork(). They are disarmed and
deleted during an exec() or on process termination.

On Linux, programs using the POSIX timer API must be compiled with the –lrt
option, in order to link against the librt (realtime) library.

23.6.1 Creating a Timer: timer_create()
The timer_create() function creates a new timer that measures time using the clock
specified by clockid.

#define _POSIX_C_SOURCE 199309
#include <signal.h>
#include <time.h>

int timer_create(clockid_t clockid, struct sigevent *evp, timer_t *timerid);

Returns 0 on success, or –1 on error
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The clockid can specify any of the values shown in Table 23-1, or the clockid value
returned by clock_getcpuclockid() or pthread_getcpuclockid(). The timerid argument
points to a buffer that returns a handle used to refer to the timer in later system
calls. This buffer is typed as timer_t, which is a data type specified by SUSv3 for rep-
resenting a timer identifier.

The evp argument determines how the program is to be notified when the
timer expires. It points to a structure of type sigevent, defined as follows:

union sigval {
    int   sival_int;              /* Integer value for accompanying data */
    void *sival_ptr;              /* Pointer value for accompanying data */
};

struct sigevent {
    int          sigev_notify;    /* Notification method */
    int          sigev_signo;     /* Timer expiration signal */
    union sigval sigev_value;     /* Value accompanying signal or
                                     passed to thread function */
    union {
        pid_t      _tid;          /* ID of thread to be signaled /
        struct {
            void (*_function) (union sigval);
                                  /* Thread notification function */
            void  *_attribute;    /* Really 'pthread_attr_t *' */
        } _sigev_thread;
    } _sigev_un;
};

#define sigev_notify_function    _sigev_un._sigev_thread._function
#define sigev_notify_attributes  _sigev_un._sigev_thread._attribute
#define sigev_notify_thread_id   _sigev_un._tid

The sigev_notify field of this structure is set to one of the values shown in Table 23-2.

Further details on the sigev_notify field constants, and the fields in the sigval struc-
ture that are associated with each constant value, are as follows:

SIGEV_NONE

Don’t provide notification of timer expiration. The process can still moni-
tor the progress of the timer using timer_gettime().

Table 23-2: Values for the sigev_notify field of the sigevent structure

sigev_notify value Notification method SUSv3

SIGEV_NONE No notification; monitor timer using timer_gettime() •
SIGEV_SIGNAL Send signal sigev_signo to process •
SIGEV_THREAD Call sigev_notify_function as start function of new thread •
SIGEV_THREAD_ID Send signal sigev_signo to thread sigev_notify_thread_id
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SIGEV_SIGNAL

When the timer expires, generate the signal specified in the sigev_signo field
for the process. If sigev_signo is a realtime signal, then the sigev_value field spec-
ifies data (an integer or a pointer) to accompany the signal (Section 22.8.1).
This data can be retrieved via the si_value field of the siginfo_t structure
that is passed to the handler for this signal or returned by a call to sigwaitinfo()
or sigtimedwait().

SIGEV_THREAD

When the timer expires, call the function specified in the sigev_notify_function
field. This function is invoked as if it were the start function in a new thread.
The “as if” wording is from SUSv3, and allows an implementation to generate
the notifications for a periodic timer either by having each notification deliv-
ered to a new unique thread or by having the notifications delivered in series
to a single new thread. The sigev_notify_attributes field can be specified as NULL
or as a pointer to a pthread_attr_t structure that defines attributes for the
thread (Section 29.8). The union sigval value specified in sigev_value is
passed as the sole argument of the function.

SIGEV_THREAD_ID

This is similar to SIGEV_SIGNAL, but the signal is sent to the thread whose thread
ID matches sigev_notify_thread_id. This thread must be in the same process as
the calling thread. (With SIGEV_SIGNAL notification, a signal is queued to the
process as a whole, and, if there are multiple threads in the process, the sig-
nal will be delivered to an arbitrarily selected thread in the process.) The
sigev_notify_thread_id field can be set to the value returned by clone() or the
value returned by gettid(). The SIGEV_THREAD_ID flag is intended for use by
threading libraries. (It requires a threading implementation that employs
the CLONE_THREAD option, described in Section 28.2.1. The modern NPTL
threading implementation employs CLONE_THREAD, but the older
LinuxThreads threading implementation does not.)

All of the above constants are specified in SUSv3, except for SIGEV_THREAD_ID, which
is Linux-specific.

The evp argument may be specified as NULL, which is equivalent to specifying
sigev_notify as SIGEV_SIGNAL, sigev_signo as SIGALRM (this may be different on other systems,
since SUSv3 merely says “a default signal number”), and sigev_value.sival_int as the
timer ID.

As currently implemented, the kernel preallocates one queued realtime signal
structure for each POSIX timer that is created using timer_create(). The intent of
this preallocation is to ensure that at least one such structure is available for queu-
ing a signal when the timer expires. This means that the number of POSIX timers
that may be created is subject to the limitations on the number of realtime signals
that can be queued (refer to Section 22.8).
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23.6.2 Arming and Disarming a Timer: timer_settime()
Once we have created a timer, we can arm (start) or disarm (stop) it using
timer_settime().

The timerid argument of timer_settime() is a timer handle returned by a previous call
to timer_create().

The value and old_value arguments are analogous to the setitimer() arguments
of the same name: value specifies the new settings for the timer, and old_value is
used to return the previous timer settings (see the description of timer_gettime()
below). If we are not interested in the previous settings, we can specify old_value as
NULL. The value and old_value arguments are pointers to itimerspec structures,
defined as follows:

struct itimerspec {
    struct timespec it_interval;    /* Interval for periodic timer */
    struct timespec it_value;       /* First expiration */
};

Each of the fields of the itimerspec structure is in turn a structure of type timespec,
which specifies time values as a number of seconds and nanoseconds:

struct timespec {
    time_t tv_sec;                  /* Seconds */
    long   tv_nsec;                 /* Nanoseconds */
};

The it_value field specifies when the timer will first expire. If either subfield of
it_interval is nonzero, then this is a periodic timer that, after the initial expiry speci-
fied by it_value, will expire with the frequency specified in these subfields. If both
subfields of it_interval are 0, this timer expires just once.

If flags is specified as 0, then value.it_value is interpreted relative to the clock
value at the time of the call to timer_settime() (i.e., like setitimer()). If flags is specified
as TIMER_ABSTIME, then value.it_value is interpreted as an absolute time (i.e., mea-
sured from the clock’s zero point). If that time has already passed on the clock, the
timer expires immediately.

To arm a timer, we make a call to timer_settime() in which either or both of the
subfields of value.it_value are nonzero. If the timer was previously armed, timer_settime()
replaces the previous settings.

If the timer value and interval are not multiples of the resolution of the corre-
sponding clock (as returned by clock_getres()), these values are rounded up to the
next multiple of the resolution.

#define _POSIX_C_SOURCE 199309
#include <time.h>

int timer_settime(timer_t timerid, int flags, const struct itimerspec *value,
                  struct itimerspec *old_value);

Returns 0 on success, or –1 on error
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On each expiration of the timer, the process is notified using the method
defined in the timer_create() call that created this timer. If the it_interval structure
contains nonzero values, these values are used to reload the it_value structure.

To disarm a timer, we make a call to timer_settime() specifying both fields of
value.it_value as 0.

23.6.3 Retrieving the Current Value of a Timer: timer_gettime()
The timer_gettime() system call returns the interval and remaining time for the
POSIX timer identified by timerid.

The interval and the time until the next expiration of the timer are returned in the
itimerspec structure pointed to by curr_value. The curr_value.it_value field returns
the time until next timer expiration, even if this timer was established as an abso-
lute timer using TIMER_ABSTIME.

If both fields of the returned curr_value.it_value structure are 0, then the timer
is currently disarmed. If both fields of the returned curr_value.it_interval structure
are 0, then the timer expires just once, at the time given in curr_value.it_value.

23.6.4 Deleting a Timer: timer_delete()
Each POSIX timer consumes a small amount of system resources. Therefore, when
we have finished using a timer, we should free these resources by using timer_delete()
to remove the timer.

The timerid argument is a handle returned by a previous call to timer_create(). If the
timer was armed, then it is automatically disarmed before removal. If there is
already a pending signal from an expiration of this timer, that signal remains pend-
ing. (SUSv3 leaves this point unspecified, so other UNIX implementations may
behave differently.) Timers are deleted automatically when a process terminates.

23.6.5 Notification via a Signal
If we elect to receive timer notifications via a signal, then we can accept the signal
via a signal handler, or by calling sigwaitinfo() or sigtimedwait(). Both mechanisms
allow the receiving process to obtain a siginfo_t structure (Section 21.4) that provides

#define _POSIX_C_SOURCE 199309
#include <time.h>

int timer_gettime(timer_t timerid, struct itimerspec *curr_value);

Returns 0 on success, or –1 on error

#define _POSIX_C_SOURCE 199309
#include <time.h>

int timer_delete(timer_t timerid);

Returns 0 on success, or –1 on error
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further information about the signal. (To take advantage of this feature in a signal
handler, we specify the SA_SIGINFO flag when establishing the handler.) The follow-
ing fields are set in the siginfo_t structure:

si_signo: This field contains the signal generated by this timer.

si_code: This field is set to SI_TIMER, indicating that this signal was generated
because of the expiration of a POSIX timer.

si_value: This field is set to the value that was supplied in evp.sigev_value when
the timer was created using timer_create(). Specifying different evp.sigev_value
values provides a means of distinguishing expirations of multiple timers that
deliver the same signal.

When calling timer_create(), evp.sigev_value.sival_ptr is typically assigned the address
of the timerid argument given in the same call (see Listing 23-5). This allows the sig-
nal handler (or the sigwaitinfo() call) to obtain the ID of the timer that generated
the signal. (Alternatively, evp.sigev_value.sival_ptr may be assigned the address of a
structure that contains the timerid given to timer_create().)

Linux also supplies the following nonstandard field in the siginfo_t structure:

si_overrun: This field contains the overrun count for this timer (described in
Section 23.6.6).

Linux also supplies another nonstandard field: si_timerid. This field contains
an identifier that is used internally by the system to identify the timer (it is not
the same as the ID returned by timer_create()). It is not useful to applications.

Listing 23-5 demonstrates the use of signals as the notification mechanism for a
POSIX timer. 

Listing 23-5: POSIX timer notification using a signal

––––––––––––––––––––––––––––––––––––––––––––––––– timers/ptmr_sigev_signal.c

#define _POSIX_C_SOURCE 199309
#include <signal.h>
#include <time.h>
#include "curr_time.h"                  /* Declares currTime() */
#include "itimerspec_from_str.h"        /* Declares itimerspecFromStr() */
#include "tlpi_hdr.h"

#define TIMER_SIG SIGRTMAX              /* Our timer notification signal */

static void
q handler(int sig, siginfo_t *si, void *uc)

{
    timer_t *tidptr;

    tidptr = si->si_value.sival_ptr;

    /* UNSAFE: This handler uses non-async-signal-safe functions
       (printf(); see Section 21.1.2) */
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    printf("[%s] Got signal %d\n", currTime("%T"), sig);
    printf("    *sival_ptr         = %ld\n", (long) *tidptr);
    printf("    timer_getoverrun() = %d\n", timer_getoverrun(*tidptr));
}

int
main(int argc, char *argv[])
{
    struct itimerspec ts;
    struct sigaction  sa;
    struct sigevent   sev;
    timer_t *tidlist;
    int j;

    if (argc < 2)
        usageErr("%s secs[/nsecs][:int-secs[/int-nsecs]]...\n", argv[0]);

    tidlist = calloc(argc - 1, sizeof(timer_t));
    if (tidlist == NULL)
        errExit("malloc");

    /* Establish handler for notification signal */

    sa.sa_flags = SA_SIGINFO;
    sa.sa_sigaction = handler;
    sigemptyset(&sa.sa_mask);

w     if (sigaction(TIMER_SIG, &sa, NULL) == -1)
        errExit("sigaction");

    /* Create and start one timer for each command-line argument */

    sev.sigev_notify = SIGEV_SIGNAL;    /* Notify via signal */
    sev.sigev_signo = TIMER_SIG;        /* Notify using this signal */

    for (j = 0; j < argc - 1; j++) {
e         itimerspecFromStr(argv[j + 1], &ts);

        sev.sigev_value.sival_ptr = &tidlist[j];
                /* Allows handler to get ID of this timer */

r         if (timer_create(CLOCK_REALTIME, &sev, &tidlist[j]) == -1)
            errExit("timer_create");
        printf("Timer ID: %ld (%s)\n", (long) tidlist[j], argv[j + 1]);

t         if (timer_settime(tidlist[j], 0, &ts, NULL) == -1)
            errExit("timer_settime");
    }

y     for (;;)                            /* Wait for incoming timer signals */
        pause();
}

––––––––––––––––––––––––––––––––––––––––––––––––– timers/ptmr_sigev_signal.c
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Each of the command-line arguments of the program in Listing 23-5 specifies the
initial value and interval for a timer. The syntax of these arguments is described in
the program’s “usage” message and demonstrated in the shell session below. This
program performs the following steps:

Establish a handler for the signal that is used for timer notifications w.

For each command-line argument, create r and arm t a POSIX timer that
uses the SIGEV_SIGNAL notification mechanism. The itimerspecFromStr() function
that we use to convert e the command-line arguments to itimerspec structures
is shown in Listing 23-6.

On each timer expiration, the signal specified in sev.sigev_signo will be delivered
to the process. The handler for this signal displays the value that was supplied in
sev.sigev_value.sival_ptr (i.e., the timer ID, tidlist[j]) and the overrun value for
the timer q.

Having created and armed the timers, wait for timer expirations by executing a
loop that repeatedly calls pause() y.

Listing 23-6 shows the function that converts each of the command-line arguments
for the program in Listing 23-5 into a corresponding itimerspec structure. The for-
mat of the string arguments interpreted by this function is shown in a comment at
the top of the listing (and demonstrated in the shell session below).

Listing 23-6: Converting time-plus-interval string to an itimerspec value

––––––––––––––––––––––––––––––––––––––––––––––– timers/itimerspec_from_str.c
#define_POSIX_C_SOURCE 199309
#include <string.h>
#include <stdlib.h>
#include "itimerspec_from_str.h"        /* Declares function defined here */

/* Convert a string of the following form to an itimerspec structure:
   "value.sec[/value.nanosec][:interval.sec[/interval.nanosec]]".
   Optional components that are omitted cause 0 to be assigned to the
   corresponding structure fields. */

void
itimerspecFromStr(char *str, struct itimerspec *tsp)
{
    char *cptr, *sptr;

    cptr = strchr(str, ':');
    if (cptr != NULL)
        *cptr = '\0';

    sptr = strchr(str, '/');
    if (sptr != NULL)
        *sptr = '\0';

    tsp->it_value.tv_sec = atoi(str);
    tsp->it_value.tv_nsec = (sptr != NULL) ? atoi(sptr + 1) : 0;
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    if (cptr == NULL) {
        tsp->it_interval.tv_sec = 0;
        tsp->it_interval.tv_nsec = 0;
    } else {
        sptr = strchr(cptr + 1, '/');
        if (sptr != NULL)
            *sptr = '\0';
        tsp->it_interval.tv_sec = atoi(cptr + 1);
        tsp->it_interval.tv_nsec = (sptr != NULL) ? atoi(sptr + 1) : 0;
    }
}

––––––––––––––––––––––––––––––––––––––––––––––– timers/itimerspec_from_str.c

We demonstrate the use of the program in Listing 23-5 in the following shell ses-
sion, creating a single timer with an initial timer expiry of 2 seconds and an interval
of 5 seconds.

$ ./ptmr_sigev_signal 2:5
Timer ID: 134524952 (2:5)
[15:54:56] Got signal 64                  SIGRTMAX is signal 64 on this system
    *sival_ptr         = 134524952        sival_ptr points to the variable tid
    timer_getoverrun() = 0
[15:55:01] Got signal 64
    *sival_ptr         = 134524952
    timer_getoverrun() = 0
Type Control-Z to suspend the process
[1]+  Stopped       ./ptmr_sigev_signal 2:5

After suspending the program, we pause for a few seconds, allowing several timer
expirations to occur before we resume the program:

$ fg
./ptmr_sigev_signal 2:5
[15:55:34] Got signal 64
    *sival_ptr         = 134524952
    timer_getoverrun() = 5
Type Control-C to kill the program

The last line of program output shows that five timer overruns occurred, meaning
that six timer expirations occurred since the previous signal delivery.

23.6.6 Timer Overruns
Suppose that we have chosen to receive notification of timer expiration via delivery
of a signal (i.e., sigev_notify is SIGEV_SIGNAL). Suppose further that the timer expires
multiple times before the associated signal is caught or accepted. This could occur
as the result of a delay before the process is next scheduled. Alternatively, it could
occur because delivery of the associated signal was blocked, either explicitly via
sigprocmask(), or implicitly during the execution of the handler for the signal. How
do we know that such timer overruns have happened?

We might suppose that using a realtime signal would help solve this problem,
since multiple instances of a realtime signal are queued. However, this approach
turns out to be unworkable, because there are limits on the number of realtime signals
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that can be queued. Therefore, the POSIX.1b committee decided on a different
approach: if we choose to receive timer notification via a signal, then multiple
instances of the signal are never queued, even if we use a realtime signal. Instead,
after receiving the signal (either via a signal handler or by using sigwaitinfo()), we
can fetch the timer overrun count, which is the number of extra timer expirations
that occurred between the time the signal was generated and the time it was
received. For example, if the timer has expired three times since the last signal was
received, then the overrun count is 2.

After receiving a timer signal, we can obtain the timer overrun count in two ways:

Call timer_getoverrun(), which we describe below. This is the SUSv3-specified
way of obtaining the overrun count.

Use the value in the si_overrun field of the siginfo_t structure returned with the
signal. This approach saves the overhead of the timer_getoverrun() system call,
but is a nonportable Linux extension.

The timer overrun count is reset each time we receive the timer signal. If the timer
expired just once since the timer signal was handled or accepted, then the overrun
count will be 0 (i.e., there were no overruns).

The timer_getoverrun() function returns the overrun count for the timer specified by
its timerid argument.

The timer_getoverrun() function is one of those specified as being async-signal-
safe in SUSv3 (Table 21-1, on page 426), so it is safe to call it from within a signal
handler.

23.6.7 Notification via a Thread
The SIGEV_THREAD flag allows a program to obtain notification of timer expiration via
the invocation of a function in a separate thread. Understanding this flag requires
knowledge of POSIX threads that we present later, in Chapters 29 and 30. Readers
unfamiliar with POSIX threads may want to read those chapters before examining
the example program that we present in this section.

Listing 23-7 demonstrates the use of SIGEV_THREAD. This program takes the same
command-line arguments as the program in Listing 23-5. The program performs
the following steps:

For each command-line argument, the program creates y and arms u a POSIX
timer that uses the SIGEV_THREAD notification mechanism e.

Each time this timer expires, the function specified by sev.sigev_notify_function r
will be invoked in a separate thread. When this function is invoked, it receives
the value specified in sev.sigev_value.sival_ptr as an argument. We assign the

#define _POSIX_C_SOURCE 199309
#include <time.h>

int timer_getoverrun(timer_t timerid);

Returns timer overrun count on success, or –1 on error
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address of the timer ID (tidlist[j]) to this field t so that the notification func-
tion can obtain the ID of the timer that caused its invocation.

Having created and armed all of the timers, the main program enters a loop
that waits for timer expirations i. Each time through the loop, the program
uses pthread_cond_wait() to wait for a condition variable (cond) to be signaled by
the thread that is handling a timer notification.

The threadFunc() function is invoked on each timer expiration q. After print-
ing a message, it increments the value of the global variable expireCnt. To allow
for the possibility of timer overruns, the value returned by timer_getoverrun() is
also added to expireCnt. (We explained timer overruns in Section 23.6.6 in rela-
tion to the SIGEV_SIGNAL notification mechanism. Timer overruns can also come
into play with the SIGEV_THREAD mechanism, because a timer might expire multi-
ple times before the notification function is invoked.) The notification func-
tion also signals the condition variable cond so that the main program knows to
check that a timer has expired w.

The following shell session log demonstrates the use of the program in
Listing 23-7. In this example, the program creates two timers: one with an initial
expiry of 5 seconds and an interval of 5 seconds, and the other with an initial expira-
tion of 10 seconds and an interval of 10 seconds.

$ ./ptmr_sigev_thread 5:5 10:10
Timer ID: 134525024 (5:5)
Timer ID: 134525080 (10:10)
[13:06:22] Thread notify
    timer ID=134525024
    timer_getoverrun()=0
main(): count = 1
[13:06:27] Thread notify
    timer ID=134525080
    timer_getoverrun()=0
main(): count = 2
[13:06:27] Thread notify
    timer ID=134525024
    timer_getoverrun()=0
main(): count = 3
Type Control-Z to suspend the program
[1]+  Stopped       ./ptmr_sigev_thread 5:5 10:10
$ fg                                      Resume execution
./ptmr_sigev_thread 5:5 10:10
[13:06:45] Thread notify
    timer ID=134525024
    timer_getoverrun()=2                  There were timer overruns
main(): count = 6
[13:06:45] Thread notify
    timer ID=134525080
    timer_getoverrun()=0
main(): count = 7
Type Control-C to kill the program
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Listing 23-7: POSIX timer notification using a thread function

––––––––––––––––––––––––––––––––––––––––––––––––– timers/ptmr_sigev_thread.c

#include <signal.h>
#include <time.h>
#include <pthread.h>
#include "curr_time.h"              /* Declaration of currTime() */
#include "tlpi_hdr.h"
#include "itimerspec_from_str.h"    /* Declares itimerspecFromStr() */

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

static int expireCnt = 0;           /* Number of expirations of all timers */

static void                         /* Thread notification function */
q threadFunc(union sigval sv)

{
    timer_t *tidptr;
    int s;

    tidptr = sv.sival_ptr;

    printf("[%s] Thread notify\n", currTime("%T"));
    printf("    timer ID=%ld\n", (long) *tidptr);
    printf("    timer_getoverrun()=%d\n", timer_getoverrun(*tidptr));

    /* Increment counter variable shared with main thread and signal
       condition variable to notify main thread of the change. */

    s = pthread_mutex_lock(&mtx);
    if (s != 0)
        errExitEN(s, "pthread_mutex_lock");

    expireCnt += 1 + timer_getoverrun(*tidptr);

    s = pthread_mutex_unlock(&mtx);
    if (s != 0)
        errExitEN(s, "pthread_mutex_unlock");

w     s = pthread_cond_signal(&cond);
    if (s != 0)
        errExitEN(s, "pthread_cond_signal");
}

int
main(int argc, char *argv[])
{
    struct sigevent sev;
    struct itimerspec ts;
    timer_t *tidlist;
    int s, j;
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    if (argc < 2)
        usageErr("%s secs[/nsecs][:int-secs[/int-nsecs]]...\n", argv[0]);

    tidlist = calloc(argc - 1, sizeof(timer_t));
    if (tidlist == NULL)
        errExit("malloc");

e     sev.sigev_notify = SIGEV_THREAD;            /* Notify via thread */
r     sev.sigev_notify_function = threadFunc;     /* Thread start function */

    sev.sigev_notify_attributes = NULL;
            /* Could be pointer to pthread_attr_t structure */

    /* Create and start one timer for each command-line argument */

    for (j = 0; j < argc - 1; j++) {
        itimerspecFromStr(argv[j + 1], &ts);

t         sev.sigev_value.sival_ptr = &tidlist[j];
                /* Passed as argument to threadFunc() */

y         if (timer_create(CLOCK_REALTIME, &sev, &tidlist[j]) == -1)
            errExit("timer_create");
        printf("Timer ID: %ld (%s)\n", (long) tidlist[j], argv[j + 1]);

u         if (timer_settime(tidlist[j], 0, &ts, NULL) == -1)
            errExit("timer_settime");
    }

    /* The main thread waits on a condition variable that is signaled
       on each invocation of the thread notification function. We
       print a message so that the user can see that this occurred. */

    s = pthread_mutex_lock(&mtx);
    if (s != 0)
        errExitEN(s, "pthread_mutex_lock");

i     for (;;) {
        s = pthread_cond_wait(&cond, &mtx);
        if (s != 0)
            errExitEN(s, "pthread_cond_wait");
        printf("main(): expireCnt = %d\n", expireCnt);
    }
}

––––––––––––––––––––––––––––––––––––––––––––––––– timers/ptmr_sigev_thread.c

23.7 Timers That Notify via File Descriptors: the timerfd API

Starting with kernel 2.6.25, Linux provides another API for creating timers. The
Linux-specific timerfd API creates a timer whose expiration notifications can be
read from a file descriptor. This is useful because the file descriptor can be moni-
tored along with other descriptors using select(), poll(), and epoll (described in Chap-
ter 63). (With the other timer APIs discussed in this chapter, it requires some effort
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to be able to simultaneously monitor one or more timers along with a set of file
descriptors.)

The operation of the three new system calls in this API is analogous to the
operation of the timer_create(), timer_settime(), and timer_gettime() system calls
described in Section 23.6.

The first of the new system calls is timerfd_create(), which creates a new timer
object and returns a file descriptor referring to that object.

The value of clockid can be either CLOCK_REALTIME or CLOCK_MONOTONIC (see Table 23-1).
In the initial implementation of timerfd_create(), the flags argument was reserved

for future use and had to be specified as 0. However, since Linux 2.6.27, two flags
are supported:

TFD_CLOEXEC

Set the close-on-exec flag (FD_CLOEXEC) for the new file descriptor. This flag
is useful for the same reasons as the open() O_CLOEXEC flag described in
Section 4.3.1.

TFD_NONBLOCK

Set the O_NONBLOCK flag on the underlying open file description, so that
future reads will be nonblocking. This saves additional calls to fcntl() to
achieve the same result.

When we have finished using a timer created by timerfd_create(), we should close()
the associated file descriptor, so that the kernel can free the resources associated
with the timer.

The timerfd_settime() system call arms (starts) or disarms (stops) the timer
referred to by the file descriptor fd.

The new_value argument specifies the new settings for the timer. The old_value
argument can be used to return the previous settings of the timer (see the descrip-
tion of timerfd_gettime() below for details). If we are not interested in the previous
settings, we can specify old_value as NULL. Both of these arguments are itimerspec
structures that are used in the same way as for timer_settime() (see Section 23.6.2).

The flags argument is similar to the corresponding argument for timer_settime().
It may either be 0, meaning that new_value.it_value is interpreted relative to the
time of the call to timerfd_settime(), or it can be TFD_TIMER_ABSTIME, meaning that

#include <sys/timerfd.h>

int timerfd_create(int clockid, int flags);

Returns file descriptor on success, or –1 on error

#include <sys/timerfd.h>

int timerfd_settime(int fd, int flags, const struct itimerspec *new_value,
                    struct itimerspec *old_value);

Returns 0 on success, or –1 on error
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new_value.it_value is interpreted as an absolute time (i.e., measured from the
clock’s zero point).

The timerfd_gettime() system call returns the interval and remaining time for the
timer identified by the file descriptor fd.

As with timer_gettime(), the interval and the time until the next expiration of the
timer are returned in the itimerspec structure pointed to by curr_value. The
curr_value.it_value field returns the time until the next timer expiration, even if this
timer was established as an absolute timer using TFD_TIMER_ABSTIME. If both fields of
the returned curr_value.it_value structure are 0, then the timer is currently dis-
armed. If both fields of the returned curr_value.it_interval structure are 0, then the
timer expires just once, at the time given in curr_value.it_value.

Interactions of timerfd with fork() and exec()

During a fork(), a child process inherits copies of file descriptors created by
timerfd_create(). These file descriptors refer to the same timer objects as the corre-
sponding descriptors in the parent, and timer expirations can be read in either
process.

File descriptors created by timerfd_create() are preserved across an exec() (unless
the descriptors are marked close-on-exec, as described in Section 27.4), and armed
timers will continue to generate timer expirations after the exec().

Reading from the timerfd file descriptor

Once we have armed a timer with timerfd_settime(), we can use read() to read infor-
mation about timer expirations from the associated file descriptor. For this pur-
pose, the buffer given to read() must be large enough to hold an unsigned 8-byte
integer (uint64_t).

If one or more expirations have occurred since the timer settings were last
modified using timerfd_settime() or the last read() was performed, then read() returns
immediately, and the returned buffer contains the number of expirations that have
occurred. If no timer expirations have occurred, then read() blocks until the next
expiration occurs. It is also possible to use the fcntl() F_SETFL operation (Section 5.3)
to set the O_NONBLOCK flag for the file descriptor, so that reads are nonblocking, and
will fail with the error EAGAIN if no timer expirations have occurred.

As stated earlier, a timerfd file descriptor can be monitored using select(), poll(),
and epoll. If the timer has expired, then the file descriptor indicates as being readable.

Example program

Listing 23-8 demonstrates the use of the timerfd API. This program takes two com-
mand-line arguments. The first argument is mandatory, and specifies the initial time
and interval for a timer. (This argument is interpreted using the itimerspecFromStr()
function shown in Listing 23-6.) The second argument, which is optional, specifies

#include <sys/timerfd.h>

int timerfd_gettime(int fd, struct itimerspec *curr_value);

Returns 0 on success, or –1 on error
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the maximum number of expirations of the timer that the program should wait for
before terminating; the default for this argument is 1.

The program creates a timer using timerfd_create(), and arms it using
timerfd_settime(). It then loops, reading expiration notifications from the file
descriptor until the specified number of expirations has been reached. After each
read(), the program displays the time elapsed since the timer was started, the num-
ber of expirations read, and the total number of expirations so far.

In the following shell session log, the command-line arguments specify a timer
with a 1-second initial value and 1-second interval, and a maximum of 100 expirations.

$ ./demo_timerfd 1:1 100
1.000: expirations read: 1; total=1
2.000: expirations read: 1; total=2
3.000: expirations read: 1; total=3
Type Control-Z to suspend program in background for a few seconds
[1]+  Stopped           ./demo_timerfd 1:1 100
$ fg                                      Resume program in foreground
./demo_timerfd 1:1 100
14.205: expirations read: 11; total=14    Multiple expirations since last read()
15.000: expirations read: 1; total=15
16.000: expirations read: 1; total=16
Type Control-C to terminate the program

From the above output, we can see that multiple timer expirations occurred while
the program was suspended in the background, and all of these expirations were
returned on the first read() after the program resumed execution.

Listing 23-8: Using the timerfd API

––––––––––––––––––––––––––––––––––––––––––––––––––––– timers/demo_timerfd.c
#include <sys/timerfd.h>
#include <time.h>
#include <stdint.h>                     /* Definition of uint64_t */
#include "itimerspec_from_str.h"        /* Declares itimerspecFromStr() */
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    struct itimerspec ts;
    struct timespec start, now;
    int maxExp, fd, secs, nanosecs;
    uint64_t numExp, totalExp;
    ssize_t s;

    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s secs[/nsecs][:int-secs[/int-nsecs]] [max-exp]\n", argv[0]);

    itimerspecFromStr(argv[1], &ts);
    maxExp = (argc > 2) ? getInt(argv[2], GN_GT_0, "max-exp") : 1;
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    fd = timerfd_create(CLOCK_REALTIME, 0);
    if (fd == -1)
        errExit("timerfd_create");

    if (timerfd_settime(fd, 0, &ts, NULL) == -1)
        errExit("timerfd_settime");

    if (clock_gettime(CLOCK_MONOTONIC, &start) == -1)
        errExit("clock_gettime");

    for (totalExp = 0; totalExp < maxExp;) {

        /* Read number of expirations on the timer, and then display
           time elapsed since timer was started, followed by number
           of expirations read and total expirations so far. */

        s = read(fd, &numExp, sizeof(uint64_t));
        if (s != sizeof(uint64_t))
            errExit("read");

        totalExp += numExp;

        if (clock_gettime(CLOCK_MONOTONIC, &now) == -1)
            errExit("clock_gettime");

        secs = now.tv_sec - start.tv_sec;
        nanosecs = now.tv_nsec - start.tv_nsec;
        if (nanosecs < 0) {
            secs--;
            nanosecs += 1000000000;
        }

        printf("%d.%03d: expirations read: %llu; total=%llu\n",
                secs, (nanosecs + 500000) / 1000000,
                (unsigned long long) numExp, (unsigned long long) totalExp);
    }

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––– timers/demo_timerfd.c

23.8 Summary

A process can use setitimer() or alarm() to set a timer, so that it receives a signal after
the passage of a specified amount of real or process time. One use of timers is to
set an upper limit on the time for which a system call can block.

Applications that need to suspend execution for a specified interval of real
time can use a variety of sleep functions for this purpose.

Linux 2.6 implements the POSIX.1b extensions that define an API for high-
precision clocks and timers. POSIX.1b timers provide a number of advantages over
traditional (setitimer()) UNIX timers. We can: create multiple timers; choose the signal
that is delivered on timer expiration; retrieve the timer overrun count in order to
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determine if a timer has expired multiple times since the last expiration notifica-
tion; and choose to receive timer notifications via execution of a thread function
instead of delivery of a signal.

The Linux-specific timerfd API provides a set of interfaces for creating timers that
is similar to the POSIX timers API, but allows timer notifications to be read via a file
descriptor. This file descriptor can be monitored using select(), poll(), and epoll.

Further information

Under the rationale for individual functions, SUSv3 provides useful notes on the
(standard) timer and sleep interface described in this chapter. [Gallmeister, 1995]
discusses POSIX.1b clocks and timers.

23.9 Exercises

23-1. Although alarm() is implemented as a system call within the Linux kernel, this is
redundant. Implement alarm() using setitimer().

23-2. Try running the program in Listing 23-3 (t_nanosleep.c) in the background with a
60-second sleep interval, while using the following command to send as many
SIGINT signals as possible to the background process:

$ while true; do kill -INT pid; done

You should observe that the program sleeps rather longer than expected. Replace
the use of nanosleep() with the use of clock_gettime() (use a CLOCK_REALTIME clock) and
clock_nanosleep() with the TIMER_ABSTIME flag. (This exercise requires Linux 2.6.)
Repeat the test with the modified program and explain the difference.

23-3. Write a program to show that if the evp argument to timer_create() is specified as
NULL, then this is equivalent to specifying evp as a pointer to a sigevent structure with
sigev_notify set to SIGEV_SIGNAL, sigev_signo set to SIGALRM, and si_value.sival_int set to
the timer ID.

23-4. Modify the program in Listing 23-5 (ptmr_sigev_signal.c) to use sigwaitinfo() instead
of a signal handler.
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P R O C E S S  C R E A T I O N

In this and the next three chapters, we look at how a process is created and termi-
nates, and how a process can execute a new program. This chapter covers process
creation. However, before diving into that subject, we present a short overview of
the main system calls covered in these four chapters.

24.1 Overview of fork(), exit(), wait(), and execve()

The principal topics of this and the next few chapters are the system calls fork(),
exit(), wait(), and execve(). Each of these system calls has variants, which we’ll also
look at. For now, we provide an overview of these four system calls and how they
are typically used together.

The fork() system call allows one process, the parent, to create a new process,
the child. This is done by making the new child process an (almost) exact dupli-
cate of the parent: the child obtains copies of the parent’s stack, data, heap,
and text segments (Section 6.3). The term fork derives from the fact that we can
envisage the parent process as dividing to yield two copies of itself.

The exit(status) library function terminates a process, making all resources
(memory, open file descriptors, and so on) used by the process available for
subsequent reallocation by the kernel. The status argument is an integer that
determines the termination status for the process. Using the wait() system call,
the parent can retrieve this status.



The exit() library function is layered on top of the _exit() system call. In Chapter 25,
we explain the difference between the two interfaces. In the meantime, we’ll
just note that, after a fork(), generally only one of the parent and child termi-
nate by calling exit(); the other process should terminate using _exit().

The wait(&status) system call has two purposes. First, if a child of this process
has not yet terminated by calling exit(), then wait() suspends execution of the
process until one of its children has terminated. Second, the termination status
of the child is returned in the status argument of wait().

The execve(pathname, argv, envp) system call loads a new program (pathname,
with argument list argv, and environment list envp) into a process’s memory.
The existing program text is discarded, and the stack, data, and heap segments
are freshly created for the new program. This operation is often referred to as
execing a new program. Later, we’ll see that several library functions are layered
on top of execve(), each of which provides a useful variation in the program-
ming interface. Where we don’t care about these interface variations, we follow
the common convention of referring to these calls generically as exec(), but be
aware that there is no system call or library function with this name.

Some other operating systems combine the functionality of fork() and exec() into a
single operation—a so-called spawn—that creates a new process that then executes a
specified program. By comparison, the UNIX approach is usually simpler and
more elegant. Separating these two steps makes the APIs simpler (the fork() system
call takes no arguments) and allows a program a great degree of flexibility in the
actions it performs between the two steps. Moreover, it is often useful to perform a
fork() without a following exec().

SUSv3 specifies the optional posix_spawn() function, which combines the effect
of fork() and exec(). This function, and several related APIs specified by SUSv3,
are implemented on Linux in glibc. SUSv3 specifies posix_spawn() to permit
portable applications to be written for hardware architectures that don’t pro-
vide swap facilities or memory-management units (this is typical of many
embedded systems). On such architectures, a traditional fork() is difficult or
impossible to implement.

Figure 24-1 provides an overview of how fork(), exit(), wait(), and execve() are com-
monly used together. (This diagram outlines the steps taken by the shell in executing
a command: the shell continuously executes a loop that reads a command, performs
various processing on it, and then forks a child process to exec the command.)

The use of execve() shown in this diagram is optional. Sometimes, it is instead
useful to have the child carry on executing the same program as the parent. In either
case, the execution of the child is ultimately terminated by a call to exit() (or by
delivery of a signal), yielding a termination status that the parent can obtain via wait().

The call to wait() is likewise optional. The parent can simply ignore its child
and continue executing. However, we’ll see later that the use of wait() is usually
desirable, and is often employed within a handler for the SIGCHLD signal, which the
kernel generates for a parent process when one of its children terminates. (By
default, SIGCHLD is ignored, which is why we label it as being optionally delivered in
the diagram.)
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Figure 24-1: Overview of the use of fork(), exit(), wait(), and execve()

24.2 Creating a New Process: fork()

In many applications, creating multiple processes can be a useful way of dividing
up a task. For example, a network server process may listen for incoming client
requests and create a new child process to handle each request; meanwhile, the
server process continues to listen for further client connections. Dividing tasks up
in this way often makes application design simpler. It also permits greater concur-
rency (i.e., more tasks or requests can be handled simultaneously).

The fork() system call creates a new process, the child, which is an almost exact
duplicate of the calling process, the parent.
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The key point to understanding fork() is to realize that after it has completed its
work, two processes exist, and, in each process, execution continues from the point
where fork() returns.

The two processes are executing the same program text, but they have separate
copies of the stack, data, and heap segments. The child’s stack, data, and heap seg-
ments are initially exact duplicates of the corresponding parts the parent’s memory.
After the fork(), each process can modify the variables in its stack, data, and heap
segments without affecting the other process.

Within the code of a program, we can distinguish the two processes via the
value returned from fork(). For the parent, fork() returns the process ID of the
newly created child. This is useful because the parent may create, and thus need to
track, several children (via wait() or one of its relatives). For the child, fork() returns 0.
If necessary, the child can obtain its own process ID using getpid(), and the process
ID of its parent using getppid().

If a new process can’t be created, fork() returns –1. Possible reasons for failure
are that the resource limit (RLIMIT_NPROC, described in Section 36.3) on the number of
processes permitted to this (real) user ID has been exceeded or that the system-
wide limit on the number of processes that can be created has been reached.

The following idiom is sometimes employed when calling fork():

pid_t childPid;             /* Used in parent after successful fork()
                               to record PID of child */
switch (childPid = fork()) {
case -1:                    /* fork() failed */
    /* Handle error */

case 0:                     /* Child of successful fork() comes here */
    /* Perform actions specific to child */

default:                    /* Parent comes here after successful fork() */
    /* Perform actions specific to parent */
}

It is important to realize that after a fork(), it is indeterminate which of the two
processes is next scheduled to use the CPU. In poorly written programs, this indeter-
minacy can lead to errors known as race conditions, which we describe further in
Section 24.4.

Listing 24-1 demonstrates the use of fork(). This program creates a child that
modifies the copies of global and automatic variables that it inherits during the
during the fork().

The use of sleep() (in the code executed by the parent) in this program permits
the child to be scheduled for the CPU before the parent, so that the child can com-
plete its work and terminate before the parent continues execution. Using sleep() in

#include <unistd.h>

pid_t fork(void);

In parent: returns process ID of child on success, or –1 on error;
in successfully created child: always returns 0
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this manner is not a foolproof method of guaranteeing this result; we look at a better
method in Section 24.5.

When we run the program in Listing 24-1, we see the following output:

$ ./t_fork
PID=28557 (child)  idata=333 istack=666
PID=28556 (parent) idata=111 istack=222

The above output demonstrates that the child process gets its own copy of the stack
and data segments at the time of the fork(), and it is able to modify variables in
these segments without affecting the parent.

Listing 24-1: Using fork()
–––––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/t_fork.c

#include "tlpi_hdr.h"

static int idata = 111;             /* Allocated in data segment */

int
main(int argc, char *argv[])
{
    int istack = 222;               /* Allocated in stack segment */
    pid_t childPid;

    switch (childPid = fork()) {
    case -1:
        errExit("fork");

    case 0:
        idata *= 3;
        istack *= 3;
        break;

    default:
        sleep(3);                   /* Give child a chance to execute */
        break;
    }

    /* Both parent and child come here */

    printf("PID=%ld %s idata=%d istack=%d\n", (long) getpid(),
            (childPid == 0) ? "(child) " : "(parent)", idata, istack);

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/t_fork.c

24.2.1 File Sharing Between Parent and Child
When a fork() is performed, the child receives duplicates of all of the parent’s file
descriptors. These duplicates are made in the manner of dup(), which means that
corresponding descriptors in the parent and the child refer to the same open file
description. As we saw in Section 5.4, the open file description contains the current
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file offset (as modified by read(), write(), and lseek()) and the open file status flags
(set by open() and changed by the fcntl() F_SETFL operation). Consequently, these
attributes of an open file are shared between the parent and child. For example, if
the child updates the file offset, this change is visible through the corresponding
descriptor in the parent.

The fact that these attributes are shared by the parent and child after a fork() is
demonstrated by the program in Listing 24-2. This program opens a temporary file
using mkstemp(), and then calls fork() to create a child process. The child changes
the file offset and open file status flags of the temporary file, and exits. The parent
then retrieves the file offset and flags to verify that it can see the changes made by
the child. When we run the program, we see the following:

$ ./fork_file_sharing
File offset before fork(): 0
O_APPEND flag before fork() is: off
Child has exited
File offset in parent: 1000
O_APPEND flag in parent is: on

For an explanation of why we cast the return value from lseek() to long long in
Listing 24-2, see Section 5.10.

Listing 24-2: Sharing of file offset and open file status flags between parent and child

––––––––––––––––––––––––––––––––––––––––––––––– procexec/fork_file_sharing.c
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/wait.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int fd, flags;

char template[] = "/tmp/testXXXXXX";

    setbuf(stdout, NULL);                   /* Disable buffering of stdout */

    fd = mkstemp(template);
    if (fd == -1)
        errExit("mkstemp");

    printf("File offset before fork(): %lld\n",
            (long long) lseek(fd, 0, SEEK_CUR));

    flags = fcntl(fd, F_GETFL);
    if (flags == -1)
        errExit("fcntl - F_GETFL");
    printf("O_APPEND flag before fork() is: %s\n",
            (flags & O_APPEND) ? "on" : "off");
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    switch (fork()) {
    case -1:
        errExit("fork");

    case 0:     /* Child: change file offset and status flags */
        if (lseek(fd, 1000, SEEK_SET) == -1)
            errExit("lseek");

        flags = fcntl(fd, F_GETFL);         /* Fetch current flags */
        if (flags == -1)
            errExit("fcntl - F_GETFL");
        flags |= O_APPEND;                  /* Turn O_APPEND on */
        if (fcntl(fd, F_SETFL, flags) == -1)
            errExit("fcntl - F_SETFL");
        _exit(EXIT_SUCCESS);

    default:    /* Parent: can see file changes made by child */
        if (wait(NULL) == -1)
            errExit("wait");                /* Wait for child exit */
        printf("Child has exited\n");

        printf("File offset in parent: %lld\n",
                (long long) lseek(fd, 0, SEEK_CUR));

        flags = fcntl(fd, F_GETFL);
        if (flags == -1)
            errExit("fcntl - F_GETFL");
        printf("O_APPEND flag in parent is: %s\n",
                (flags & O_APPEND) ? "on" : "off");
        exit(EXIT_SUCCESS);
    }
}

––––––––––––––––––––––––––––––––––––––––––––––– procexec/fork_file_sharing.c

Sharing of open file attributes between the parent and child processes is frequently
useful. For example, if the parent and child are both writing to a file, sharing the
file offset ensures that the two processes don’t overwrite each other’s output. It
does not, however, prevent the output of the two processes from being randomly
intermingled. If this is not desired, then some form of process synchronization is
required. For example, the parent can use the wait() system call to pause until the
child has exited. This is what the shell does, so that it prints its prompt only after
the child process executing a command has terminated (unless the user explicitly
runs the command in the background by placing an ampersand character at the
end of the command).

If sharing of file descriptors in this manner is not required, then an application
should be designed so that, after a fork(), the parent and child use different file
descriptors, with each process closing unused descriptors (i.e., those used by the
other process) immediately after forking. (If one of the processes performs an
exec(), the close-on-exec flag described in Section 27.4 can also be useful.) These
steps are shown in Figure 24-2.
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Figure 24-2: Duplication of file descriptors during fork(), and closing of unused descriptors

24.2.2 Memory Semantics of fork()
Conceptually, we can consider fork() as creating copies of the parent’s text, data,
heap, and stack segments. (Indeed, in some early UNIX implementations, such
duplication was literally performed: a new process image was created by copying the
parent’s memory to swap space, and making that swapped-out image the child pro-
cess while the parent kept its own memory.) However, actually performing a simple
copy of the parent’s virtual memory pages into the new child process would be
wasteful for a number of reasons—one being that a fork() is often followed by an
immediate exec(), which replaces the process’s text with a new program and reinitializes
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the process’s data, heap, and stack segments. Most modern UNIX implementa-
tions, including Linux, use two techniques to avoid such wasteful copying:

The kernel marks the text segment of each process as read-only, so that a pro-
cess can’t modify its own code. This means that the parent and child can share
the same text segment. The fork() system call creates a text segment for the
child by building a set of per-process page-table entries that refer to the same
virtual memory page frames already used by the parent.

For the pages in the data, heap, and stack segments of the parent process, the
kernel employs a technique known as copy-on-write. (The implementation of
copy-on-write is described in [Bach, 1986] and [Bovet & Cesati, 2005].) Initially,
the kernel sets things up so that the page-table entries for these segments refer
to the same physical memory pages as the corresponding page-table entries in
the parent, and the pages themselves are marked read-only. After the fork(), the
kernel traps any attempts by either the parent or the child to modify one of
these pages, and makes a duplicate copy of the about-to-be-modified page. This
new page copy is assigned to the faulting process, and the corresponding page-
table entry for the child is adjusted appropriately. From this point on, the parent
and child can each modify their private copies of the page, without the changes
being visible to the other process. Figure 24-3 illustrates the copy-on-write
technique.

Figure 24-3: Page tables before and after modification of a shared copy-on-write page
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by the process, as affected by factors such as the adjustment of the stack as functions
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are called and return, calls to exec(), and, of particular interest to this discussion,
modification of the heap as a consequence of calls to malloc() and free().

Suppose that we bracket a call to some function, func(), using fork() and wait()
in the manner shown in Listing 24-3. After executing this code, we know that the
memory footprint of the parent is unchanged from the point before func() was
called, since all possible changes will have occurred in the child process. This can
be useful for the following reasons:

If we know that func() causes memory leaks or excessive fragmentation of the
heap, this technique eliminates the problem. (We might not otherwise be able
to deal with these problems if we don’t have access to the source code of func().)

Suppose that we have some algorithm that performs memory allocation while
doing a tree analysis (for example, a game program that analyzes a range of
possible moves and their responses). We could code such a program to make
calls to free() to deallocate all of the allocated memory. However, in some cases,
it is simpler to employ the technique we describe here in order to allow us to
backtrack, leaving the caller (the parent) with its original memory footprint
unchanged.

In the implementation shown in Listing 24-3, the result of func() must be expressed
in the 8 bits that exit() passes from the terminating child to the parent calling wait().
However, we could employ a file, a pipe, or some other interprocess communica-
tion technique to allow func() to return larger results.

Listing 24-3: Calling a function without changing the process’s memory footprint

–––––––––––––––––––––––––––––––––––––––––––––––––– from procexec/footprint.c
    pid_t childPid;
    int status;

    childPid = fork();
    if (childPid == -1)
        errExit("fork");

    if (childPid == 0)              /* Child calls func() and */
        exit(func(arg));            /* uses return value as exit status */

    /* Parent waits for child to terminate. It can determine the
       result of func() by inspecting 'status'. */

    if (wait(&status) == -1)
        errExit("wait");

–––––––––––––––––––––––––––––––––––––––––––––––––– from procexec/footprint.c

24.3 The vfork() System Call

Early BSD implementations were among those in which fork() performed a literal
duplication of the parent’s data, heap, and stack. As noted earlier, this is wasteful, espe-
cially if the fork() is followed by an immediate exec(). For this reason, later versions of
BSD introduced the vfork() system call, which was far more efficient than BSD’s fork(),
although it operated with slightly different (in fact, somewhat strange) semantics.
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Modern UNIX implementations employing copy-on-write for implementing fork() are
much more efficient than older fork() implementations, thus largely eliminating the
need for vfork(). Nevertheless, Linux (like many other UNIX implementations) pro-
vides a vfork() system call with BSD semantics for programs that require the fastest
possible fork. However, because the unusual semantics of vfork() can lead to some
subtle program bugs, its use should normally be avoided, except in the rare cases
where it provides worthwhile performance gains.

Like fork(), vfork() is used by the calling process to create a new child process.
However, vfork() is expressly designed to be used in programs where the child per-
forms an immediate exec() call.

Two features distinguish the vfork() system call from fork() and make it more efficient:

No duplication of virtual memory pages or page tables is done for the child
process. Instead, the child shares the parent’s memory until it either performs
a successful exec() or calls _exit() to terminate.

Execution of the parent process is suspended until the child has performed an
exec() or _exit().

These points have some important implications. Since the child is using the parent’s
memory, any changes made by the child to the data, heap, or stack segments will be
visible to the parent once it resumes. Furthermore, if the child performs a function
return between the vfork() and a later exec() or _exit(), this will also affect the parent.
This is similar to the example described in Section 6.8 of trying to longjmp() into a
function from which a return has already been performed. Similar chaos—typically
a segmentation fault (SIGSEGV)—is likely to result.

There are a few things that the child process can do between vfork() and exec()
without affecting the parent. Among these are operations on open file descriptors
(but not stdio file streams). Since the file descriptor table for each process is main-
tained in kernel space (Section 5.4) and is duplicated during vfork(), the child process
can perform file descriptor operations without affecting the parent.

SUSv3 says that the behavior of a program is undefined if it: a) modifies any
data other than a variable of type pid_t used to store the return value of vfork();
b) returns from the function in which vfork() was called; or c) calls any other
function before successfully calling _exit() or performing an exec().

When we look at the clone() system call in Section 28.2, we’ll see that a
child created using fork() or vfork() also obtains its own copies of a few other
process attributes.

The semantics of vfork() mean that after the call, the child is guaranteed to be
scheduled for the CPU before the parent. In Section 24.2, we noted that this is not
a guarantee made by fork(), after which either the parent or the child may be sched-
uled first.

#include <unistd.h>

pid_t vfork(void);

In parent: returns process ID of child on success, or –1 on error;
in successfully created child: always returns 0
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Listing 24-4 shows the use of vfork(), demonstrating both of the semantic features
that distinguish it from fork(): the child shares the parent’s memory, and the parent
is suspended until the child terminates or calls exec(). When we run this program,
we see the following output:

$ ./t_vfork
Child executing           Even though child slept, parent was not scheduled
Parent executing
istack=666

From the last line of output, we can see that the change made by the child to the
variable istack was performed on the parent’s variable.

Listing 24-4: Using vfork()
–––––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/t_vfork.c

#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int istack = 222;

    switch (vfork()) {
    case -1:
        errExit("vfork");

    case 0:             /* Child executes first, in parent's memory space */
        sleep(3);                   /* Even if we sleep for a while,
                                       parent still is not scheduled */
        write(STDOUT_FILENO, "Child executing\n", 16);
        istack *= 3;                /* This change will be seen by parent */
        _exit(EXIT_SUCCESS);

    default:            /* Parent is blocked until child exits */
        write(STDOUT_FILENO, "Parent executing\n", 17);
        printf("istack=%d\n", istack);
        exit(EXIT_SUCCESS);
    }
}
–––––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/t_vfork.c

Except where speed is absolutely critical, new programs should avoid the use of
vfork() in favor of fork(). This is because, when fork() is implemented using copy-on-
write semantics (as is done on most modern UNIX implementations), it approaches
the speed of vfork(), and we avoid the eccentric behaviors associated with vfork()
described above. (We show some speed comparisons between fork() and vfork() in
Section 28.3.)

SUSv3 marks vfork() as obsolete, and SUSv4 goes further, removing the specifi-
cation of vfork(). SUSv3 leaves many details of the operation of vfork() unspecified,
allowing the possibility that it is implemented as a call to fork(). When implemented
in this manner, the BSD semantics for vfork() are not preserved. Some UNIX systems
do indeed implement vfork() as a call to fork(), and Linux also did this in kernel 2.0
and earlier.
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Where it is used, vfork() should generally be immediately followed by a call to
exec(). If the exec() call fails, the child process should terminate using _exit(). (The
child of a vfork() should not terminate by calling exit(), since that would cause the
parent’s stdio buffers to be flushed and closed. We go into more detail on this point
in Section 25.4.)

Other uses of vfork()—in particular, those relying on its unusual semantics for
memory sharing and process scheduling—are likely to render a program nonportable,
especially to implementations where vfork() is implemented simply as a call to fork().

24.4 Race Conditions After fork()

After a fork(), it is indeterminate which process—the parent or the child—next has
access to the CPU. (On a multiprocessor system, they may both simultaneously
get access to a CPU.) Applications that implicitly or explicitly rely on a particular
sequence of execution in order to achieve correct results are open to failure due to
race conditions, which we described in Section 5.1. Such bugs can be hard to find, as
their occurrence depends on scheduling decisions that the kernel makes according
to system load.

We can use the program in Listing 24-5 to demonstrate this indeterminacy.
This program loops, using fork() to create multiple children. After each fork(), both
parent and child print a message containing the loop counter value and a string
indicating whether the process is the parent or child. For example, if we asked the
program to produce just one child, we might see the following:

$ ./fork_whos_on_first 1
0 parent
0 child

We can use this program to create a large number of children, and then analyze the
output to see whether the parent or the child is the first to print its message each
time. Analyzing the results when using this program to create 1 million children on
a Linux/x86-32 2.2.19 system showed that the parent printed its message first in all
but 332 cases (i.e., in 99.97% of the cases).

The results from running the program in Listing 24-5 were analyzed using the
script procexec/fork_whos_on_first.count.awk, which is provided in the source
code distribution for this book.

From these results, we may surmise that, on Linux 2.2.19, execution always continues
with the parent process after a fork(). The reason that the child occasionally printed
its message first was that, in 0.03% of cases, the parent’s CPU time slice ran out
before it had time to print its message. In other words, if this example represented
a case where we were relying on the parent to always be scheduled first after fork(),
then things would usually go right, but one time out of every 3000, things would go
wrong. Of course, if the application expected that the parent should be able to
carry out a larger piece of work before the child was scheduled, the possibility of
things going wrong would be greater. Trying to debug such errors in a complex
program can be difficult.
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Listing 24-5: Parent and child race to write a message after fork()
––––––––––––––––––––––––––––––––––––––––––––––  procexec/fork_whos_on_first.c
#include <sys/wait.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int numChildren, j;
    pid_t childPid;

    if (argc > 1 && strcmp(argv[1], "--help") == 0)
        usageErr("%s [num-children]\n", argv[0]);

    numChildren = (argc > 1) ? getInt(argv[1], GN_GT_0, "num-children") : 1;

    setbuf(stdout, NULL);                /* Make stdout unbuffered */

    for (j = 0; j < numChildren; j++) {
        switch (childPid = fork()) {
        case -1:
            errExit("fork");

        case 0:
            printf("%d child\n", j);
            _exit(EXIT_SUCCESS);

        default:
            printf("%d parent\n", j);
            wait(NULL);                   /* Wait for child to terminate */
            break;
        }
    }

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––  procexec/fork_whos_on_first.c

Although Linux 2.2.19 always continues execution with the parent after a fork(), we
can’t rely on this being the case on other UNIX implementations, or even across
different versions of the Linux kernel. During the 2.4 stable kernel series, experi-
ments were briefly made with a “child first after fork()” patch, which completely
reverses the results obtained from 2.2.19. Although this change was later dropped
from the 2.4 kernel series, it was subsequently adopted in Linux 2.6. Thus, pro-
grams that assume the 2.2.19 behavior would be broken by the 2.6 kernel.

Some more recent experiments reversed the kernel developers’ assessment of
whether it was better to run the child or the parent first after fork(), and, since
Linux 2.6.32, it is once more the parent that is, by default, run first after a fork().
This default can be changed by assigning a nonzero value to the Linux-specific
/proc/sys/kernel/sched_child_runs_first file.
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To see the argument for the “children first after fork()” behavior, consider
what happens with copy-on-write semantics when the child of a fork() performs
an immediate exec(). In this case, as the parent carries on after the fork() to
modify data and stack pages, the kernel duplicates the to-be-modified pages for
the child. Since the child performs an exec() as soon as it is scheduled to run,
this duplication is wasted. According to this argument, it is better to schedule
the child first, so that by the time the parent is next scheduled, no page copy-
ing is required. Using the program in Listing 24-5 to create 1 million child
processes on one busy Linux/x86-32 system running kernel 2.6.30 showed
that, in 99.98% of cases, the child process displayed its message first. (The precise
percentage depends on factors such as system load.) Testing this program on
other UNIX implementations showed wide variation in the rules that govern
which process runs first after fork().

The argument for switching back to “parent first after fork()” in Linux 2.6.32
was based on the observation that, after a fork(), the parent’s state is already
active in the CPU and its memory-management information is already cached
in the hardware memory management unit’s translation look-aside buffer
(TLB). Therefore, running the parent first should result in better perfor-
mance. This was informally verified by measuring the time required for kernel
builds under the two behaviors.

In conclusion, it is worth noting that the performance differences
between the two behaviors are rather small, and won’t affect most applications.

From the preceding discussion, it is clear that we can’t assume a particular order of
execution for the parent and child after a fork(). If we need to guarantee a particular
order, we must use some kind of synchronization technique. We describe several
synchronization techniques in later chapters, including semaphores, file locks, and
sending messages between processes using pipes. One other method, which we
describe next, is to use signals.

24.5 Avoiding Race Conditions by Synchronizing with Signals

After a fork(), if either process needs to wait for the other to complete an action,
then the active process can send a signal after completing the action; the other pro-
cess waits for the signal.

Listing 24-6 demonstrates this technique. In this program, we assume that it is
the parent that must wait on the child to carry out some action. The signal-related
calls in the parent and child can be swapped if the child must wait on the parent. It
is even possible for both parent and child to signal each other multiple times in
order to coordinate their actions, although, in practice, such coordination is more
likely to be done using semaphores, file locks, or message passing.

[Stevens & Rago, 2005] suggests encapsulating such synchronization steps
(block signal, send signal, catch signal) into a standard set of functions for pro-
cess synchronization. The advantage of such encapsulation is that we can then
later replace the use of signals by another IPC mechanism, if desired.

Note that we block the synchronization signal (SIGUSR1) before the fork() call in
Listing 24-6. If the parent tried blocking the signal after the fork(), it would remain
vulnerable to the very race condition we are trying to avoid. (In this program, we
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assume that the state of the signal mask in the child is irrelevant; if necessary, we
can unblock SIGUSR1 in the child after the fork().)

The following shell session log shows what happens when we run the program
in Listing 24-6:

$ ./fork_sig_sync
[17:59:02 5173] Child started - doing some work
[17:59:02 5172] Parent about to wait for signal
[17:59:04 5173] Child about to signal parent
[17:59:04 5172] Parent got signal

Listing 24-6: Using signals to synchronize process actions

–––––––––––––––––––––––––––––––––––––––––––––––––– procexec/fork_sig_sync.c

#include <signal.h>
#include "curr_time.h"                  /* Declaration of currTime() */
#include "tlpi_hdr.h"

#define SYNC_SIG SIGUSR1                /* Synchronization signal */

static void             /* Signal handler - does nothing but return */
handler(int sig)
{
}

int
main(int argc, char *argv[])
{
    pid_t childPid;
    sigset_t blockMask, origMask, emptyMask;
    struct sigaction sa;

    setbuf(stdout, NULL);               /* Disable buffering of stdout */

    sigemptyset(&blockMask);
    sigaddset(&blockMask, SYNC_SIG);    /* Block signal */
    if (sigprocmask(SIG_BLOCK, &blockMask, &origMask) == -1)
        errExit("sigprocmask");

    sigemptyset(&sa.sa_mask);
    sa.sa_flags = SA_RESTART;
    sa.sa_handler = handler;
    if (sigaction(SYNC_SIG, &sa, NULL) == -1)
        errExit("sigaction");

    switch (childPid = fork()) {
    case -1:
        errExit("fork");

    case 0: /* Child */

        /* Child does some required action here... */
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        printf("[%s %ld] Child started - doing some work\n",
                currTime("%T"), (long) getpid());
        sleep(2);               /* Simulate time spent doing some work */

        /* And then signals parent that it's done */

        printf("[%s %ld] Child about to signal parent\n",
                currTime("%T"), (long) getpid());
        if (kill(getppid(), SYNC_SIG) == -1)
            errExit("kill");

        /* Now child can do other things... */

        _exit(EXIT_SUCCESS);

    default: /* Parent */

        /* Parent may do some work here, and then waits for child to
           complete the required action */

        printf("[%s %ld] Parent about to wait for signal\n",
                currTime("%T"), (long) getpid());
        sigemptyset(&emptyMask);
        if (sigsuspend(&emptyMask) == -1 && errno != EINTR)
            errExit("sigsuspend");
        printf("[%s %ld] Parent got signal\n", currTime("%T"), (long) getpid());

        /* If required, return signal mask to its original state */

        if (sigprocmask(SIG_SETMASK, &origMask, NULL) == -1)
            errExit("sigprocmask");

        /* Parent carries on to do other things... */

        exit(EXIT_SUCCESS);
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––– procexec/fork_sig_sync.c

24.6 Summary

The fork() system call creates a new process (the child) by making an almost exact
duplicate of the calling process (the parent). The vfork() system call is a more efficient
version of fork(), but is usually best avoided because of its unusual semantics,
whereby the child uses the parent’s memory until it either performs an exec() or
terminates; in the meantime, execution of the parent process is suspended.

After a fork() call, we can’t rely on the order in which the parent and the child
are next scheduled to use the CPU(s). Programs that make assumptions about the
order of execution are susceptible to errors known as race conditions. Because the
occurrence of such errors depends on external factors such as system load, they
can be difficult to find and debug.
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Further information

[Bach, 1986] and [Goodheart & Cox, 1994] provide details of the implementation
of fork(), execve(), wait(), and exit() on UNIX systems. [Bovet & Cesati, 2005] and
[Love, 2010] provide Linux-specific implementation details of process creation
and termination.

24.7 Exercises

24-1. After a program executes the following series of fork() calls, how many new
processes will result (assuming that none of the calls fails)?

fork();
fork();
fork();

24-2. Write a program to demonstrate that after a vfork(), the child process can close a
file descriptor (e.g., descriptor 0) without affecting the corresponding file descriptor
in the parent.

24-3. Assuming that we can modify the program source code, how could we get a core
dump of a process at a given moment in time, while letting the process continue
execution?

24-4. Experiment with the program in Listing 24-5 (fork_whos_on_first.c) on other UNIX
implementations to determine how these implementations schedule the parent
and child processes after a fork().

24-5. Suppose that in the program in Listing 24-6, the child process also needed to wait
on the parent to complete some actions. What changes to the program would be
required in order to enforce this?
530 Chapter 24



P R O C E S S  T E R M I N A T I O N

This chapter describes what happens when a process terminates. We begin by
describing the use of exit() and _exit() to terminate a process. We then discuss the use
of exit handlers to automatically perform cleanups when a process calls exit(). We
conclude by considering some interactions between fork(), stdio buffers, and exit().

25.1 Terminating a Process: _exit() and exit()

A process may terminate in two general ways. One of these is abnormal termination,
caused by the delivery of a signal whose default action is to terminate the process
(with or without a core dump), as described in Section 20.1. Alternatively, a process can
terminate normally, using the _exit() system call.

The status argument given to _exit() defines the termination status of the process,
which is available to the parent of this process when it calls wait(). Although
defined as an int, only the bottom 8 bits of status are actually made available to the
parent. By convention, a termination status of 0 indicates that a process completed
successfully, and a nonzero status value indicates that the process terminated

#include <unistd.h>

void _exit(int status);



unsuccessfully. There are no fixed rules about how nonzero status values are to be
interpreted; different applications follow their own conventions, which should be
described in their documentation. SUSv3 specifies two constants, EXIT_SUCCESS (0)
and EXIT_FAILURE (1), that are used in most programs in this book.

A process is always successfully terminated by _exit() (i.e., _exit() never returns).

Although any value in the range 0 to 255 can be passed to the parent via the
status argument to _exit(), specifying values greater than 128 can cause confu-
sion in shell scripts. The reason is that, when a command is terminated by a
signal, the shell indicates this fact by setting the value of the variable $? to 128
plus the signal number, and this value is indistinguishable from that yielded
when a process calls _exit() with the same status value.

Programs generally don’t call _exit() directly, but instead call the exit() library function,
which performs various actions before calling _exit().

The following actions are performed by exit():

Exit handlers (functions registered with atexit() and on_exit()) are called, in
reverse order of their registration (Section 25.3).

The stdio stream buffers are flushed.

The _exit() system call is invoked, using the value supplied in status.

Unlike _exit(), which is UNIX-specific, exit() is defined as part of the standard C
library; that is, it is available with every C implementation.

One other way in which a process may terminate is to return from main(), either
explicitly, or implicitly, by falling off the end of the main() function. Performing an
explicit return n is generally equivalent to calling exit(n), since the run-time function
that invokes main() uses the return value from main() in a call to exit().

There is one circumstance in which calling exit() and returning from main() are
not equivalent. If any steps performed during exit processing access variables
local to main(), then doing a return from main() results in undefined behavior.
For example, this could occur if a variable that is local to main() is specified in
a call to setvbuf() or setbuf() (Section 13.2).

Performing a return without specifying a value, or falling off the end of the main()
function, also results in the caller of main() invoking exit(), but with results that vary
depending on the version of the C standard supported and the compilation
options employed:

In C89, the behavior in these circumstances is undefined; the program can
terminate with an arbitrary status value. This is the behavior that occurs by
default with gcc on Linux, where the exit status of the program is taken from
some random value lying on the stack or in a particular CPU register. Termi-
nating a program in this way should be avoided.

#include <stdlib.h>

void exit(int status);
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The C99 standard requires that falling off the end of the main program should
be equivalent to calling exit(0). This is the behavior we obtain on Linux if we
compile a program using gcc –std=c99.

25.2 Details of Process Termination

During both normal and abnormal termination of a process, the following actions
occur:

Open file descriptors, directory streams (Section 18.8), message catalog descrip-
tors (see the catopen(3) and catgets(3) manual pages), and conversion descriptors
(see the iconv_open(3) manual page) are closed.

As a consequence of closing file descriptors, any file locks (Chapter 55) held by
this process are released.

Any attached System V shared memory segments are detached, and the
shm_nattch counter corresponding to each segment is decremented by one.
(Refer to Section 48.8.)

For each System V semaphore for which a semadj value has been set by the process,
that semadj value is added to the semaphore value. (Refer to Section 47.8.)

If this is the controlling process for a controlling terminal, then the SIGHUP sig-
nal is sent to each process in the controlling terminal’s foreground process
group, and the terminal is disassociated from the session. We consider this point
further in Section 34.6.

Any POSIX named semaphores that are open in the calling process are closed
as though sem_close() were called.

Any POSIX message queues that are open in the calling process are closed as
though mq_close() were called.

If, as a consequence of this process exiting, a process group becomes orphaned
and there are any stopped processes in that group, then all processes in the
group are sent a SIGHUP signal followed by a SIGCONT signal. We consider this
point further in Section 34.7.4.

Any memory locks established by this process using mlock() or mlockall() (Sec-
tion 50.2) are removed.

Any memory mappings established by this process using mmap() are unmapped.

25.3 Exit Handlers

Sometimes, an application needs to automatically perform some operations on
process termination. Consider the example of an application library that, if used
during the life of the process, needs to have some cleanup actions performed auto-
matically when the process exits. Since the library doesn’t have control of when and
how the process exits, and can’t mandate that the main program call a library-
specific cleanup function before exiting, cleanup is not guaranteed to occur. One
approach in such situations is to use an exit handler (older System V manuals used
the term program termination routine).
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An exit handler is a programmer-supplied function that is registered at some
point during the life of the process and is then automatically called during normal
process termination via exit(). Exit handlers are not called if a program calls _exit()
directly or if the process is terminated abnormally by a signal.

To some extent, the fact that exit handlers are not called when a process is ter-
minated by a signal limits their utility. The best we can do is to establish handlers
for the signals that might be sent to the process, and have these handlers set a
flag that causes the main program to call exit(). (Because exit() is not one of the
async-signal-safe functions listed in Table 21-1, on page 426, we generally can’t
call it from a signal handler.) Even then, this doesn’t handle the case of SIGKILL,
whose default action can’t be changed. This is one more reason we should
avoid using SIGKILL to terminate a process (as noted in Section 20.2), and
instead use SIGTERM, which is the default signal sent by the kill command.

Registering exit handlers

The GNU C library provides two ways of registering exit handlers. The first
method, specified in SUSv3, is to use the atexit() function.

The atexit() function adds func to a list of functions that are called when the process
terminates. The function func should be defined to take no arguments and return
no value, thus having the following general form:

void
func(void)
{
    /* Perform some actions */
}

Note that atexit() returns a nonzero value (not necessarily –1) on error.
It is possible to register multiple exit handlers (and even the same exit handler

multiple times). When the program invokes exit(), these functions are called in
reverse order of registration. This ordering is logical because, typically, functions that
are registered earlier are those that carry out more fundamental types of cleanups
that may need to be performed after later-registered functions.

Essentially, any desired action can be performed inside an exit handler, includ-
ing registering additional exit handlers, which are placed at the head of the list of
exit handlers that remain to be called. However, if one of the exit handlers fails to
return—either because it called _exit() or because the process was terminated by a
signal (e.g., the exit handler called raise())—then the remaining exit handlers are not
called. In addition, the remaining actions that would normally be performed by
exit() (i.e., flushing stdio buffers) are not performed.

SUSv3 states that if an exit handler itself calls exit(), the results are undefined.
On Linux, the remaining exit handlers are invoked as normal. However, on

#include <stdlib.h>

int atexit(void (*func)(void));

Returns 0 on success, or nonzero on error
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some systems, this causes all of the exit handlers to once more be invoked,
which can result in an infinite recursion (until a stack overflow kills the pro-
cess). Portable applications should avoid calling exit() inside an exit handler.

SUSv3 requires that an implementation allow a process to be able to register at
least 32 exit handlers. Using the call sysconf(_SC_ATEXIT_MAX), a program can
determine the implementation-defined upper limit on the number of exit handlers
that can be registered. (However, there is no way to find out how many exit handlers
have already been registered.) By chaining the registered exit handlers in a dynam-
ically allocated linked list, glibc allows a virtually unlimited number of exit handlers
to be registered. On Linux, sysconf(_SC_ATEXIT_MAX) returns 2,147,482,647 (i.e.,
the maximum signed 32-bit integer). In other words, something else will break
(e.g., lack of memory) before we reach the limit on the number of functions that
can be registered.

A child process created via fork() inherits a copy of its parent’s exit handler reg-
istrations. When a process performs an exec(), all exit handler registrations are
removed. (This is necessarily so, since an exec() replaces the code of the exit handlers
along with the rest of the existing program code.)

We can’t deregister an exit handler that has been registered with atexit() (or
on_exit(), described below). However, we can have the exit handler check
whether a global flag is set before it performs its actions, and disable the exit
handler by clearing the flag.

Exit handlers registered with atexit() suffer a couple of limitations. The first is that
when called, an exit handler doesn’t know what status was passed to exit(). Occa-
sionally, knowing the status could be useful; for example, we may like to perform
different actions depending on whether the process is exiting successfully or unsuc-
cessfully. The second limitation is that we can’t specify an argument to the exit
handler when it is called. Such a facility could be useful to define an exit handler
that performs different actions depending on its argument, or to register a function
multiple times, each time with a different argument.

To address these limitations, glibc provides a (nonstandard) alternative method
of registering exit handlers: on_exit().

The func argument of on_exit() is a pointer to a function of the following type:

void
func(int status, void *arg)
{
    /* Perform cleanup actions */
}

#define _BSD_SOURCE           /* Or: #define _SVID_SOURCE */
#include <stdlib.h>

int on_exit(void (*func)(int, void *), void *arg);

Returns 0 on success, or nonzero on error
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When called, func() is passed two arguments: the status argument supplied to exit(),
and a copy of the arg argument supplied to on_exit() at the time the function was
registered. Although defined as a pointer type, arg is open to programmer-defined
interpretation. It could be used as a pointer to some structure; equally, through
judicious use of casting, it could be treated as an integer or other scalar type.

Like atexit(), on_exit() returns a nonzero value (not necessarily –1) on error.
As with atexit(), multiple exit handlers can be registered with on_exit(). Func-

tions registered using atexit() and on_exit() are placed on the same list. If both meth-
ods are used in the same program, then the exit handlers are called in reverse
order of their registration using the two methods.

Although more flexible than atexit(), on_exit() should be avoided in programs
intended to be portable, since it is not covered by any standards and is available on
few other UNIX implementations.

Example program

Listing 25-1 demonstrates the use of atexit() and on_exit() to register exit handlers.
When we run this program, we see the following output:

$ ./exit_handlers
on_exit function called: status=2, arg=20
atexit function 2 called
atexit function 1 called
on_exit function called: status=2, arg=10

Listing 25-1: Using exit handlers

–––––––––––––––––––––––––––––––––––––––––––––––––– procexec/exit_handlers.c

#define _BSD_SOURCE     /* Get on_exit() declaration from <stdlib.h> */
#include <stdlib.h>
#include "tlpi_hdr.h"

static void
atexitFunc1(void)
{
    printf("atexit function 1 called\n");
}

static void
atexitFunc2(void)
{
    printf("atexit function 2 called\n");
}

static void
onexitFunc(int exitStatus, void *arg)
{
    printf("on_exit function called: status=%d, arg=%ld\n",
                exitStatus, (long) arg);
}

int
main(int argc, char *argv[])
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{
    if (on_exit(onexitFunc, (void *) 10) != 0)
        fatal("on_exit 1");
    if (atexit(atexitFunc1) != 0)
        fatal("atexit 1");
    if (atexit(atexitFunc2) != 0)
        fatal("atexit 2");
    if (on_exit(onexitFunc, (void *) 20) != 0)
        fatal("on_exit 2");

    exit(2);
}

–––––––––––––––––––––––––––––––––––––––––––––––––– procexec/exit_handlers.c

25.4 Interactions Between fork(), stdio Buffers, and _exit()

The output yielded by the program in Listing 25-2 demonstrates a phenomenon
that is at first puzzling. When we run this program with standard output directed to
the terminal, we see the expected result:

$ ./fork_stdio_buf
Hello world
Ciao

However, when we redirect standard output to a file, we see the following:

$ ./fork_stdio_buf > a
$ cat a
Ciao
Hello world
Hello world

In the above output, we see two strange things: the line written by printf() appears
twice, and the output of write() precedes that of printf().

Listing 25-2: Interaction of fork() and stdio buffering

––––––––––––––––––––––––––––––––––––––––––––––––– procexec/fork_stdio_buf.c

#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    printf("Hello world\n");
    write(STDOUT_FILENO, "Ciao\n", 5);

    if (fork() == -1)
        errExit("fork");

    /* Both child and parent continue execution here */

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––– procexec/fork_stdio_buf.c
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To understand why the message written with printf() appears twice, recall that the stdio
buffers are maintained in a process’s user-space memory (refer to Section 13.2).
Therefore, these buffers are duplicated in the child by fork(). When standard out-
put is directed to a terminal, it is line-buffered by default, with the result that the
newline-terminated string written by printf() appears immediately. However, when
standard output is directed to a file, it is block-buffered by default. Thus, in our
example, the string written by printf() is still in the parent’s stdio buffer at the time
of the fork(), and this string is duplicated in the child. When the parent and the
child later call exit(), they both flush their copies of the stdio buffers, resulting in
duplicate output.

We can prevent this duplicated output from occurring in one of the follow-
ing ways:

As a specific solution to the stdio buffering issue, we can use fflush() to flush the
stdio buffer prior to a fork() call. Alternatively, we could use setvbuf() or setbuf()
to disable buffering on the stdio stream.

Instead of calling exit(), the child can call _exit(), so that it doesn’t flush stdio
buffers. This technique exemplifies a more general principle: in an application
that creates child processes, typically only one of the processes (most often the
parent) should terminate via exit(), while the other processes should terminate
via _exit(). This ensures that only one process calls exit handlers and flushes
stdio buffers, which is usually desirable.

Other approaches that allow both the parent and child to call exit() are possible
(and sometimes necessary). For example, it may be possible to design exit han-
dlers so that they operate correctly even if called from multiple processes, or
to have the application install exit handlers only after the call to fork(). Further-
more, sometimes we may actually want all processes to flush their stdio buffers
after a fork(). In this case, we may choose to terminate the processes using
exit(), or use explicit calls to fflush() in each process, as appropriate.

The output of the write() in the program in Listing 25-2 doesn’t appear twice,
because write() transfers data directly to a kernel buffer, and this buffer is not dupli-
cated during a fork().

By now, the reason for the second strange aspect of the program’s output when
redirected to a file should be clear. The output of write() appears before that from
printf() because the output of write() is immediately transferred to the kernel buffer
cache, while the output from printf() is transferred only when the stdio buffers are
flushed by the call to exit(). (In general, care is required when mixing stdio functions
and system calls to perform I/O on the same file, as described in Section 13.7.)

25.5 Summary

A process can terminate either abnormally or normally. Abnormal termination
occurs on delivery of certain signals, some of which also cause the process to produce
a core dump file.
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Normal termination is accomplished by calling _exit() or, more usually, exit(),
which is layered on top of _exit(). Both _exit() and exit() take an integer argument
whose least significant 8 bits define the termination status of the process. By con-
vention, a status of 0 is used to indicate successful termination, and a nonzero status
indicates unsuccessful termination.

As part of both normal and abnormal process termination, the kernel per-
forms various cleanup steps. Terminating a process normally by calling exit() addi-
tionally causes exit handlers registered using atexit() and on_exit() to be called (in
reverse order of registration), and causes stdio buffers to be flushed.

Further information

Refer to the sources of further information listed in Section 24.6.

25.6 Exercise

25-1. If a child process makes the call exit(–1), what exit status (as returned by WEXITSTATUS())
will be seen by the parent?
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M O N I T O R I N G  C H I L D  P R O C E S S E S

In many application designs, a parent process needs to know when one of its child
processes changes state—when the child terminates or is stopped by a signal. This
chapter describes two techniques used to monitor child processes: the wait() system
call (and its variants) and the use of the SIGCHLD signal.

26.1 Waiting on a Child Process

In many applications where a parent creates child processes, it is useful for the
parent to be able to monitor the children to find out when and how they terminate.
This facility is provided by wait() and a number of related system calls.

26.1.1 The wait() System Call
The wait() system call waits for one of the children of the calling process to termi-
nate and returns the termination status of that child in the buffer pointed to by status.



The wait() system call does the following:

1. If no (previously unwaited-for) child of the calling process has yet terminated,
the call blocks until one of the children terminates. If a child has already termi-
nated by the time of the call, wait() returns immediately.

2. If status is not NULL, information about how the child terminated is returned in
the integer to which status points. We describe the information returned in status
in Section 26.1.3.

3. The kernel adds the process CPU times (Section 10.7) and resource usage statistics
(Section 36.1) to running totals for all children of this parent process.

4. As its function result, wait() returns the process ID of the child that has terminated.

On error, wait() returns –1. One possible error is that the calling process has no
(previously unwaited-for) children, which is indicated by the errno value ECHILD. This
means that we can use the following loop to wait for all children of the calling pro-
cess to terminate:

while ((childPid = wait(NULL)) != -1)
    continue;
if (errno != ECHILD)                /* An unexpected error... */
    errExit("wait");

Listing 26-1 demonstrates the use of wait(). This program creates multiple child
processes, one per (integer) command-line argument. Each child sleeps for the
number of seconds specified in the corresponding command-line argument and
then exits. In the meantime, after all children have been created, the parent process
repeatedly calls wait() to monitor the termination of its children. This loop continues
until wait() returns –1. (This is not the only approach: we could alternatively exit
the loop when the number of terminated children, numDead, matches the number
of children created.) The following shell session log shows what happens when we
use the program to create three children:

$ ./multi_wait 7 1 4
[13:41:00] child 1 started with PID 21835, sleeping 7 seconds
[13:41:00] child 2 started with PID 21836, sleeping 1 seconds
[13:41:00] child 3 started with PID 21837, sleeping 4 seconds
[13:41:01] wait() returned child PID 21836 (numDead=1)
[13:41:04] wait() returned child PID 21837 (numDead=2)
[13:41:07] wait() returned child PID 21835 (numDead=3)
No more children - bye!

If there are multiple terminated children at a particular moment, SUSv3 leaves
unspecified the order in which these children will be reaped by a sequence of
wait() calls; that is, the order depends on the implementation. Even across versions
of the Linux kernel, the behavior varies.

#include <sys/wait.h>

pid_t wait(int *status);

Returns process ID of terminated child, or –1 on error
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Listing 26-1: Creating and waiting for multiple children

––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/multi_wait.c
#include <sys/wait.h>
#include <time.h>
#include "curr_time.h"              /* Declaration of currTime() */
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int numDead;       /* Number of children so far waited for */
    pid_t childPid;    /* PID of waited for child */
    int j;

    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s sleep-time...\n", argv[0]);

    setbuf(stdout, NULL);           /* Disable buffering of stdout */

    for (j = 1; j < argc; j++) {    /* Create one child for each argument */
        switch (fork()) {
        case -1:
            errExit("fork");

        case 0:                     /* Child sleeps for a while then exits */
            printf("[%s] child %d started with PID %ld, sleeping %s "
                    "seconds\n", currTime("%T"), j, (long) getpid(), argv[j]);
            sleep(getInt(argv[j], GN_NONNEG, "sleep-time"));
            _exit(EXIT_SUCCESS);

        default:                    /* Parent just continues around loop */
            break;
        }
    }

    numDead = 0;
    for (;;) {                      /* Parent waits for each child to exit */
        childPid = wait(NULL);
        if (childPid == -1) {
            if (errno == ECHILD) {
                printf("No more children - bye!\n");
                exit(EXIT_SUCCESS);
            } else {                /* Some other (unexpected) error */
                errExit("wait");
            }
        }

        numDead++;
        printf("[%s] wait() returned child PID %ld (numDead=%d)\n",
                currTime("%T"), (long) childPid, numDead);
    }
}

––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/multi_wait.c
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26.1.2 The waitpid() System Call
The wait() system call has a number of limitations, which waitpid() was designed
to address:

If a parent process has created multiple children, it is not possible to wait() for the
completion of a specific child; we can only wait for the next child that terminates.

If no child has yet terminated, wait() always blocks. Sometimes, it would be
preferable to perform a nonblocking wait so that if no child has yet terminated,
we obtain an immediate indication of this fact.

Using wait(), we can find out only about children that have terminated. It is not
possible to be notified when a child is stopped by a signal (such as SIGSTOP or
SIGTTIN) or when a stopped child is resumed by delivery of a SIGCONT signal.

The return value and status arguments of waitpid() are the same as for wait(). (See
Section 26.1.3 for an explanation of the value returned in status.) The pid argument
enables the selection of the child to be waited for, as follows:

If pid is greater than 0, wait for the child whose process ID equals pid.

If pid equals 0, wait for any child in the same process group as the caller (parent).
We describe process groups in Section 34.2.

If pid is less than –1, wait for any child whose process group identifier equals the
absolute value of pid.

If pid equals –1, wait for any child. The call wait(&status) is equivalent to the call
waitpid(–1, &status, 0).

The options argument is a bit mask that can include (OR) zero or more of the follow-
ing flags (all of which are specified in SUSv3):

WUNTRACED

In addition to returning information about terminated children, also
return information when a child is stopped by a signal.

WCONTINUED (since Linux 2.6.10)
Also return status information about stopped children that have been
resumed by delivery of a SIGCONT signal.

WNOHANG

If no child specified by pid has yet changed state, then return immediately,
instead of blocking (i.e., perform a “poll”). In this case, the return value of
waitpid() is 0. If the calling process has no children that match the specifica-
tion in pid, waitpid() fails with the error ECHILD.

We demonstrate the use of waitpid() in Listing 26-3.

#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *status, int options);

Returns process ID of child, 0 (see text), or –1 on error
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In its rationale for waitpid(), SUSv3 notes that the name WUNTRACED is a historical
artifact of this flag’s origin in BSD, where a process could be stopped in one of
two ways: as a consequence of being traced by the ptrace() system call, or by
being stopped by a signal (i.e., not being traced). When a child is being traced
by ptrace(), then delivery of any signal (other than SIGKILL) causes the child to
be stopped, and a SIGCHLD signal is consequently sent to the parent. This behavior
occurs even if the child is ignoring the signal. However, if the child is blocking
the signal, then it is not stopped (unless the signal is SIGSTOP, which can’t be
blocked).

26.1.3 The Wait Status Value
The status value returned by wait() and waitpid() allows us to distinguish the follow-
ing events for the child:

The child terminated by calling _exit() (or exit()), specifying an integer exit status.

The child was terminated by the delivery of an unhandled signal.

The child was stopped by a signal, and waitpid() was called with the WUNTRACED flag.

The child was resumed by a SIGCONT signal, and waitpid() was called with the
WCONTINUED flag.

We use the term wait status to encompass all of the above cases. The designation
termination status is used to refer to the first two cases. (In the shell, we can obtain
the termination status of the last command executed by examining the contents
of the variable $?.)

Although defined as an int, only the bottom 2 bytes of the value pointed to by
status are actually used. The way in which these 2 bytes are filled depends on which
of the above events occurred for the child, as depicted in Figure 26-1.

Figure 26-1 shows the layout of the wait status value for Linux/x86-32. The
details vary across implementations. SUSv3 doesn’t specify any particular layout
for this information, or even require that it is contained in the bottom 2 bytes
of the value pointed to by status. Portable applications should always use the
macros described in this section to inspect this value, rather than directly
inspecting its bit-mask components.

Figure 26-1: Value returned in the status argument of wait() and waitpid()

Normal termination

Killed by signal

Stopped by signal

15 8 7 0

termination signal (!= 0)unused (0)

0exit status (0-255)

0x7Fstop signal

core dumped flag

Continued by signal 0xFFFF

bits
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The <sys/wait.h> header file defines a standard set of macros that can be used to
dissect a wait status value. When applied to a status value returned by wait() or
waitpid(), only one of the macros in the list below will return true. Additional mac-
ros are provided to further dissect the status value, as noted in the list.

WIFEXITED(status)

This macro returns true if the child process exited normally. In this case,
the macro WEXITSTATUS(status) returns the exit status of the child process.
(As noted in Section 25.1, only the least significant byte of the child’s exit
status is available to the parent.)

WIFSIGNALED(status)

This macro returns true if the child process was killed by a signal. In this
case, the macro WTERMSIG(status) returns the number of the signal that
caused the process to terminate, and the macro WCOREDUMP(status) returns
true if the child process produced a core dump file. The WCOREDUMP() macro
is not specified by SUSv3, but is available on most UNIX implementations.

WIFSTOPPED(status)

This macro returns true if the child process was stopped by a signal. In this
case, the macro WSTOPSIG(status) returns the number of the signal that
stopped the process.

WIFCONTINUED(status)

This macro returns true if the child was resumed by delivery of SIGCONT. This
macro is available since Linux 2.6.10.

Note that although the name status is also used for the argument of the above macros,
they expect a plain integer, rather than a pointer to an integer as required by wait()
and waitpid().

Example program

The printWaitStatus() function of Listing 26-2 uses all of the macros described
above. This function dissects and prints the contents of a wait status value.

Listing 26-2: Displaying the status value returned by wait() and related calls

––––––––––––––––––––––––––––––––––––––––––––––– procexec/print_wait_status.c
#define _GNU_SOURCE     /* Get strsignal() declaration from <string.h> */
#include <string.h>
#include <sys/wait.h>
#include "print_wait_status.h"  /* Declaration of printWaitStatus() */
#include "tlpi_hdr.h"

/* NOTE: The following function employs printf(), which is not
   async-signal-safe (see Section 21.1.2). As such, this function is
   also not async-signal-safe (i.e., beware of calling it from a
   SIGCHLD handler). */

void                    /* Examine a wait() status using the W* macros */
printWaitStatus(const char *msg, int status)
{
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    if (msg != NULL)
        printf("%s", msg);

    if (WIFEXITED(status)) {
        printf("child exited, status=%d\n", WEXITSTATUS(status));

    } else if (WIFSIGNALED(status)) {
        printf("child killed by signal %d (%s)",
                WTERMSIG(status), strsignal(WTERMSIG(status)));
#ifdef WCOREDUMP        /* Not in SUSv3, may be absent on some systems */
        if (WCOREDUMP(status))
            printf(" (core dumped)");
#endif
        printf("\n");

    } else if (WIFSTOPPED(status)) {
        printf("child stopped by signal %d (%s)\n",
                WSTOPSIG(status), strsignal(WSTOPSIG(status)));

#ifdef WIFCONTINUED     /* SUSv3 has this, but older Linux versions and
                           some other UNIX implementations don't */
    } else if (WIFCONTINUED(status)) {
        printf("child continued\n");
#endif

    } else {            /* Should never happen */
        printf("what happened to this child? (status=%x)\n",
                (unsigned int) status);
    }
}

––––––––––––––––––––––––––––––––––––––––––––––– procexec/print_wait_status.c

The printWaitStatus() function is used in Listing 26-3. This program creates a child
process that either loops continuously calling pause() (during which time signals
can be sent to the child) or, if an integer command-line argument was supplied,
exits immediately using this integer as the exit status. In the meantime, the parent
monitors the child via waitpid(), printing the returned status value and passing this
value to printWaitStatus(). The parent exits when it detects that the child has either
exited normally or been terminated by a signal.

The following shell session shows a few example runs of the program in
Listing 26-3. We begin by creating a child that immediately exits with a status of 23:

$ ./child_status 23
Child started with PID = 15807
waitpid() returned: PID=15807; status=0x1700 (23,0)
child exited, status=23

In the next run, we start the program in the background, and then send SIGSTOP and
SIGCONT signals to the child:

$ ./child_status &
[1] 15870
$ Child started with PID = 15871
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kill -STOP 15871
$ waitpid() returned: PID=15871; status=0x137f (19,127)
child stopped by signal 19 (Stopped (signal))
kill -CONT 15871
$ waitpid() returned: PID=15871; status=0xffff (255,255)
child continued

The last two lines of output will appear only on Linux 2.6.10 and later, since earlier
kernels don’t support the waitpid() WCONTINUED option. (This shell session is made
slightly hard to read by the fact that output from the program executing in the
background is in some cases intermingled with the prompt produced by the shell.)

We continue the shell session by sending a SIGABRT signal to terminate the child:

kill -ABRT 15871
$ waitpid() returned: PID=15871; status=0x0006 (0,6)
child killed by signal 6 (Aborted)
Press Enter, in order to see shell notification that background job has terminated
[1]+  Done              ./child_status
$ ls -l core
ls: core: No such file or directory
$ ulimit -c                                 Display RLIMIT_CORE limit
0

Although the default action of SIGABRT is to produce a core dump file and terminate
the process, no core file was produced. This is because core dumps were disabled—the
RLIMIT_CORE soft resource limit (Section 36.3), which specifies the maximum size of a
core file, was set to 0, as shown by the ulimit command above.

We repeat the same experiment, but this time enabling core dumps before
sending SIGABRT to the child:

$ ulimit -c unlimited                           Allow core dumps
$ ./child_status &
[1] 15902
$ Child started with PID = 15903
kill -ABRT 15903                                Send SIGABRT to child
$ waitpid() returned: PID=15903; status=0x0086 (0,134)
child killed by signal 6 (Aborted) (core dumped)
Press Enter, in order to see shell notification that background job has terminated
[1]+  Done              ./child_status
$ ls -l core                                    This time we get a core dump
-rw-------   1 mtk      users       65536 May  6 21:01 core

Listing 26-3: Using waitpid() to retrieve the status of a child process

––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/child_status.c

#include <sys/wait.h>
#include "print_wait_status.h"          /* Declares printWaitStatus() */
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int status;
    pid_t childPid;
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 if (argc > 1 && strcmp(argv[1], "--help") == 0)
        usageErr("%s [exit-status]\n", argv[0]);

    switch (fork()) {
    case -1: errExit("fork");

    case 0:             /* Child: either exits immediately with given
                           status or loops waiting for signals */
        printf("Child started with PID = %ld\n", (long) getpid());
        if (argc > 1)                   /* Status supplied on command line? */
            exit(getInt(argv[1], 0, "exit-status"));
        else                            /* Otherwise, wait for signals */
            for (;;)
                pause();
        exit(EXIT_FAILURE);             /* Not reached, but good practice */

    default:            /* Parent: repeatedly wait on child until it
                           either exits or is terminated by a signal */
        for (;;) {
            childPid = waitpid(-1, &status, WUNTRACED
#ifdef WCONTINUED       /* Not present on older versions of Linux */
                                                | WCONTINUED
#endif
                    );
            if (childPid == -1)
                errExit("waitpid");

            /* Print status in hex, and as separate decimal bytes */

            printf("waitpid() returned: PID=%ld; status=0x%04x (%d,%d)\n",
                    (long) childPid,
                    (unsigned int) status, status >> 8, status & 0xff);
            printWaitStatus(NULL, status);

            if (WIFEXITED(status) || WIFSIGNALED(status))
                exit(EXIT_SUCCESS);
        }
    }
}

––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/child_status.c

26.1.4 Process Termination from a Signal Handler
As shown in Table 20-1 (on page 396), some signals terminate a process by default.
In some circumstances, we may wish to have certain cleanup steps performed
before a process terminates. For this purpose, we can arrange to have a handler
catch such signals, perform the cleanup steps, and then terminate the process. If
we do this, we should bear in mind that the termination status of a process is avail-
able to its parent via wait() or waitpid(). For example, calling _exit(EXIT_SUCCESS)
from the signal handler will make it appear to the parent process that the child ter-
minated successfully.

If the child needs to inform the parent that it terminated because of a signal,
then the child’s signal handler should first disestablish itself, and then raise the
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same signal once more, which this time will terminate the process. The signal
handler would contain code such as the following:

void
handler(int sig)
{
    /* Perform cleanup steps */

    signal(sig, SIG_DFL);            /* Disestablish handler */
    raise(sig);                      /* Raise signal again */
}

26.1.5 The waitid() System Call
Like waitpid(), waitid() returns the status of child processes. However, waitid() provides
extra functionality that is unavailable with waitpid(). This system call derives from
System V, but is now specified in SUSv3. It was added to Linux in kernel 2.6.9.

Before Linux 2.6.9, a version of waitid() was provided via an implementation in
glibc. However, because a full implementation of this interface requires ker-
nel support, the glibc implementation provided no more functionality than
was available using waitpid().

The idtype and id arguments specify which child(ren) to wait for, as follows:

If idtype is P_ALL, wait for any child; id is ignored.

If idtype is P_PID, wait for the child whose process ID equals id.

If idtype is P_PGID, wait for any child whose process group ID equals id.

Note that unlike waitpid(), it is not possible to specify 0 in id to mean any process
in the same process group as the caller. Instead, we must explicitly specify the
caller’s process group ID using the value returned by getpgrp().

The most significant difference between waitpid() and waitid() is that waitid() provides
more precise control of the child events that should be waited for. We control this
by ORing one or more of the following flags in options:

WEXITED

Wait for children that have terminated, either normally or abnormally.

WSTOPPED

Wait for children that have been stopped by a signal.

WCONTINUED

Wait for children that have been resumed by a SIGCONT signal.

#include <sys/wait.h>

int waitid(idtype_t idtype, id_t id, siginfo_t *infop, int options);

Returns 0 on success or if WNOHANG was specified and
there were no children to wait for, or –1 on error
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The following additional flags may be ORed in options:

WNOHANG

This flag has the same meaning as for waitpid(). If none of the children
matching the specification in id has status information to return, then return
immediately (a poll). In this case, the return value of waitid() is 0. If the calling
process has no children that match the specification in id, waitid() instead
fails with the error ECHILD.

WNOWAIT

Normally, once a child has been waited for using waitid(), then that “status
event” is consumed. However, if WNOWAIT is specified, then the child status is
returned, but the child remains in a waitable state, and we can later wait
for it again to retrieve the same information.

On success, waitid() returns 0, and the siginfo_t structure (Section 21.4) pointed to
by infop is updated to contain information about the child. The following fields are
filled in the siginfo_t structure:

si_code
This field contains one of the following values: CLD_EXITED, indicating that
the child terminated by calling _exit(); CLD_KILLED, indicating that the child
was killed by a signal; CLD_STOPPED, indicating that the child was stopped by a
signal; or CLD_CONTINUED, indicating that the (previously stopped) child
resumed execution as a consequence of receiving a (SIGCONT) signal.

si_pid
This field contains the process ID of the child whose state has changed.

si_signo
This field is always set to SIGCHLD.

si_status
This field contains either the exit status of the child, as passed to _exit(), or
the signal that caused the child to stop, continue, or terminate. We can
determine which type of information is in this field by examining the
si_code field.

si_uid
This field contains the real user ID of the child. Most other UNIX imple-
mentations don’t set this field.

On Solaris, two additional fields are filled in: si_stime and si_utime. These con-
tain the system and user CPU time used by the child, respectively. SUSv3
doesn’t require these fields to be set by waitid().

One detail of the operation of waitid() needs further clarification. If WNOHANG is specified
in options, then a 0 return value from waitid() can mean one of two things: a child
had already changed state at the time of the call (and information about the child is
returned in the siginfo_t structure pointed to by infop), or there was no child whose
state has changed. For the case where no child has changed state, some UNIX
implementations (including Linux), zero out the returned siginfo_t structure. This
provides a method of distinguishing the two possibilities: we can check whether the
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value in si_pid is 0 or nonzero. Unfortunately, this behavior is not required by
SUSv3, and some UNIX implementations leave the siginfo_t structure unchanged in
this case. (A future corrigendum to SUSv4 is likely to add a requirement that si_pid
and si_signo are zeroed in this case.) The only portable way to distinguish these two
cases is to zero out the siginfo_t structure before calling waitid(), as in the following
code:

siginfo_t info;
...
memset(&info, 0, sizeof(siginfo_t));
if (waitid(idtype, id, &info, options | WNOHANG) == -1)
    errExit("waitid");
if (info.si_pid == 0) {
    /* No children changed state */
} else {
    /* A child changed state; details are provided in 'info' */
}

26.1.6 The wait3() and wait4() System Calls
The wait3() and wait4() system calls perform a similar task to waitpid(). The princi-
pal semantic difference is that wait3() and wait4() return resource usage information
about the terminated child in the structure pointed to by the rusage argument. This
information includes the amount of CPU time used by the process and memory-
management statistics. We defer detailed discussion of the rusage structure until
Section 36.1, where we describe the getrusage() system call.

Excluding the use of the rusage argument, a call to wait3() is equivalent to the fol-
lowing waitpid() call:

waitpid(-1, &status, options);

Similarly, wait4() is equivalent to the following:

waitpid(pid, &status, options);

In other words, wait3() waits for any child, while wait4() can be used to select a specific
child or children upon which to wait.

On some UNIX implementations, wait3() and wait4() return resource usage
information only for terminated children. On Linux, resource usage information
can also be retrieved for stopped children if the WUNTRACED flag is specified in options.

The names for these two system calls refer to the number of arguments they
each take. Both system calls originated in BSD, but are now available on most

#define _BSD_SOURCE       /* Or #define _XOPEN_SOURCE 500 for wait3() */
#include <sys/resource.h>
#include <sys/wait.h>

pid_t wait3(int *status, int options, struct rusage *rusage);
pid_t wait4(pid_t pid, int *status, int options, struct rusage *rusage);

Both return process ID of child, or –1 on error
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UNIX implementations. Neither is standardized in SUSv3. (SUSv2 did specify
wait3(), but marked it LEGACY.)

We usually avoid the use of wait3() and wait4() in this book. Typically, we don’t
need the extra information returned by these calls. Also, lack of standardization
limits their portability.

26.2 Orphans and Zombies

The lifetimes of parent and child processes are usually not the same—either the
parent outlives the child or vice versa. This raises two questions:

Who becomes the parent of an orphaned child? The orphaned child is adopted
by init, the ancestor of all processes, whose process ID is 1. In other words,
after a child’s parent terminates, a call to getppid() will return the value 1. This
can be used as a way of determining if a child’s true parent is still alive (this
assumes a child that was created by a process other than init).

Using the PR_SET_PDEATHSIG operation of the Linux-specific prctl() system call, it
is possible to arrange that a process receives a specified signal when it becomes
an orphan.

What happens to a child that terminates before its parent has had a chance to
perform a wait()? The point here is that, although the child has finished its
work, the parent should still be permitted to perform a wait() at some later
time to determine how the child terminated. The kernel deals with this situa-
tion by turning the child into a zombie. This means that most of the resources
held by the child are released back to the system to be reused by other processes.
The only part of the process that remains is an entry in the kernel’s process
table recording (among other things) the child’s process ID, termination status,
and resource usage statistics (Section 36.1).

Regarding zombies, UNIX systems imitate the movies—a zombie process can’t be
killed by a signal, not even the (silver bullet) SIGKILL. This ensures that the parent
can always eventually perform a wait().

When the parent does perform a wait(), the kernel removes the zombie, since
the last remaining information about the child is no longer required. On the other
hand, if the parent terminates without doing a wait(), then the init process adopts
the child and automatically performs a wait(), thus removing the zombie process
from the system.

If a parent creates a child, but fails to perform a wait(), then an entry for the
zombie child will be maintained indefinitely in the kernel’s process table. If a large
number of such zombie children are created, they will eventually fill the kernel process
table, preventing the creation of new processes. Since the zombies can’t be killed
by a signal, the only way to remove them from the system is to kill their parent (or
wait for it to exit), at which time the zombies are adopted and waited on by init, and
consequently removed from the system.

These semantics have important implications for the design of long-lived parent
processes, such as network servers and shells, that create numerous children. To
put things another way, in such applications, a parent process should perform
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wait() calls in order to ensure that dead children are always removed from the system,
rather than becoming long-lived zombies. The parent may perform such wait() calls
either synchronously, or asynchronously, in response to delivery of the SIGCHLD signal,
as described in Section 26.3.1.

Listing 26-4 demonstrates the creation of a zombie and that a zombie can’t be
killed by SIGKILL. When we run this program, we see the following output:

$ ./make_zombie
Parent PID=1013
Child (PID=1014) exiting
 1013 pts/4    00:00:00 make_zombie                       Output from ps(1)
 1014 pts/4    00:00:00 make_zombie <defunct>
After sending SIGKILL to make_zombie (PID=1014):
 1013 pts/4    00:00:00 make_zombie                       Output from ps(1)
 1014 pts/4    00:00:00 make_zombie <defunct>

In the above output, we see that ps(1) displays the string <defunct> to indicate a process
in the zombie state.

The program in Listing 26-4 uses the system() function to execute the shell com-
mand given in its character-string argument. We describe system() in detail in
Section 27.6.

Listing 26-4: Creating a zombie child process

–––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/make_zombie.c

#include <signal.h>
#include <libgen.h>             /* For basename() declaration */
#include "tlpi_hdr.h"

#define CMD_SIZE 200

int
main(int argc, char *argv[])
{
    char cmd[CMD_SIZE];
    pid_t childPid;

    setbuf(stdout, NULL);       /* Disable buffering of stdout */

    printf("Parent PID=%ld\n", (long) getpid());

    switch (childPid = fork()) {
    case -1:
        errExit("fork");

    case 0:     /* Child: immediately exits to become zombie */
        printf("Child (PID=%ld) exiting\n", (long) getpid());
        _exit(EXIT_SUCCESS);
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    default:    /* Parent */
        sleep(3);               /* Give child a chance to start and exit */
        snprintf(cmd, CMD_SIZE, "ps | grep %s", basename(argv[0]));
        cmd[CMD_SIZE - 1] = '\0';       /* Ensure string is null-terminated */
        system(cmd);            /* View zombie child */

        /* Now send the "sure kill" signal to the zombie */

        if (kill(childPid, SIGKILL) == -1)
            errMsg("kill");
        sleep(3);               /* Give child a chance to react to signal */
        printf("After sending SIGKILL to zombie (PID=%ld):\n", (long) childPid);
        system(cmd);            /* View zombie child again */

        exit(EXIT_SUCCESS);
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/make_zombie.c

26.3 The SIGCHLD Signal

The termination of a child process is an event that occurs asynchronously. A parent
can’t predict when one of its child will terminate. (Even if the parent sends a SIGKILL
signal to the child, the exact time of termination is still dependent on when the
child is next scheduled for use of a CPU.) We have already seen that the parent
should use wait() (or similar) in order to prevent the accumulation of zombie chil-
dren, and have looked at two ways in which this can be done:

The parent can call wait(), or waitpid() without specifying the WNOHANG flag, in
which case the call will block if a child has not already terminated.

The parent can periodically perform a nonblocking check (a poll) for dead chil-
dren via a call to waitpid() specifying the WNOHANG flag.

Both of these approaches can be inconvenient. On the one hand, we may not want
the parent to be blocked waiting for a child to terminate. On the other hand, making
repeated nonblocking waitpid() calls wastes CPU time and adds complexity to an
application design. To get around these problems, we can employ a handler for the
SIGCHLD signal.

26.3.1 Establishing a Handler for SIGCHLD
The SIGCHLD signal is sent to a parent process whenever one of its children termi-
nates. By default, this signal is ignored, but we can catch it by installing a signal handler.
Within the signal handler, we can use wait() (or similar) to reap the zombie child.
However, there is a subtlety to consider in this approach.

In Sections 20.10 and 20.12, we observed that when a signal handler is called,
the signal that caused its invocation is temporarily blocked (unless the sigaction()
SA_NODEFER flag was specified), and also that standard signals, of which SIGCHLD is one,
are not queued. Consequently, if a second and third child terminate in quick
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succession while a SIGCHLD handler is executing for an already terminated child,
then, although SIGCHLD is generated twice, it is queued only once to the parent. As a
result, if the parent’s SIGCHLD handler called wait() only once each time it was
invoked, the handler might fail to reap some zombie children.

The solution is to loop inside the SIGCHLD handler, repeatedly calling waitpid()
with the WNOHANG flag until there are no more dead children to be reaped. Often, the
body of a SIGCHLD handler simply consists of the following code, which reaps any
dead children without checking their status:

while (waitpid(-1, NULL, WNOHANG) > 0)
    continue;

The above loop continues until waitpid() returns either 0, indicating no more zombie
children, or –1, indicating an error (probably ECHILD, meaning that there are no
more children).

Design issues for SIGCHLD handlers

Suppose that, at the time we establish a handler for SIGCHLD, there is already a termi-
nated child for this process. Does the kernel then immediately generate a SIGCHLD
signal for the parent? SUSv3 leaves this point unspecified. Some System V–derived
implementations do generate a SIGCHLD in these circumstances; other implementa-
tions, including Linux, do not. A portable application can make this difference
invisible by establishing the SIGCHLD handler before creating any children. (This is
usually the natural way of doing things, of course.)

A further point to consider is the issue of reentrancy. In Section 21.1.2, we
noted that using a system call (e.g., waitpid()) from within a signal handler may
change the value of the global variable errno. Such a change could interfere with
attempts by the main program to explicitly set errno (see, for example, the discus-
sion of getpriority() in Section 35.1) or check its value after a failed system call. For
this reason, it is sometimes necessary to code a SIGCHLD handler to save errno in a
local variable on entry to the handler, and then restore the errno value just prior to
returning. An example of this is shown in Listing 26-5.

Example program

Listing 26-5 provides an example of a more complex SIGCHLD handler. This handler
displays the process ID and wait status of each reaped child q. In order to see that
multiple SIGCHLD signals are not queued while the handler is already invoked, execu-
tion of the handler is artificially lengthened by a call to sleep() w. The main program
creates one child process for each (integer) command-line argument r. Each of
these children sleeps for the number of seconds specified in the corresponding
command-line argument and then exits t. In the following example of the execu-
tion of this program, we see that even though three children terminate, SIGCHLD is
only queued twice to the parent:

$ ./multi_SIGCHLD 1 2 4
16:45:18 Child 1 (PID=17767) exiting
16:45:18 handler: Caught SIGCHLD            First invocation of handler
16:45:18 handler: Reaped child 17767 - child exited, status=0
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16:45:19 Child 2 (PID=17768) exiting        These children terminate during…
16:45:21 Child 3 (PID=17769) exiting        first invocation of handler
16:45:23 handler: returning                 End of first invocation of handler
16:45:23 handler: Caught SIGCHLD            Second invocation of handler
16:45:23 handler: Reaped child 17768 - child exited, status=0
16:45:23 handler: Reaped child 17769 - child exited, status=0
16:45:28 handler: returning
16:45:28 All 3 children have terminated; SIGCHLD was caught 2 times

Note the use of sigprocmask() to block the SIGCHLD signal before any children are created
in Listing 26-5 e. This is done to ensure correct operation of the sigsuspend() loop
in the parent. If we failed to block SIGCHLD in this way, and a child terminated
between the test of the value of numLiveChildren and the execution of the
sigsuspend() call (or alternatively a pause() call), then the sigsuspend() call would block
forever waiting for a signal that has already been caught y. The requirement for
dealing with this type of race condition was detailed in Section 22.9.

Listing 26-5: Reaping dead children via a handler for SIGCHLD

–––––––––––––––––––––––––––––––––––––––––––––––––– procexec/multi_SIGCHLD.c

#include <signal.h>
#include <sys/wait.h>
#include "print_wait_status.h"
#include "curr_time.h"
#include "tlpi_hdr.h"

static volatile int numLiveChildren = 0;
                /* Number of children started but not yet waited on */

static void
sigchldHandler(int sig)
{
    int status, savedErrno;
    pid_t childPid;

    /* UNSAFE: This handler uses non-async-signal-safe functions
       (printf(), printWaitStatus(), currTime(); see Section 21.1.2) */

    savedErrno = errno;     /* In case we modify 'errno' */

    printf("%s handler: Caught SIGCHLD\n", currTime("%T"));

    while ((childPid = waitpid(-1, &status, WNOHANG)) > 0) {
q         printf("%s handler: Reaped child %ld - ", currTime("%T"),

                (long) childPid);
        printWaitStatus(NULL, status);
        numLiveChildren--;
    }

    if (childPid == -1 && errno != ECHILD)
        errMsg("waitpid");
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w     sleep(5);               /* Artificially lengthen execution of handler */
    printf("%s handler: returning\n", currTime("%T"));

    errno = savedErrno;
}

int
main(int argc, char *argv[])
{
    int j, sigCnt;
    sigset_t blockMask, emptyMask;
    struct sigaction sa;

    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s child-sleep-time...\n", argv[0]);

    setbuf(stdout, NULL);       /* Disable buffering of stdout */

    sigCnt = 0;
    numLiveChildren = argc - 1;

    sigemptyset(&sa.sa_mask);
    sa.sa_flags = 0;
    sa.sa_handler = sigchldHandler;
    if (sigaction(SIGCHLD, &sa, NULL) == -1)
        errExit("sigaction");

    /* Block SIGCHLD to prevent its delivery if a child terminates
       before the parent commences the sigsuspend() loop below */

    sigemptyset(&blockMask);
    sigaddset(&blockMask, SIGCHLD);

e     if (sigprocmask(SIG_SETMASK, &blockMask, NULL) == -1)
        errExit("sigprocmask");

r     for (j = 1; j < argc; j++) {
        switch (fork()) {
        case -1:
            errExit("fork");

        case 0:         /* Child - sleeps and then exits */
t             sleep(getInt(argv[j], GN_NONNEG, "child-sleep-time"));

            printf("%s Child %d (PID=%ld) exiting\n", currTime("%T"),
                    j, (long) getpid());
            _exit(EXIT_SUCCESS);

        default:        /* Parent - loops to create next child */
            break;
        }
    }
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    /* Parent comes here: wait for SIGCHLD until all children are dead */

    sigemptyset(&emptyMask);
    while (numLiveChildren > 0) {

y         if (sigsuspend(&emptyMask) == -1 && errno != EINTR)
            errExit("sigsuspend");
        sigCnt++;
    }

    printf("%s All %d children have terminated; SIGCHLD was caught "
            "%d times\n", currTime("%T"), argc - 1, sigCnt);

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––– procexec/multi_SIGCHLD.c

26.3.2 Delivery of SIGCHLD for Stopped Children
Just as waitpid() can be used to monitor stopped children, so is it possible for a parent
process to receive the SIGCHLD signal when one of its children is stopped by a signal. This
behavior is controlled by the SA_NOCLDSTOP flag when using sigaction() to establish a
handler for the SIGCHLD signal. If this flag is omitted, a SIGCHLD signal is delivered to
the parent when one of its children stops; if the flag is present, SIGCHLD is not deliv-
ered for stopped children. (The implementation of signal() given in Section 22.7
doesn’t specify SA_NOCLDSTOP.)

Since SIGCHLD is ignored by default, the SA_NOCLDSTOP flag has a meaning only if
we are establishing a handler for SIGCHLD. Furthermore, SIGCHLD is the only signal
for which the SA_NOCLDSTOP flag has an effect.

SUSv3 also allows for a parent to be sent a SIGCHLD signal if one of its stopped chil-
dren is resumed by being sent a SIGCONT signal. (This corresponds to the WCONTINUED
flag for waitpid().) This feature is implemented in Linux since kernel 2.6.9.

26.3.3 Ignoring Dead Child Processes
There is a further possibility for dealing with dead child processes. Explicitly setting
the disposition of SIGCHLD to SIG_IGN causes any child process that subsequently ter-
minates to be immediately removed from the system instead of being converted
into a zombie. In this case, since the status of the child process is simply discarded,
a subsequent call to wait() (or similar) can’t return any information for the termi-
nated child.

Note that even though the default disposition for SIGCHLD is to be ignored,
explicitly setting the disposition to SIG_IGN causes the different behavior
described here. In this respect, SIGCHLD is treated uniquely among signals.

On Linux, as on many UNIX implementations, setting the disposition of SIGCHLD to
SIG_IGN doesn’t affect the status of any existing zombie children, which must still be
waited upon in the usual way. On some other UNIX implementations (e.g., Solaris 8),
setting the disposition of SIGCHLD to SIG_IGN does remove existing zombie children.
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The SIG_IGN semantics for SIGCHLD have a long history, deriving from System V.
SUSv3 specifies the behavior described here, but these semantics were left unspecified
in the original POSIX.1 standard. Thus, on some older UNIX implementations,
ignoring SIGCHLD has no effect on the creation of zombies. The only completely portable
way of preventing the creation of zombies is to call wait() or waitpid(), possibly from
within a handler established for SIGCHLD.

Deviations from SUSv3 in older Linux kernels

SUSv3 specifies that if the disposition of SIGCHLD is set to SIG_IGN, the resource usage
information for the child should be discarded and not included in the totals
returned when the parent makes a call to getrusage() specifying the RUSAGE_CHILDREN
flag (Section 36.1). However, on Linux versions before kernel 2.6.9, the CPU times
and resources used by the child are recorded and are visible in calls to getrusage().
This nonconformance is fixed in Linux 2.6.9 and later.

Setting the disposition of SIGCHLD to SIG_IGN should also prevent the child CPU
times from being included in the structure returned by times() (Section 10.7).
However, on Linux kernels before 2.6.9, a similar nonconformance applies for
the information returned by times().

SUSv3 specifies that if the disposition of SIGCHLD is set to SIG_IGN, and the parent has
no terminated children that have been transformed into zombies and have not yet
been waited for, then a call to wait() (or waitpid()) should block until all of the parent’s
children have terminated, at which point the call should terminate with the error
ECHILD. Linux 2.6 conforms to this requirement. However, in Linux 2.4 and earlier,
wait() blocks only until the next child terminates, and then returns the process ID
and status of that child (i.e., the behavior is the same as if the disposition of SIGCHLD
had not been set to SIG_IGN).

The sigaction() SA_NOCLDWAIT flag

SUSv3 specifies the SA_NOCLDWAIT flag, which can be used when setting the disposi-
tion of the SIGCHLD signal using sigaction(). This flag produces behavior similar to
that when the disposition of SIGCHLD is set to SIG_IGN. This flag was not implemented
in Linux 2.4 and earlier, but is implemented in Linux 2.6.

The principal difference between setting the disposition of SIGCHLD to SIG_IGN
and employing SA_NOCLDWAIT is that, when establishing a handler with SA_NOCLDWAIT,
SUSv3 leaves it unspecified whether or not a SIGCHLD signal is sent to the parent
when a child terminates. In other words, an implementation is permitted to deliver
SIGCHLD when SA_NOCLDWAIT is specified, and an application could catch this signal
(although the SIGCHLD handler would not be able to reap the child status using
wait(), since the kernel has already discarded the zombie). On some UNIX imple-
mentations, including Linux, the kernel does generate a SIGCHLD signal for the parent
process. On other UNIX implementations, SIGCHLD is not generated.

When setting the SA_NOCLDWAIT flag for the SIGCHLD signal, older Linux kernels
demonstrate the same details of nonconformance to SUSv3 as were described
above for setting the disposition of SIGCHLD to SIG_IGN.
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The System V SIGCLD signal

On Linux, the name SIGCLD is provided as a synonym for the SIGCHLD signal. The
reason for the existence of both names is historical. The SIGCHLD signal originated
on BSD, and this name was adopted by POSIX, which largely standardized on the
BSD signal model. System V provided the corresponding SIGCLD signal, with slightly
different semantics.

The key difference between BSD SIGCHLD and System V SIGCLD lies in what happens
when the disposition of the signal was set to SIG_IGN:

On historical (and some contemporary) BSD implementations, the system
continues to generate zombies for unwaited-for children, even when SIGCHLD
is ignored.

On System V, using signal() (but not sigaction()) to ignore SIGCLD has the result
that zombies are not generated when children died.

As already noted, the original POSIX.1 standard left the result of ignoring SIGCHLD
unspecified, thus permitting the System V behavior. Nowadays, this System V
behavior is specified as part of SUSv3 (which nevertheless holds to the name
SIGCHLD). Modern System V derivatives use the standard name SIGCHLD for this signal,
but continue to provide the synonym SIGCLD. Further details on SIGCLD can be found
in [Stevens & Rago, 2005].

26.4 Summary

Using wait() and waitpid() (and other related functions), a parent process can
obtain the status of its terminated and stopped children. This status indicates
whether a child process terminated normally (with an exit status indicating either
success or failure), terminated abnormally, was stopped by a signal, or was resumed
by a SIGCONT signal.

If a child’s parent terminates, the child becomes an orphan and is adopted by
the init process, whose process ID is 1.

When a child process terminates, it becomes a zombie, and is removed from
the system only when its parent calls wait() (or similar) to retrieve the child’s status.
Long-running programs such as shells and daemons should be designed so that
they always reap the status of the child processes they create, since a process in the
zombie state can’t be killed, and unreaped zombies will eventually clog the kernel
process table.

A common way of reaping dead child processes is to establish a handler for the
SIGCHLD signal. This signal is delivered to a parent process whenever one of its chil-
dren terminates, and optionally when a child is stopped by a signal. Alternatively,
but somewhat less portably, a process may elect to set the disposition of SIGCHLD to
SIG_IGN, in which case the status of terminated children is immediately discarded (and
thus can’t later be retrieved by the parent), and the children don’t become zombies.

Further information

Refer to the sources of further information listed in Section 24.6.
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26.5 Exercises

26-1. Write a program to verify that when a child’s parent terminates, a call to getppid()
returns 1 (the process ID of init).

26-2. Suppose that we have three processes related as grandparent, parent, and child,
and that the grandparent doesn’t immediately perform a wait() after the parent
exits, so that the parent becomes a zombie. When do you expect the grandchild to
be adopted by init (so that getppid() in the grandchild returns 1): after the parent
terminates or after the grandparent does a wait()? Write a program to verify your
answer.

26-3. Replace the use of waitpid() with waitid() in Listing 26-3 (child_status.c). The call to
printWaitStatus() will need to be replaced by code that prints relevant fields from
the siginfo_t structure returned by waitid().

26-4. Listing 26-4 (make_zombie.c) uses a call to sleep() to allow the child process a chance
to execute and terminate before the parent executes system(). This approach
produces a theoretical race condition. Modify the program to eliminate the race
condition by using signals to synchronize the parent and child.
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P R O G R A M  E X E C U T I O N

This chapter follows from our discussion of process creation and termination in
the previous chapters. We now look at how a process can use the execve() system call
to replace the program that it is running by a completely new program. We then
show how to implement the system() function, which allows its caller to execute an
arbitrary shell command.

27.1 Executing a New Program: execve()

The execve() system call loads a new program into a process’s memory. During this
operation, the old program is discarded, and the process’s stack, data, and heap are
replaced by those of the new program. After executing various C library run-time
startup code and program initialization code (e.g., C++ static constructors or C
functions declared with the gcc constructor attribute described in Section 42.4), the
new program commences execution at its main() function.

The most frequent use of execve() is in the child produced by a fork(), although
it is also occasionally used in applications without a preceding fork().

Various library functions, all with names beginning with exec, are layered on
top of the execve() system call. Each of these functions provides a different interface
to the same functionality. The loading of a new program by any of these calls is com-
monly referred to as an exec operation, or simply by the notation exec(). We begin
with a description of execve() and then describe the library functions.



The pathname argument contains the pathname of the new program to be loaded
into the process’s memory. This pathname can be absolute (indicated by an initial /)
or relative to the current working directory of the calling process.

The argv argument specifies the command-line arguments to be passed to the
new program. This array corresponds to, and has the same form as, the second
(argv) argument to a C main() function; it is a NULL-terminated list of pointers to
character strings. The value supplied for argv[0] corresponds to the command
name. Typically, this value is the same as the basename (i.e., the final component)
of pathname.

The final argument, envp, specifies the environment list for the new program.
The envp argument corresponds to the environ array of the new program; it is a NULL-
terminated list of pointers to character strings of the form name=value (Section 6.7).

The Linux-specific /proc/PID/exe file is a symbolic link containing the absolute
pathname of the executable file being run by the corresponding process.

After an execve(), the process ID of the process remains the same, because the same
process continues to exist. A few other process attributes also remain unchanged,
as described in Section 28.4.

If the set-user-ID (set-group-ID) permission bit of the program file specified by
pathname is set, then, when the file is execed, the effective user (group) ID of the
process is changed to be the same as the owner (group) of the program file. This is
a mechanism for temporarily granting privileges to users while running a specific
program (see Section 9.3).

After optionally changing the effective IDs, and regardless of whether they
were changed, an execve() copies the value of the process’s effective user ID into its
saved set-user-ID, and copies the value of the process’s effective group ID into its saved
set-group-ID.

Since it replaces the program that called it, a successful execve() never returns.
We never need to check the return value from execve(); it will always be –1. The very
fact that it returned informs us that an error occurred, and, as usual, we can use
errno to determine the cause. Among the errors that may be returned in errno are
the following:

EACCES

The pathname argument doesn’t refer to a regular file, the file doesn’t have
execute permission enabled, or one of the directory components of
pathname is not searchable (i.e., execute permission is denied on the direc-
tory). Alternatively, the file resides on a file system that was mounted with
the MS_NOEXEC flag (Section 14.8.1).

#include <unistd.h>

int execve(const char *pathname, char *const argv[], char *const envp[]);

Never returns on success; returns –1 on error
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ENOENT

The file referred to by pathname doesn’t exist.

ENOEXEC

The file referred to by pathname is marked as being executable, but it is not
in a recognizable executable format. Possibly, it is a script that doesn’t begin
with a line (starting with the characters #!) specifying a script interpreter.

ETXTBSY

The file referred to by pathname is open for writing by another process
(Section 4.3.2).

E2BIG

The total space required by the argument list and environment list exceeds
the allowed maximum.

The errors listed above may also be generated if any of these conditions apply to
the interpreter file defined to execute a script (refer to Section 27.3) or to the ELF
interpreter being used to execute the program.

The Executable and Linking Format (ELF) is a widely implemented specification
describing the layout of executable files. Normally, during an exec, a process
image is constructed using the segments of the executable file (Section 6.3).
However, the ELF specification also allows for an executable file to define an
interpreter (the PT_INTERP ELF program header element) to be used to execute
the program. If an interpreter is defined, the kernel constructs the process
image from the segments of the specified interpreter executable file. It is then
the responsibility of the interpreter to load and execute the program. We say a
little more about the ELF interpreter in Chapter 41 and provide some pointers
to further information in that chapter.

Example program

Listing 27-1 demonstrates the use of execve(). This program creates an argument list
and an environment for a new program, and then calls execve(), using its command-
line argument (argv[1]) as the pathname to be executed.

Listing 27-2 shows a program that is designed to be executed by the program in
Listing 27-1. This program simply displays its command-line arguments and envi-
ronment list (the latter is accessed using the global environ variable, as described in
Section 6.7).

The following shell session demonstrates the use of the programs in Listing 27-1
and Listing 27-2 (in this example, a relative pathname is used to specify the program
to be execed):

$ ./t_execve ./envargs
argv[0] = envargs                   All of the output is printed by envargs
argv[1] = hello world
argv[2] = goodbye
environ: GREET=salut
environ: BYE=adieu
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Listing 27-1: Using execve() to execute a new program

–––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/t_execve.c

#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    char *argVec[10];           /* Larger than required */
    char *envVec[] = { "GREET=salut", "BYE=adieu", NULL };

    if (argc != 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s pathname\n", argv[0]);

    argVec[0] = strrchr(argv[1], '/');      /* Get basename from argv[1] */
    if (argVec[0] != NULL)
        argVec[0]++;
    else
        argVec[0] = argv[1];
    argVec[1] = "hello world";
    argVec[2] = "goodbye";
    argVec[3] = NULL;           /* List must be NULL-terminated */

    execve(argv[1], argVec, envVec);
    errExit("execve");          /* If we get here, something went wrong */
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/t_execve.c

Listing 27-2: Display argument list and environment

––––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/envargs.c

#include "tlpi_hdr.h"

extern char **environ;

int
main(int argc, char *argv[])
{
    int j;
    char **ep;

    for (j = 0; j < argc; j++)
        printf("argv[%d] = %s\n", j, argv[j]);

    for (ep = environ; *ep != NULL; ep++)
        printf("environ: %s\n", *ep);

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/envargs.c
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27.2 The exec() Library Functions

The library functions described in this section provide alternative APIs for per-
forming an exec(). All of these functions are layered on top of execve(), and they dif-
fer from one another and from execve() only in the way in which the program name,
argument list, and environment of the new program are specified.

The final letters in the names of these functions provide a clue to the differences
between them. These differences are summarized in Table 27-1 and detailed in the
following list:

Most of the exec() functions expect a pathname as the specification of the new
program to be loaded. However, execlp() and execvp() allow the program to be spec-
ified using just a filename. The filename is sought in the list of directories specified
in the PATH environment variable (explained in more detail below). This is the
kind of searching that the shell performs when given a command name. To
indicate this difference in operation, the names of these functions contain the
letter p (for PATH). The PATH variable is not used if the filename contains a slash
(/), in which case it is treated as a relative or absolute pathname.

Instead of using an array to specify the argv list for the new program, execle(),
execlp(), and execl() require the programmer to specify the arguments as a list of
strings within the call. The first of these arguments corresponds to argv[0] in
the main function of the new program, and is thus typically the same as the
filename argument or the basename component of the pathname argument. A
NULL pointer must terminate the argument list, so that these calls can locate the
end of the list. (This requirement is indicated by the commented (char *) NULL
in the above prototypes; for a discussion of why the cast is required before the
NULL, see Appendix C.) The names of these functions contain the letter l (for list) to
distinguish them from those functions requiring the argument list as a NULL-
terminated array. The names of the functions that require the argument list as an
array (execve(), execvp(), and execv()) contain the letter v (for vector).

#include <unistd.h>

int execle(const char *pathname, const char *arg, ...
                /* , (char *) NULL, char *const envp[] */ );
int execlp(const char *filename, const char *arg, ...
                /* , (char *) NULL */);
int execvp(const char *filename, char *const argv[]);
int execv(const char *pathname, char *const argv[]);
int execl(const char *pathname, const char *arg, ...
                /* , (char *) NULL */);

None of the above returns on success; all return –1 on error
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The execve() and execle() functions allow the programmer to explicitly specify
the environment for the new program using envp, a NULL-terminated array of
pointers to character strings. The names of these functions end with the letter e
(for environment) to indicate this fact. All of the other exec() functions use the
caller’s existing environment (i.e., the contents of environ) as the environment
for the new program.

Version 2.11 of glibc added a nonstandard function, execvpe(file, argv, envp).
This function is like execvp(), but instead of taking the environment for the new
program from environ, the caller specifies the new environment via the envp
argument (like execve() and execle()).

In the next few pages, we demonstrate the use of some of these exec() variants.

27.2.1 The PATH Environment Variable
The execvp() and execlp() functions allow us to specify just the name of the file to be
executed. These functions make use of the PATH environment variable to search for
the file. The value of PATH is a string consisting of colon-separated directory names
called path prefixes. As an example, the following PATH value specifies five directories:

$ echo $PATH
/home/mtk/bin:/usr/local/bin:/usr/bin:/bin:.

The PATH value for a login shell is set by system-wide and user-specific shell startup
scripts. Since a child process inherits a copy of its parent’s environment variables,
each process that the shell creates to execute a command inherits a copy of the
shell’s PATH.

The directory pathnames specified in PATH can be either absolute (commencing
with an initial /) or relative. A relative pathname is interpreted with respect to the
current working directory of the calling process. The current working directory
can be specified using . (dot), as in the above example.

It is also possible to specify the current working directory by including a zero-
length prefix in PATH, by employing consecutive colons, an initial colon, or a
trailing colon (e.g., /usr/bin:/bin:). SUSv3 declares this technique obsolete;
the current working directory should be explicitly specified using . (dot).

Table 27-1: Summary of differences between the exec() functions

Function Specification 
of program file
(–, p)

Specification
of arguments
(v, l)

Source of
environment
(e, –)

execve() pathname array envp argument
execle() pathname list envp argument
execlp() filename + PATH list caller’s environ
execvp() filename + PATH array caller’s environ
execv() pathname array caller’s environ
execl() pathname list caller’s environ
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If the PATH variable is not defined, then execvp() and execlp() assume a default path
list of .:/usr/bin:/bin.

As a security measure, the superuser account (root) is normally set up so that
the current working directory is excluded from PATH. This prevents root from acci-
dentally executing a file from the current working directory (which may have been
deliberately placed there by a malicious user) with the same name as a standard
command or with a name that is a misspelling of a common command (e.g., sl
instead of ls). In some Linux distributions, the default value for PATH also excludes
the current working directory for unprivileged users. We assume such a PATH definition
in all of the shell session logs shown in this book, which is why we always prefix ./ to
the names of programs executed from the current working directory. (This also
has the useful side effect of visually distinguishing our programs from standard
commands in the shell session logs shown in this book.)

The execvp() and execlp() functions search for the filename in each of the direc-
tories named in PATH, starting from the beginning of the list and continuing until a
file with the given name is successfully execed. Using the PATH environment variable
in this way is useful if we don’t know the run-time location of an executable file or
don’t want to create a hard-coded dependency on that location.

The use of execvp() and execlp() in set-user-ID or set-group-ID programs should
be avoided, or at least approached with great caution. In particular, the PATH envi-
ronment variable should be carefully controlled to prevent the execing of a mali-
cious program. In practice, this means that the application should override any
previously defined PATH value with a known-secure directory list.

Listing 27-3 provides an example of the use of execlp(). The following shell session
log demonstrates the use of this program to invoke the echo command (/bin/echo):

$ which echo
/bin/echo
$ ls -l /bin/echo
-rwxr-xr-x    1 root      15428 Mar 19 21:28 /bin/echo
$ echo $PATH                      Show contents of PATH environment variable
/home/mtk/bin:/usr/local/bin:/usr/bin:/bin          /bin is in PATH
$ ./t_execlp echo                 execlp() uses PATH to successfully find echo
hello world

The string hello world that appears above was supplied as the third argument of the
call to execlp() in the program in Listing 27-3.

We continue by redefining PATH to omit /bin, which is the directory containing
the echo program:

$ PATH=/home/mtk/bin:/usr/local/bin:/usr/bin
$ ./t_execlp echo
ERROR [ENOENT No such file or directory] execlp
$ ./t_execlp /bin/echo
hello world

As can be seen, when we supply a filename (i.e., a string containing no slashes) to
execlp(), the call fails, since a file named echo was not found in any of the directories
listed in PATH. On the other hand, when we provide a pathname containing one or
more slashes, execlp() ignores the contents of PATH.
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Listing 27-3: Using execlp() to search for a filename in PATH

–––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/t_execlp.c

#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    if (argc != 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s pathname\n", argv[0]);

    execlp(argv[1], argv[1], "hello world", (char *) NULL);
    errExit("execlp");          /* If we get here, something went wrong */
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/t_execlp.c

27.2.2 Specifying Program Arguments as a List
When we know the number of arguments for an exec() at the time we write a program,
we can use execle(), execlp(), or execl() to specify the arguments as a list within the
function call. This can be convenient, since it requires less code than assembling
the arguments in an argv vector. The program in Listing 27-4 achieves the same
result as the program in Listing 27-1 but using execle() instead of execve().

Listing 27-4: Using execle() to specify program arguments as a list

–––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/t_execle.c

#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    char *envVec[] = { "GREET=salut", "BYE=adieu", NULL };
    char *filename;

    if (argc != 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s pathname\n", argv[0]);

    filename = strrchr(argv[1], '/');       /* Get basename from argv[1] */
    if (filename != NULL)
        filename++;
    else
        filename = argv[1];

    execle(argv[1], filename, "hello world", (char *) NULL, envVec);
    errExit("execle");          /* If we get here, something went wrong */
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/t_execle.c

27.2.3 Passing the Caller’s Environment to the New Program
The execlp(), execvp(), execl(), and execv() functions don’t permit the programmer to
explicitly specify an environment list; instead, the new program inherits its environ-
ment from the calling process (Section 6.7). This may, or may not, be desirable. For
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security reasons, it is sometimes preferable to ensure that a program is execed with
a known environment list. We consider this point further in Section 38.8.

Listing 27-5 demonstrates that the new program inherits its environment from
the caller during an execl() call. This program first uses putenv() to make a change
to the environment that it inherits from the shell as a result of fork(). Then the
printenv program is execed to display the values of the USER and SHELL environment
variables. When we run this program, we see the following:

$ echo $USER $SHELL           Display some of the shell’s environment variables
blv /bin/bash
$ ./t_execl
Initial value of USER: blv    Copy of environment was inherited from the shell
britta                        These two lines are displayed by execed printenv
/bin/bash

Listing 27-5: Passing the caller’s environment to the new program using execl()
––––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/t_execl.c

#include <stdlib.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    printf("Initial value of USER: %s\n", getenv("USER"));
    if (putenv("USER=britta") != 0)
        errExit("putenv");

    execl("/usr/bin/printenv", "printenv", "USER", "SHELL", (char *) NULL);
    errExit("execl");           /* If we get here, something went wrong */
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/t_execl.c

27.2.4 Executing a File Referred to by a Descriptor: fexecve()
Since version 2.3.2, glibc provides fexecve(), which behaves just like execve(), but spec-
ifies the file to be execed via the open file descriptor fd, rather than as a pathname.
Using fexecve() is useful for applications that want to open a file, verify its contents
by performing a checksum, and then execute the file.

Without fexecve(), we could open() and read the file to verify its contents, and then
exec it. However, this would allow the possibility that, between opening the file and
execing it, the file was replaced (holding an open file descriptor doesn’t prevent a
new file with the same name from being created), so that the content that was
execed was different from the content that was checked.

#define _GNU_SOURCE
#include <unistd.h>

int fexecve(int fd, char *const argv[], char *const envp[]);

Doesn’t return on success; returns –1 on error
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27.3 Interpreter Scripts

An interpreter is a program that reads commands in text form and executes them.
(This contrasts with a compiler, which translates input source code into a machine
language that can then be executed on a real or virtual machine.) Examples of
interpreters include the various UNIX shells and programs such as awk, sed, perl,
python, and ruby. In addition to being able to read and execute commands interac-
tively, interpreters usually provide a facility to read and execute commands from a
text file, referred to as a script.

UNIX kernels allow interpreter scripts to be run in the same way as a binary
program file, as long as two requirements are met. First, execute permission must
be enabled for the script file. Second, the file must contain an initial line that specifies
the pathname of the interpreter to be used to run the script. This line has the fol-
lowing form:

#! interpreter-path [ optional-arg ]

The #! characters must be placed at the start of the line; optionally, a space may
separate these characters from the interpreter pathname. The PATH environment
variable is not used in interpreting this pathname, so that an absolute pathname
usually should be specified. A relative pathname is also possible, though unusual; it
is interpreted relative to the current working directory of the process starting the
interpreter. White space separates the interpreter pathname from an optional
argument, whose purpose we explain shortly. The optional argument should not
contain white-space characters.

As an example, UNIX shell scripts usually begin with the following line, which
specifies that the shell is to be used to execute the script:

#!/bin/sh

The optional argument in the first line of the interpreter script file should not
contain white space because the behavior in this case is highly implementation-
dependent. On Linux, white space in optional-arg is not interpreted specially—
all of the text from the start of the argument to the end of the line is inter-
preted as a single word (which is given as an argument to the script, as we
describe below). Note that this treatment of spaces contrasts with the shell,
where white space delimits the words of a command line.

While some UNIX implementations treat white space in optional-arg in the
same way as Linux, other implementations do not. On FreeBSD before version
6.0, multiple space-delimited optional arguments may follow interpreter-path
(and these are passed as separate words to the script); since version 6.0,
FreeBSD behaves like Linux. On Solaris 8, white-space characters terminate
optional-arg, and any remaining text in the #! line is ignored.

The Linux kernel places a 127-character limit on the length of the #! line of a script
(excluding the newline character at the end of the line). Additional characters are
silently ignored.

The #! technique for interpreter scripts is not specified in SUSv3, but is avail-
able on most UNIX implementations.
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The limit placed on the length of the #! line varies across UNIX implementa-
tions. For example, the limit is 64 characters in OpenBSD 3.1 and 1024 characters
on Tru64 5.1. On some historical implementations (e.g., SunOS 4), this limit
was as low as 32 characters.

Execution of interpreter scripts

Since a script doesn’t contain binary machine code, when execve() is used to run the
script, obviously something different from usual must be occurring when the script
is executed. If execve() detects that the file it has been given commences with the
2-byte sequence #!, then it extracts the remainder of the line (the pathname and
argument), and execs the interpreter file with the following list of arguments:

interpreter-path [ optional-arg ] script-path arg...

Here, interpreter-path and optional-arg are taken from the #! line of the script, script-
path is the pathname given to execve(), and arg... is the list of any further arguments
specified via the argv argument to execve() (but excluding argv[0]). The origin of
each of the script arguments is summarized in Figure 27-1.

Figure 27-1: The argument list supplied to an execed script

We can demonstrate the origin of the interpreter arguments by writing a script that
uses the program in Listing 6-2 (necho.c, on page 123) as an interpreter. This pro-
gram simply echoes all of its command-line arguments. We then use the program
in Listing 27-1 to exec the script:

$ cat > necho.script                Create script
#!/home/mtk/bin/necho some argument
Some junk
Type Control-D
$ chmod +x necho.script             Make script executable
$ ./t_execve necho.script           And exec the script
argv[0] = /home/mtk/bin/necho       First 3 arguments are generated by kernel
argv[1] = some argument             Script argument is treated as a single word
argv[2] = necho.script              This is the script path
argv[3] = hello world               This was argVec[1] given to execve()
argv[4] = goodbye                   And this was argVec[2]

#! interpreter-path  optional-arg

execve(script-path, argv, envp)
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In this example, our “interpreter” (necho) ignores the contents of its script file
(necho.script), and the second line of the script (Some junk) has no effect on its
execution.

The Linux 2.2 kernel passes only the basename part of the interpreter-path as
the first argument when invoking a script. Consequently, on Linux 2.2, the line
displaying argv[0] would show just the value echo.

Most UNIX shells and interpreters treat the # character as the start of a comment.
Thus, these interpreters ignore the initial #! line when interpreting the script.

Using the script optional-arg

One use of the optional-arg in a script’s initial #! line is to specify command-line
options for the interpreter. This feature is useful with certain interpreters, such as awk.

The awk interpreter has been part of the UNIX system since the late 1970s. The
awk language is described in a number of books, including one by its creators
[Aho et al., 1988], whose initials gave the language its name. Its forte is rapid
prototyping of text-processing applications. In its design—a weakly typed lan-
guage, with a rich set of text-handling primitives, and a syntax based on C—awk
is the ancestor of many widely used contemporary scripting languages, such as
JavaScript and PHP.

A script can be supplied to awk in two different ways. The default is to provide the
script as the first command-line argument to awk:

$ awk 'script' input-file...

Alternatively, an awk script can reside inside a file, as in the following awk script,
which prints out the length of the longest line of its input:

$ cat longest_line.awk
#!/usr/bin/awk
length > max { max = length; }
END          { print max; }

Suppose that we try execing this script using the following C code:

execl("longest_line.awk", "longest_line.awk", "input.txt", (char *) NULL);

This execl() call in turn employs execve() with the following argument list to invoke awk:

/usr/bin/awk longest_line.awk input.txt

This execve() call fails, because awk interprets the string longest_line.awk as a script
containing an invalid awk command. We need a way of informing awk that this
argument is actually the name of a file containing the script. We can do this by adding
the –f option as the optional argument in the script’s #! line. This tells awk that the
following argument is a script file:

#!/usr/bin/awk -f
length > max { max = length; }
END          { print max; }
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Now, our execl() call results in the following argument list being used:

/usr/bin/awk -f longest_line.awk input.txt

This successfully invokes awk using the script longest_line.awk to process the file
input.txt.

Executing scripts with execlp() and execvp()

Normally, the absence of a #! line at the start of a script causes the exec() functions
to fail. However, execlp() and execvp() do things somewhat differently. Recall that
these are the functions that use the PATH environment variable to obtain a list of
directories in which to search for a file to be executed. If either of these functions
finds a file that has execute permission turned on, but is not a binary executable
and does not start with a #! line, then they exec the shell to interpret the file. On
Linux, this means that such files are treated as though they started with a line con-
taining the string #!/bin/sh.

27.4 File Descriptors and exec()

By default, all file descriptors opened by a program that calls exec() remain open
across the exec() and are available for use by the new program. This is frequently
useful, because the calling program may open files on particular descriptors, and
these files are automatically available to the new program, without it needing to
know the names of, or open, the files.

The shell takes advantage of this feature to handle I/O redirection for the
programs that it executes. For example, suppose we enter the following shell
command:

$ ls /tmp > dir.txt

The shell performs the following steps to execute this command:

1. A fork() is performed to create a child process that is also running a copy of the
shell (and thus has a copy of the command).

2. The child shell opens dir.txt for output using file descriptor 1 (standard output).
This can be done in either of the following ways:

a) The child shell closes descriptor 1 (STDOUT_FILENO) and then opens the file
dir.txt. Since open() always uses the lowest available file descriptor, and
standard input (descriptor 0) remains open, the file will be opened on
descriptor 1.

b) The shell opens dir.txt, obtaining a new file descriptor. Then, if that file
descriptor is not standard output, the shell uses dup2() to force standard
output to be a duplicate of the new descriptor and closes the new descriptor,
since it is no longer required. (This method is safer than the preceding
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method, since it doesn’t rely on lower-numbered descriptors being open.)
The code sequence is something like the following:

fd = open("dir.txt", O_WRONLY | O_CREAT,
          S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH);           

/* rw-rw-rw- */
if (fd != STDOUT_FILENO) {
    dup2(fd, STDOUT_FILENO);
    close(fd);
}

3. The child shell execs the ls program. The ls program writes its output to stan-
dard output, which is the file dir.txt.

The explanation given here of how the shell performs I/O redirections sim-
plifies some points. In particular, certain commands—so-called shell built-in
commands—are executed directly by the shell, without performing a fork() or
an exec(). Such commands must be treated somewhat differently for the purposes
of I/O redirection.

A shell command is implemented as a built-in for either of two reasons:
efficiency and to obtain side effects within the shell. Some frequently used
commands—such as pwd, echo, and test—are sufficiently simple that it is a worth-
while efficiency to implement them inside the shell. Other commands are
implemented within the shell so that they have side effects on the shell itself—
that is, they change information stored by the shell, or modify attributes of or
affect the execution of the shell process. For example, the cd command must
change the working directory of the shell itself, and so can’t be executed
within a separate process. Other examples of commands that are built in for
their side effects include exec, exit, read, set, source, ulimit, umask, wait, and the
shell job-control commands ( jobs, fg, and bg). The full set of built-in commands
understood by a shell is documented in the shell’s manual page.

The close-on-exec flag (FD_CLOEXEC)

Sometimes, it may be desirable to ensure that certain file descriptors are closed
before an exec(). In particular, if we exec() an unknown program (i.e., one that we
did not write) from a privileged process, or a program that doesn’t need descrip-
tors for files we have already opened, then it is secure programming practice to
ensure that all unnecessary file descriptors are closed before the new program is
loaded. We could do this by calling close() on all such descriptors, but this suffers
the following limitations:

The file descriptor may have been opened by a library function. This function
has no mechanism to force the main program to close the file descriptor
before the exec() is performed. (As a general principle, library functions should
always set the close-on-exec flag, using the technique described below, for any
files that they open.)
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If the exec() call fails for some reason, we may want to keep the file descriptors
open. If they are already closed, it may be difficult, or impossible, to reopen
them so that they refer to the same files.

For these reasons, the kernel provides a close-on-exec flag for each file descriptor.
If this flag is set, then the file descriptor is automatically closed during a successful
exec(), but left open if the exec() fails. The close-on-exec flag for a file descriptor can
be accessed using the fcntl() system call (Section 5.2). The fcntl() F_GETFD operation
retrieves a copy of the file descriptor flags:

int flags;

flags = fcntl(fd, F_GETFD);
if (flags == -1)
    errExit("fcntl");

After retrieving these flags, we can modify the FD_CLOEXEC bit and use a second fcntl()
call specifying F_SETFD to update the flags:

flags |= FD_CLOEXEC;
if (fcntl(fd, F_SETFD, flags) == -1)
    errExit("fcntl");

FD_CLOEXEC is actually the only bit used in the file descriptor flags. This bit corre-
sponds to the value 1. In older programs, we may sometimes see the close-on-
exec flag set using just the call fcntl(fd, F_SETFD, 1), relying on the fact that
there are no other bits that can be affected by this operation. Theoretically,
this may not always be so (in the future, some UNIX system might implement
additional flag bits), so we should use the technique shown in the main text.

Many UNIX implementations, including Linux, also allow the close-on-
exec flag to be modified using two unstandardized ioctl() calls: ioctl(fd,
FIOCLEX) to set the close-on-exec flag for fd, and ioctl(fd, FIONCLEX) to clear
the flag.

When dup(), dup2(), or fcntl() is used to create a duplicate of a file descriptor, the
close-on-exec flag is always cleared for the duplicate descriptor. (This behavior is
historical and an SUSv3 requirement.)

Listing 27-6 demonstrates the manipulation of the close-on-exec flag. Depend-
ing on the presence of a command-line argument (any string), this program first
sets the close-on-exec flag for standard output and then execs the ls program. Here
is what we see when we run the program:

$ ./closeonexec                     Exec ls without closing standard output
-rwxr-xr-x   1 mtk    users    28098 Jun 15 13:59 closeonexec
$ ./closeonexec n                   Sets close-on-exec flag for standard output
ls: write error: Bad file descriptor

In the second run shown above, ls detects that its standard output is closed and
prints an error message on standard error.
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Listing 27-6: Setting the close-on-exec flag for a file descriptor

––––––––––––––––––––––––––––––––––––––––––––––––––––  procexec/closeonexec.c
#include <fcntl.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int flags;

    if (argc > 1) {
        flags = fcntl(STDOUT_FILENO, F_GETFD);              /* Fetch flags */
        if (flags == -1)
            errExit("fcntl - F_GETFD");

        flags |= FD_CLOEXEC;                    /* Turn on FD_CLOEXEC */

        if (fcntl(STDOUT_FILENO, F_SETFD, flags) == -1)     /* Update flags */
            errExit("fcntl - F_SETFD");
    }

    execlp("ls", "ls", "-l", argv[0], (char *) NULL);
    errExit("execlp");
}

––––––––––––––––––––––––––––––––––––––––––––––––––––  procexec/closeonexec.c

27.5 Signals and exec()

During an exec(), the text of the existing process is discarded. This text may include
signal handlers established by the calling program. Because the handlers disappear,
the kernel resets the dispositions of all handled signals to SIG_DFL. The dispositions
of all other signals (i.e., those with dispositions of SIG_IGN or SIG_DFL) are left
unchanged by an exec(). This behavior is required by SUSv3.

SUSv3 makes a special case for an ignored SIGCHLD signal. (We noted in Sec-
tion 26.3.3 that ignoring SIGCHLD prevents the creation of zombies.) SUSv3 leaves it
unspecified whether an ignored SIGCHLD remains ignored across an exec() or its dis-
position is reset to SIG_DFL. Linux does the former, but some other UNIX imple-
mentations (e.g., Solaris) do the latter. This implies that, in programs that ignore
SIGCHLD, for maximum portability, we should perform a signal(SIGCHLD, SIG_DFL)
call prior to an exec(), and ensure that we don’t write programs that rely on the ini-
tial disposition of SIGCHLD being anything other than SIG_DFL.

The destruction of the old program’s data, heap, and stack also means that any
alternate signal stack established by a call to sigaltstack() (Section 21.3) is lost. Since
an alternate signal stack is not preserved across an exec(), the SA_ONSTACK bit is also
cleared for all signals.

During an exec(), the process signal mask and set of pending signals are both
preserved. This feature allows us to block and queue signals for the newly execed
program. However, SUSv3 notes that many existing applications wrongly assume
that they are started with the disposition of certain signals set to SIG_DFL or that
these signals are unblocked. (In particular, the C standards provide a much weaker
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specification of signals, which doesn’t specify signal blocking; therefore, C pro-
grams written on non-UNIX systems won’t know to unblock signals.) For this reason,
SUSv3 recommends that signals should not be blocked or ignored across an exec()
of an arbitrary program. Here, “arbitrary” means a program that we did not write.
It is acceptable to block or ignore signals when execing a program we have written
or one with known behavior with respect to signals.

27.6 Executing a Shell Command: system()

The system() function allows the calling program to execute an arbitrary shell com-
mand. In this section, we describe the operation of system(), and in the next section
we show how system() can be implemented using fork(), exec(), wait(), and exit().

In Section 44.5, we look at the popen() and pclose() functions, which can also be
used to execute a shell command, but allow the calling program to either read
the output of the command or to send input to the command.

The system() function creates a child process that invokes a shell to execute
command. Here is an example of a call to system():

system("ls | wc");

The principal advantages of system() are simplicity and convenience:

We don’t need to handle the details of calling fork(), exec(), wait(), and exit().

Error and signal handling are performed by system() on our behalf.

Because system() uses the shell to execute command, all of the usual shell pro-
cessing, substitutions, and redirections are performed on command before it is
executed. This makes it easy to add an “execute a shell command” feature to an
application. (Many interactive applications provide such a feature in the form
of a ! command.)

The main cost of system() is inefficiency. Executing a command using system()
requires the creation of at least two processes—one for the shell and one or more
for the command(s) it executes—each of which performs an exec(). If efficiency or
speed is a requirement, it is preferable to use explicit fork() and exec() calls to exe-
cute the desired program.

The return value of system() is as follows:

If command is a NULL pointer, then system() returns a nonzero value if a shell is
available, and 0 if no shell is available. This case arises out of the C programming
language standards, which are not tied to any operating system, so a shell
might not be available if system() is running on a non-UNIX system. Further-
more, even though all UNIX implementations have a shell, this shell might not

#include <stdlib.h>

int system(const char *command);

See main text for a description of return value
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be available if the program called chroot() before calling system(). If command is
non-NULL, then the return value for system() is determined according to the
remaining rules in this list.

If a child process could not be created or its termination status could not be
retrieved, then system() returns –1.

If a shell could not be execed in the child process, then system() returns a value
as though the child shell had terminated with the call _exit(127).

If all system calls succeed, then system() returns the termination status of the
child shell used to execute command. (The termination status of a shell is the ter-
mination status of the last command it executes.)

It is impossible (using the value returned by system()) to distinguish the case
where system() fails to exec a shell from the case where the shell exits with the
status 127 (the latter possibility can occur if the shell could not find a program
with the given name to exec).

In the last two cases, the value returned by system() is a wait status of the same
form returned by waitpid(). This means we should use the functions described in
Section 26.1.3 to dissect this value, and we can display the value using our
printWaitStatus() function (Listing 26-2, on page 546).

Example program

Listing 27-7 demonstrates the use of system(). This program executes a loop that
reads a command string, executes it using system(), and then analyzes and displays
the value returned by system(). Here is a sample run:

$ ./t_system
Command: whoami
mtk
system() returned: status=0x0000 (0,0)
child exited, status=0
Command: ls | grep XYZ                   Shell terminates with the status of…
system() returned: status=0x0100 (1,0)   its last command (grep), which…
child exited, status=1                   found no match, and so did an exit(1)
Command: exit 127
system() returned: status=0x7f00 (127,0)
(Probably) could not invoke shell        Actually, not true in this case
Command: sleep 100
Type Control-Z to suspend foreground process group
[1]+  Stopped           ./t_system
$ ps | grep sleep                        Find PID of sleep
29361 pts/6    00:00:00 sleep
$ kill 29361                             And send a signal to terminate it
$ fg                                     Bring t_system back into foreground
./t_system
system() returned: status=0x000f (0,15)
child killed by signal 15 (Terminated)
Command: ^D$                             Type Control-D to terminate program
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Listing 27-7: Executing shell commands with system()
–––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/t_system.c

#include <sys/wait.h>
#include "print_wait_status.h"
#include "tlpi_hdr.h"

#define MAX_CMD_LEN 200

int
main(int argc, char *argv[])
{
    char str[MAX_CMD_LEN];      /* Command to be executed by system() */
    int status;                 /* Status return from system() */

    for (;;) {                  /* Read and execute a shell command */
        printf("Command: ");
        fflush(stdout);
        if (fgets(str, MAX_CMD_LEN, stdin) == NULL)
            break;              /* end-of-file */

        status = system(str);
        printf("system() returned: status=0x%04x (%d,%d)\n",
                (unsigned int) status, status >> 8, status & 0xff);

        if (status == -1) {
            errExit("system");
        } else {
            if (WIFEXITED(status) && WEXITSTATUS(status) == 127)
                printf("(Probably) could not invoke shell\n");
            else                /* Shell successfully executed command */
                printWaitStatus(NULL, status);
        }
    }

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/t_system.c

Avoid using system() in set-user-ID and set-group-ID programs

Set-user-ID and set-group-ID programs should never use system() while operating
under the program’s privileged identifier. Even when such programs don’t allow
the user to specify the text of the command to be executed, the shell’s reliance on
various environment variables to control its operation means that the use of system()
inevitably opens the door for a system security breach.

For example, in older Bourne shells, the IFS environment variable, which
defined the internal field separator used to break a command line into separate
words, was the source of a number of successful system break-ins. If we defined IFS
to have the value a, then the shell would treat the command string shar as the word
sh followed by the argument r, and invoke another shell to execute the script file
named r in the current working directory, instead of the intended purpose (execut-
ing a command named shar). This particular security hole was fixed by applying IFS
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only to the words produced by shell expansions. In addition, modern shells reset
IFS (to a string consisting of the three characters space, tab, and newline) on shell
startup to ensure that scripts behave consistently if they inherit a strange IFS value.
As a further security measure, bash reverts to the real user (group) ID when
invoked from a set-user-ID (set-group-ID) program.

Secure programs that need to spawn another program should use fork() and
one of the exec() functions—other than execlp() or execvp()—directly.

27.7 Implementing system()

In this section, we explain how to implement system(). We begin with a simple
implementation, explain what pieces are missing from that implementation, and
then present a complete implementation.

A simple implementation of system()

The –c option of the sh command provides an easy way to execute a string contain-
ing arbitrary shell commands:

$ sh -c "ls | wc"
     38      38     444

Thus, to implement system(), we need to use fork() to create a child that then does
an execl() with arguments corresponding to the above sh command:

execl("/bin/sh", "sh", "-c", command, (char *) NULL);

To collect the status of the child created by system(), we use a waitpid() call that spec-
ifies the child’s process ID. (Using wait() would not suffice, because wait() waits for
any child, which could accidentally collect the status of some other child created by
the calling process.) A simple, and incomplete, implementation of system() is shown
in Listing 27-8.

Listing 27-8: An implementation of system() that excludes signal handling

––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/simple_system.c

#include <unistd.h>
#include <sys/wait.h>
#include <sys/types.h>

int
system(char *command)
{
    int status;
    pid_t childPid;

    switch (childPid = fork()) {
    case -1: /* Error */
        return -1;
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    case 0: /* Child */
        execl("/bin/sh", "sh", "-c", command, (char *) NULL);
        _exit(127);                     /* Failed exec */

    default: /* Parent */
        if (waitpid(childPid, &status, 0) == -1)
            return -1;
        else
            return status;
    }
}

––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/simple_system.c

Treating signals correctly inside system()

What adds complexity to the implementation of system() is the correct treatment
with signals.

The first signal to consider is SIGCHLD. Suppose that the program calling system()
is also directly creating children, and has established a handler for SIGCHLD that per-
forms its own wait(). In this situation, when a SIGCHLD signal is generated by the ter-
mination of the child created by system(), it is possible that the signal handler of the
main program will be invoked—and collect the child’s status—before system() has a
chance to call waitpid(). (This is an example of a race condition.) This has two unde-
sirable consequences:

The calling program would be deceived into thinking that one of the children
that it created has terminated.

The system() function would be unable to obtain the termination status of the
child that it created.

Therefore, system() must block delivery of SIGCHLD while it is executing.
The other signals to consider are those generated by the terminal interrupt

(usually Control-C) and quit (usually Control-\) characters, SIGINT and SIGQUIT, respec-
tively. Consider what is happening when we execute the following call:

system("sleep 20");

At this point, three processes are running: the process executing the calling program,
a shell, and sleep, as shown in Figure 27-2.

As an efficiency measure, when the string given to the –c option is a simple
command (as opposed to a pipeline or a sequence), some shells (including
bash) directly exec the command, rather than forking a child shell. For shells
that perform such an optimization, Figure 27-2 is not strictly accurate, since
there will be only two processes (the calling process and sleep). Nevertheless,
the arguments in this section about how system() should handle signals still apply.

All of the processes shown in Figure 27-2 form part of the foreground process
group for the terminal. (We consider process groups in detail in Section 34.2.)
Therefore, when we type the interrupt or quit characters, all three processes are sent
the corresponding signal. The shell ignores SIGINT and SIGQUIT while waiting for its
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child. However, both the calling program and the sleep process would, by default,
be killed by these signals.

How should the calling process and the executed command respond to these
signals? SUSv3 specifies the following:

SIGINT and SIGQUIT should be ignored in the calling process while the command
is being executed.

In the child, SIGINT and SIGQUIT should be treated as they would be if the calling
process did a fork() and exec(); that is, the disposition of handled signals is reset
to the default, and the disposition of other signals remains unchanged.

Figure 27-2: Arrangement of processes during execution of system(“sleep 20”)

Dealing with signals in the manner specified by SUSv3 is the most reasonable
approach, for the following reasons:

It would not make sense to have both processes responding to these signals,
since this could lead to confusing behaviors for the user of the application.

Similarly, it would not make sense to ignore these signals in the process executing
the command while treating them according to their default dispositions in the
calling process. This would allow the user to do things such as killing the calling
process while the executed command was left running. It is also inconsistent
with the fact that the calling process has actually given up control (i.e., is
blocked in a waitpid() call) while the command passed to system() is being executed.

The command executed by system() may be an interactive application, and it
makes sense to have this application respond to terminal-generated signals.

SUSv3 requires the treatment of SIGINT and SIGQUIT described above, but notes that
this could have an undesirable effect in a program that invisibly uses system() to per-
form some task. While the command is being executed, typing Control-C or Control-\
will kill only the child of system(), while the application (unexpectedly, to the user)
continues to run. A program that uses system() in this way should check the termina-
tion status returned by system(), and take appropriate action if it detects that the
command was killed by a signal.

fork(), exec()

fork(), exec()

Foreground process group

Child shell created by system()

Child process created by
shell (executes command
given to system())

Caller of system()calling process

sh

sleep
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An improved system() implementation

Listing 27-9 shows an implementation of system() conforming to the rules described
above. Note the following points about this implementation:

As noted earlier, if command is a NULL pointer, then system() should return non-
zero if a shell is available or 0 if no shell is available. The only way to reliably
determine this information is to try to execute a shell. We do this by recursively
calling system() to execute the : shell command and checking for a return status
of 0 from the recursive call q. The : command is a shell built-in command that
does nothing, but always returns a success status. We could have executed the
shell command exit 0 to achieve the same result. (Note that it isn’t sufficient to
use access() to check whether the file /bin/sh exists and has execute permission
enabled. In a chroot() environment, even if the shell executable is present, it
may not be executable it if it is dynamically linked and the required shared
libraries are not available.)

It is only in the parent process (the caller of system()) that SIGCHLD needs to be
blocked w, and SIGINT and SIGQUIT need to be ignored e. However, we must
perform these actions prior to the fork() call, because, if they were done in the par-
ent after the fork(), we would create a race condition. (Suppose, for example,
that the child exited before the parent had a chance to block SIGCHLD.) Conse-
quently, the child must undo these changes to the signal attributes, as
described shortly.

In the parent, we ignore errors from the sigaction() and sigprocmask() calls used
to manipulate signal dispositions and the signal mask w e o. We do this for
two reasons. First, these calls are very unlikely to fail. In practice, the only thing
that can realistically go wrong with these calls is an error in specifying their
arguments, and such an error should be eliminated during initial debugging.
Second, we assume that the caller is more interested in knowing if fork() or
waitpid() failed than in knowing if these signal-manipulation calls failed. For
similar reasons, we bracket the signal-manipulation calls used at the end of
system() with code to save i and restore errno a, so that if fork() or waitpid()
fails, then the caller can determine why. If we returned –1 because these signal-
manipulation calls failed, then the caller might wrongly assume that system()
failed to execute command.

SUSv3 merely says that system() should return –1 if a child process could not be
created or its status could not be obtained. No mention is made of a –1 return
because of failures in signal-manipulation operations by system().

Error checking is not performed for signal-related system calls in the child r
t. On the one hand, there is no way of reporting such an error (the use of
_exit(127) is reserved for reporting an error when execing the shell); on the
other hand, such failures don’t affect the caller of system(), which is a separate
process.
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On return from fork() in the child, the disposition of SIGINT and SIGQUIT is
SIG_IGN (i.e., the disposition inherited from the parent). However, as noted earlier,
in the child, these signals should be treated as if the caller of system() did a fork()
and an exec(). A fork() leaves the treatment of signals unchanged in the child.
An exec() resets the dispositions of handled signals to their defaults and leaves
the dispositions of other signals unchanged (Section 27.5). Therefore, if the
dispositions of SIGINT and SIGQUIT in the caller were other than SIG_IGN, then the
child resets the dispositions to SIG_DFL r.

Some implementations of system() instead reset the SIGINT and SIGQUIT disposi-
tions to those that were in effect in the caller, relying on the fact that the subse-
quent execl() will automatically reset the disposition of handled signals to their
defaults. However, this could result in potentially undesirable behavior if the
caller is handling either of these signals. In this case, if a signal was delivered to
the child in the small time interval before the call to execl(), then the handler
would be invoked in the child, after the signal was unblocked by sigprocmask().

If the execl() call in the child fails, then we use _exit() to terminate the process y,
rather than exit(), in order to prevent flushing of any unwritten data in the
child’s copy of the stdio buffers.

In the parent, we must use waitpid() to wait specifically for the child that we
created u. If we used wait(), then we might inadvertently fetch the status of
some other child created by the calling program.

Although the implementation of system() doesn’t require the use of a signal
handler, the calling program may have established signal handlers, and one of
these could interrupt a blocked call to waitpid(). SUSv3 explicitly requires that
the wait be restarted in this case. Therefore, we use a loop to restart waitpid() if
it fails with the error EINTR u; any other error from waitpid() causes this loop to
terminate.

Listing 27-9: Implementation of system()
–––––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/system.c

#include <unistd.h>
#include <signal.h>
#include <sys/wait.h>
#include <sys/types.h>
#include <errno.h>

int
system(const char *command)
{
    sigset_t blockMask, origMask;
    struct sigaction saIgnore, saOrigQuit, saOrigInt, saDefault;
    pid_t childPid;
    int status, savedErrno;

q     if (command == NULL)                /* Is a shell available? */
        return system(":") == 0;
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    sigemptyset(&blockMask);            /* Block SIGCHLD */
    sigaddset(&blockMask, SIGCHLD);

w     sigprocmask(SIG_BLOCK, &blockMask, &origMask);

    saIgnore.sa_handler = SIG_IGN;      /* Ignore SIGINT and SIGQUIT */
    saIgnore.sa_flags = 0;
    sigemptyset(&saIgnore.sa_mask);

e     sigaction(SIGINT, &saIgnore, &saOrigInt);
    sigaction(SIGQUIT, &saIgnore, &saOrigQuit);

    switch (childPid = fork()) {
    case -1: /* fork() failed */
        status = -1;
        break;                  /* Carry on to reset signal attributes */

    case 0: /* Child: exec command */
        saDefault.sa_handler = SIG_DFL;
        saDefault.sa_flags = 0;
        sigemptyset(&saDefault.sa_mask);

r         if (saOrigInt.sa_handler != SIG_IGN)
            sigaction(SIGINT, &saDefault, NULL);
        if (saOrigQuit.sa_handler != SIG_IGN)
            sigaction(SIGQUIT, &saDefault, NULL);

t         sigprocmask(SIG_SETMASK, &origMask, NULL);

        execl("/bin/sh", "sh", "-c", command, (char *) NULL);
y         _exit(127);                     /* We could not exec the shell */

    default: /* Parent: wait for our child to terminate */
u         while (waitpid(childPid, &status, 0) == -1) {

            if (errno != EINTR) {       /* Error other than EINTR */
                status = -1;
                break;                  /* So exit loop */
            }
        }
        break;
    }

    /* Unblock SIGCHLD, restore dispositions of SIGINT and SIGQUIT */

i     savedErrno = errno;                 /* The following may change 'errno' */

o     sigprocmask(SIG_SETMASK, &origMask, NULL);
    sigaction(SIGINT, &saOrigInt, NULL);
    sigaction(SIGQUIT, &saOrigQuit, NULL);

a     errno = savedErrno;

    return status;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/system.c
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Further details on system()

Portable applications should ensure that system() is not called with the disposition
of SIGCHLD set to SIG_IGN, because it is impossible for the waitpid() call to obtain the
status of the child in this case. (Ignoring SIGCHLD causes the status of a child process
to be immediately discarded, as described in Section 26.3.3.)

On some UNIX implementations, system() handles the case that it is called with the
disposition of SIGCHLD set to SIG_IGN by temporarily setting the disposition of SIGCHLD
to SIG_DFL. This is workable, as long as the UNIX implementation is one of those
that (unlike Linux) reaps existing zombie children when the disposition of SIGCHLD is
reset to SIG_IGN. (If the implementation doesn’t do this, then implementing system()
in this way would have the negative consequence that if another child that was
created by the caller terminated during the execution of system(), it would become a
zombie that might never be reaped.)

On some UNIX implementations (notably Solaris), /bin/sh is not a standard
POSIX shell. If we want to ensure that we exec a standard shell, then we must use
the confstr() library function to obtain the value of the _CS_PATH configuration variable.
This value is a PATH-style list of directories containing the standard system utilities.
We can assign this list to PATH, and then use execlp() to exec the standard shell as follows:

char path[PATH_MAX];

if (confstr(_CS_PATH, path, PATH_MAX) == 0)
    _exit(127);
if (setenv("PATH", path, 1) == -1)
    _exit(127);
execlp("sh", "sh", "-c", command, (char *) NULL);
_exit(127);

27.8 Summary

Using execve(), a process can replace the program that it is currently running by a
new program. Arguments to the execve() call allow the specification of the argument
list (argv) and environment list for the new program. Various similarly named
library functions are layered on top of execve() and provide different interfaces to
the same functionality.

All of the exec() functions can be used to load a binary executable file or to exe-
cute an interpreter script. When a process execs a script, the script’s interpreter
program replaces the program currently being executed by the process. The script’s
interpreter is normally identified by an initial line (starting with the characters #!) in
the script that specifies the pathname of the interpreter. If no such line is present,
then the script is executable only via execlp() or execvp(), and these functions exec the
shell as the script interpreter.

We showed how fork(), exec(), exit(), and wait() can be combined to implement
the system() function, which can be used to execute an arbitrary shell command.

Further information

Refer to the sources of further information listed in Section 24.6.
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27.9 Exercises

27-1. The final command in the following shell session uses the program in Listing 27-3
to exec the program xyz. What happens?

$ echo $PATH
/usr/local/bin:/usr/bin:/bin:./dir1:./dir2
$ ls -l dir1
total 8
-rw-r--r--   1 mtk      users        7860 Jun 13 11:55 xyz
$ ls -l dir2
total 28
-rwxr-xr-x   1 mtk      users       27452 Jun 13 11:55 xyz
$ ./t_execlp xyz

27-2. Use execve() to implement execlp(). You will need to use the stdarg(3) API to handle
the variable-length argument list supplied to execlp(). You will also need to use
functions in the malloc package to allocate space for the argument and environment
vectors. Finally, note that an easy way of checking whether a file exists in a particular
directory and is executable is simply to try execing the file.

27-3. What output would we see if we make the following script executable and exec() it?

#!/bin/cat -n
Hello world

27-4. What is the effect of the following code? In what circumstances might it be useful?

childPid = fork();
if (childPid == -1)
    errExit("fork1");
if (childPid == 0) {    /* Child */
    switch (fork()) {
    case -1: errExit("fork2");

    case 0:             /* Grandchild */
        /* ----- Do real work here ----- */
        exit(EXIT_SUCCESS);             /* After doing real work */

    default:
        exit(EXIT_SUCCESS);             /* Make grandchild an orphan */
    }
}

/* Parent falls through to here */

if (waitpid(childPid, &status, 0) == -1)
    errExit("waitpid");

/* Parent carries on to do other things */
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27-5. When we run the following program, we find it produces no output. Why is this?

#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    printf("Hello world");
    execlp("sleep", "sleep", "0", (char *) NULL);
}

27-6. Suppose that a parent process has established a handler for SIGCHLD and also
blocked this signal. Subsequently, one of its children exits, and the parent then
does a wait() to collect the child’s status. What happens when the parent unblocks
SIGCHLD? Write a program to verify your answer. What is the relevance of the result
for a program calling the system() function?
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P R O C E S S  C R E A T I O N  A N D  
P R O G R A M  E X E C U T I O N  

I N  M O R E  D E T A I L

This chapter extends the material presented in Chapters 24 to 27 by covering a vari-
ety of topics related to process creation and program execution. We describe process
accounting, a kernel feature that writes an accounting record for each process on the
system as it terminates. We then look at the Linux-specific clone() system call, which is
the low-level API that is used to create threads on Linux. We follow this with some
comparisons of the performance of fork(), vfork(), and clone(). We conclude with a
summary of the effects of fork() and exec() on the attributes of a process.

28.1 Process Accounting

When process accounting is enabled, the kernel writes an accounting record to the
system-wide process accounting file as each process terminates. This accounting
record contains various information maintained by the kernel about the process,
including its termination status and how much CPU time it consumed. The
accounting file can be analyzed by standard tools (sa(8) summarizes information
from the accounting file, and lastcomm(1) lists information about previously exe-
cuted commands) or by tailored applications.



In kernels before 2.6.10, a separate process accounting record was written
for each thread created using the NPTL threading implementation. Since
kernel 2.6.10, a single accounting record is written for the entire process when
the last thread terminates. Under the older LinuxThreads threading implemen-
tation, a single process accounting record is always written for each thread.

Historically, the primary use of process accounting was to charge users for con-
sumption of system resources on multiuser UNIX systems. However, process
accounting can also be useful for obtaining information about a process that was
not otherwise monitored and reported on by its parent.

Although available on most UNIX implementations, process accounting is not
specified in SUSv3. The format of the accounting records, as well as the location of
the accounting file, vary somewhat across implementations. We describe the details
for Linux in this section, noting some variations from other UNIX implementa-
tions along the way.

On Linux, process accounting is an optional kernel component that is config-
ured via the option CONFIG_BSD_PROCESS_ACCT.

Enabling and disabling process accounting

The acct() system call is used by a privileged (CAP_SYS_PACCT) process to enable and
disable process accounting. This system call is rarely used in application programs.
Normally, process accounting is enabled at each system restart by placing appropri-
ate commands in the system boot scripts.

To enable process accounting, we supply the pathname of an existing regular file in
acctfile. A typical pathname for the accounting file is /var/log/pacct or /usr/account/
pacct. To disable process accounting, we specify acctfile as NULL.

The program in Listing 28-1 uses acct() to switch process accounting on and
off. The functionality of this program is similar to the shell accton(8) command.

Listing 28-1: Turning process accounting on and off

––––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/acct_on.c

#define _BSD_SOURCE
#include <unistd.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    if (argc > 2 || (argc > 1 && strcmp(argv[1], "--help") == 0))
        usageErr("%s [file]\n");

#define _BSD_SOURCE
#include <unistd.h>

int acct(const char *acctfile);

Returns 0 on success, or –1 on error
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    if (acct(argv[1]) == -1)
        errExit("acct");

    printf("Process accounting %s\n",
            (argv[1] == NULL) ? "disabled" : "enabled");
    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/acct_on.c

Process accounting records

Once process accounting is enabled, an acct record is written to the accounting file
as each process terminates. The acct structure is defined in <sys/acct.h> as follows:

typedef u_int16_t comp_t;  /* See text */

struct acct {
    char      ac_flag;     /* Accounting flags (see text) */
    u_int16_t ac_uid;      /* User ID of process */
    u_int16_t ac_gid;      /* Group ID of process */
    u_int16_t ac_tty;      /* Controlling terminal for process (may be
                              0 if none, e.g., for a daemon) */
    u_int32_t ac_btime;    /* Start time (time_t; seconds since the Epoch) */
    comp_t    ac_utime;    /* User CPU time (clock ticks) */
    comp_t    ac_stime;    /* System CPU time (clock ticks) */
    comp_t    ac_etime;    /* Elapsed (real) time (clock ticks) */
    comp_t    ac_mem;      /* Average memory usage (kilobytes) */
    comp_t    ac_io;       /* Bytes transferred by read(2) and write(2)
                              (unused) */
    comp_t    ac_rw;       /* Blocks read/written (unused) */
    comp_t    ac_minflt;   /* Minor page faults (Linux-specific) */
    comp_t    ac_majflt;   /* Major page faults (Linux-specific) */
    comp_t    ac_swaps;    /* Number of swaps (unused; Linux-specific) */
    u_int32_t ac_exitcode; /* Process termination status */
#define ACCT_COMM 16
    char      ac_comm[ACCT_COMM+1];
                           /* (Null-terminated) command name
                              (basename of last execed file) */
    char      ac_pad[10];  /* Padding (reserved for future use) */
};

Note the following points regarding the acct structure:

The u_int16_t and u_int32_t data types are 16-bit and 32-bit unsigned integers.

The ac_flag field is a bit mask recording various events for the process. The bits
that can appear in this field are shown in Table 28-1. As indicated in the table,
some of these bits are not present on all UNIX implementations. A few other
implementations provide additional bits in this field.

The ac_comm field records the name of the last command (program file) exe-
cuted by this process. The kernel records this value on each execve(). On some
other UNIX implementations, this field is limited to 8 characters.
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The comp_t type is a kind of floating-point number. Values of this type are
sometimes called compressed clock ticks. The floating-point value consists of a 3-bit,
base-8 exponent, followed by a 13-bit mantissa; the exponent can represent a
factor in the range 80=1 to 87 (2,097,152). For example, a mantissa of 125 and an
exponent of 1 represent the value 1000. Listing 28-2 defines a function
(comptToLL()) to convert this type to long long. We need to use the type long long
because the 32 bits used to represent an unsigned long on x86-32 are insufficient
to hold the largest value that can be represented in comp_t, which is (213 – 1) * 87.

The three time fields defined with the type comp_t represent time in system
clock ticks. Therefore, we must divide these times by the value returned by
sysconf(_SC_CLK_TCK) in order to convert them to seconds.

The ac_exitcode field holds the termination status of the process (described in
Section 26.1.3). Most other UNIX implementations instead provide a single-
byte field named ac_stat, which records only the signal that killed the process (if
it was killed by a signal) and a bit indicating whether that signal caused the process
to dump core. BSD-derived implementations don’t provide either field.

Because accounting records are written only as processes terminate, they are
ordered by termination time (a value not recorded in the record), rather than by
process start time (ac_btime).

If the system crashes, no accounting record is written for any processes that
are still executing.

Since writing records to the accounting file can rapidly consume disk space, Linux
provides the /proc/sys/kernel/acct virtual file for controlling the operation of pro-
cess accounting. This file contains three numbers, defining (in order) the parameters
high-water, low-water, and frequency. Typical defaults for these three parameters are
4, 2, and 30. If process accounting is enabled and the amount of free disk space
falls below low-water percent, accounting is suspended. If the amount of free disk
space later rises above high-water percent, then accounting is resumed. The
frequency value specifies how often, in seconds, checks should be made on the per-
centage of free disk space.

Example program

The program in Listing 28-2 displays selected fields from the records in a process
accounting file. The following shell session demonstrates the use of this program.
We begin by creating a new, empty process accounting file and enabling process
accounting:

Table 28-1: Bit values for the ac_flag field of process accounting records

Bit Description

AFORK Process was created by fork(), but did not exec() before terminating
ASU Process made use of superuser privileges
AXSIG Process was terminated by a signal (not present on some implementations)
ACORE Process produced a core dump (not present on some implementations)
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$ su                            Need privilege to enable process accounting
Password:
# touch pacct
# ./acct_on pacct               This process will be first entry in accounting file
Process accounting enabled
# exit                          Cease being superuser

At this point, three processes have already terminated since we enabled process
accounting. These processes executed the acct_on, su, and bash programs. The bash
process was started by su to run the privileged shell session.

Now we run a series of commands to add further records to the accounting file:

$ sleep 15 &
[1] 18063
$ ulimit -c unlimited           Allow core dumps (shell built-in)
$ cat                           Create a process
Type Control-\ (generates SIGQUIT, signal 3) to kill cat process
Quit (core dumped)
$
Press Enter to see shell notification of completion of sleep before next shell prompt
[1]+  Done          sleep 15
$ grep xxx badfile              grep fails with status of 2
grep: badfile: No such file or directory
$ echo $?                       The shell obtained status of grep (shell built-in)
2

The next two commands run programs that we presented in previous chapters
(Listing 27-1, on page 566, and Listing 24-1, on page 517). The first command runs
a program that execs the file /bin/echo; this results in an accounting record with the
command name echo. The second command creates a child process that doesn’t
perform an exec().

$ ./t_execve /bin/echo
hello world goodbye
$ ./t_fork
PID=18350 (child) idata=333 istack=666
PID=18349 (parent) idata=111 istack=222

Finally, we use the program in Listing 28-2 to view the contents of the accounting file:

$ ./acct_view pacct
command  flags   term.  user     start time            CPU   elapsed
                status                                 time    time
acct_on   -S--      0   root     2010-07-23 17:19:05   0.00    0.00
bash      ----      0   root     2010-07-23 17:18:55   0.02   21.10
su        -S--      0   root     2010-07-23 17:18:51   0.01   24.94
cat       --XC   0x83   mtk      2010-07-23 17:19:55   0.00    1.72
sleep     ----      0   mtk      2010-07-23 17:19:42   0.00   15.01
grep      ----  0x200   mtk      2010-07-23 17:20:12   0.00    0.00
echo      ----      0   mtk      2010-07-23 17:21:15   0.01    0.01
t_fork    F---      0   mtk      2010-07-23 17:21:36   0.00    0.00
t_fork    ----      0   mtk      2010-07-23 17:21:36   0.00    3.01
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In the output, we see one line for each process that was created in the shell session.
The ulimit and echo commands are shell built-in commands, so they don’t result in
the creation of new processes. Note that the entry for sleep appeared in the account-
ing file after the cat entry because the sleep command terminated after the cat
command.

Most of the output is self-explanatory. The flags column shows single letters
indicating which of the ac_flag bits is set in each record (see Table 28-1). Section 26.1.3
describes how to interpret the termination status values shown in the term. status
column.

Listing 28-2: Displaying data from a process accounting file

–––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/acct_view.c
#include <fcntl.h>
#include <time.h>
#include <sys/stat.h>
#include <sys/acct.h>
#include <limits.h>
#include "ugid_functions.h"             /* Declaration of userNameFromId() */
#include "tlpi_hdr.h"

#define TIME_BUF_SIZE 100

static long long                /* Convert comp_t value into long long */
comptToLL(comp_t ct)
{
    const int EXP_SIZE = 3;             /* 3-bit, base-8 exponent */
    const int MANTISSA_SIZE = 13;       /* Followed by 13-bit mantissa */
    const int MANTISSA_MASK = (1 << MANTISSA_SIZE) - 1;
    long long mantissa, exp;

    mantissa = ct & MANTISSA_MASK;
    exp = (ct >> MANTISSA_SIZE) & ((1 << EXP_SIZE) - 1);
    return mantissa << (exp * 3);       /* Power of 8 = left shift 3 bits */
}

int
main(int argc, char *argv[])
{
    int acctFile;
    struct acct ac;
    ssize_t numRead;
    char *s;
    char timeBuf[TIME_BUF_SIZE];
    struct tm *loc;
    time_t t;

    if (argc != 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s file\n", argv[0]);

    acctFile = open(argv[1], O_RDONLY);
    if (acctFile == -1)
        errExit("open");
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    printf("command  flags   term.  user     "
            "start time            CPU   elapsed\n");
    printf("                status           "
            "                      time    time\n");

    while ((numRead = read(acctFile, &ac, sizeof(struct acct))) > 0) {
        if (numRead != sizeof(struct acct))
            fatal("partial read");

        printf("%-8.8s  ", ac.ac_comm);

        printf("%c", (ac.ac_flag & AFORK) ? 'F' : '-') ;
        printf("%c", (ac.ac_flag & ASU)   ? 'S' : '-') ;
        printf("%c", (ac.ac_flag & AXSIG) ? 'X' : '-') ;
        printf("%c", (ac.ac_flag & ACORE) ? 'C' : '-') ;

#ifdef __linux__
        printf(" %#6lx   ", (unsigned long) ac.ac_exitcode);
#else   /* Many other implementations provide ac_stat instead */
        printf(" %#6lx   ", (unsigned long) ac.ac_stat);
#endif

        s = userNameFromId(ac.ac_uid);
        printf("%-8.8s ", (s == NULL) ? "???" : s);

        t = ac.ac_btime;
        loc = localtime(&t);
        if (loc == NULL) {
            printf("???Unknown time???  ");
        } else {
            strftime(timeBuf, TIME_BUF_SIZE, "%Y-%m-%d %T ", loc);
            printf("%s ", timeBuf);
        }

        printf("%5.2f %7.2f ", (double) (comptToLL(ac.ac_utime) +
                    comptToLL(ac.ac_stime)) / sysconf(_SC_CLK_TCK),
                (double) comptToLL(ac.ac_etime) / sysconf(_SC_CLK_TCK));
        printf("\n");
    }

    if (numRead == -1)
        errExit("read");

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/acct_view.c

Process accounting Version 3 file format

Starting with kernel 2.6.8, Linux introduced an optional alternative version of the
process accounting file that addresses some limitations of the traditional accounting
file. To use this alternative version, known as Version 3, the CONFIG_BSD_PROCESS_ACCT_V3
kernel configuration option must be enabled before building the kernel.
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When using the Version 3 option, the only difference in the operation of pro-
cess accounting is in the format of records written to the accounting file. The new
format is defined as follows:

struct acct_v3 {
    char      ac_flag;        /* Accounting flags */
    char      ac_version;     /* Accounting version (3) */
    u_int16_t ac_tty;         /* Controlling terminal for process */
    u_int32_t ac_exitcode;    /* Process termination status */
    u_int32_t ac_uid;         /* 32-bit user ID of process */
    u_int32_t ac_gid;         /* 32-bit group ID of process */
    u_int32_t ac_pid;         /* Process ID */
    u_int32_t ac_ppid;        /* Parent process ID */
    u_int32_t ac_btime;       /* Start time (time_t) */
    float     ac_etime;       /* Elapsed (real) time (clock ticks) */
    comp_t    ac_utime;       /* User CPU time (clock ticks) */
    comp_t    ac_stime;       /* System CPU time (clock ticks) */
    comp_t    ac_mem;         /* Average memory usage (kilobytes) */
    comp_t    ac_io;          /* Bytes read/written (unused) */
    comp_t    ac_rw;          /* Blocks read/written (unused) */
    comp_t    ac_minflt;      /* Minor page faults */
    comp_t    ac_majflt;      /* Major page faults */
    comp_t    ac_swaps;       /* Number of swaps (unused; Linux-specific) */
#define ACCT_COMM 16
    char      ac_comm[ACCT_COMM];   /* Command name */
};

The following are the main differences between the acct_v3 structure and the tradi-
tional Linux acct structure:

The ac_version field is added. This field contains the version number of this
type of accounting record. This field is always 3 for an acct_v3 record.

The fields ac_pid and ac_ppid, containing the process ID and parent process ID
of the terminated process, are added.

The ac_uid and ac_gid fields are widened from 16 to 32 bits, to accommodate
the 32-bit user and group IDs that were introduced in Linux 2.4. (Large user
and group IDs can’t be correctly represented in the traditional acct file.)

The type of the ac_etime field is changed from comp_t to float, to allow longer
elapsed times to be recorded.

We provide a Version 3 analog of the program in Listing 28-2 in the file
procexec/acct_v3_view.c in the source code distribution for this book.

28.2 The clone() System Call

Like fork() and vfork(), the Linux-specific clone() system call creates a new process. It
differs from the other two calls in allowing finer control over the steps that occur
during process creation. The main use of clone() is in the implementation of threading
libraries. Because clone() is not portable, its direct use in application programs
should normally be avoided. We describe it here because it is useful background
for the discussion of POSIX threads in Chapters 29 to 33, and also because it fur-
ther illuminates the operation of fork() and vfork().
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Like fork(), a new process created with clone() is an almost exact duplicate of the parent.
Unlike fork(), the cloned child doesn’t continue from the point of the call, but

instead commences by calling the function specified in the func argument; we’ll
refer to this as the child function. When called, the child function is passed the value
specified in func_arg. Using appropriate casting, the child function can freely inter-
pret this argument; for example, as an int or as a pointer to a structure. (Interpreting
it as a pointer is possible because the cloned child either obtains a copy of or shares
the calling process’s memory.)

Within the kernel, fork(), vfork(), and clone() are ultimately implemented by the
same function (do_fork() in kernel/fork.c). At this level, cloning is much closer
to forking: sys_clone() doesn’t have the func and func_arg arguments, and after
the call, sys_clone() returns in the child in the same manner as fork(). The main
text describes the clone() wrapper function that glibc provides for sys_clone().
(This function is defined in architecture-specific glibc assembler sources, such
as in sysdeps/unix/sysv/linux/i386/clone.S.) This wrapper function invokes
func after sys_clone() returns in the child.

The cloned child process terminates either when func returns (in which case its
return value is the exit status of the process) or when the process makes a call to
exit() (or _exit()). The parent process can wait for the cloned child in the usual manner
using wait() or similar.

Since a cloned child may (like vfork()) share the parent’s memory, it can’t use
the parent’s stack. Instead, the caller must allocate a suitably sized block of memory
for use as the child’s stack and pass a pointer to that block in the argument
child_stack. On most hardware architectures, the stack grows downward, so the
child_stack argument should point to the high end of the allocated block.

The architecture-dependence on the direction of stack growth is a defect in
the design of clone(). On the Intel IA-64 architecture, an improved clone API is
provided, in the form of clone2(). This system call defines the range of the stack
of the child in a way that doesn’t depend on the direction of stack growth, by
supplying both the start address and size of the stack. See the manual page for
details.

The clone() flags argument serves two purposes. First, its lower byte specifies the
child’s termination signal, which is the signal to be sent to the parent when the child
terminates. (If a cloned child is stopped by a signal, the parent still receives SIGCHLD.)
This byte may be 0, in which case no signal is generated. (Using the Linux-specific
/proc/PID/stat file, we can determine the termination signal of any process; see the
proc(5) manual page for further details.)

#define _GNU_SOURCE
#include <sched.h>

int clone(int (*func) (void *), void *child_stack, int flags, void *func_arg, ...
          /* pid_t *ptid, struct user_desc *tls, pid_t *ctid */ );

Returns process ID of child on success, or –1 on error
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With fork() and vfork(), we have no way to select the termination signal; it is
always SIGCHLD.

The remaining bytes of the flags argument hold a bit mask that controls the opera-
tion of clone(). We summarize these bit-mask values in Table 28-2, and describe
them in more detail in Section 28.2.1.

The remaining arguments to clone() are ptid, tls, and ctid. These arguments relate to
the implementation of threads, in particular the use of thread IDs and thread-local
storage. We cover the use of these arguments when describing the flags bit-mask
values in Section 28.2.1. (In Linux 2.4 and earlier, these three arguments are not
provided by clone(). They were specifically added in Linux 2.6 to support the NPTL
POSIX threads implementation.)

Example program

Listing 28-3 shows a simple example of the use of clone() to create a child process.
The main program does the following:

Open a file descriptor (for /dev/null) that will be closed by the child w.

Set the value for the clone() flags argument to CLONE_FILES e if a command-line
argument was supplied, so that the parent and child will share a single file
descriptor table. If no command-line argument was supplied, flags is set to 0.

Table 28-2: The clone() flags bit-mask values

Flag Effect if present

CLONE_CHILD_CLEARTID Clear ctid when child calls exec() or _exit() (2.6 onward)
CLONE_CHILD_SETTID Write thread ID of child into ctid (2.6 onward)
CLONE_FILES Parent and child share table of open file descriptors
CLONE_FS Parent and child share attributes related to file system
CLONE_IO Child shares parent’s I/O context (2.6.25 onward)
CLONE_NEWIPC Child gets new System V IPC namespace (2.6.19 onward)
CLONE_NEWNET Child gets new network namespace (2.4.24 onward)
CLONE_NEWNS Child gets copy of parent’s mount namespace (2.4.19 onward)
CLONE_NEWPID Child gets new process-ID namespace (2.6.19 onward)
CLONE_NEWUSER Child gets new user-ID namespace (2.6.23 onward)
CLONE_NEWUTS Child gets new UTS (utsname()) namespace (2.6.19 onward)
CLONE_PARENT Make child’s parent same as caller’s parent (2.4 onward)
CLONE_PARENT_SETTID Write thread ID of child into ptid (2.6 onward)
CLONE_PID Obsolete flag used only by system boot process (up to 2.4)
CLONE_PTRACE If parent is being traced, then trace child also
CLONE_SETTLS tls describes thread-local storage for child (2.6 onward)
CLONE_SIGHAND Parent and child share signal dispositions
CLONE_SYSVSEM Parent and child share semaphore undo values (2.6 onward)
CLONE_THREAD Place child in same thread group as parent (2.4 onward)
CLONE_UNTRACED Can’t force CLONE_PTRACE on child (2.6 onward)
CLONE_VFORK Parent is suspended until child calls exec() or _exit()
CLONE_VM Parent and child share virtual memory
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Allocate a stack for use by the child r.

If CHILD_SIG is nonzero and is not equal to SIGCHLD, ignore it, in case it is a signal
that would terminate the process. We don’t ignore SIGCHLD, because doing so
would prevent waiting on the child to collect its status.

Call clone() to create the child y. The third (bit-mask) argument includes the
termination signal. The fourth argument (func_arg) specifies the file descriptor
opened earlier (at w).

Wait for the child to terminate u.

Check whether the file descriptor (opened at w) is still open by trying to write()
to it i. The program reports whether the write() succeeds or fails.

Execution of the cloned child begins in childFunc(), which receives (in the argu-
ment arg) the file descriptor opened by the main program (at w). The child closes
this file descriptor and then terminates by performing a return q.

Listing 28-3:  Using clone() to create a child process

––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/t_clone.c

#define _GNU_SOURCE
#include <signal.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <sched.h>
#include "tlpi_hdr.h"

#ifndef CHILD_SIG
#define CHILD_SIG SIGUSR1       /* Signal to be generated on termination
                                   of cloned child */
#endif

static int                      /* Startup function for cloned child */
childFunc(void *arg)
{

q  if (close(*((int *) arg)) == -1)
        errExit("close");

    return 0;                           /* Child terminates now */
}

int
main(int argc, char *argv[])
{
    const int STACK_SIZE = 65536;       /* Stack size for cloned child */
    char *stack;                        /* Start of stack buffer */
    char *stackTop;                     /* End of stack buffer */
    int s, fd, flags;

w     fd = open("/dev/null", O_RDWR);     /* Child will close this fd */
    if (fd == -1)
        errExit("open");
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    /* If argc > 1, child shares file descriptor table with parent */

e     flags = (argc > 1) ? CLONE_FILES : 0;

    /* Allocate stack for child */

r     stack = malloc(STACK_SIZE);
    if (stack == NULL)
        errExit("malloc");
    stackTop = stack + STACK_SIZE;      /* Assume stack grows downward */

    /* Ignore CHILD_SIG, in case it is a signal whose default is to
       terminate the process; but don't ignore SIGCHLD (which is ignored
       by default), since that would prevent the creation of a zombie. */

t     if (CHILD_SIG != 0 && CHILD_SIG != SIGCHLD)
        if (signal(CHILD_SIG, SIG_IGN) == SIG_ERR)
            errExit("signal");

    /* Create child; child commences execution in childFunc() */

y     if (clone(childFunc, stackTop, flags | CHILD_SIG, (void *) &fd) == -1)
        errExit("clone");

    /* Parent falls through to here. Wait for child; __WCLONE is
       needed for child notifying with signal other than SIGCHLD. */

u     if (waitpid(-1, NULL, (CHILD_SIG != SIGCHLD) ? __WCLONE : 0) == -1)
        errExit("waitpid");
    printf("child has terminated\n");

    /* Did close() of file descriptor in child affect parent? */

i     s = write(fd, "x", 1);
    if (s == -1 && errno == EBADF)
        printf("file descriptor %d has been closed\n", fd);
    else if (s == -1)
        printf("write() on file descriptor %d failed "
                "unexpectedly (%s)\n", fd, strerror(errno));
    else
        printf("write() on file descriptor %d succeeded\n", fd);

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––– procexec/t_clone.c

When we run the program in Listing 28-3 without a command-line argument, we
see the following:

$ ./t_clone                               Doesn’t use CLONE_FILES
child has terminated
write() on file descriptor 3 succeeded    Child’s close() did not affect parent
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When we run the program with a command-line argument, we can see that the two
processes share the file descriptor table:

$ ./t_clone x                             Uses CLONE_FILES
child has terminated
file descriptor 3 has been closed         Child’s close() affected parent

We show a more complex example of the use of clone() in the file procexec/
demo_clone.c in the source code distribution for this book.

28.2.1 The clone() flags Argument
The clone() flags argument is a combination (ORing) of the bit-mask values
described in the following pages. Rather than presenting these flags in alphabetical
order, we present them in an order that eases explanation, and begin with those
flags that are used in the implementation of POSIX threads. From the point of view
of implementing threads, many uses of the word process below can be replaced by
thread.

At this point, it is worth remarking that, to some extent, we are playing with
words when trying to draw a distinction between the terms thread and process. It
helps a little to introduce the term kernel scheduling entity (KSE), which is used in
some texts to refer to the objects that are dealt with by the kernel scheduler. Really,
threads and processes are simply KSEs that provide for greater and lesser degrees
of sharing of attributes (virtual memory, open file descriptors, signal dispositions,
process ID, and so on) with other KSEs. The POSIX threads specification provides
just one out of various possible definitions of which attributes should be shared
between threads.

In the course of the following descriptions, we’ll sometimes mention the two
main implementations of POSIX threads available on Linux: the older
LinuxThreads implementation and the more recent NPTL implementation. Fur-
ther information about these two implementations can be found in Section 33.5.

Starting in kernel 2.6.16, Linux provides a new system call, unshare(), which
allows a child created using clone() (or fork() or vfork()) to undo some of the
attribute sharing (i.e., reverse the effects of some of the clone() flags bits) that
was established when the child was created. For details, see the unshare(2)
manual page.

Sharing file descriptor tables: CLONE_FILES

If the CLONE_FILES flag is specified, the parent and the child share the same table of
open file descriptors. This means that file descriptor allocation or deallocation
(open(), close(), dup(), pipe(), socket(), and so on) in either process will be visible in the
other process. If the CLONE_FILES flag is not set, then the file descriptor table is not
shared, and the child gets a copy of the parent’s table at the time of the clone() call.
These copied descriptors refer to the same open file descriptions as the corre-
sponding descriptors in the parent (as with fork() and vfork()).

The specification of POSIX threads requires that all of the threads in a process
share the same open file descriptors.
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Sharing file system–related information: CLONE_FS

If the CLONE_FS flag is specified, then the parent and the child share file system–
related information—umask, root directory, and current working directory. This
means that calls to umask(), chdir(), or chroot() in either process will affect the other
process. If the CLONE_FS flag is not set, then the parent and child have separate cop-
ies of this information (as with fork() and vfork()).

The attribute sharing provided by CLONE_FS is required by POSIX threads.

Sharing signal dispositions: CLONE_SIGHAND

If the CLONE_SIGHAND flag is set, then the parent and child share the same table of signal
dispositions. Using sigaction() or signal() to change a signal’s disposition in either
process will affect that signal’s disposition in the other process. If the CLONE_SIGHAND
flag is not set, then signal dispositions are not shared; instead, the child gets a copy
of the parent’s signal disposition table (as with fork() and vfork()). The CLONE_SIGHAND
flag doesn’t affect the process signal mask and the set of pending signals, which are
always distinct for the two processes. From Linux 2.6 onward, CLONE_VM must also be
included in flags if CLONE_SIGHAND is specified.

Sharing of signal dispositions is required by POSIX threads.

Sharing the parent’s virtual memory: CLONE_VM

If the CLONE_VM flag is set, then the parent and child share the same virtual memory
pages (as with vfork()). Updates to memory or calls to mmap() or munmap() by either
process will be visible to the other process. If the CLONE_VM flag is not set, then the
child receives a copy of the parent’s virtual memory (as with fork()).

Sharing the same virtual memory is one of the defining attributes of threads,
and is required by POSIX threads.

Thread groups: CLONE_THREAD

If the CLONE_THREAD flag is set, then the child is placed in the same thread group as
the parent. If this flag not set, the child is placed in its own new thread group.

Threads groups were introduced in Linux 2.4 to allow threading libraries to sup-
port the POSIX threads requirement that all of the threads in a process share a single
process ID (i.e., getpid() in each of the threads should return the same value). A
thread group is a group of KSEs that share the same thread group identifier (TGID),
as shown in Figure 28-1. For the remainder of the discussion of CLONE_THREAD, we’ll
refer to these KSEs as threads.

Since Linux 2.4, getpid() returns the calling thread’s TGID. In other words, a
TGID is the same thing as a process ID.

The clone() implementation in Linux 2.2 and earlier did not provide
CLONE_THREAD. Instead, LinuxThreads implemented POSIX threads as processes
that shared various attributes (e.g., virtual memory) but had distinct process
IDs. For compatibility reasons, even on modern Linux kernels, the
LinuxThreads implementation doesn’t use the CLONE_THREAD flag, so that
threads in that implementation continue to have distinct process IDs.
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Figure 28-1: A thread group containing four threads

Each thread within a thread group is distinguished by a unique thread identifier
(TID). Linux 2.4 introduced a new system call, gettid(), to allow a thread to obtain
its own thread ID (this is the same value as is returned to the thread that calls
clone()). A thread ID is represented using the same data type that is used for a pro-
cess ID, pid_t. Thread IDs are unique system-wide, and the kernel guarantees that
no thread ID will be the same as any process ID on the system, except when a
thread is the thread group leader for a process.

The first thread in a new thread group has a thread ID that is the same as its
thread group ID. This thread is referred to as the thread group leader.

The thread IDs that we are discussing here are not the same as the thread IDs
(the pthread_t data type) used by POSIX threads. The latter identifiers are
generated and maintained internally (in user space) by a POSIX threads
implementation.

All of the threads in a thread group have the same parent process ID—that of the
thread group leader. Only after all of the threads in a thread group have termi-
nated is a SIGCHLD signal (or other termination signal) sent to that parent process.
These semantics correspond to the requirements of POSIX threads.

When a CLONE_THREAD thread terminates, no signal is sent to the thread that created
it using clone(). Correspondingly, it is not possible to use wait() (or similar) to wait
for a thread created using CLONE_THREAD. This accords with POSIX requirements. A
POSIX thread is not the same thing as a process, and can’t be waited for using
wait(); instead, it must be joined using pthread_join(). To detect the termination of a
thread created using CLONE_THREAD, a special synchronization primitive, called a futex,
is used (see the discussion of the CLONE_PARENT_SETTID flag below).

If any of the threads in a thread group performs an exec(), then all threads other
than the thread group leader are terminated (this behavior corresponds to the
semantics required for POSIX threads), and the new program is execed in the thread
group leader. In other words, in the new program, gettid() will return the thread ID of
the thread group leader. During an exec(), the termination signal that this process
should send to its parent is reset to SIGCHLD.

If one of the threads in a thread group creates a child using fork() or vfork(),
then any thread in the group can monitor that child using wait() or similar.

From Linux 2.6 onward, CLONE_SIGHAND must also be included in flags if
CLONE_THREAD is specified. This corresponds to further POSIX threads requirements;
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for details, see the description of how POSIX threads and signals interact in Sec-
tion 33.2. (The kernel handling of signals for CLONE_THREAD thread groups mirrors
the POSIX requirements for how the threads in a process should react to signals.)

Threading library support: CLONE_PARENT_SETTID, CLONE_CHILD_SETTID, and 
CLONE_CHILD_CLEARTID

The CLONE_PARENT_SETTID, CLONE_CHILD_SETTID, and CLONE_CHILD_CLEARTID flags were
added in Linux 2.6 to support the implementation of POSIX threads. These flags
affect how clone() treats its ptid and ctid arguments. CLONE_PARENT_SETTID and
CLONE_CHILD_CLEARTID are used in the NPTL threading implementation. 

If the CLONE_PARENT_SETTID flag is set, then the kernel writes the thread ID of the
child thread into the location pointed to by ptid. The thread ID is copied into ptid
before the memory of the parent is duplicated. This means that, even if the CLONE_VM
flag is not specified, both the parent and the child can see the child’s thread ID in
this location. (As noted above, the CLONE_VM flag is specified when creating POSIX
threads.)

The CLONE_PARENT_SETTID flag exists in order to provide a reliable means for a
threading implementation to obtain the ID of the new thread. Note that it isn’t suf-
ficient to obtain the thread ID of the new thread via the return value of clone(), like so:

tid = clone(...);

The problem is that this code can lead to various race conditions, because the
assignment occurs only after clone() returns. For example, suppose that the new
thread terminates, and the handler for its termination signal is invoked before the
assignment to tid completes. In this case, the handler can’t usefully access tid.
(Within a threading library, tid might be an item in a global bookkeeping structure
used to track the status of all threads.) Programs that invoke clone() directly often
can be designed to work around this race condition. However, a threading library
can’t control the actions of the program that calls it. Using CLONE_PARENT_SETTID to
ensure that the new thread ID is placed in the location pointed to by ptid before
clone() returns allows a threading library to avoid such race conditions.

If the CLONE_CHILD_SETTID flag is set, then clone() writes the thread ID of the child
thread into the location pointed to by ctid. The setting of ctid is done only in the
child’s memory, but this will affect the parent if CLONE_VM is also specified. Although
NPTL doesn’t need CLONE_CHILD_SETTID, this flag is provided to allow flexibility for
other possible threading library implementations.

If the CLONE_CHILD_CLEARTID flag is set, then clone() zeros the memory location
pointed to by ctid when the child terminates.

The ctid argument is the mechanism (described in a moment) by which the
NPTL threading implementation obtains notification of the termination of a
thread. Such notification is required by the pthread_join() function, which is the
POSIX threads mechanism by which one thread can wait for the termination of
another thread.

When a thread is created using pthread_create(), NPTL makes a clone() call in
which ptid and ctid point to the same location. (This is why CLONE_CHILD_SETTID is not
required by NPTL.) The CLONE_PARENT_SETTID flag causes that location to be initialized
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with the new thread’s ID. When the child terminates and ctid is cleared, that change is
visible to all threads in the process (since the CLONE_VM flag is also specified).

The kernel treats the location pointed to by ctid as a futex, an efficient synchro-
nization mechanism. (See the futex(2) manual page for further details of futexes.)
Notification of thread termination can be obtained by performing a futex() system
call that blocks waiting for a change in the value at the location pointed to by ctid.
(Behind the scenes, this is what pthread_join() does.) At the same time that the kernel
clears ctid, it also wakes up any kernel scheduling entity (i.e., thread) that is blocked
performing a futex wait on that address. (At the POSIX threads level, this causes
the pthread_join() call to unblock.)

Thread-local storage: CLONE_SETTLS

If the CLONE_SETTLS flag is set, then the tls argument points to a user_desc structure
describing the thread-local storage buffer to be used for this thread. This flag was
added in Linux 2.6 to support the NPTL implementation of thread-local storage
(Section 31.4). For details of the user_desc structure, see the definition and use of
this structure in the 2.6 kernel sources and the set_thread_area(2) manual page.

Sharing System V semaphore undo values: CLONE_SYSVSEM

If the CLONE_SYSVSEM flag is set, then the parent and child share a single list of System V
semaphore undo values (Section 47.8). If this flag is not set, then the parent and
child have separate undo lists, and the child’s undo list is initially empty.

The CLONE_SYSVSEM flag is available from kernel 2.6 onward, and provides the
sharing semantics required by POSIX threads.

Per-process mount namespaces: CLONE_NEWNS

From kernel 2.4.19 onward, Linux supports the notion of per-process mount
namespaces. A mount namespace is the set of mount points maintained by calls to
mount() and umount(). The mount namespace affects how pathnames are resolved
to actual files, as well as the operation of system calls such as chdir() and chroot().

By default, the parent and the child share a mount namespace, which means
that changes to the namespace by one process using mount() and umount() are visible
in the other process (as with fork() and vfork()). A privileged (CAP_SYS_ADMIN) process
may specify the CLONE_NEWNS flag so that the child obtains a copy of the parent’s
mount namespace. Thereafter, changes to the namespace by one process are not
visible in the other process. (In earlier 2.4.x kernels, as well as in older kernels, we
can consider all processes on the system as sharing a single system-wide mount
namespace.)

Per-process mount namespaces can be used to create environments that are
similar to chroot() jails, but which are more secure and flexible; for example, a jailed
process can be provided with a mount point that is not visible to other processes on the
system. Mount namespaces are also useful in setting up virtual server environments.

Specifying both CLONE_NEWNS and CLONE_FS in the same call to clone() is nonsensi-
cal and is not permitted.
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Making the child’s parent the same as the caller’s: CLONE_PARENT

By default, when we create a new process with clone(), the parent of that process (as
returned by getppid()) is the process that calls clone() (as with fork() and vfork()). If
the CLONE_PARENT flag is set, then the parent of the child will be the caller’s parent. In
other words, CLONE_PARENT is the equivalent of setting child.PPID = caller.PPID. (In
the default case, without CLONE_PARENT, it would be child.PPID = caller.PID.) The par-
ent process (child.PPID) is the process that is signaled when the child terminates.

The CLONE_PARENT flag is available in Linux 2.4 and later. Originally, it was designed
to be useful for POSIX threads implementations, but the 2.6 kernel pursued an
approach to supporting threads (the use of CLONE_THREAD, described above) that
removed the need for this flag.

Making the child’s PID the same as the parent’s PID: CLONE_PID (obsolete)

If the CLONE_PID flag is set, then the child has the same process ID as the parent. If
this flag is not set, then the parent and child have different process IDs (as with
fork() and vfork()). Only the system boot process (process ID 0) may specify this flag;
it is used when initializing a multiprocessor system.

The CLONE_PID flag is not intended for use in user applications. In Linux 2.6, it
has been removed, and is superseded by CLONE_IDLETASK, which causes the process
ID of the new process to be set to 0. CLONE_IDLETASK is available only for internal use
within the kernel (if specified in the flags argument of clone(), it is ignored). It is
used to create the invisible per-CPU idle process, of which multiple instances may
exist on multiprocessor systems.

Process tracing: CLONE_PTRACE and CLONE_UNTRACED

If the CLONE_PTRACE flag is set and the calling process is being traced, then the child is
also traced. For details on process tracing (used by debuggers and the strace com-
mand), refer to the ptrace(2) manual page.

From kernel 2.6 onward, the CLONE_UNTRACED flag can be set, meaning that a
tracing process can’t force CLONE_PTRACE on this child. The CLONE_UNTRACED flag is used
internally by the kernel in the creation of kernel threads.

Suspending the parent until the child exits or execs: CLONE_VFORK

If the CLONE_VFORK flag is set, then the execution of the parent is suspended until the
child releases its virtual memory resources via a call to exec() or _exit() (as with vfork()).

New clone() flags to support containers

A number of new clone() flags values were added in Linux 2.6.19 and later: CLONE_IO,
CLONE_NEWIPC, CLONE_NEWNET, CLONE_NEWPID, CLONE_NEWUSER, and CLONE_NEWUTS. (See the
clone(2) manual page for the details of these flags.)

Most of these flags are provided to support the implementation of containers
([Bhattiprolu et al., 2008]). A container is a form of lightweight virtualization,
whereby groups of processes running on the same kernel can be isolated from one
another in environments that appear to be separate machines. Containers can also
be nested, one inside the other. The containers approach contrasts with full virtual-
ization, where each virtualized environment is running a distinct kernel.
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To implement containers, the kernel developers had to provide a layer of indi-
rection within the kernel around each of the global system resources—such as process
IDs, the networking stack, the identifiers returned by uname(), System V IPC
objects, and user and group ID namespaces—so that each container can provide its
own instance of these resources.

There are various possible uses for containers, including the following:

controlling allocation of resources on the system, such as network bandwidth
or CPU time (e.g., one container might be granted 75% of the CPU time, while
the other gets 25%);

providing multiple lightweight virtual servers on a single host machine;

freezing a container, so that execution of all processes in the container is sus-
pended, later to be restarted, possibly after migrating to a different machine;
and

allowing an application’s state to be dumped (checkpointed) and then later
restored (perhaps after an application crash, or a planned or unplanned system
shutdown) to continue computation from the time of the checkpoint.

Use of clone() flags

Roughly, we can say that a fork() corresponds to a clone() call with flags specified as
just SIGCHLD, while a vfork() corresponds to a clone() call specifying flags as follows:

CLONE_VM | CLONE_VFORK | SIGCHLD

Since version 2.3.3, the glibc wrapper fork() provided as part of the NPTL
threading implementation bypasses the kernel’s fork() system call and invokes
clone(). This wrapper function invokes any fork handlers that have been estab-
lished by the caller using pthread_atfork() (see Section 33.3).

The LinuxThreads threading implementation uses clone() (with just the first four
arguments) to create threads by specifying flags as follows:

CLONE_VM | CLONE_FILES | CLONE_FS | CLONE_SIGHAND

The NPTL threading implementation uses clone() (with all seven arguments) to create
threads by specifying flags as follows:

CLONE_VM | CLONE_FILES | CLONE_FS | CLONE_SIGHAND | CLONE_THREAD |
CLONE_SETTLS | CLONE_PARENT_SETTID | CLONE_CHILD_CLEARTID | CLONE_SYSVSEM

28.2.2 Extensions to waitpid() for Cloned Children
To wait for children produced by clone(), the following additional (Linux-specific)
values can be included in the options bit-mask argument for waitpid(), wait3(), and
wait4():

__WCLONE

If set, then wait for clone children only. If not set, then wait for nonclone
children only. In this context, a clone child is one that delivers a signal other
than SIGCHLD to its parent on termination. This bit is ignored if __WALL is also
specified.
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__WALL (since Linux 2.4)
Wait for all children, regardless of type (clone or nonclone).

__WNOTHREAD (since Linux 2.4)
By default, the wait calls wait not only for children of the calling process,
but also for children of any other processes in the same thread group as
the caller. Specifying the __WNOTHREAD flag limits the wait to children of the
calling process.

These flags can’t be used with waitid().

28.3 Speed of Process Creation

Table 28-3 shows some speed comparisons for different methods of process creation.
The results were obtained using a test program that executed a loop that repeat-
edly created a child process and then waited for it to terminate. The table com-
pares the various methods using three different process memory sizes, as indicated
by the Total virtual memory value. The differences in memory size were simulated by
having the program malloc() additional memory on the heap prior to performing
the timings.

Values for process size (Total virtual memory) in Table 28-3 are taken from the
VSZ value displayed by the command ps –o “pid vsz cmd”.

For each process size, two types of statistics are provided in Table 28-3:

The first statistic consists of two time measurements. The main (larger) mea-
surement is the total elapsed (real) time to perform 100,000 process creation
operations. The second time, shown in parentheses, is the CPU time consumed
by the parent process. Since these tests were run on an otherwise unloaded
machine, the difference between the two time values represents the total time
consumed by child processes created during the test.

Table 28-3: Time required to create 100,000 processes using fork(), vfork(), and clone()

Method of 
process 
creation

Total Virtual Memory

1.70 MB 2.70 MB 11.70 MB

Time (secs) Rate Time (secs) Rate Time (secs) Rate

fork() 22.27
(7.99) 

4544 26.38
(8.98)

4135 126.93
(52.55) 

1276

vfork() 3.52
(2.49) 

28955 3.55
(2.50)

28621 3.53
(2.51)

28810

clone() 2.97
(2.14)

34333 2.98
(2.13)

34217 2.93
(2.10)

34688

fork() + exec() 135.72
(12.39)

764 146.15
(16.69)

719 260.34
(61.86)

435

vfork() + exec() 107.36
(6.27)

969 107.81
(6.35)

964 107.97
(6.38)

960
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The second statistic for each test shows the rate at which processes were created
per (real) second. Statistics shown are the average of 20 runs for each case, and
were obtained using kernel 2.6.27 running on an x86-32 system.

The first three data rows show times for simple process creation (without execing a
new program in the child). In each case, the child processes exit immediately after
they are created, and the parent waits for each child to terminate before creating
the next.

The first row contains values for the fork() system call. From the data, we can
see that as a process gets larger, fork() takes longer. These time differences show
the additional time required to duplicate increasingly large page tables for the
child and mark all data, heap, and stack segment page entries as read-only. (No
pages are copied, since the child doesn’t modify its data or stack segments.)

The second data row provides the same statistics for vfork(). We see that as the
process size increases, the times remain the same—because no page tables or pages
are copied during a vfork(), the virtual memory size of the calling process has no
effect. The difference between the fork() and vfork() statistics represents the total
time required for copying process page tables in each case.

Small variations in the vfork() and clone() values in Table 28-3 are due to sampling
errors and scheduling variations. Even when creating processes up to 300 MB
in size, times for these two system calls remained constant.

The third data row shows statistics for process creation using clone() with the fol-
lowing flags:

CLONE_VM | CLONE_VFORK | CLONE_FS | CLONE_SIGHAND | CLONE_FILES

The first two of these flags emulate the behavior of vfork(). The remaining flags
specify that the parent and child should share their file-system attributes (umask,
root directory, and current working directory), table of signal dispositions, and
table of open file descriptors. The difference between the clone() and vfork() data rep-
resents the small amount of additional work performed in vfork() to copy this infor-
mation into the child process. The cost of copying file-system attributes and the table
of signal dispositions is constant. However, the cost of copying the table of open file
descriptors varies according to the number of descriptors. For example, opening 100
file descriptors in the parent process raised the vfork() real time (in the first column
of the table) from 3.52 to 5.04 seconds, but left times for clone() unaffected.

The timings for clone() are for the glibc clone() wrapper function, rather than
direct calls to sys_clone(). Other tests (not summarized here) revealed negligible
timing differences between using sys_clone() and calling clone() with a child
function that immediately exited.

The differences between fork() and vfork() are quite marked. However, the follow-
ing points should be kept in mind:

The final data column, where vfork() is more than 30 times faster than fork(),
corresponds to a large process. Typical processes would lie somewhere closer
to the first two columns of the table.

Because the times required for process creation are typically much smaller
than those required for an exec(), the differences are much less marked if a
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fork() or vfork() is followed by an exec(). This is illustrated by the final pair of
data rows in Table 28-3, where each child performs an exec(), rather than imme-
diately exiting. The program execed was the true command (/bin/true, chosen
because it produces no output). In this case, we see that the relative differences
between fork() and vfork() are much lower.

In fact, the data shown in Table 28-3 doesn’t reveal the full cost of an exec(),
because the child execs the same program in each loop of the test. As a result,
the cost of disk I/O to read the program into memory is essentially eliminated,
because the program will be read into the kernel buffer cache on the first
exec(), and then remain there. If each loop of the test execed a different pro-
gram (e.g., a differently named copy of the same program), then we would
observe a greater cost for an exec().

28.4 Effect of exec() and fork() on Process Attributes

A process has numerous attributes, some of which we have already described in
earlier chapters, and others that we explore in later chapters. Regarding these
attributes, two questions arise:

What happens to these attributes when a process performs an exec()?

Which attributes are inherited by a child when a fork() is performed?

Table 28-4 summarizes the answers to these questions. The exec() column indicates
which attributes are preserved during an exec(). The fork() column indicates which
attributes are inherited (or in some cases, shared) by a child after fork(). Other than
the attributes indicated as being Linux-specific, all listed attributes appear in standard
UNIX implementations, and their handling during exec() and fork() conforms to the
requirements of SUSv3.

Table 28-4: Effect of exec() and fork() on process attributes

Process attribute exec() fork() Interfaces affecting attribute; additional notes

Process address space 

Text segment No Shared Child process shares text segment with parent.

Stack segment No Yes Function entry/exit; alloca(), longjmp(), 
siglongjmp().

Data and heap segments No Yes brk(), sbrk(). 

Environment variables See
notes

Yes putenv(), setenv(); direct modification of environ. 
Overwritten by execle() and execve() and preserved 
by remaining exec() calls. 

Memory mappings No Yes; 
see 
notes

mmap(), munmap(). A mapping’s MAP_NORESERVE 
flag is inherited across fork(). Mappings that have 
been marked with madvise(MADV_DONTFORK) 
are not inherited across fork().

Memory locks No No mlock(), munlock().
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Process identifiers and credentials

Process ID Yes No

Parent process ID Yes No

Process group ID Yes Yes setpgid().

Session ID Yes Yes setsid().

Real IDs Yes Yes setuid(), setgid(), and related calls.

Effective and saved set IDs See
notes

Yes setuid(), setgid(), and related calls. Chapter 9 
explains how exec() affects these IDs.

Supplementary group IDs Yes Yes setgroups(), initgroups().

Files, file I/O, and directories

Open file descriptors See
notes

Yes open(), close(), dup(), pipe(), socket(), and 
so on. File descriptors are preserved 
across exec() unless marked close-on-exec. 
Descriptors in child and parent refer to same 
open file descriptions; see Section 5.4.

Close-on-exec flag Yes 
(if off)

Yes fcntl(F_SETFD).

File offsets Yes Shared lseek(), read(), write(), readv(), writev(). Child 
shares file offsets with parent.

Open file status flags Yes Shared open(), fcntl(F_SETFL). Child shares open file 
status flags with parent.

Asynchronous I/O operations See
notes

No aio_read(), aio_write(), and related calls. 
Outstanding operations are canceled 
during an exec().

Directory streams No Yes; 
see 
notes

opendir(), readdir(). SUSv3 states that child gets a 
copy of parent’s directory streams, but these 
copies may or may not share the directory 
stream position. On Linux, the directory stream 
position is not shared.

File system

Current working directory Yes Yes chdir().

Root directory Yes Yes chroot().

File mode creation mask Yes Yes umask().

Signals

Signal dispositions See
notes

Yes signal(), sigaction(). During an exec(), signals 
with dispositions set to default or ignore are 
unchanged; caught signals revert to their default 
dispositions. See Section 27.5.

Signal mask Yes Yes Signal delivery, sigprocmask(), sigaction().

Pending signal set Yes No Signal delivery; raise(), kill(), sigqueue().

Alternate signal stack No Yes sigaltstack().

Table 28-4: Effect of exec() and fork() on process attributes (continued)
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Timers

Interval timers Yes No setitimer().

Timers set by alarm() Yes No alarm().

POSIX timers No No timer_create() and related calls.

POSIX threads

Threads No See 
notes

During fork(), only calling thread is replicated in 
child.

Thread cancelability state 
and type

No Yes After an exec(), the cancelability type and state 
are reset to PTHREAD_CANCEL_ENABLE and 
PTHREAD_CANCEL_DEFERRED, respectively

Mutexes and 
condition variables

No Yes See Section 33.3 for details of the treatment of 
mutexes and other thread resources during 
fork().

Priority and scheduling

Nice value Yes Yes nice(), setpriority().

Scheduling policy and priority Yes Yes sched_setscheduler(), sched_setparam().

Resources and CPU time 

Resource limits Yes Yes setrlimit().

Process and child CPU times Yes No As returned by times().

Resource usages Yes No As returned by getrusage().

Interprocess communication 

System V shared 
memory segments

No Yes shmat(), shmdt().

POSIX shared memory No Yes shm_open() and related calls.

POSIX message queues No Yes mq_open() and related calls. Descriptors in child 
and parent refer to same open message queue 
descriptions. A child doesn’t inherit its parent’s 
message notification registrations.

POSIX named semaphores No Shared sem_open() and related calls. Child shares 
references to same semaphores as parent.

POSIX unnamed semaphores No See 
notes

sem_init() and related calls. If semaphores are in 
a shared memory region, then child shares 
semaphores with parent; otherwise, child has its 
own copy of the semaphores.

System V semaphore 
adjustments

Yes No semop(). See Section 47.8.

File locks Yes See 
notes

flock(). Child inherits a reference to the same 
lock as parent.

Record locks See
notes

No fcntl(F_SETLK). Locks are preserved across exec() 
unless a file descriptor referring to the file is 
marked close-on-exec; see Section 55.3.5.

Table 28-4: Effect of exec() and fork() on process attributes (continued)

Process attribute exec() fork() Interfaces affecting attribute; additional notes
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Miscellaneous

Locale settings No Yes setlocale(). As part of C run-time initialization, the 
equivalent of setlocale(LC_ALL, “C”) is executed 
after a new program is execed.

Floating-point environment No Yes When a new program is execed, the state 
of the floating-point environment is reset 
to the default; see fenv(3).

Controlling terminal Yes Yes

Exit handlers No Yes atexit(), on_exit().

Linux-specific

File-system IDs See
notes

Yes setfsuid(), setfsgid(). These IDs are also changed any 
time the corresponding effective IDs are 
changed.

timerfd timers Yes See 
notes

timerfd_create(); child inherits file descriptors 
referring to same timers as parent.

Capabilities See
notes

Yes capset(). The handling of capabilities during an 
exec() is described in Section 39.5.

Capability bounding set Yes Yes

Capabilities securebits flags See
notes

Yes All securebits flags are preserved during 
an exec() except SECBIT_KEEP_CAPS, which 
is always cleared.

CPU affinity Yes Yes sched_setaffinity().

SCHED_RESET_ON_FORK Yes No See Section 35.3.2.

Allowed CPUs Yes Yes See cpuset(7).

Allowed memory nodes Yes Yes See cpuset(7).

Memory policy Yes Yes See set_mempolicy(2).

File leases Yes See 
notes

fcntl(F_SETLEASE). Child inherits a reference to 
the same lease as parent.

Directory change notifications Yes No The dnotify API, available via fcntl(F_NOTIFY).

prctl(PR_SET_DUMPABLE) See
notes

Yes During an exec(), the PR_SET_DUMPABLE flag is set, 
unless execing a set-user-ID or set-group-ID 
program, in which case it is cleared.

prctl(PR_SET_PDEATHSIG) Yes No

prctl(PR_SET_NAME) No Yes

oom_adj Yes Yes See Section 49.9.

coredump_filter Yes Yes See Section 22.1. 

Table 28-4: Effect of exec() and fork() on process attributes (continued)
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28.5 Summary

When process accounting is enabled, the kernel writes an accounting record to a
file for each process that terminates on the system. This record contains statistics
on the resources used by the process.

Like fork(), the Linux-specific clone() system call creates a new process, but
allows finer control over which attributes are shared between the parent and child.
This system call is used primarily for implementing threading libraries.

We compared the speed of process creation using fork(), vfork(), and clone().
Although vfork() is faster than fork(), the time difference between these system calls
is small by comparison with the time required for a child process to do a subse-
quent exec().

When a child process is created via fork(), it inherits copies of (or in some cases
shares) certain process attributes from its parent, while other process attributes are
not inherited. For example, a child inherits copies of its parent’s file descriptor
table and signal dispositions, but doesn’t inherit its parent’s interval timers, record
locks, or set of pending signals. Correspondingly, when a process performs an
exec(), certain process attributes remain unchanged, while others are reset to
defaults. For example, the process ID remains the same, file descriptors remain
open (unless marked close-on-exec), interval timers are preserved, and pending sig-
nals remain pending, but handled signals are reset to their default disposition and
shared memory segments are detached.

Further information

Refer to the sources of further information listed in Section 24.6. Chapter 17 of
[Frisch, 2002] describes the administration of process accounting, as well as some
of the variations across UNIX implementations. [Bovet & Cesati, 2005] describes
the implementation of the clone() system call.

28.6 Exercise

28-1. Write a program to see how fast the fork() and vfork() system calls are on your
system. Each child process should immediately exit, and the parent should wait()
on each child before creating the next. Compare the relative differences for these
two system calls with those of Table 28-3. The shell built-in command time can be
used to measure the execution time of a program.
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T H R E A D S :  I N T R O D U C T I O N

In this and the next few chapters, we describe POSIX threads, often known as
Pthreads. We won’t attempt to cover the entire Pthreads API, since it is rather large.
Various sources of further information about threads are listed at the end of this
chapter.

These chapters mainly describe the standard behavior specified for the
Pthreads API. In Section 33.5, we discuss those points where the two main Linux
threading implementations—LinuxThreads and Native POSIX Threads Library
(NPTL)—deviate from the standard.

In this chapter, we provide an overview of the operation of threads, and then
look at how threads are created and how they terminate. We conclude with a dis-
cussion of some factors that may influence the choice of a multithreaded approach
versus a multiprocess approach when designing an application.

29.1 Overview

Like processes, threads are a mechanism that permits an application to perform
multiple tasks concurrently. A single process can contain multiple threads, as illus-
trated in Figure 29-1. All of these threads are independently executing the same
program, and they all share the same global memory, including the initialized data,
uninitialized data, and heap segments. (A traditional UNIX process is simply a special
case of a multithreaded processes; it is a process that contains just one thread.)



We have simplified things somewhat in Figure 29-1. In particular, the location
of the per-thread stacks may be intermingled with shared libraries and shared
memory regions, depending on the order in which threads are created, shared
libraries loaded, and shared memory regions attached. Furthermore, the loca-
tion of the per-thread stacks can vary depending on the Linux distribution.

The threads in a process can execute concurrently. On a multiprocessor system,
multiple threads can execute parallel. If one thread is blocked on I/O, other
threads are still eligible to execute. (Although it sometimes useful to create a sepa-
rate thread purely for the purpose of performing I/O, it is often preferable to
employ one of the alternative I/O models that we describe in Chapter 63.)

Figure 29-1: Four threads executing in a process (Linux/x86-32)

Threads offer advantages over processes in certain applications. Consider the tradi-
tional UNIX approach to achieving concurrency by creating multiple processes. An
example of this is a network server design in which a parent process accepts incom-
ing connections from clients, and then uses fork() to create a separate child process
to handle communication with each client (refer to Section 60.3). Such a design
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makes it possible to serve multiple clients simultaneously. While this approach
works well for many scenarios, it does have the following limitations in some
applications:

It is difficult to share information between processes. Since the parent and
child don’t share memory (other than the read-only text segment), we must use
some form of interprocess communication in order to exchange information
between processes.

Process creation with fork() is relatively expensive. Even with the copy-on-write
technique described in Section 24.2.2, the need to duplicate various process
attributes such as page tables and file descriptor tables means that a fork() call is
still time-consuming.

Threads address both of these problems:

Sharing information between threads is easy and fast. It is just a matter of copying
data into shared (global or heap) variables. However, in order to avoid the
problems that can occur when multiple threads try to update the same infor-
mation, we must employ the synchronization techniques described in Chapter 30.

Thread creation is faster than process creation—typically, ten times faster or
better. (On Linux, threads are implemented using the clone() system call, and
Table 28-3, on page 610, shows the differences in speed between fork() and clone().)
Thread creation is faster because many of the attributes that must be dupli-
cated in a child created by fork() are instead shared between threads. In particular,
copy-on-write duplication of pages of memory is not required, nor is duplica-
tion of page tables.

Besides global memory, threads also share a number of other attributes (i.e., these
attributes are global to a process, rather than specific to a thread). These attributes
include the following:

process ID and parent process ID;

process group ID and session ID;

controlling terminal;

process credentials (user and group IDs);

open file descriptors;

record locks created using fcntl();

signal dispositions;

file system–related information: umask, current working directory, and root
directory;

interval timers (setitimer()) and POSIX timers (timer_create());

System V semaphore undo (semadj) values (Section 47.8);

resource limits;

CPU time consumed (as returned by times());

resources consumed (as returned by getrusage()); and

nice value (set by setpriority() and nice()).
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Among the attributes that are distinct for each thread are the following:

thread ID (Section 29.5);

signal mask;

thread-specific data (Section 31.3);

alternate signal stack (sigaltstack());

the errno variable;

floating-point environment (see fenv(3));

realtime scheduling policy and priority (Sections 35.2 and 35.3);

CPU affinity (Linux-specific, described in Section 35.4);

capabilities (Linux-specific, described in Chapter 39); and

stack (local variables and function call linkage information).

As can be seen from Figure 29-1, all of the per-thread stacks reside within the
same virtual address space. This means that, given a suitable pointer, it is possible
for threads to share data on each other’s stacks. This is occasionally useful, but
it requires careful programming to handle the dependency that results from
the fact that a local variable remains valid only for the lifetime of the stack
frame in which it resides. (If a function returns, the memory region used by its
stack frame may be reused by a later function call. If the thread terminates, a
new thread may reuse the memory region used for the terminated thread’s
stack.) Failing to correctly handle this dependency can create bugs that are
hard to track down.

29.2 Background Details of the Pthreads API

In the late 1980s and early 1990s, several different threading APIs existed. In 1995,
POSIX.1c standardized the POSIX threads API, and this standard was later incor-
porated into SUSv3.

Several concepts apply to the Pthreads API as a whole, and we briefly introduce
these before looking in detail at the API.

Pthreads data types

The Pthreads API defines a number of data types, some of which are listed in
Table 29-1. We describe most of these data types in the following pages.

Table 29-1: Pthreads data types

Data type Description

pthread_t Thread identifier
pthread_mutex_t Mutex
pthread_mutexattr_t Mutex attributes object
pthread_cond_t Condition variable
pthread_condattr_t Condition variable attributes object
pthread_key_t Key for thread-specific data
pthread_once_t One-time initialization control context
pthread_attr_t Thread attributes object
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SUSv3 doesn’t specify how these data types should be represented, and portable
programs should treat them as opaque data. By this, we mean that a program
should avoid any reliance on knowledge of the structure or contents of a variable of
one of these types. In particular, we can’t compare variables of these types using
the C == operator.

Threads and errno

In the traditional UNIX API, errno is a global integer variable. However, this
doesn’t suffice for threaded programs. If a thread made a function call that
returned an error in a global errno variable, then this would confuse other threads
that might also be making function calls and checking errno. In other words, race
conditions would result. Therefore, in threaded programs, each thread has its own
errno value. On Linux, a thread-specific errno is achieved in a similar manner to
most other UNIX implementations: errno is defined as a macro that expands into a
function call returning a modifiable lvalue that is distinct for each thread. (Since
the lvalue is modifiable, it is still possible to write assignment statements of the
form errno = value in threaded programs.)

To summarize, the errno mechanism has been adapted for threads in a manner
that leaves error reporting unchanged from the traditional UNIX API.

The original POSIX.1 standard followed K&R C usage in allowing a program
to declare errno as extern int errno. SUSv3 doesn’t permit this usage (the change
actually occurred in 1995 in POSIX.1c). Nowadays, a program is required to
declare errno by including <errno.h>, which enables the implementation of a
per-thread errno.

Return value from Pthreads functions

The traditional method of returning status from system calls and some library func-
tions is to return 0 on success and –1 on error, with errno being set to indicate the
error. The functions in the Pthreads API do things differently. All Pthreads func-
tions return 0 on success or a positive value on failure. The failure value is one of
the same values that can be placed in errno by traditional UNIX system calls.

Because each reference to errno in a threaded program carries the overhead of
a function call, our example programs don’t directly assign the return value of a
Pthreads function to errno. Instead, we use an intermediate variable and employ
our errExitEN() diagnostic function (Section 3.5.2), like so:

pthread_t *thread;
int s;

s = pthread_create(&thread, NULL, func, &arg);
if (s != 0)
    errExitEN(s, "pthread_create");
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Compiling Pthreads programs

On Linux, programs that use the Pthreads API must be compiled with the cc –pthread
option. The effects of this option include the following:

The _REENTRANT preprocessor macro is defined. This causes the declarations of a
few reentrant functions to be exposed.

The program is linked with the libpthread library (the equivalent of –lpthread).

The precise options for compiling a multithreaded program vary across imple-
mentations (and compilers). Some other implementations (e.g., Tru64) also
use cc –pthread; Solaris and HP-UX use cc –mt.

29.3 Thread Creation

When a program is started, the resulting process consists of a single thread, called
the initial or main thread. In this section, we look at how to create additional
threads.

The pthread_create() function creates a new thread.

The new thread commences execution by calling the function identified by start
with the argument arg (i.e., start(arg)). The thread that calls pthread_create() continues
execution with the next statement that follows the call. (This behavior is the same as
the glibc wrapper function for the clone() system call described in Section 28.2.)

The arg argument is declared as void *, meaning that we can pass a pointer to
any type of object to the start function. Typically, arg points to a global or heap vari-
able, but it can also be specified as NULL. If we need to pass multiple arguments to
start, then arg can be specified as a pointer to a structure containing the arguments
as separate fields. With judicious casting, we can even specify arg as an int.

Strictly speaking, the C standards don’t define the results of casting int to void *
and vice versa. However, most C compilers permit these operations, and they
produce the desired result; that is, int j == (int) ((void *) j).

The return value of start is likewise of type void *, and it can be employed in the
same way as the arg argument. We’ll see how this value is used when we describe
the pthread_join() function below.

Caution is required when using a cast integer as the return value of a thread’s
start function. The reason for this is that PTHREAD_CANCELED, the value returned
when a thread is canceled (see Chapter 32), is usually some implementation-
defined integer value cast to void *. If a thread’s start function returns the
same integer value, then, to another thread that is doing a pthread_join(), it will

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
                   void *(*start)(void *), void *arg);

Returns 0 on success, or a positive error number on error
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wrongly appear that the thread was canceled. In an application that employs
thread cancellation and chooses to return cast integer values from a thread’s
start functions, we must ensure that a normally terminating thread does not
return an integer whose value matches PTHREAD_CANCELED on that Pthreads
implementation. A portable application would need to ensure that normally
terminating threads don’t return integer values that match PTHREAD_CANCELED on
any of the implementations on which the application is to run.

The thread argument points to a buffer of type pthread_t into which the unique
identifier for this thread is copied before pthread_create() returns. This identifier
can be used in later Pthreads calls to refer to the thread.

SUSv3 explicitly notes that the implementation need not initialize the buffer
pointed to by thread before the new thread starts executing; that is, the new thread
may start running before pthread_create() returns to its caller. If the new
thread needs to obtain its own ID, then it must do so using pthread_self()
(described in Section 29.5).

The attr argument is a pointer to a pthread_attr_t object that specifies various
attributes for the new thread. We say some more about these attributes in Section 29.8.
If attr is specified as NULL, then the thread is created with various default attributes,
and this is what we’ll do in most of the example programs in this book.

After a call to pthread_create(), a program has no guarantees about which thread
will next be scheduled to use the CPU (on a multiprocessor system, both threads
may simultaneously execute on different CPUs). Programs that implicitly rely on a
particular order of scheduling are open to the same sorts of race conditions that we
described in Section 24.4. If we need to enforce a particular order of execution, we
must use one of the synchronization techniques described in Chapter 30.

29.4 Thread Termination

The execution of a thread terminates in one of the following ways:

The thread’s start function performs a return specifying a return value for the
thread.

The thread calls pthread_exit() (described below).

The thread is canceled using pthread_cancel() (described in Section 32.1).

Any of the threads calls exit(), or the main thread performs a return (in the
main() function), which causes all threads in the process to terminate immediately.

The pthread_exit() function terminates the calling thread, and specifies a return
value that can be obtained in another thread by calling pthread_join().

include <pthread.h>

void pthread_exit(void *retval);
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Calling pthread_exit() is equivalent to performing a return in the thread’s start func-
tion, with the difference that pthread_exit() can be called from any function that has
been called by the thread’s start function.

The retval argument specifies the return value for the thread. The value pointed
to by retval should not be located on the thread’s stack, since the contents of that
stack become undefined on thread termination. (For example, that region of the
process’s virtual memory might be immediately reused by the stack for a new
thread.) The same statement applies to the value given to a return statement in
the thread’s start function.

If the main thread calls pthread_exit() instead of calling exit() or performing a
return, then the other threads continue to execute.

29.5 Thread IDs

Each thread within a process is uniquely identified by a thread ID. This ID is
returned to the caller of pthread_create(), and a thread can obtain its own ID using
pthread_self().

Thread IDs are useful within applications for the following reasons:

Various Pthreads functions use thread IDs to identify the thread on which they
are to act. Examples of such functions include pthread_join(), pthread_detach(),
pthread_cancel(), and pthread_kill(), all of which we describe in this and the fol-
lowing chapters.

In some applications, it can be useful to tag dynamic data structures with the
ID of a particular thread. This can serve to identify the thread that created or
“owns” a data structure, or can be used by one thread to identify a specific
thread that should subsequently do something with that data structure.

The pthread_equal() function allows us check whether two thread IDs are the same.

For example, to check if the ID of the calling thread matches a thread ID saved in
the variable tid, we could write the following:

if (pthread_equal(tid, pthread_self())
    printf("tid matches self\n");

include <pthread.h>

pthread_t pthread_self(void);

Returns the thread ID of the calling thread

include <pthread.h>

int pthread_equal(pthread_t t1, pthread_t t2);

Returns nonzero value if t1 and t2 are equal, otherwise 0
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The pthread_equal() function is needed because the pthread_t data type must be
treated as opaque data. On Linux, pthread_t happens to be defined as an unsigned
long, but on other implementations, it could be a pointer or a structure.

In NPTL, pthread_t is actually a pointer that has been cast to unsigned long.

SUSv3 doesn’t require pthread_t to be implemented as a scalar type; it could be a struc-
ture. Therefore, we can’t portably use code such as the following to display a
thread ID (though it does work on many implementations, including Linux, and is
sometimes useful for debugging purposes):

pthread_t thr;

printf("Thread ID = %ld\n", (long) thr);        /* WRONG! */

In the Linux threading implementations, thread IDs are unique across processes.
However, this is not necessarily the case on other implementations, and SUSv3
explicitly notes that an application can’t portably use a thread ID to identify a
thread in another process. SUSv3 also notes that an implementation is permitted to
reuse a thread ID after a terminated thread has been joined with pthread_join() or
after a detached thread has terminated. (We explain pthread_join() in the next sec-
tion, and detached threads in Section 29.7.)

POSIX thread IDs are not the same as the thread IDs returned by the Linux-
specific gettid() system call. POSIX thread IDs are assigned and maintained by
the threading implementation. The thread ID returned by gettid() is a number
(similar to a process ID) that is assigned by the kernel. Although each POSIX
thread has a unique kernel thread ID in the Linux NPTL threading implemen-
tation, an application generally doesn’t need to know about the kernel IDs
(and won’t be portable if it depends on knowing them).

29.6 Joining with a Terminated Thread

The pthread_join() function waits for the thread identified by thread to terminate. (If
that thread has already terminated, pthread_join() returns immediately.) This opera-
tion is termed joining.

If retval is a non-NULL pointer, then it receives a copy of the terminated thread’s
return value—that is, the value that was specified when the thread performed a
return or called pthread_exit().

Calling pthread_join() for a thread ID that has been previously joined can lead
to unpredictable behavior; for example, it might instead join with a thread created
later that happened to reuse the same thread ID.

include <pthread.h>

int pthread_join(pthread_t thread, void **retval);

Returns 0 on success, or a positive error number on error
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If a thread is not detached (see Section 29.7), then we must join with it using
pthread_join(). If we fail to do this, then, when the thread terminates, it produces
the thread equivalent of a zombie process (Section 26.2). Aside from wasting system
resources, if enough thread zombies accumulate, we won’t be able to create addi-
tional threads.

The task that pthread_join() performs for threads is similar to that performed
by waitpid() for processes. However, there are some notable differences:

Threads are peers. Any thread in a process can use pthread_join() to join with
any other thread in the process. For example, if thread A creates thread B,
which creates thread C, then it is possible for thread A to join with thread C, or
vice versa. This differs from the hierarchical relationship between processes.
When a parent process creates a child using fork(), it is the only process that
can wait() on that child. There is no such relationship between the thread that
calls pthread_create() and the resulting new thread.

There is no way of saying “join with any thread” (for processes, we can do this
using the call waitpid(–1, &status, options)); nor is there a way to do a nonblocking
join (analogous to the waitpid() WNOHANG flag). There are ways to achieve similar
functionality using condition variables; we show an example in Section 30.2.4.

The limitation that pthread_join() can join only with a specific thread ID is
intentional. The idea is that a program should join only with the threads that it
“knows” about. The problem with a “join with any thread” operation stems from
the fact that there is no hierarchy of threads, so such an operation could indeed
join with any thread, including one that was privately created by a library function.
(The condition-variable technique that we show in Section 30.2.4 allows a
thread to join only with any other thread that it knows about.) As a conse-
quence, the library would no longer be able to join with that thread in order to
obtain its status, and it would erroneously try to join with a thread ID that had
already been joined. In other words, a “join with any thread” operation is
incompatible with modular program design.

Example program

The program in Listing 29-1 creates another thread and then joins with it.

Listing 29-1: A simple program using Pthreads

––––––––––––––––––––––––––––––––––––––––––––––––––– threads/simple_thread.c

#include <pthread.h>
#include "tlpi_hdr.h"

static void *
threadFunc(void *arg)
{
    char *s = (char *) arg;

    printf("%s", s);

    return (void *) strlen(s);
}
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int
main(int argc, char *argv[])
{
    pthread_t t1;
    void *res;
    int s;

    s = pthread_create(&t1, NULL, threadFunc, "Hello world\n");
    if (s != 0)
        errExitEN(s, "pthread_create");

    printf("Message from main()\n");
    s = pthread_join(t1, &res);
    if (s != 0)
        errExitEN(s, "pthread_join");

    printf("Thread returned %ld\n", (long) res);

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––– threads/simple_thread.c

When we run the program in Listing 29-1, we see the following:

$ ./simple_thread
Message from main()
Hello world
Thread returned 12

Depending on how the two threads were scheduled, the order of the first two lines
of output might be reversed.

29.7 Detaching a Thread

By default, a thread is joinable, meaning that when it terminates, another thread
can obtain its return status using pthread_join(). Sometimes, we don’t care about
the thread’s return status; we simply want the system to automatically clean up and
remove the thread when it terminates. In this case, we can mark the thread as detached,
by making a call to pthread_detach() specifying the thread’s identifier in thread.

As an example of the use of pthread_detach(), a thread can detach itself using the fol-
lowing call:

pthread_detach(pthread_self());

#include <pthread.h>

int pthread_detach(pthread_t thread);

Returns 0 on success, or a positive error number on error
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Once a thread has been detached, it is no longer possible to use pthread_join() to
obtain its return status, and the thread can’t be made joinable again.

Detaching a thread doesn’t make it immune to a call to exit() in another thread
or a return in the main thread. In such an event, all threads in the process are imme-
diately terminated, regardless of whether they are joinable or detached. To put
things another way, pthread_detach() simply controls what happens after a thread
terminates, not how or when it terminates.

29.8 Thread Attributes

We mentioned earlier that the pthread_create() attr argument, whose type is
pthread_attr_t, can be used to specify the attributes used in the creation of a new
thread. We won’t go into the details of these attributes (for those details, see the
references listed at the end of this chapter) or show the prototypes of the various
Pthreads functions that can be used to manipulate a pthread_attr_t object. We’ll just
mention that these attributes include information such as the location and size of
the thread’s stack, the thread’s scheduling policy and priority (akin to the process
realtime scheduling policies and priorities described in Sections 35.2 and 35.3),
and whether the thread is joinable or detached.

As an example of the use of thread attributes, the code shown in Listing 29-2
creates a new thread that is made detached at the time of thread creation (rather
than subsequently, using pthread_detach()). This code first initializes a thread
attributes structure with default values, sets the attribute required to create a
detached thread, and then creates a new thread using the thread attributes struc-
ture. Once the thread has been created, the attributes object is no longer needed,
and so is destroyed.

Listing 29-2: Creating a thread with the detached attribute

––––––––––––––––––––––––––––––––––––––––––––– from threads/detached_attrib.c
    pthread_t thr;
    pthread_attr_t attr;
    int s;

    s = pthread_attr_init(&attr);               /* Assigns default values */
    if (s != 0)
        errExitEN(s, "pthread_attr_init");

    s = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
    if (s != 0)
        errExitEN(s, "pthread_attr_setdetachstate");

    s = pthread_create(&thr, &attr, threadFunc, (void *) 1);
    if (s != 0)
        errExitEN(s, "pthread_create");

    s = pthread_attr_destroy(&attr);            /* No longer needed */
    if (s != 0)
        errExitEN(s, "pthread_attr_destroy");

––––––––––––––––––––––––––––––––––––––––––––– from threads/detached_attrib.c
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29.9 Threads Versus Processes

In this section, we briefly consider some of the factors that might influence our
choice of whether to implement an application as a group of threads or as a group
of processes. We begin by considering the advantages of a multithreaded approach:

Sharing data between threads is easy. By contrast, sharing data between processes
requires more work (e.g., creating a shared memory segment or using a pipe).

Thread creation is faster than process creation; context-switch time may be
lower for threads than for processes.

Using threads can have some disadvantages compared to using processes:

When programming with threads, we need to ensure that the functions we call
are thread-safe or are called in a thread-safe manner. (We describe the concept
of thread safety in Section 31.1.) Multiprocess applications don’t need to be
concerned with this.

A bug in one thread (e.g., modifying memory via an incorrect pointer) can dam-
age all of the threads in the process, since they share the same address space and
other attributes. By contrast, processes are more isolated from one another.

Each thread is competing for use of the finite virtual address space of the host
process. In particular, each thread’s stack and thread-specific data (or thread-
local storage) consumes a part of the process virtual address space, which is
consequently unavailable for other threads. Although the available virtual
address space is large (e.g., typically 3 GB on x86-32), this factor may be a sig-
nificant limitation for processes employing large numbers of threads or
threads that require large amounts of memory. By contrast, separate processes
can each employ the full range of available virtual memory (subject to the limi-
tations of RAM and swap space).

The following are some other points that may influence our choice of threads
versus processes:

Dealing with signals in a multithreaded application requires careful design. (As
a general principle, it is usually desirable to avoid the use of signals in multi-
threaded programs.) We say more about threads and signals in Section 33.2.

In a multithreaded application, all threads must be running the same program
(although perhaps in different functions). In a multiprocess application, differ-
ent processes can run different programs.

Aside from data, threads also share certain other information (e.g., file descrip-
tors, signal dispositions, current working directory, and user and group IDs).
This may be an advantage or a disadvantage, depending on the application.

29.10 Summary

In a multithreaded process, multiple threads are concurrently executing the same
program. All of the threads share the same global and heap variables, but each
thread has a private stack for local variables. The threads in a process also share a
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number of other attributes, including process ID, open file descriptors, signal dis-
positions, current working directory, and resource limits.

The key difference between threads and processes is the easier sharing of
information that threads provide, and this is the main reason that some application
designs map better onto a multithread design than onto a multiprocess design.
Threads can also provide better performance for some operations (e.g., thread
creation is faster than process creation), but this factor is usually secondary in influ-
encing the choice of threads versus processes.

Threads are created using pthread_create(). Each thread can then independently
terminate using pthread_exit(). (If any thread calls exit(), then all threads immedi-
ately terminate.) Unless a thread has been marked as detached (e.g., via a call to
pthread_detach()), it must be joined by another thread using pthread_join(), which
returns the termination status of the joined thread.

Further information

[Butenhof, 1996] provides an exposition of Pthreads that is both readable and thor-
ough. [Robbins & Robbins, 2003] also provides good coverage of Pthreads. [Tanen-
baum, 2007] provides a more theoretical introduction to thread concepts, covering
topics such as mutexes, critical regions, conditional variables, and deadlock detec-
tion and avoidance. [Vahalia, 1996] provides background on the implementation of
threads.

29.11 Exercises

29-1. What possible outcomes might there be if a thread executes the following code:

pthread_join(pthread_self(), NULL);

Write a program to see what actually happens on Linux. If we have a variable, tid,
containing a thread ID, how can a thread prevent itself from making a call,
pthread_join(tid, NULL), that is equivalent to the above statement?

29-2. Aside from the absence of error checking and various variable and structure
declarations, what is the problem with the following program?

static void *
threadFunc(void *arg)
{
    struct someStruct *pbuf = (struct someStruct *) arg;

    /* Do some work with structure pointed to by 'pbuf' */
}

int
main(int argc, char *argv[])
{
    struct someStruct buf;

    pthread_create(&thr, NULL, threadFunc, (void *) &buf);
    pthread_exit(NULL);
}
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T H R E A D S :  T H R E A D  
S Y N C H R O N I Z A T I O N

In this chapter, we describe two tools that threads can use to synchronize their
actions: mutexes and condition variables. Mutexes allow threads to synchronize
their use of a shared resource, so that, for example, one thread doesn’t try to access
a shared variable at the same time as another thread is modifying it. Condition vari-
ables perform a complementary task: they allow threads to inform each other that a
shared variable (or other shared resource) has changed state.

30.1 Protecting Accesses to Shared Variables: Mutexes

One of the principal advantages of threads is that they can share information via
global variables. However, this easy sharing comes at a cost: we must take care that
multiple threads do not attempt to modify the same variable at the same time, or
that one thread doesn’t try to read the value of a variable while another thread is
modifying it. The term critical section is used to refer to a section of code that
accesses a shared resource and whose execution should be atomic; that is, its execu-
tion should not be interrupted by another thread that simultaneously accesses the
same shared resource.

Listing 30-1 provides a simple example of the kind of problems that can occur
when shared resources are not accessed atomically. This program creates two
threads, each of which executes the same function. The function executes a loop that
repeatedly increments a global variable, glob, by copying glob into the local variable



loc, incrementing loc, and copying loc back to glob. (Since loc is an automatic variable
allocated on the per-thread stack, each thread has its own copy of this variable.)
The number of iterations of the loop is determined by the command-line argument
supplied to the program, or by a default value, if no argument is supplied.

Listing 30-1: Incorrectly incrementing a global variable from two threads

––––––––––––––––––––––––––––––––––––––––––––––––––––– threads/thread_incr.c
#include <pthread.h>
#include "tlpi_hdr.h"

static int glob = 0;

static void *                   /* Loop 'arg' times incrementing 'glob' */
threadFunc(void *arg)
{
    int loops = *((int *) arg);
    int loc, j;

    for (j = 0; j < loops; j++) {
        loc = glob;
        loc++;
        glob = loc;
    }

    return NULL;
}

int
main(int argc, char *argv[])
{
    pthread_t t1, t2;
    int loops, s;

    loops = (argc > 1) ? getInt(argv[1], GN_GT_0, "num-loops") : 10000000;

    s = pthread_create(&t1, NULL, threadFunc, &loops);
    if (s != 0)
        errExitEN(s, "pthread_create");
    s = pthread_create(&t2, NULL, threadFunc, &loops);
    if (s != 0)
        errExitEN(s, "pthread_create");

    s = pthread_join(t1, NULL);
    if (s != 0)
        errExitEN(s, "pthread_join");
    s = pthread_join(t2, NULL);
    if (s != 0)
        errExitEN(s, "pthread_join");

    printf("glob = %d\n", glob);
    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––– threads/thread_incr.c
632 Chapter 30



Figure 30-1: Two threads incrementing a global variable without synchronization

When we run the program in Listing 30-1 specifying that each thread should incre-
ment the variable 1000 times, all seems well:

$ ./thread_incr 1000
glob = 2000

However, what has probably happened here is that the first thread completed all of
its work and terminated before the second thread even started. When we ask both
threads to do a lot more work, we see a rather different result:

$ ./thread_incr 10000000
glob = 16517656

At the end of this sequence, the value of glob should have been 20 million. The
problem here results from execution sequences such as the following (see also
Figure 30-1, above):

1. Thread 1 fetches the current value of glob into its local variable loc. Let’s
assume that the current value of glob is 2000.

2. The scheduler time slice for thread 1 expires, and thread 2 commences execution.

3. Thread 2 performs multiple loops in which it fetches the current value of glob
into its local variable loc, increments loc, and assigns the result to glob. In the
first of these loops, the value fetched from glob will be 2000. Let’s suppose that by
the time the time slice for thread 2 has expired, glob has been increased to 3000.

Repeatedly:
 loc = glob;
 loc++;
 glob = loc;
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4. Thread 1 receives another time slice and resumes execution where it left off.
Having previously (step 1) copied the value of glob (2000) into its loc, it now
increments loc and assigns the result (2001) to glob. At this point, the effect of
the increment operations performed by thread 2 is lost.

If we run the program in Listing 30-1 multiple times with the same command-line
argument, we see that the printed value of glob fluctuates wildly:

$ ./thread_incr 10000000
glob = 10880429
$ ./thread_incr 10000000
glob = 13493953

This nondeterministic behavior is a consequence of the vagaries of the kernel’s
CPU scheduling decisions. In complex programs, this nondeterministic behavior
means that such errors may occur only rarely, be hard to reproduce, and therefore
be difficult to find.

It might seem that we could eliminate the problem by replacing the three state-
ments inside the for loop in the threadFunc() function in Listing 30-1 with a single
statement:

glob++;             /* or: ++glob; */

However, on many hardware architectures (e.g., RISC architectures), the compiler
would still need to convert this single statement into machine code whose steps are
equivalent to the three statements inside the loop in threadFunc(). In other words,
despite its simple appearance, even a C increment operator may not be atomic, and
it might demonstrate the behavior that we described above.

To avoid the problems that can occur when threads try to update a shared vari-
able, we must use a mutex (short for mutual exclusion) to ensure that only one thread
at a time can access the variable. More generally, mutexes can be used to ensure
atomic access to any shared resource, but protecting shared variables is the most
common use.

A mutex has two states: locked and unlocked. At any moment, at most one
thread may hold the lock on a mutex. Attempting to lock a mutex that is already
locked either blocks or fails with an error, depending on the method used to place
the lock.

When a thread locks a mutex, it becomes the owner of that mutex. Only the
mutex owner can unlock the mutex. This property improves the structure of code
that uses mutexes and also allows for some optimizations in the implementation of
mutexes. Because of this ownership property, the terms acquire and release are
sometimes used synonymously for lock and unlock.

In general, we employ a different mutex for each shared resource (which may
consist of multiple related variables), and each thread employs the following proto-
col for accessing a resource:

lock the mutex for the shared resource;

access the shared resource; and

unlock the mutex.
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If multiple threads try to execute this block of code (a critical section), the fact that
only one thread can hold the mutex (the others remain blocked) means that only
one thread at a time can enter the block, as illustrated in Figure 30-2.

Figure 30-2: Using a mutex to protect a critical section

Finally, note that mutex locking is advisory, rather than mandatory. By this, we
mean that a thread is free to ignore the use of a mutex and simply access the corre-
sponding shared variable(s). In order to safely handle shared variables, all threads
must cooperate in their use of a mutex, abiding by the locking rules it enforces.

30.1.1 Statically Allocated Mutexes
A mutex can either be allocated as a static variable or be created dynamically at run
time (for example, in a block of memory allocated via malloc()). Dynamic mutex cre-
ation is somewhat more complex, and we delay discussion of it until Section 30.1.5.

A mutex is a variable of the type pthread_mutex_t. Before it can be used, a
mutex must always be initialized. For a statically allocated mutex, we can do this by
assigning it the value PTHREAD_MUTEX_INITIALIZER, as in the following example:

pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

According to SUSv3, applying the operations that we describe in the remain-
der of this section to a copy of a mutex yields results that are undefined. Mutex
operations should always be performed only on the original mutex that has
been statically initialized using PTHREAD_MUTEX_INITIALIZER or dynamically initial-
ized using pthread_mutex_init() (described in Section 30.1.5).

30.1.2 Locking and Unlocking a Mutex
After initialization, a mutex is unlocked. To lock and unlock a mutex, we use the
pthread_mutex_lock() and pthread_mutex_unlock() functions.

lock mutex M

access shared resource

unlock mutex M

lock mutex M

access shared resource

unlock mutex M

blocks

unblocks, lock granted

Thread A Thread B
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To lock a mutex, we specify the mutex in a call to pthread_mutex_lock(). If the mutex
is currently unlocked, this call locks the mutex and returns immediately. If the
mutex is currently locked by another thread, then pthread_mutex_lock() blocks until
the mutex is unlocked, at which point it locks the mutex and returns.

If the calling thread itself has already locked the mutex given to
pthread_mutex_lock(), then, for the default type of mutex, one of two implementation-
defined possibilities may result: the thread deadlocks, blocked trying to lock a
mutex that it already owns, or the call fails, returning the error EDEADLK. On Linux,
the thread deadlocks by default. (We describe some other possible behaviors when
we look at mutex types in Section 30.1.7.)

The pthread_mutex_unlock() function unlocks a mutex previously locked by the
calling thread. It is an error to unlock a mutex that is not currently locked, or to
unlock a mutex that is locked by another thread.

If more than one other thread is waiting to acquire the mutex unlocked by a
call to pthread_mutex_unlock(), it is indeterminate which thread will succeed in
acquiring it.

Example program

Listing 30-2 is a modified version of the program in Listing 30-1. It uses a mutex to
protect access to the global variable glob. When we run this program with a similar
command line to that used earlier, we see that glob is always reliably incremented:

$ ./thread_incr_mutex 10000000
glob = 20000000

Listing 30-2: Using a mutex to protect access to a global variable
–––––––––––––––––––––––––––––––––––––––––––––––– threads/thread_incr_mutex.c
#include <pthread.h>
#include "tlpi_hdr.h"

static int glob = 0;
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

static void *                   /* Loop 'arg' times incrementing 'glob' */
threadFunc(void *arg)
{
    int loops = *((int *) arg);
    int loc, j, s;

    for (j = 0; j < loops; j++) {
        s = pthread_mutex_lock(&mtx);
        if (s != 0)
            errExitEN(s, "pthread_mutex_lock");

#include <pthread.h>

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);

Both return 0 on success, or a positive error number on error
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        loc = glob;
        loc++;
        glob = loc;

        s = pthread_mutex_unlock(&mtx);
        if (s != 0)
            errExitEN(s, "pthread_mutex_unlock");
    }

    return NULL;
}

int
main(int argc, char *argv[])
{
    pthread_t t1, t2;
    int loops, s;

    loops = (argc > 1) ? getInt(argv[1], GN_GT_0, "num-loops") : 10000000;

    s = pthread_create(&t1, NULL, threadFunc, &loops);
    if (s != 0)
        errExitEN(s, "pthread_create");
    s = pthread_create(&t2, NULL, threadFunc, &loops);
    if (s != 0)
        errExitEN(s, "pthread_create");

    s = pthread_join(t1, NULL);
    if (s != 0)
        errExitEN(s, "pthread_join");
    s = pthread_join(t2, NULL);
    if (s != 0)
        errExitEN(s, "pthread_join");

    printf("glob = %d\n", glob);
    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––– threads/thread_incr_mutex.c

pthread_mutex_trylock() and pthread_mutex_timedlock()

The Pthreads API provides two variants of the pthread_mutex_lock() function:
pthread_mutex_trylock() and pthread_mutex_timedlock(). (See the manual pages for
prototypes of these functions.)

The pthread_mutex_trylock() function is the same as pthread_mutex_lock(), except
that if the mutex is currently locked, pthread_mutex_trylock() fails, returning the
error EBUSY.

The pthread_mutex_timedlock() function is the same as pthread_mutex_lock(),
except that the caller can specify an additional argument, abstime, that places a limit
on the time that the thread will sleep while waiting to acquire the mutex. If the time
interval specified by its abstime argument expires without the caller becoming the
owner of the mutex, pthread_mutex_timedlock() returns the error ETIMEDOUT.
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The pthread_mutex_trylock() and pthread_mutex_timedlock() functions are much
less frequently used than pthread_mutex_lock(). In most well-designed applications, a
thread should hold a mutex for only a short time, so that other threads are not pre-
vented from executing in parallel. This guarantees that other threads that are
blocked on the mutex will soon be granted a lock on the mutex. A thread that uses
pthread_mutex_trylock() to periodically poll the mutex to see if it can be locked risks
being starved of access to the mutex while other queued threads are successively
granted access to the mutex via pthread_mutex_lock().

30.1.3 Performance of Mutexes
What is the cost of using a mutex? We have shown two different versions of a pro-
gram that increments a shared variable: one without mutexes (Listing 30-1) and
one with mutexes (Listing 30-2). When we run these two programs on an x86-32
system running Linux 2.6.31 (with NPTL), we find that the version without
mutexes requires a total of 0.35 seconds to execute 10 million loops in each thread
(and produces the wrong result), while the version with mutexes requires 3.1 seconds.

At first, this seems expensive. But, consider the main loop executed by the ver-
sion that does not employ a mutex (Listing 30-1). In that version, the threadFunc()
function executes a for loop that increments a loop control variable, compares that
variable against another variable, performs two assignments and another incre-
ment operation, and then branches back to the top of the loop. The version that
uses a mutex (Listing 30-2) performs the same steps, and locks and unlocks the
mutex each time around the loop. In other words, the cost of locking and unlocking
a mutex is somewhat less than ten times the cost of the operations that we listed for
the first program. This is relatively cheap. Furthermore, in the typical case, a thread
would spend much more time doing other work, and perform relatively fewer
mutex lock and unlock operations, so that the performance impact of using a mutex
is not significant in most applications.

To put this further in perspective, running some simple test programs on the
same system showed that 20 million loops locking and unlocking a file region using
fcntl() (Section 55.3) require 44 seconds, and 20 million loops incrementing and
decrementing a System V semaphore (Chapter 47) require 28 seconds. The problem
with file locks and semaphores is that they always require a system call for the lock
and unlock operations, and each system call has a small, but appreciable, cost (Sec-
tion 3.1). By contrast, mutexes are implemented using atomic machine-language
operations (performed on memory locations visible to all threads) and require system
calls only in case of lock contention.

On Linux, mutexes are implemented using futexes (an acronym derived from
fast user space mutexes), and lock contentions are dealt with using the futex() system
call. We don’t describe futexes in this book (they are not intended for direct
use in user-space applications), but details can be found in [Drepper, 2004 (a)],
which also describes how mutexes are implemented using futexes. [Franke et al.,
2002] is a (now outdated) paper written by the developers of futexes, which
describes the early  futex implementation and looks at the performance gains
derived from futexes.
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30.1.4 Mutex Deadlocks
Sometimes, a thread needs to simultaneously access two or more different shared
resources, each of which is governed by a separate mutex. When more than one
thread is locking the same set of mutexes, deadlock situations can arise. Figure 30-3
shows an example of a deadlock in which each thread successfully locks one mutex,
and then tries to lock the mutex that the other thread has already locked. Both
threads will remain blocked indefinitely.

Figure 30-3: A deadlock when two threads lock two mutexes

The simplest way to avoid such deadlocks is to define a mutex hierarchy. When
threads can lock the same set of mutexes, they should always lock them in the same
order. For example, in the scenario in Figure 30-3, the deadlock could be avoided if
the two threads always lock the mutexes in the order mutex1 followed by mutex2.
Sometimes, there is a logically obvious hierarchy of mutexes. However, even if
there isn’t, it may be possible to devise an arbitrary hierarchical order that all
threads should follow.

An alternative strategy that is less frequently used is “try, and then back off.” In this
strategy, a thread locks the first mutex using pthread_mutex_lock(), and then locks the
remaining mutexes using pthread_mutex_trylock(). If any of the pthread_mutex_trylock()
calls fails (with EBUSY), then the thread releases all mutexes, and then tries again,
perhaps after a delay interval. This approach is less efficient than a lock hierarchy,
since multiple iterations may be required. On the other hand, it can be more flexible,
since it doesn’t require a rigid mutex hierarchy. An example of this strategy is
shown in [Butenhof, 1996].

30.1.5 Dynamically Initializing a Mutex
The static initializer value PTHREAD_MUTEX_INITIALIZER can be used only for initializing
a statically allocated mutex with default attributes. In all other cases, we must
dynamically initialize the mutex using pthread_mutex_init().

The mutex argument identifies the mutex to be initialized. The attr argument is a
pointer to a pthread_mutexattr_t object that has previously been initialized to define
the attributes for the mutex. (We say some more about mutex attributes in the next
section.) If attr is specified as NULL, then the mutex is assigned various default
attributes.

Thread A

1. pthread_mutex_lock(mutex1);

2. pthread_mutex_lock(mutex2);
blocks

Thread B

1. pthread_mutex_lock(mutex2);

2. pthread_mutex_lock(mutex1);
blocks

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr);

Returns 0 on success, or a positive error number on error
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SUSv3 specifies that initializing an already initialized mutex results in unde-
fined behavior; we should not do this.

Among the cases where we must use pthread_mutex_init() rather than a static
initializer are the following:

The mutex was dynamically allocated on the heap. For example, suppose that
we create a dynamically allocated linked list of structures, and each structure in
the list includes a pthread_mutex_t field that holds a mutex that is used to protect
access to that structure.

The mutex is an automatic variable allocated on the stack.

We want to initialize a statically allocated mutex with attributes other than the
defaults.

When an automatically or dynamically allocated mutex is no longer required, it
should be destroyed using pthread_mutex_destroy(). (It is not necessary to call
pthread_mutex_destroy() on a mutex that was statically initialized using
PTHREAD_MUTEX_INITIALIZER.)

It is safe to destroy a mutex only when it is unlocked, and no thread will subse-
quently try to lock it. If the mutex resides in a region of dynamically allocated mem-
ory, then it should be destroyed before freeing that memory region. An
automatically allocated mutex should be destroyed before its host function returns.

A mutex that has been destroyed with pthread_mutex_destroy() can subsequently
be reinitialized by pthread_mutex_init().

30.1.6 Mutex Attributes
As noted earlier, the pthread_mutex_init() attr argument can be used to specify a
pthread_mutexattr_t object that defines the attributes of a mutex. Various Pthreads func-
tions can be used to initialize and retrieve the attributes in a pthread_mutexattr_t
object. We won’t go into all of the details of mutex attributes or show the prototypes
of the various functions that can be used to initialize the attributes in a
pthread_mutexattr_t object. However, we’ll describe one of the attributes that can be
set for a mutex: its type.

30.1.7 Mutex Types
In the preceding pages, we made a number of statements about the behavior of
mutexes:

A single thread may not lock the same mutex twice.

A thread may not unlock a mutex that it doesn’t currently own (i.e., that it did
not lock).

A thread may not unlock a mutex that is not currently locked.

#include <pthread.h>

int pthread_mutex_destroy(pthread_mutex_t *mutex);

Returns 0 on success, or a positive error number on error
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Precisely what happens in each of these cases depends on the type of the mutex.
SUSv3 defines the following mutex types:

PTHREAD_MUTEX_NORMAL

(Self-)deadlock detection is not provided for this type of mutex. If a thread
tries to lock a mutex that it has already locked, then deadlock results.
Unlocking a mutex that is not locked or that is locked by another thread
produces undefined results. (On Linux, both of these operations succeed
for this mutex type.)

PTHREAD_MUTEX_ERRORCHECK

Error checking is performed on all operations. All three of the above scenarios
cause the relevant Pthreads function to return an error. This type of mutex
is typically slower than a normal mutex, but can be useful as a debugging
tool to discover where an application is violating the rules about how a
mutex should be used.

PTHREAD_MUTEX_RECURSIVE

A recursive mutex maintains the concept of a lock count. When a thread
first acquires the mutex, the lock count is set to 1. Each subsequent lock
operation by the same thread increments the lock count, and each unlock
operation decrements the count. The mutex is released (i.e., made avail-
able for other threads to acquire) only when the lock count falls to 0.
Unlocking an unlocked mutex fails, as does unlocking a mutex that is cur-
rently locked by another thread.

The Linux threading implementation provides nonstandard static initializers for
each of the above mutex types (e.g., PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP), so that
the use of pthread_mutex_init() is not required to initialize these mutex types for
statically allocated mutexes. However, portable applications should avoid the use
of these initializers.

In addition to the above mutex types, SUSv3 defines the PTHREAD_MUTEX_DEFAULT
type, which is the default type of mutex if we use PTHREAD_MUTEX_INITIALIZER or specify
attr as NULL in a call to pthread_mutex_init(). The behavior of this mutex type is delib-
erately undefined in all three of the scenarios described at the start of this section,
which allows maximum flexibility for efficient implementation of mutexes. On
Linux, a PTHREAD_MUTEX_DEFAULT mutex behaves like a PTHREAD_MUTEX_NORMAL mutex.

The code shown in Listing 30-3 demonstrates how to set the type of a mutex, in
this case to create an error-checking mutex.

Listing 30-3: Setting the mutex type

    pthread_mutex_t mtx;
    pthread_mutexattr_t mtxAttr;
    int s, type;

    s = pthread_mutexattr_init(&mtxAttr);
    if (s != 0)
        errExitEN(s, "pthread_mutexattr_init");
Threads: Thread Synchronizat ion 641



    s = pthread_mutexattr_settype(&mtxAttr, PTHREAD_MUTEX_ERRORCHECK);
    if (s != 0)
        errExitEN(s, "pthread_mutexattr_settype");

    s = pthread_mutex_init(mtx, &mtxAttr);
    if (s != 0)
        errExitEN(s, "pthread_mutex_init");

    s = pthread_mutexattr_destroy(&mtxAttr);        /* No longer needed */
    if (s != 0)
        errExitEN(s, "pthread_mutexattr_destroy");

30.2 Signaling Changes of State: Condition Variables

A mutex prevents multiple threads from accessing a shared variable at the same
time. A condition variable allows one thread to inform other threads about
changes in the state of a shared variable (or other shared resource) and allows the
other threads to wait (block) for such notification.

A simple example that doesn’t use condition variables serves to demonstrate why
they are useful. Suppose that we have a number of threads that produce some “result
units” that are consumed by the main thread, and that we use a mutex-protected
variable, avail, to represent the number of produced units awaiting consumption:

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

static int avail = 0;

The code segments shown in this section can be found in the file threads/
prod_no_condvar.c in the source code distribution for this book.

In the producer threads, we would have code such as the following:

/* Code to produce a unit omitted */

s = pthread_mutex_lock(&mtx);
if (s != 0)
    errExitEN(s, "pthread_mutex_lock");

avail++;    /* Let consumer know another unit is available */

s = pthread_mutex_unlock(&mtx);
if (s != 0)
    errExitEN(s, "pthread_mutex_unlock");

And in the main (consumer) thread, we could employ the following code:

for (;;) {
    s = pthread_mutex_lock(&mtx);
    if (s != 0)
        errExitEN(s, "pthread_mutex_lock");
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    while (avail > 0) {         /* Consume all available units */
        /* Do something with produced unit */
        avail--;
    }

    s = pthread_mutex_unlock(&mtx);
    if (s != 0)
        errExitEN(s, "pthread_mutex_unlock");
}

The above code works, but it wastes CPU time, because the main thread continu-
ally loops, checking the state of the variable avail. A condition variable remedies this
problem. It allows a thread to sleep (wait) until another thread notifies (signals) it
that it must do something (i.e., that some “condition” has arisen that the sleeper
must now respond to).

A condition variable is always used in conjunction with a mutex. The mutex
provides mutual exclusion for accessing the shared variable, while the condition
variable is used to signal changes in the variable’s state. (The use of the term signal
here has nothing to do with the signals described in Chapters 20 to 22; rather, it is
used in the sense of indicate.)

30.2.1 Statically Allocated Condition Variables
As with mutexes, condition variables can be allocated statically or dynamically. We
defer discussion of dynamically allocated condition variables until Section 30.2.5,
and consider statically allocated condition variables here.

A condition variable has the type pthread_cond_t. As with a mutex, a condition
variable must be initialized before use. For a statically allocated condition variable,
this is done by assigning it the value PTHREAD_COND_INITIALIZER, as in the following
example:

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

According to SUSv3, applying the operations that we describe in the remain-
der of this section to a copy of a condition variable yields results that are unde-
fined. Operations should always be performed only on the original condition
variable that has been statically initialized using PTHREAD_COND_INITIALIZER or
dynamically initialized using pthread_cond_init() (described in Section 30.2.5).

30.2.2 Signaling and Waiting on Condition Variables
The principal condition variable operations are signal and wait. The signal opera-
tion is a notification to one or more waiting threads that a shared variable’s state
has changed. The wait operation is the means of blocking until such a notification
is received.

The pthread_cond_signal() and pthread_cond_broadcast() functions both signal
the condition variable specified by cond. The pthread_cond_wait() function blocks a
thread until the condition variable cond is signaled.
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The difference between pthread_cond_signal() and pthread_cond_broadcast() lies in
what happens if multiple threads are blocked in pthread_cond_wait(). With
pthread_cond_signal(), we are simply guaranteed that at least one of the blocked
threads is woken up; with pthread_cond_broadcast(), all blocked threads are woken up.

Using pthread_cond_broadcast() always yields correct results (since all threads
should be programmed to handle redundant and spurious wake-ups), but
pthread_cond_signal() can be more efficient. However, pthread_cond_signal() should
be used only if just one of the waiting threads needs to be woken up to handle the
change in state of the shared variable, and it doesn’t matter which one of the wait-
ing threads is woken up. This scenario typically applies when all of the waiting
threads are designed to perform the exactly same task. Given these assumptions,
pthread_cond_signal() can be more efficient than pthread_cond_broadcast(), because it
avoids the following possibility:

1. All waiting threads are awoken.

2. One thread is scheduled first. This thread checks the state of the shared vari-
able(s) (under protection of the associated mutex) and sees that there is work
to be done. The thread performs the required work, changes the state of the
shared variable(s) to indicate that the work has been done, and unlocks the
associated mutex.

3. Each of the remaining threads in turn locks the mutex and tests the state of the
shared variable. However, because of the change made by the first thread,
these threads see that there is no work to be done, and so unlock the mutex
and go back to sleep (i.e., call pthread_cond_wait() once more).

By contrast, pthread_cond_broadcast() handles the case where the waiting threads are
designed to perform different tasks (in which case they probably have different
predicates associated with the condition variable).

A condition variable holds no state information. It is simply a mechanism for
communicating information about the application’s state. If no thread is waiting
on the condition variable at the time that it is signaled, then the signal is lost. A
thread that later waits on the condition variable will unblock only when the variable
is signaled once more.

The pthread_cond_timedwait() function is the same as pthread_cond_wait(),
except that the abstime argument specifies an upper limit on the time that the
thread will sleep while waiting for the condition variable to be signaled.

#include <pthread.h>

int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);

All return 0 on success, or a positive error number on error
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The abstime argument is a timespec structure (Section 23.4.2) specifying an abso-
lute time expressed as seconds and nanoseconds since the Epoch (Section 10.1). If
the time interval specified by abstime expires without the condition variable being
signaled, then pthread_cond_timedwait() returns the error ETIMEDOUT.

Using a condition variable in the producer-consumer example

Let’s revise our previous example to use a condition variable. The declarations of
our global variable and associated mutex and condition variable are as follows:

static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

static int avail = 0;

The code segments shown in this section can be found in the file threads/
prod_condvar.c in the source code distribution for this book.

The code in the producer threads is the same as before, except that we add a call to
pthread_cond_signal():

s = pthread_mutex_lock(&mtx);
if (s != 0)
    errExitEN(s, "pthread_mutex_lock");

avail++;                /* Let consumer know another unit is available */

s = pthread_mutex_unlock(&mtx);
if (s != 0)
    errExitEN(s, "pthread_mutex_unlock");

s = pthread_cond_signal(&cond);         /* Wake sleeping consumer */
if (s != 0)
    errExitEN(s, "pthread_cond_signal");

Before considering the code of the consumer, we need to explain
pthread_cond_wait() in greater detail. We noted earlier that a condition variable
always has an associated mutex. Both of these objects are passed as arguments to
pthread_cond_wait(), which performs the following steps:

unlock the mutex specified by mutex;

block the calling thread until another thread signals the condition variable
cond; and

relock mutex.

#include <pthread.h>

int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex,
                           const struct timespec *abstime);

Returns 0 on success, or a positive error number on error
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The pthread_cond_wait() function is designed to perform these steps because, normally,
we access a shared variable in the following manner:

s = pthread_mutex_lock(&mtx);
if (s != 0)
    errExitEN(s, "pthread_mutex_lock");

while (/* Check that shared variable is not in state we want */)
    pthread_cond_wait(&cond, &mtx);

/* Now shared variable is in desired state; do some work */

s = pthread_mutex_unlock(&mtx);
if (s != 0)
    errExitEN(s, "pthread_mutex_unlock");

(We explain why the pthread_cond_wait() call is placed within a while loop rather
than an if statement in the next section.)

In the above code, both accesses to the shared variable must be mutex-protected
for the reasons that we explained earlier. In other words, there is a natural associa-
tion of a mutex with a condition variable:

1. The thread locks the mutex in preparation for checking the state of the shared
variable.

2. The state of the shared variable is checked.

3. If the shared variable is not in the desired state, then the thread must unlock
the mutex (so that other threads can access the shared variable) before it goes
to sleep on the condition variable.

4. When the thread is reawakened because the condition variable has been sig-
naled, the mutex must once more be locked, since, typically, the thread then
immediately accesses the shared variable.

The pthread_cond_wait() function automatically performs the mutex unlocking and
locking required in the last two of these steps. In the third step, releasing the
mutex and blocking on the condition variable are performed atomically. In other
words, it is not possible for some other thread to acquire the mutex and signal
the condition variable before the thread calling pthread_cond_wait() has blocked
on the condition variable.

There is a corollary to the observation that there is a natural relationship between
a condition variable and a mutex: all threads that concurrently wait on a particular
condition variable must specify the same mutex in their pthread_cond_wait() (or
pthread_cond_timedwait()) calls. In effect, a pthread_cond_wait() call dynamically
binds a condition variable to a unique mutex for the duration of the call.
SUSv3 notes that the result of using more than one mutex for concurrent
pthread_cond_wait() calls on the same condition variable is undefined.
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Putting the above details together, we can now modify the main (consumer) thread
to use pthread_cond_wait(), as follows:

for (;;) {
    s = pthread_mutex_lock(&mtx);
    if (s != 0)
        errExitEN(s, "pthread_mutex_lock");

    while (avail == 0) {            /* Wait for something to consume */
        s = pthread_cond_wait(&cond, &mtx);
        if (s != 0)
            errExitEN(s, "pthread_cond_wait");
    }

    while (avail > 0) {             /* Consume all available units */
        /* Do something with produced unit */
        avail--;
    }

    s = pthread_mutex_unlock(&mtx);
if (s != 0)

    errExitEN(s, "pthread_mutex_unlock");

/* Perhaps do other work here that doesn't require mutex lock */
}

We conclude with one final observation about the use of pthread_cond_signal()
(and pthread_cond_broadcast()). In the producer code shown earlier, we called
pthread_mutex_unlock(), and then called pthread_cond_signal(); that is, we first unlocked
the mutex associated with the shared variable, and then signaled the corresponding
condition variable. We could have reversed these two steps; SUSv3 permits them to
be done in either order.

[Butenhof, 1996] points out that, on some implementations, unlocking the
mutex and then signaling the condition variable may yield better performance
than performing these steps in the reverse sequence. If the mutex is unlocked
only after the condition variable is signaled, the thread performing
pthread_cond_wait() may wake up while the mutex is still locked, and then
immediately go back to sleep again when it finds that the mutex is locked. This
results in two superfluous context switches. Some implementations eliminate
this problem by employing a technique called wait morphing, which moves the
signaled thread from the condition variable wait queue to the mutex wait
queue without performing a context switch if the mutex is locked.

30.2.3 Testing a Condition Variable’s Predicate
Each condition variable has an associated predicate involving one or more shared
variables. For example, in the code segment in the preceding section, the predicate
associated with cond is (avail == 0). This code segment demonstrates a general
design principle: a pthread_cond_wait() call must be governed by a while loop rather
than an if statement. This is so because, on return from pthread_cond_wait(), there
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are no guarantees about the state of the predicate; therefore, we should immedi-
ately recheck the predicate and resume sleeping if it is not in the desired state.

We can’t make any assumptions about the state of the predicate upon return
from pthread_cond_wait(), for the following reasons:

Other threads may be woken up first. Perhaps several threads were waiting to
acquire the mutex associated with the condition variable. Even if the thread
that signaled the mutex set the predicate to the desired state, it is still possible
that another thread might acquire the mutex first and change the state of the
associated shared variable(s), and thus the state of the predicate.

Designing for “loose” predicates may be simpler. Sometimes, it is easier to design
applications based on condition variables that indicate possibility rather than
certainty. In other words, signaling a condition variable would mean “there may
be something” for the signaled thread to do, rather than “there is something” to
do. Using this approach, the condition variable can be signaled based on
approximations of the predicate’s state, and the signaled thread can ascertain
if there really is something to do by rechecking the predicate.

Spurious wake-ups can occur. On some implementations, a thread waiting on a
condition variable may be woken up even though no other thread actually sig-
naled the condition variable. Such spurious wake-ups are a (rare) consequence
of the techniques required for efficient implementation on some multiprocessor
systems, and are explicitly permitted by SUSv3.

30.2.4 Example Program: Joining Any Terminated Thread
We noted earlier that pthread_join() can be used to join with only a specific thread.
It provides no mechanism for joining with any terminated thread. We now show
how a condition variable can be used to circumvent this restriction.

The program in Listing 30-4 creates one thread for each of its command-line
arguments. Each thread sleeps for the number of seconds specified in the corre-
sponding command-line argument and then terminates. The sleep interval is our
means of simulating the idea of a thread that does work for a period of time.

The program maintains a set of global variables recording information about
all of the threads that have been created. For each thread, an element in the global
thread array records the ID of the thread (the tid field) and its current state (the state
field). The state field has one of the following values: TS_ALIVE, meaning the thread is
alive; TS_TERMINATED, meaning the thread has terminated but not yet been joined; or
TS_JOINED, meaning the thread has terminated and been joined.

As each thread terminates, it assigns the value TS_TERMINATED to the state field for
its element in the thread array, increments a global counter of terminated but as yet
unjoined threads (numUnjoined), and signals the condition variable threadDied.

The main thread employs a loop that continuously waits on the condition variable
threadDied. Whenever threadDied is signaled and there are terminated threads that
have not been joined, the main thread scans the thread array, looking for elements
with state set to TS_TERMINATED. For each thread in this state, pthread_join() is called
using the corresponding tid field from the thread array, and then the state is set to
TS_JOINED. The main loop terminates when all of the threads created by the main
thread have died—that is, when the global variable numLive is 0.
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The following shell session log demonstrates the use of the program in
Listing 30-4:

$ ./thread_multijoin 1 1 2 3 3              Create 5 threads
Thread 0 terminating
Thread 1 terminating
Reaped thread 0 (numLive=4)
Reaped thread 1 (numLive=3)
Thread 2 terminating
Reaped thread 2 (numLive=2)
Thread 3 terminating
Thread 4 terminating
Reaped thread 3 (numLive=1)
Reaped thread 4 (numLive=0)

Finally, note that although the threads in the example program are created as join-
able and are immediately reaped on termination using pthread_join(), we don’t
need to use this approach in order to find out about thread termination. We could
have made the threads detached, removed the use of pthread_join(), and simply
used the thread array (and associated global variables) as the means of recording
the termination of each thread.

Listing 30-4: A main thread that can join with any terminated thread

––––––––––––––––––––––––––––––––––––––––––––––––– threads/thread_multijoin.c

#include <pthread.h>
#include "tlpi_hdr.h"

static pthread_cond_t threadDied = PTHREAD_COND_INITIALIZER;
static pthread_mutex_t threadMutex = PTHREAD_MUTEX_INITIALIZER;
                /* Protects all of the following global variables */

static int totThreads = 0;      /* Total number of threads created */
static int numLive = 0;         /* Total number of threads still alive or
                                   terminated but not yet joined */
static int numUnjoined = 0;     /* Number of terminated threads that
                                   have not yet been joined */
enum tstate {                   /* Thread states */
    TS_ALIVE,                   /* Thread is alive */
    TS_TERMINATED,              /* Thread terminated, not yet joined */
    TS_JOINED                   /* Thread terminated, and joined */
};

static struct {                 /* Info about each thread */
    pthread_t tid;              /* ID of this thread */
    enum tstate state;          /* Thread state (TS_* constants above) */
    int sleepTime;              /* Number seconds to live before terminating */
} *thread;

static void *                   /* Start function for thread */
threadFunc(void *arg)
{
    int idx = *((int *) arg);
    int s;
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    sleep(thread[idx].sleepTime);       /* Simulate doing some work */
    printf("Thread %d terminating\n", idx);

    s = pthread_mutex_lock(&threadMutex);
    if (s != 0)
        errExitEN(s, "pthread_mutex_lock");

    numUnjoined++;
    thread[idx].state = TS_TERMINATED;

    s = pthread_mutex_unlock(&threadMutex);
    if (s != 0)
        errExitEN(s, "pthread_mutex_unlock");
    s = pthread_cond_signal(&threadDied);
    if (s != 0)
        errExitEN(s, "pthread_cond_signal");

    return NULL;
}

int
main(int argc, char *argv[])
{
    int s, idx;

    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s nsecs...\n", argv[0]);

    thread = calloc(argc - 1, sizeof(*thread));
    if (thread == NULL)
        errExit("calloc");

    /* Create all threads */

    for (idx = 0; idx < argc - 1; idx++) {
        thread[idx].sleepTime = getInt(argv[idx + 1], GN_NONNEG, NULL);
        thread[idx].state = TS_ALIVE;
        s = pthread_create(&thread[idx].tid, NULL, threadFunc, &idx);
        if (s != 0)
            errExitEN(s, "pthread_create");
    }

    totThreads = argc - 1;
    numLive = totThreads;

    /* Join with terminated threads */

    while (numLive > 0) {
        s = pthread_mutex_lock(&threadMutex);
        if (s != 0)
            errExitEN(s, "pthread_mutex_lock");
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        while (numUnjoined == 0) {
            s = pthread_cond_wait(&threadDied, &threadMutex);
            if (s != 0)
                errExitEN(s, "pthread_cond_wait");
        }

        for (idx = 0; idx < totThreads; idx++) {
            if (thread[idx].state == TS_TERMINATED){
                s = pthread_join(thread[idx].tid, NULL);
                if (s != 0)
                    errExitEN(s, "pthread_join");

                thread[idx].state = TS_JOINED;
                numLive--;
                numUnjoined--;

                printf("Reaped thread %d (numLive=%d)\n", idx, numLive);
            }
        }

        s = pthread_mutex_unlock(&threadMutex);
        if (s != 0)
            errExitEN(s, "pthread_mutex_unlock");
    }

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––– threads/thread_multijoin.c

30.2.5 Dynamically Allocated Condition Variables
The pthread_cond_init() function is used to dynamically initialize a condition vari-
able. The circumstances in which we need to use pthread_cond_init() are analogous
to those where pthread_mutex_init() is needed to dynamically initialize a mutex
(Section 30.1.5); that is, we must use pthread_cond_init() to initialize automatically
and dynamically allocated condition variables, and to initialize a statically allocated
condition variable with attributes other than the defaults.

The cond argument identifies the condition variable to be initialized. As with
mutexes, we can specify an attr argument that has been previously initialized to
determine attributes for the condition variable. Various Pthreads functions can be
used to initialize the attributes in the pthread_condattr_t object pointed to by attr. If
attr is NULL, a default set of attributes is assigned to the condition variable.

#include <pthread.h>

int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr);

Returns 0 on success, or a positive error number on error
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SUSv3 specifies that initializing an already initialized condition variable results
in undefined behavior; we should not do this.

When an automatically or dynamically allocated condition variable is no longer
required, then it should be destroyed using pthread_cond_destroy(). It is not neces-
sary to call pthread_cond_destroy() on a condition variable that was statically initial-
ized using PTHREAD_COND_INITIALIZER.

It is safe to destroy a condition variable only when no threads are waiting on it. If
the condition variable resides in a region of dynamically allocated memory, then it
should be destroyed before freeing that memory region. An automatically allo-
cated condition variable should be destroyed before its host function returns.

A condition variable that has been destroyed with pthread_cond_destroy() can
subsequently be reinitialized by pthread_cond_init().

30.3 Summary

The greater sharing provided by threads comes at a cost. Threaded applications
must employ synchronization primitives such as mutexes and condition variables
in order to coordinate access to shared variables. A mutex provides exclusive access
to a shared variable. A condition variable allows one or more threads to wait for
notification that some other thread has changed the state of a shared variable.

Further information

Refer to the sources of further information listed in Section 29.10.

30.4 Exercises

30-1. Modify the program in Listing 30-1 (thread_incr.c) so that each loop in the thread’s
start function outputs the current value of glob and some identifier that uniquely
identifies the thread. The unique identifier for the thread could be specified as an
argument to the pthread_create() call used to create the thread. For this program,
that would require changing the argument of the thread’s start function to be a
pointer to a structure containing the unique identifier and a loop limit value. Run the
program, redirecting output to a file, and then inspect the file to see what happens to
glob as the kernel scheduler alternates execution between the two threads.

#include <pthread.h>

int pthread_cond_destroy(pthread_cond_t *cond);

Returns 0 on success, or a positive error number on error
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30-2. Implement a set of thread-safe functions that update and search an unbalanced
binary tree. This library should include functions (with the obvious purposes) of
the following form:

initialize(tree);
add(tree, char *key, void *value);
delete(tree, char *key)
Boolean lookup(char *key, void **value)

In the above prototypes, tree is a structure that points to the root of the tree (you
will need to define a suitable structure for this purpose). Each element of the tree
holds a key-value pair. You will also need to define the structure for each element
to include a mutex that protects that element so that only one thread at a time can
access it. The initialize(), add(), and lookup() functions are relatively simple to imple-
ment. The delete() operation requires a little more effort. 

Removing the need to maintain a balanced tree greatly simplifies the locking
requirements of the implementation, but carries the risk that certain patterns
of input would result in a tree that performs poorly. Maintaining a balanced
tree necessitates moving nodes between subtrees during the add() and delete()
operations, which requires much more complex locking strategies.
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T H R E A D S :  T H R E A D  S A F E T Y  A N D  
P E R - T H R E A D  S T O R A G E

This chapter extends the discussion of the POSIX threads API, providing a descrip-
tion of thread-safe functions and one-time initialization. We also discuss how to use
thread-specific data or thread-local storage to make an existing function thread-safe
without changing the function’s interface.

31.1 Thread Safety (and Reentrancy Revisited)

A function is said to be thread-safe if it can safely be invoked by multiple threads at
the same time; put conversely, if a function is not thread-safe, then we can’t call it
from one thread while it is being executed in another thread. For example, the fol-
lowing function (similar to code that we looked at in Section 30.1) is not thread-safe:

static int glob = 0;

static void
incr(int loops)
{
    int loc, j;



    for (j = 0; j < loops; j++) {
        loc = glob;
        loc++;
        glob = loc;
    }
}

If multiple threads invoke this function concurrently, the final value in glob is
unpredictable. This function illustrates the typical reason that a function is not
thread-safe: it employs global or static variables that are shared by all threads.

There are various methods of rendering a function thread-safe. One way is to
associate a mutex with the function (or perhaps with all of the functions in a
library, if they all share the same global variables), lock that mutex when the func-
tion is called, and unlock it when the mutex returns. This approach has the virtue
of simplicity. On the other hand, it means that only one thread at a time can exe-
cute the function—we say that access to the function is serialized. If the threads
spend a significant amount of time executing this function, then this serialization
results in a loss of concurrency, because the threads of a program can no longer
execute in parallel.

A more sophisticated solution is to associate the mutex with a shared variable.
We then determine which parts of the function are critical sections that access the
shared variable, and acquire and release the mutex only during the execution of
these critical sections. This allows multiple threads to execute the function at the
same time and to operate in parallel, except when more than one thread needs to
execute a critical section.

Non-thread-safe functions

To facilitate the development of threaded applications, all of the functions speci-
fied in SUSv3 are required to be implemented in a thread-safe manner, except
those listed in Table 31-1. (Many of these functions are not discussed in this book.)

In addition to the functions listed in Table 31-1, SUSv3 specifies the following:

The ctermid() and tmpnam() functions need not be thread-safe if passed a NULL
argument.

The wcrtomb() and wcsrtombs() functions need not be thread-safe if their final
argument (ps) is NULL.

SUSv4 modifies the list of functions in Table 31-1 as follows:

The ecvt(), fcvt(), gcvt(), gethostbyname(), and gethostbyaddr() are removed, since
these functions have been removed from the standard.

The strsignal() and system() functions are added. The system() function is non-
reentrant because the manipulations that it must make to signal dispositions
have a process-wide effect.

The standards do not prohibit an implementation from making the functions in
Table 31-1 thread-safe. However, even if some of these functions are thread-safe on
some implementations, a portable application can’t rely on this to be the case on all
implementations.
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Reentrant and nonreentrant functions

Although the use of critical sections to implement thread safety is a significant
improvement over the use of per-function mutexes, it is still somewhat inefficient
because there is a cost to locking and unlocking a mutex. A reentrant function
achieves thread safety without the use of mutexes. It does this by avoiding the use
of global and static variables. Any information that must be returned to the caller,
or maintained between calls to the function, is stored in buffers allocated by the
caller. (We first encountered reentrancy when discussing the treatment of global
variables within signal handlers in Section 21.1.2.) However, not all functions can
be made reentrant. The usual reasons are the following:

By their nature, some functions must access global data structures. The func-
tions in the malloc library provide a good example. These functions maintain a
global linked list of free blocks on the heap. The functions of the malloc library
are made thread-safe through the use of mutexes.

Some functions (defined before the invention of threads) have an interface
that by definition is nonreentrant, because they return pointers to storage statically
allocated by the function, or they employ static storage to maintain informa-
tion between successive calls to the same (or a related) function. Most of the
functions in Table 31-1 fall into this category. For example, the asctime() func-
tion (Section 10.2.3) returns a pointer to a statically allocated buffer containing
a date-time string.

Table 31-1: Functions that SUSv3 does not require to be thread-safe

asctime()
basename()
catgets()
crypt()
ctime()
dbm_clearerr()
dbm_close()
dbm_delete()
dbm_error()
dbm_fetch()
dbm_firstkey()
dbm_nextkey()
dbm_open()
dbm_store()
dirname()
dlerror()
drand48()
ecvt()
encrypt()
endgrent()
endpwent()
endutxent()

fcvt()
ftw()
gcvt()
getc_unlocked()
getchar_unlocked()
getdate()
getenv()
getgrent()
getgrgid()
getgrnam()
gethostbyaddr()
gethostbyname()
gethostent()
getlogin()
getnetbyaddr()
getnetbyname()
getnetent()
getopt()
getprotobyname()
getprotobynumber()
getprotoent()
getpwent()

getpwnam()
getpwuid()
getservbyname()
getservbyport()
getservent()
getutxent()
getutxid()
getutxline()
gmtime()
hcreate()
hdestroy()
hsearch()
inet_ntoa()
l64a()
lgamma()
lgammaf()
lgammal()
localeconv()
localtime()
lrand48()
mrand48()
nftw()

nl_langinfo()
ptsname()
putc_unlocked()
putchar_unlocked()
putenv()
pututxline()
rand()
readdir()
setenv()
setgrent()
setkey()
setpwent()
setutxent()
strerror()
strtok()
ttyname()
unsetenv()
wcstombs()
wctomb()
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For several of the functions that have nonreentrant interfaces, SUSv3 specifies
reentrant equivalents with names ending with the suffix _r. These functions require
the caller to allocate a buffer whose address is then passed to the function and used
to return the result. This allows the calling thread to use a local (stack) variable for
the function result buffer. For this purpose, SUSv3 specifies asctime_r(), ctime_r(),
getgrgid_r(), getgrnam_r(), getlogin_r(), getpwnam_r(), getpwuid_r(), gmtime_r(),
localtime_r(), rand_r(), readdir_r(), strerror_r(), strtok_r(), and ttyname_r().

Some implementations also provide additional reentrant equivalents of other
traditional nonreentrant functions. For example, glibc provides crypt_r(),
gethostbyname_r(), getservbyname_r(), getutent_r(), getutid_r(), getutline_r(), and
ptsname_r(). However, a portable application can’t rely on these functions
being present on other implementations. In some cases, SUSv3 doesn’t specify
these reentrant equivalents because alternatives to the traditional functions
exist that are both superior and reentrant. For example, getaddrinfo() is the
modern, reentrant alternative to gethostbyname() and getservbyname().

31.2 One-Time Initialization

Sometimes, a threaded application needs to ensure that some initialization action
occurs just once, regardless of how many threads are created. For example, a
mutex may need to be initialized with special attributes using pthread_mutex_init(),
and that initialization must occur just once. If we are creating the threads from the
main program, then this is generally easy to achieve—we perform the initialization
before creating any threads that depend on the initialization. However, in a library
function, this is not possible, because the calling program may create the threads
before the first call to the library function. Therefore, the library function needs a
method of performing the initialization the first time that it is called from any thread.

A library function can perform one-time initialization using the pthread_once()
function.

The pthread_once() function uses the state of the argument once_control to ensure
that the caller-defined function pointed to by init is called just once, no matter how
many times or from how many different threads the pthread_once() call is made.

The init function is called without any arguments, and thus has the following form:

void
init(void)
{
    /* Function body */
}

#include <pthread.h>

int pthread_once(pthread_once_t *once_control, void (*init)(void));

Returns 0 on success, or a positive error number on error
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The once_control argument is a pointer to a variable that must be statically initialized
with the value PTHREAD_ONCE_INIT:

pthread_once_t once_var = PTHREAD_ONCE_INIT;

The first call to pthread_once() that specifies a pointer to a particular pthread_once_t
variable modifies the value of the variable pointed to by once_control so that subse-
quent calls to pthread_once() don’t invoke init.

One common use of pthread_once() is in conjunction with thread-specific data,
which we describe next.

The main reason for the existence of pthread_once() is that in early versions of
Pthreads, it was not possible to statically initialize a mutex. Instead, the use of
pthread_mutex_init() was required ([Butenhof, 1996]). Given the later addition
of statically allocated mutexes, it is possible for a library function to perform
one-time initialization using a statically allocated mutex and a static Boolean
variable. Nevertheless, pthread_once() is retained as a convenience.

31.3 Thread-Specific Data

The most efficient way of making a function thread-safe is to make it reentrant. All
new library functions should be implemented in this way. However, for an existing
nonreentrant library function (one that was perhaps designed before the use of
threads became common), this approach usually requires changing the function’s
interface, which means modifying all of the programs that use the function.

Thread-specific data is a technique for making an existing function thread-safe
without changing its interface. A function that uses thread-specific data may be
slightly less efficient than a reentrant function, but allows us to leave the programs
that call the function unchanged.

Thread-specific data allows a function to maintain a separate copy of a variable
for each thread that calls the function, as illustrated in Figure 31-1. Thread-specific
data is persistent; each thread’s variable continues to exist between the thread’s
invocations of the function. This allows the function to maintain per-thread infor-
mation between calls to the function, and allows the function to pass distinct result
buffers (if required) to each calling thread.

Figure 31-1: Thread-specific data (TSD) provides per-thread storage for a function

Thread A
TSD buffer
for myfunc()
in thread A

TSD buffer
for myfunc()
in thread B

TSD buffer
for myfunc()
in thread C

Thread B

Thread C
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31.3.1 Thread-Specific Data from the Library Function’s Perspective
In order to understand the use of the thread-specific data API, we need to consider
things from the point of view of a library function that uses thread-specific data:

The function must allocate a separate block of storage for each thread that calls
the function. This block needs to be allocated once, the first time the thread
calls the function.

On each subsequent call from the same thread, the function needs to be able
to obtain the address of the storage block that was allocated the first time this
thread called the function. The function can’t maintain a pointer to the block
in an automatic variable, since automatic variables disappear when the func-
tion returns; nor can it store the pointer in a static variable, since only one
instance of each static variable exists in the process. The Pthreads API provides
functions to handle this task.

Different (i.e., independent) functions may each need thread-specific data.
Each function needs a method of identifying its thread-specific data (a key), as
distinct from the thread-specific data used by other functions.

The function has no direct control over what happens when the thread termi-
nates. When the thread terminates, it is probably executing code outside the
function. Nevertheless, there must be some mechanism (a destructor) to ensure
that the storage block allocated for this thread is automatically deallocated when
the thread terminates. If this is not done, then a memory leak could occur as
threads are continuously created, call the function, and then terminate.

31.3.2 Overview of the Thread-Specific Data API
The general steps that a library function performs in order to use thread-specific
data are as follows:

1. The function creates a key, which is the means of differentiating the thread-specific
data item used by this function from the thread-specific data items used by
other functions. The key is created by calling the pthread_key_create() function.
Creating a key needs to be done only once, when the first thread calls the function.
For this purpose, pthread_once() is employed. Creating a key doesn’t allocate
any blocks of thread-specific data.

2. The call to pthread_key_create() serves a second purpose: it allows the caller to
specify the address of the programmer-defined destructor function that is used
to deallocate each of the storage blocks allocated for this key (see the next
step). When a thread that has thread-specific data terminates, the Pthreads API
automatically invokes the destructor, passing it a pointer to the data block for
this thread.

3. The function allocates a thread-specific data block for each thread from which
it is called. This is done using malloc() (or a similar function). This allocation is
done once for each thread, the first time the thread calls the function.

4. In order to save a pointer to the storage allocated in the previous step, the func-
tion employs two Pthreads functions: pthread_setspecific() and pthread_getspecific().
A call to pthread_setspecific() is a request to the Pthreads implementation to say
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“save this pointer, recording the fact that it is associated with a particular key (the
one for this function) and a particular thread (the calling thread).” Calling
pthread_getspecific() performs the complementary task, returning the pointer pre-
viously associated with a given key for the calling thread. If no pointer was
previously associated with a particular key and thread, then pthread_getspecific()
returns NULL. This is how a function can determine that it is being called for the
first time by this thread, and thus must allocate the storage block for the thread.

31.3.3 Details of the Thread-Specific Data API
In this section, we provide details of each of the functions mentioned in the previ-
ous section, and elucidate the operation of thread-specific data by describing how it
is typically implemented. The next section shows how to use thread-specific data to
write a thread-safe implementation of the standard C library function strerror().

Calling pthread_key_create() creates a new thread-specific data key that is
returned to the caller in the buffer pointed to by key.

Because the returned key is used by all threads in the process, key should point to a
global variable.

The destructor argument points to a programmer-defined function of the fol-
lowing form:

void
dest(void *value)
{
    /* Release storage pointed to by 'value' */
}

Upon termination of a thread that has a non-NULL value associated with key, the
destructor function is automatically invoked by the Pthreads API and given that
value as its argument. The passed value is normally a pointer to this thread’s
thread-specific data block for this key. If a destructor is not required, then destructor
can be specified as NULL.

If a thread has multiple thread-specific data blocks, then the order in which the
destructors are called is unspecified. Destructor functions should be designed
to operate independently of one another.

Looking at the implementation of thread-specific data helps us to understand how
it is used. A typical implementation (NPTL is typical), involves the following arrays:

a single global (i.e., process-wide) array of information about thread-specific
data keys; and

#include <pthread.h>

int pthread_key_create(pthread_key_t *key, void (*destructor)(void *));

Returns 0 on success, or a positive error number on error
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a set of per-thread arrays, each containing pointers to all of the thread-specific
data blocks allocated for a particular thread (i.e., this array contains the point-
ers stored by calls to pthread_setspecific()).

In this implementation, the pthread_key_t value returned by pthread_key_create() is
simply an index into the global array, which we label pthread_keys, whose form is
shown in Figure 31-2. Each element of this array is a structure containing two
fields. The first field indicates whether this array element is in use (i.e., has been
allocated by a previous call to pthread_key_create()). The second field is used to store
the pointer to the destructor function for the thread-specific data blocks for this
key (i.e., it is a copy of the destructor argument to pthread_key_create()).

Figure 31-2: Implementation of thread-specific data keys

The pthread_setspecific() function requests the Pthreads API to save a copy of value
in a data structure that associates it with the calling thread and with key, a key
returned by a previous call to pthread_key_create(). The pthread_getspecific() function
performs the converse operation, returning the value that was previously associ-
ated with the given key for this thread.

The value argument given to pthread_setspecific() is normally a pointer to a block of
memory that has previously been allocated by the caller. This pointer will be passed
as the argument for the destructor function for this key when the thread terminates.

The value argument doesn’t need to be a pointer to a block of memory. It
could be some scalar value that can be assigned (with a cast) to void *. In this
case, the earlier call to pthread_key_create() would specify destructor as NULL.

Figure 31-3 shows a typical implementation of the data structure used to store
value. In this diagram, we assume that pthread_keys[1] was allocated to a function

#include <pthread.h>

int pthread_setspecific(pthread_key_t key, const void *value);

Returns 0 on success, or a positive error number on error

void *pthread_getspecific(pthread_key_t key);

Returns pointer, or NULL if no thread-specific data isassociated with key
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named myfunc(). For each thread, the Pthreads API maintains an array of pointers
to thread-specific data blocks. The elements of each of these thread-specific arrays
have a one-to-one correspondence with the elements of the global pthread_keys
array shown in Figure 31-2. The pthread_setspecific() function sets the element corre-
sponding to key in the array for the calling thread.

Figure 31-3: Data structure used to implement thread-specific data (TSD) pointers

When a thread is first created, all of its thread-specific data pointers are initialized
to NULL. This means that when our library function is called by a thread for the first
time, it must begin by using pthread_getspecific() to check whether the thread already
has an associated value for key. If it does not, then the function allocates a block of
memory and saves a pointer to the block using pthread_setspecific(). We show an
example of this in the thread-safe strerror() implementation presented in the next
section.

31.3.4 Employing the Thread-Specific Data API
When we first described the standard strerror() function in Section 3.4, we noted
that it may return a pointer to a statically allocated string as its function result. This
means that strerror() may not be thread-safe. In the next few pages, we look at a non-
thread-safe implementation of strerror(), and then show how thread-specific data
can be used to make this function thread-safe.
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On many UNIX implementations, including Linux, the strerror() function
provided by the standard C library is thread-safe. However, we use the example of
strerror() anyway, because SUSv3 doesn’t require this function to be thread-
safe, and its implementation provides a simple example of the use of thread-
specific data.

Listing 31-1 shows a simple non-thread-safe implementation of strerror(). This func-
tion makes use of a pair of global variables defined by glibc: _sys_errlist is an array of
pointers to strings corresponding to the error numbers in errno (thus, for example,
_sys_errlist[EINVAL] points to the string Invalid operation), and _sys_nerr specifies
the number of elements in _sys_errlist.

Listing 31-1: An implementation of strerror() that is not thread-safe

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– threads/strerror.c

#define _GNU_SOURCE                 /* Get '_sys_nerr' and '_sys_errlist'
                                       declarations from <stdio.h> */
#include <stdio.h>
#include <string.h>                 /* Get declaration of strerror() */

#define MAX_ERROR_LEN 256           /* Maximum length of string
                                       returned by strerror() */

static char buf[MAX_ERROR_LEN];     /* Statically allocated return buffer */

char *
strerror(int err)
{
    if (err < 0 || err >= _sys_nerr || _sys_errlist[err] == NULL) {
        snprintf(buf, MAX_ERROR_LEN, "Unknown error %d", err);
    } else {
        strncpy(buf, _sys_errlist[err], MAX_ERROR_LEN - 1);
        buf[MAX_ERROR_LEN - 1] = '\0';          /* Ensure null termination */
    }

    return buf;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– threads/strerror.c

We can use the program in Listing 31-2 to demonstrate the consequences of the
fact that the strerror() implementation in Listing 31-1 is not thread-safe. This pro-
gram calls strerror() from two different threads, but displays the returned value only
after both threads have called strerror(). Even though each thread specifies a differ-
ent value (EINVAL and EPERM) as the argument to strerror(), this is what we see when we
compile and link this program with the version of strerror() shown in Listing 31-1:

$ ./strerror_test
Main thread has called strerror()
Other thread about to call strerror()
Other thread: str (0x804a7c0) = Operation not permitted
Main thread:  str (0x804a7c0) = Operation not permitted
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Both threads displayed the errno string corresponding to EPERM, because the call to
strerror() by the second thread (in threadFunc) overwrote the buffer that was written
by the call to strerror() in the main thread. Inspection of the output shows that the
local variable str in the two threads points to the same memory address.

Listing 31-2: Calling strerror() from two different threads

––––––––––––––––––––––––––––––––––––––––––––––––––– threads/strerror_test.c

#include <stdio.h>
#include <string.h>                 /* Get declaration of strerror() */
#include <pthread.h>
#include "tlpi_hdr.h"

static void *
threadFunc(void *arg)
{
    char *str;

    printf("Other thread about to call strerror()\n");
    str = strerror(EPERM);
    printf("Other thread: str (%p) = %s\n", str, str);

    return NULL;
}

int
main(int argc, char *argv[])
{
    pthread_t t;
    int s;
    char *str;

    str = strerror(EINVAL);
    printf("Main thread has called strerror()\n");

    s = pthread_create(&t, NULL, threadFunc, NULL);
    if (s != 0)
        errExitEN(s, "pthread_create");

    s = pthread_join(t, NULL);
    if (s != 0)
        errExitEN(s, "pthread_join");

    printf("Main thread:  str (%p) = %s\n", str, str);

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––– threads/strerror_test.c

Listing 31-3 shows a reimplementation of strerror() that uses thread-specific data to
ensure thread safety.

The first step performed by the revised strerror() is to call pthread_once() r to
ensure that the first invocation of this function (from any thread) calls createKey() w.
The createKey() function calls pthread_key_create() to allocate a thread-specific data
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key that is stored in the global variable strerrorKey e. The call to pthread_key_create()
also records the address of the destructor q that will be used to free the thread-specific
buffers corresponding to this key.

The strerror() function then calls pthread_getspecific() t to retrieve the address of
this thread’s unique buffer corresponding to strerrorKey. If pthread_getspecific() returns
NULL, then this thread is calling strerror() for the first time, and so the function allo-
cates a new buffer using malloc() y, and saves the address of the buffer using
pthread_setspecific() u. If the pthread_getspecific() call returns a non-NULL value, then
that pointer refers to an existing buffer that was allocated when this thread previously
called strerror().

The remainder of this strerror() implementation is similar to the implementa-
tion that we showed earlier, with the difference that buf is the address of a thread-
specific data buffer, rather than a static variable.

Listing 31-3: A thread-safe implementation of strerror() using thread-specific data

––––––––––––––––––––––––––––––––––––––––––––––––––––  threads/strerror_tsd.c
#define _GNU_SOURCE             /* Get '_sys_nerr' and '_sys_errlist'
                                   declarations from <stdio.h> */
#include <stdio.h>
#include <string.h>             /* Get declaration of strerror() */
#include <pthread.h>
#include "tlpi_hdr.h"

static pthread_once_t once = PTHREAD_ONCE_INIT;
static pthread_key_t strerrorKey;

#define MAX_ERROR_LEN 256       /* Maximum length of string in per-thread
                                   buffer returned by strerror() */

static void                     /* Free thread-specific data buffer */
q destructor(void *buf)

{
    free(buf);
}

static void                     /* One-time key creation function */
w createKey(void)

{
    int s;

    /* Allocate a unique thread-specific data key and save the address
       of the destructor for thread-specific data buffers */

e     s = pthread_key_create(&strerrorKey, destructor);
    if (s != 0)
        errExitEN(s, "pthread_key_create");
}
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char *
strerror(int err)
{
    int s;
    char *buf;

    /* Make first caller allocate key for thread-specific data */

r     s = pthread_once(&once, createKey);
    if (s != 0)
        errExitEN(s, "pthread_once");

t     buf = pthread_getspecific(strerrorKey);
    if (buf == NULL) {          /* If first call from this thread, allocate
                                   buffer for thread, and save its location */

y         buf = malloc(MAX_ERROR_LEN);
        if (buf == NULL)
            errExit("malloc");

u         s = pthread_setspecific(strerrorKey, buf);
        if (s != 0)
            errExitEN(s, "pthread_setspecific");
    }

    if (err < 0 || err >= _sys_nerr || _sys_errlist[err] == NULL) {
        snprintf(buf, MAX_ERROR_LEN, "Unknown error %d", err);
    } else {
        strncpy(buf, _sys_errlist[err], MAX_ERROR_LEN - 1);
        buf[MAX_ERROR_LEN - 1] = '\0';          /* Ensure null termination */
    }

    return buf;
}

––––––––––––––––––––––––––––––––––––––––––––––––––––  threads/strerror_tsd.c

If we compile and link our test program (Listing 31-2) with the new version of
strerror() (Listing 31-3) to create an executable file, strerror_test_tsd, then we see
the following results when running the program:

$ ./strerror_test_tsd
Main thread has called strerror()
Other thread about to call strerror()
Other thread: str (0x804b158) = Operation not permitted
Main thread:  str (0x804b008) = Invalid argument

From this output, we see that the new version of strerror() is thread-safe. We also see
that the address pointed to by the local variable str in the two threads is different.
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31.3.5 Thread-Specific Data Implementation Limits
As implied by our description of how thread-specific data is typically implemented,
an implementation may need to impose limits on the number of thread-specific
data keys that it supports. SUSv3 requires that an implementation support at least 128
(_POSIX_THREAD_KEYS_MAX) keys. An application can determine how many keys an
implementation actually supports either via the definition of PTHREAD_KEYS_MAX
(defined in <limits.h>) or by calling sysconf(_SC_THREAD_KEYS_MAX). Linux
supports up to 1024 keys.

Even 128 keys should be more than sufficient for most applications. This is
because each library function should employ only a small number of keys—often
just one. If a function requires multiple thread-specific data values, these can usually
be placed in a single structure that has just one associated thread-specific data key.

31.4 Thread-Local Storage

Like thread-specific data, thread-local storage provides persistent per-thread stor-
age. This feature is nonstandard, but it is provided in the same or a similar form on
many other UNIX implementations (e.g., Solaris and FreeBSD).

The main advantage of thread-local storage is that it is much simpler to use
than thread-specific data. To create a thread-local variable, we simply include the
__thread specifier in the declaration of a global or static variable:

static __thread buf[MAX_ERROR_LEN];

Each thread has its own copy of the variables declared with this specifier. The vari-
ables in a thread’s thread-local storage persist until the thread terminates, at which
time the storage is automatically deallocated.

Note the following points about the declaration and use of thread-local variables:

The __thread keyword must immediately follow the static or extern keyword, if
either of these is specified in the variable’s declaration.

The declaration of a thread-local variable can include an initializer, in the same
manner as a normal global or static variable declaration.

The C address (&) operator can be used to obtain the address of a thread-local
variable.

Thread-local storage requires support from the kernel (provided in Linux 2.6), the
Pthreads implementation (provided in NPTL), and the C compiler (provided on
x86-32 with gcc 3.3 and later).

Listing 31-4 shows a thread-safe implementation of strerror() using thread-local
storage. If we compile and link our test program (Listing 31-2) with this version of
strerror() to create an executable file, strerror_test_tls, then we see the following
results when running the program:

$ ./strerror_test_tls
Main thread has called strerror()
Other thread about to call strerror()
Other thread: str (0x40376ab0) = Operation not permitted
Main thread:  str (0x40175080) = Invalid argument
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Listing 31-4: A thread-safe implementation of strerror() using thread-local storage

––––––––––––––––––––––––––––––––––––––––––––––––––––  threads/strerror_tls.c
#define _GNU_SOURCE                 /* Get '_sys_nerr' and '_sys_errlist'
                                       declarations from <stdio.h> */
#include <stdio.h>
#include <string.h>                 /* Get declaration of strerror() */
#include <pthread.h>

#define MAX_ERROR_LEN 256           /* Maximum length of string in per-thread
                                       buffer returned by strerror() */

static __thread char buf[MAX_ERROR_LEN];
                                    /* Thread-local return buffer */

char *
strerror(int err)
{
    if (err < 0 || err >= _sys_nerr || _sys_errlist[err] == NULL) {
        snprintf(buf, MAX_ERROR_LEN, "Unknown error %d", err);
    } else {
        strncpy(buf, _sys_errlist[err], MAX_ERROR_LEN - 1);
        buf[MAX_ERROR_LEN - 1] = '\0';          /* Ensure null termination */
    }

    return buf;
}

––––––––––––––––––––––––––––––––––––––––––––––––––––– threads/strerror_tls.c

31.5 Summary

A function is said to be thread-safe if it can safely be invoked from multiple threads
at the same time. The usual reason a function is not thread-safe is that it makes use
of global or static variables. One way to render a non-thread-safe function safe in a
multithreaded application is to guard all calls to the function with a mutex lock.
This approach suffers the problem that it reduces concurrency, because only one
thread can be in the function at any time. An approach that allows greater concur-
rency is to add mutex locks around just those parts of the function that manipulate
shared variables (the critical sections).

Mutexes can be used to render most functions thread-safe, but they carry a per-
formance penalty because there is a cost to locking and unlocking a mutex. By
avoiding the use of global and static variables, a reentrant function achieves thread-
safety without the use of mutexes.

Most of the functions specified in SUSv3 are required to be thread-safe. SUSv3
also lists a small set of functions that are not required to be thread-safe. Typically,
these are functions that employ static storage to return information to the caller or
to maintain information between successive calls. By definition, such functions are
not reentrant, and mutexes can’t be used to make them thread-safe. We considered
two roughly equivalent coding techniques—thread-specific data and thread-local
storage—that can be used to render an unsafe function thread-safe without needing
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to change its interface. Both of these techniques allow a function to allocate persis-
tent, per-thread storage.

Further information

Refer to the sources of further information listed in Section 29.10.

31.6 Exercises

31-1. Implement a function, one_time_init(control, init), that performs the equivalent of
pthread_once(). The control argument should be a pointer to a statically allocated
structure containing a Boolean variable and a mutex. The Boolean variable
indicates whether the function init has already been called, and the mutex controls
access to that variable. To keep the implementation simple, you can ignore
possibilities such as init() failing or being canceled when first called from a thread
(i.e., it is not necessary to devise a scheme whereby, if such an event occurs, the
next thread that calls one_time_init() reattempts the call to init()).

31-2. Use thread-specific data to write thread-safe versions of dirname() and basename()
(Section 18.14).
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T H R E A D S :  T H R E A D  C A N C E L L A T I O N

Typically, multiple threads execute in parallel, with each thread performing its task
until it decides to terminate by calling pthread_exit() or returning from the thread’s
start function.

Sometimes, it can be useful to cancel a thread; that is, to send it a request asking
it to terminate now. This could be useful, for example, if a group of threads is per-
forming a calculation, and one thread detects an error condition that requires the
other threads to terminate. Alternatively, a GUI-driven application may provide a
cancel button to allow the user to terminate a task that is being performed by a thread
in the background; in this case, the main thread (controlling the GUI) needs to tell
the background thread to terminate.

In this chapter, we describe the POSIX threads cancellation mechanism.

32.1 Canceling a Thread

The pthread_cancel() function sends a cancellation request to the specified thread. 

#include <pthread.h>

int pthread_cancel(pthread_t thread);

Returns 0 on success, or a positive error number on error



Having made the cancellation request, pthread_cancel() returns immediately; that is,
it doesn’t wait for the target thread to terminate.

Precisely what happens to the target thread, and when it happens, depends on
that thread’s cancellation state and type, as described in the next section.

32.2 Cancellation State and Type

The pthread_setcancelstate() and pthread_setcanceltype() functions set flags that allow a
thread to control how it responds to a cancellation request.

The pthread_setcancelstate() function sets the calling thread’s cancelability state to
the value given in state. This argument has one of the following values:

PTHREAD_CANCEL_DISABLE

The thread is not cancelable. If a cancellation request is received, it
remains pending until cancelability is enabled.

PTHREAD_CANCEL_ENABLE

The thread is cancelable. This is the default cancelability state in newly cre-
ated threads.

The thread’s previous cancelability state is returned in the location pointed to by
oldstate.

If we are not interested in the previous cancelability state, Linux allows oldstate
to be specified as NULL. This is the case on many other implementations as well;
however, SUSv3 doesn’t specify this feature, so portable applications can’t rely
on it. We should always specify a non-NULL value for oldstate.

Temporarily disabling cancellation (PTHREAD_CANCEL_DISABLE) is useful if a thread is
executing a section of code where all of the steps must be completed.

If a thread is cancelable (PTHREAD_CANCEL_ENABLE), then the treatment of a cancel-
lation request is determined by the thread’s cancelability type, which is specified by
the type argument in a call to pthread_setcanceltype(). This argument has one of the
following values:

PTHREAD_CANCEL_ASYNCHRONOUS

The thread may be canceled at any time (perhaps, but not necessarily,
immediately). Asynchronous cancelability is rarely useful, and we defer
discussion of it until Section 32.6.

PTHREAD_CANCEL_DEFERRED

The cancellation remains pending until a cancellation point (see the next
section) is reached. This is the default cancelability type in newly created
threads. We say more about deferred cancelability in the following sections.

#include <pthread.h>

int pthread_setcancelstate(int state, int *oldstate);
int pthread_setcanceltype(int type, int *oldtype);

Both return 0 on success, or a positive error number on error
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The thread’s previous cancelability type is returned in the location pointed to by
oldtype.

As with the pthread_setcancelstate() oldstate argument, many implementations,
including Linux, allow oldtype to be specified as NULL if we are not interested in
the previous cancelability type. Again, SUSv3 doesn’t specify this feature, and
portable applications can’t rely on it We should always specify a non-NULL value
for oldtype.

When a thread calls fork(), the child inherits the calling thread’s cancelability type and
state. When a thread calls exec(), the cancelability type and state of the main thread of
the new program are reset to PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DEFERRED,
respectively.

32.3 Cancellation Points

When cancelability is enabled and deferred, a cancellation request is acted upon
only when a thread next reaches a cancellation point. A cancellation point is a call to
one of a set of functions defined by the implementation.

SUSv3 specifies that the functions shown in Table 32-1 must be cancellation
points if they are provided by an implementation. Most of these are functions that
are capable of blocking the thread for an indefinite period of time.

In addition to the functions in Table 32-1, SUSv3 specifies a larger group of func-
tions that an implementation may define as cancellation points. These include the
stdio functions, the dlopen API, the syslog API, nftw(), popen(), semop(), unlink(), and

Table 32-1: Functions required to be cancellation points by SUSv3

accept()
aio_suspend()
clock_nanosleep()
close()
connect()
creat()
fcntl(F_SETLKW)
fsync()
fdatasync()
getmsg()
getpmsg()
lockf(F_LOCK)
mq_receive()
mq_send()
mq_timedreceive()
mq_timedsend()
msgrcv()
msgsnd()
msync()

nanosleep()
open()
pause()
poll()
pread()
pselect()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_join()
pthread_testcancel()
putmsg()
putpmsg()
pwrite()
read()
readv()
recv()
recvfrom()
recvmsg()
select()

sem_timedwait()
sem_wait()
send()
sendmsg()
sendto()
sigpause()
sigsuspend()
sigtimedwait()
sigwait()
sigwaitinfo()
sleep()
system()
tcdrain()
usleep()
wait()
waitid()
waitpid()
write()
writev()
Threads: Thread Cancel la t ion 673



various functions that retrieve information from system files such as the utmp file.
A portable program must correctly handle the possibility that a thread may be can-
celed when calling these functions.

SUSv3 specifies that aside from the two lists of functions that must and may be
cancellation points, none of the other functions in the standard may act as cancella-
tion points (i.e., a portable program doesn’t need to handle the possibility that call-
ing these other functions could precipitate thread cancellation).

SUSv4 adds openat() to the list of functions that must be cancellation points,
and removes sigpause() (it moves to the list of functions that may be cancellation
points) and usleep() (which is dropped from the standard).

An implementation is free to mark additional functions that are not specified
in the standard as cancellation points. Any function that might block (perhaps
because it might access a file) is a likely candidate to be a cancellation point.
Within glibc, many nonstandard functions are marked as cancellation points
for this reason.

Upon receiving a cancellation request, a thread whose cancelability is enabled and
deferred terminates when it next reaches a cancellation point. If the thread was not
detached, then some other thread in the process must join with it, in order to prevent it
from becoming a zombie thread. When a canceled thread is joined, the value
returned in the second argument to pthread_join() is a special thread return value:
PTHREAD_CANCELED.

Example program

Listing 32-1 shows a simple example of the use of pthread_cancel(). The main pro-
gram creates a thread that executes an infinite loop, sleeping for a second and
printing the value of a loop counter. (This thread will terminate only if it is sent a
cancellation request or if the process exits.) Meanwhile, the main program sleeps
for 3 seconds, and then sends a cancellation request to the thread that it created.
When we run this program, we see the following:

$ ./t_pthread_cancel
New thread started
Loop 1
Loop 2
Loop 3
Thread was canceled

Listing 32-1: Canceling a thread with pthread_cancel()
––––––––––––––––––––––––––––––––––––––––––––––––––– threads/thread_cancel.c

#include <pthread.h>
#include "tlpi_hdr.h"

static void *
threadFunc(void *arg)
{
    int j;
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    printf("New thread started\n");     /* May be a cancellation point */
    for (j = 1; ; j++) {
        printf("Loop %d\n", j);         /* May be a cancellation point */
        sleep(1);                       /* A cancellation point */
    }

    /* NOTREACHED */
    return NULL;
}

int
main(int argc, char *argv[])
{
    pthread_t thr;
    int s;
    void *res;

    s = pthread_create(&thr, NULL, threadFunc, NULL);
    if (s != 0)
        errExitEN(s, "pthread_create");

    sleep(3);                           /* Allow new thread to run a while */

    s = pthread_cancel(thr);
    if (s != 0)
        errExitEN(s, "pthread_cancel");

    s = pthread_join(thr, &res);
    if (s != 0)
        errExitEN(s, "pthread_join");

    if (res == PTHREAD_CANCELED)
        printf("Thread was canceled\n");
    else
        printf("Thread was not canceled (should not happen!)\n");

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––– threads/thread_cancel.c

32.4 Testing for Thread Cancellation

In Listing 32-1, the thread created by main() accepted the cancellation request
because it executed a function that was a cancellation point (sleep() is a cancellation
point; printf() may be one). However, suppose a thread executes a loop that con-
tains no cancellation points (e.g., a compute-bound loop). In this case, the thread
would never honor the cancellation request.

The purpose of pthread_testcancel() is simply to be a cancellation point. If a can-
cellation is pending when this function is called, then the calling thread is terminated.
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A thread that is executing code that does not otherwise include cancellation points
can periodically call pthread_testcancel() to ensure that it responds in a timely fash-
ion to a cancellation request sent by another thread.

32.5 Cleanup Handlers

If a thread with a pending cancellation were simply terminated when it reached a
cancellation point, then shared variables and Pthreads objects (e.g., mutexes)
might be left in an inconsistent state, perhaps causing the remaining threads in the
process to produce incorrect results, deadlock, or crash. To get around this problem,
a thread can establish one or more cleanup handlers—functions that are automati-
cally executed if the thread is canceled. A cleanup handler can perform tasks such
as modifying the values of global variables and unlocking mutexes before the
thread is terminated.

Each thread can have a stack of cleanup handlers. When a thread is canceled,
the cleanup handlers are executed working down from the top of the stack; that is,
the most recently established handler is called first, then the next most recently
established, and so on. When all of the cleanup handlers have been executed, the
thread terminates.

The pthread_cleanup_push() and pthread_cleanup_pop() functions respectively
add and remove handlers on the calling thread’s stack of cleanup handlers.

The pthread_cleanup_push() function adds the function whose address is specified
in routine to the top of the calling thread’s stack of cleanup handlers. The routine
argument is a pointer to a function that has the following form:

void
routine(void *arg)
{
    /* Code to perform cleanup */
}

The arg value given to pthread_cleanup_push() is passed as the argument of the
cleanup handler when it is invoked. This argument is typed as void *, but, using
judicious casting, other data types can be passed in this argument.

Typically, a cleanup action is needed only if a thread is canceled during the exe-
cution of a particular section of code. If the thread reaches the end of that section
without being canceled, then the cleanup action is no longer required. Thus, each

#include <pthread.h>

void pthread_testcancel(void);

#include <pthread.h>

void pthread_cleanup_push(void (*routine)(void*), void *arg);
void pthread_cleanup_pop(int execute);
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call to pthread_cleanup_push() has an accompanying call to pthread_cleanup_pop().
This function removes the topmost function from the stack of cleanup handlers. If
the execute argument is nonzero, the handler is also executed. This is convenient if
we want to perform the cleanup action even if the thread was not canceled.

Although we have described pthread_cleanup_push() and pthread_cleanup_pop()
as functions, SUSv3 permits them to be implemented as macros that expand to
statement sequences that include an opening ({) and closing (}) brace, respectively.
Not all UNIX implementations do things this way, but Linux and many others do.
This means that each use of pthread_cleanup_push() must be paired with exactly one
corresponding pthread_cleanup_pop() in the same lexical block. (On implementa-
tions that do things this way, variables declared between the pthread_cleanup_push()
and pthread_cleanup_pop() will be limited to that lexical scope.) For example, it is
not correct to write code such as the following:

pthread_cleanup_push(func, arg);
...
if (cond) {
    pthread_cleanup_pop(0);
}

As a coding convenience, any cleanup handlers that have not been popped are also
executed automatically if a thread terminates by calling pthread_exit() (but not if it
does a simple return).

Example program

The program in Listing 32-2 provides a simple example of the use of a cleanup han-
dler. The main program creates a thread i whose first actions are to allocate a
block of memory e whose location is stored in buf, and then lock the mutex mtx r.
Since the thread may be canceled, it uses pthread_cleanup_push() t to install a
cleanup handler that is called with the address stored in buf. If it is invoked,
the cleanup handler deallocates the freed memory q and unlocks the mutex w.

The thread then enters a loop waiting for the condition variable cond to be sig-
naled y. This loop will terminate in one of two ways, depending on whether the
program is supplied with a command-line argument:

If no command-line argument is supplied, the thread is canceled by main() o.
In this case, cancellation will occur at the call to pthread_cond_wait() y, which is
one of the cancellation points shown in Table 32-1. As part of cancellation, the
cleanup handler established using pthread_cleanup_push() is invoked automatically.

If a command-line argument is supplied, the condition variable is signaled a
after the associated global variable, glob, is first set to a nonzero value. In this
case, the thread falls through to execute pthread_cleanup_pop() u, which, given
a nonzero argument, also causes the cleanup handler to be invoked.

The main program joins with the terminated thread s, and reports whether the
thread was canceled or terminated normally.
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Listing 32-2: Using cleanup handlers
–––––––––––––––––––––––––––––––––––––––––––––––––– threads/thread_cleanup.c

#include <pthread.h>
#include "tlpi_hdr.h"

static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static int glob = 0;            /* Predicate variable */

static void     /* Free memory pointed to by 'arg' and unlock mutex */
cleanupHandler(void *arg)
{
    int s;

    printf("cleanup: freeing block at %p\n", arg);
q     free(arg);

    printf("cleanup: unlocking mutex\n");
w     s = pthread_mutex_unlock(&mtx);

    if (s != 0)
        errExitEN(s, "pthread_mutex_unlock");
}

static void *
threadFunc(void *arg)
{
    int s;
    void *buf = NULL;                   /* Buffer allocated by thread */

e     buf = malloc(0x10000);              /* Not a cancellation point */
    printf("thread:  allocated memory at %p\n", buf);

r     s = pthread_mutex_lock(&mtx);       /* Not a cancellation point */
    if (s != 0)
        errExitEN(s, "pthread_mutex_lock");

t     pthread_cleanup_push(cleanupHandler, buf);

    while (glob == 0) {
y         s = pthread_cond_wait(&cond, &mtx);    /* A cancellation point */

        if (s != 0)
            errExitEN(s, "pthread_cond_wait");
    }

    printf("thread:  condition wait loop completed\n");
u     pthread_cleanup_pop(1);             /* Executes cleanup handler */

    return NULL;
}

int
main(int argc, char *argv[])
{
    pthread_t thr;
    void *res;
    int s;
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i     s = pthread_create(&thr, NULL, threadFunc, NULL);
    if (s != 0)
        errExitEN(s, "pthread_create");

    sleep(2);                   /* Give thread a chance to get started */

    if (argc == 1) {            /* Cancel thread */
        printf("main:    about to cancel thread\n");

o         s = pthread_cancel(thr);
        if (s != 0)
            errExitEN(s, "pthread_cancel");

    } else {                    /* Signal condition variable */
        printf("main:    about to signal condition variable\n");
        glob = 1;

a         s = pthread_cond_signal(&cond);
        if (s != 0)
            errExitEN(s, "pthread_cond_signal");
    }

s     s = pthread_join(thr, &res);
    if (s != 0)
        errExitEN(s, "pthread_join");
    if (res == PTHREAD_CANCELED)
        printf("main:    thread was canceled\n");
    else
        printf("main:    thread terminated normally\n");

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––– threads/thread_cleanup.c

If we invoke the program in Listing 32-2 without any command-line arguments,
then main() calls pthread_cancel(), the cleanup handler is invoked automatically, and
we see the following:

$ ./thread_cleanup
thread:  allocated memory at 0x804b050
main:    about to cancel thread
cleanup: freeing block at 0x804b050
cleanup: unlocking mutex
main:    thread was canceled

If we invoke the program with a command-line argument, then main() sets glob to 1 and
signals the condition variable, the cleanup handler is invoked by pthread_cleanup_pop(),
and we see the following:

$ ./thread_cleanup s
thread:  allocated memory at 0x804b050
main:    about to signal condition variable
thread:  condition wait loop completed
cleanup: freeing block at 0x804b050
cleanup: unlocking mutex
main:    thread terminated normally
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32.6 Asynchronous Cancelability

When a thread is made asynchronously cancelable (cancelability type
PTHREAD_CANCEL_ASYNCHRONOUS), it may be canceled at any time (i.e., at any machine-
language instruction); delivery of a cancellation is not held off until the thread next
reaches a cancellation point.

The problem with asynchronous cancellation is that, although cleanup handlers
are still invoked, the handlers have no way of determining the state of a thread. In
the program in Listing 32-2, which employs the deferred cancelability type, the
thread can be canceled only when it executes the call to pthread_cond_wait(), which
is the only cancellation point. By this time, we know that buf has been initialized to
point to a block of allocated memory and that the mutex mtx has been locked. How-
ever, with asynchronous cancelability, the thread could be canceled at any point;
for example, before the malloc() call, between the malloc() call and locking the
mutex, or after locking the mutex. The cleanup handler has no way of knowing
where cancellation has occurred, or precisely which cleanup steps are required.
Furthermore, the thread might even be canceled during the malloc() call, after
which chaos is likely to result (Section 7.1.3).

As a general principle, an asynchronously cancelable thread can’t allocate any
resources or acquire any mutexes, semaphores, or locks. This precludes the use of a
wide range of library functions, including most of the Pthreads functions. (SUSv3
makes exceptions for pthread_cancel(), pthread_setcancelstate(), and pthread_setcanceltype(),
which are explicitly required to be async-cancel-safe; that is, an implementation must
make them safe to call from a thread that is asynchronously cancelable.) In other
words, there are few circumstances where asynchronous cancellation is useful. One
such circumstance is canceling a thread that is in a compute-bound loop.

32.7 Summary

The pthread_cancel() function allows one thread to send another thread a cancella-
tion request, which is a request that the target thread should terminate.

How the target thread reacts to this request is determined by its cancelability
state and type. If the cancelability state is currently set to disabled, the request will
remain pending until the cancelability state is set to enabled. If cancelability is
enabled, the cancelability type determines when the target thread reacts to the
request. If the type is deferred, the cancellation occurs when the thread next calls
one of a number of functions specified as cancellation points by SUSv3. If the type
is asynchronous, cancellation may occur at any time (this is rarely useful).

A thread can establish a stack of cleanup handlers, which are programmer-
defined functions that are invoked automatically to perform cleanups (e.g., restoring
the states of shared variables, or unlocking mutexes) if the thread is canceled.

Further information

Refer to the sources of further information listed in Section 29.10.
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T H R E A D S :  F U R T H E R  D E T A I L S

This chapter provides further details on various aspects of POSIX threads. We dis-
cuss the interaction of threads with aspects of the traditional UNIX API—in particu-
lar, signals and the process control primitives (fork(), exec(), and _exit()). We also
provide an overview of the two POSIX threads implementations available on
Linux—LinuxThreads and NPTL—and note where each of these implementations
deviates from the SUSv3 specification of Pthreads.

33.1 Thread Stacks

Each thread has its own stack whose size is fixed when the thread is created. On
Linux/x86-32, for all threads other than the main thread, the default size of the
per-thread stack is 2 MB. (On some 64-bit architectures, the default size is higher;
for example, it is 32 MB on IA-64.) The main thread has a much larger space for
stack growth (refer to Figure 29-1, on page 618).

Occasionally, it is useful to change the size of a thread’s stack. The
pthread_attr_setstacksize() function sets a thread attribute (Section 29.8) that deter-
mines the size of the stack in threads created using the thread attributes object. The
related pthread_attr_setstack() function can be used to control both the size and the
location of the stack, but setting the location of a stack can decrease application
portability. The manual pages provide details of these functions.

One reason to change the size of per-thread stacks is to allow for larger stacks
for threads that allocate large automatic variables or make nested function calls of



great depth (perhaps because of recursion). Alternatively, an application may want
to reduce the size of per-thread stacks to allow for a greater number of threads
within a process. For example, on x86-32, where the user-accessible virtual address
space is 3 GB, the default stack size of 2 MB means that we can create a maximum
of around 1500 threads. (The precise maximum depends on how much virtual
memory is consumed by the text and data segments, shared libraries, and so on.)
The minimum stack that can be employed on a particular architecture can be
determined by calling sysconf(_SC_THREAD_STACK_MIN). For the NPTL imple-
mentation on Linux/x86-32, this call returns the value 16,384.

Under the NPTL threading implementation, if the stack size resource limit
(RLIMIT_STACK) is set to anything other than unlimited, then it is used as the
default stack size when creating new threads. This limit must be set before the
program is executed, typically by using the ulimit –s shell built-in command
(limit stacksize in the C shell) before executing the program. It is not sufficient
to use setrlimit() within the main program to set the limit, because NPTL makes
its determination of the default stack size during the run-time initialization
that occurs before main() is invoked.

33.2 Threads and Signals

The UNIX signal model was designed with the UNIX process model in mind, and
predated the arrival of Pthreads by a couple of decades. As a result, there are some
significant conflicts between the signal and thread models. These conflicts arose
primarily from the need to maintain the traditional signal semantics for single-
threaded processes (i.e., the signal semantics of traditional programs should not be
changed by Pthreads), while at the same time developing a signal model that would
be usable within a multithreaded process.

The differences between the signal and thread models mean that combining
signals and threads is complex, and should be avoided whenever possible. Never-
theless, sometimes we must deal with signals in a threaded program. In this section,
we discuss the interactions between threads and signals, and describe various functions
that are useful in threaded programs that deal with signals.

33.2.1 How the UNIX Signal Model Maps to Threads
To understand how UNIX signals map to the Pthreads model, we need to know
which aspects of the signal model are process-wide (i.e., are shared by all of the
threads in the process) as opposed to those aspects that are specific to individual
threads within the process. The following list summarizes the key points:

Signal actions are process-wide. If any unhandled signal whose default action is
stop or terminate is delivered to any thread in a process, then all of the threads
in the process are stopped or terminated.

Signal dispositions are process-wide; all threads in a process share the same dis-
position for each signal. If one thread uses sigaction() to establish a handler for,
say, SIGINT, then that handler may be invoked from any thread to which the
SIGINT is delivered. Similarly, if one thread sets the disposition of a signal to
ignore, then that signal is ignored by all threads.
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A signal may be directed to either the process as a whole or to a specific thread. A
signal is thread-directed if:

– it is generated as the direct result of the execution of a specific hardware
instruction within the context of the thread (i.e., the hardware exceptions
described in Section 22.4: SIGBUS, SIGFPE, SIGILL, and SIGSEGV);

– it is a SIGPIPE signal generated when the thread tried to write to a broken
pipe; or

– it is sent using pthread_kill() or pthread_sigqueue(), which are functions
(described in Section 33.2.3) that allow one thread to send a signal to
another thread within the same process.

All signals generated by other mechanisms are process-directed. Examples are
signals sent from another process using kill() or sigqueue(); signals such as
SIGINT and SIGTSTP, generated when the user types one of the terminal special
characters that generate a signal; and signals generated for software events
such as the resizing of a terminal window (SIGWINCH) or the expiration of a timer
(e.g., SIGALRM).

When a signal is delivered to a multithreaded process that has established a sig-
nal handler, the kernel arbitrarily selects one thread in the process to which to
deliver the signal and invokes the handler in that thread. This behavior is con-
sistent with maintaining the traditional signal semantics. It would not make
sense for a process to perform the signal handling actions multiple times in
response to a single signal.

The signal mask is per-thread. (There is no notion of a process-wide signal
mask that governs all threads in a multithreaded process.) Threads can inde-
pendently block or unblock different signals using pthread_sigmask(), a new
function defined by the Pthreads API. By manipulating the per-thread signal
masks, an application can control which thread(s) may handle a signal that is
directed to the whole process.

The kernel maintains a record of the signals that are pending for the process as a
whole, as well as a record of the signals that are pending for each thread. A call to
sigpending() returns the union of the set of signals that are pending for the pro-
cess and those that are pending for the calling thread. In a newly created thread,
the per-thread set of pending signals is initially empty. A thread-directed signal
can be delivered only to the target thread. If the thread is blocking the signal, it
will remain pending until the thread unblocks the signal (or terminates).

If a signal handler interrupts a call to pthread_mutex_lock(), then the call is always
automatically restarted. If a signal handler interrupts a call to pthread_cond_wait(),
then the call either is restarted automatically (this is what Linux does) or
returns 0, indicating a spurious wake-up (in which case a well-designed applica-
tion will recheck the corresponding predicate and restart the call, as described
in Section 30.2.3). SUSv3 requires these two functions to behave as described here.

The alternate signal stack is per-thread (refer to the description of sigaltstack()
in Section 21.3). A newly created thread doesn’t inherit the alternate signal
stack from its creator.
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More precisely, SUSv3 specifies that there is a separate alternate signal stack
for each kernel scheduling entity (KSE). On a system with a 1:1 threading
implementation, as on Linux, there is one KSE per thread (see Section 33.4).

33.2.2 Manipulating the Thread Signal Mask
When a new thread is created, it inherits a copy of the signal mask of the thread
that created it. A thread can use pthread_sigmask() to change its signal mask, to retrieve
the existing mask, or both.

Other than the fact that it operates on the thread signal mask, the use of
pthread_sigmask() is the same as the use of sigprocmask() (Section 20.10).

SUSv3 notes that the use of sigprocmask() within a multithreaded program is
unspecified. We can’t portably employ sigprocmask() in a multithreaded pro-
gram. In practice, sigprocmask() and pthread_sigmask() are identical on many
implementations, including Linux.

33.2.3 Sending a Signal to a Thread
The pthread_kill() function sends the signal sig to another thread in the same process.
The target thread is identified by the argument thread.

Because a thread ID is guaranteed to be unique only within a process (see
Section 29.5), we can’t use pthread_kill() to send a signal to a thread in another
process.

The pthread_kill() function is implemented using the Linux-specific tgkill(tgid,
tid, sig) system call, which sends the signal sig to the thread identified by tid (a
kernel thread ID of the type returned by gettid()) within the thread group iden-
tified by tgid. See the tgkill(2) manual page for further details.

The Linux-specific pthread_sigqueue() function combines the functionality of
pthread_kill() and sigqueue() (Section 22.8.1): it sends a signal with accompanying
data to another thread in the same process.

#include <signal.h>

int pthread_sigmask(int how, const sigset_t *set, sigset_t *oldset);

Returns 0 on success, or a positive error number on error

#include <signal.h>

int pthread_kill(pthread_t thread, int sig);

Returns 0 on success, or a positive error number on error
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As with pthread_kill(), sig specifies the signal to be sent, and thread identifies the target
thread. The value argument specifies the data to accompany the signal, and is used
in the same way as the equivalent argument of sigqueue().

The pthread_sigqueue() function was added to glibc in version 2.11 and requires
support from the kernel. This support is provided by the rt_tgsigqueueinfo() sys-
tem call, which was added in Linux 2.6.31.

33.2.4 Dealing with Asynchronous Signals Sanely
In Chapters 20 to 22, we discussed various factors—such as reentrancy issues, the
need to restart interrupted system calls, and avoiding race conditions—that can make
it complex to deal with asynchronously generated signals via signal handlers. Further-
more, none of the functions in the Pthreads API is among the set of async-signal-safe
functions that we can safely call from within a signal handler (Section 21.1.2). For
these reasons, multithreaded programs that must deal with asynchronously gener-
ated signals generally should not use a signal handler as the mechanism to receive
notification of signal delivery. Instead, the preferred approach is the following:

All threads block all of the asynchronous signals that the process might receive.
The simplest way to do this is to block the signals in the main thread before any
other threads are created. Each subsequently created thread will inherit a copy
of the main thread’s signal mask.

Create a single dedicated thread that accepts incoming signals using sigwaitinfo(),
sigtimedwait(), or sigwait(). We described sigwaitinfo() and sigtimedwait() in Sec-
tion 22.10. We describe sigwait() below.

The advantage of this approach is that asynchronously generated signals are
received synchronously. As it accepts incoming signals, the dedicated thread can
safely modify shared variables (under mutex control) and call non-async-signal-safe
functions. It can also signal condition variables, and employ other thread and pro-
cess communication and synchronization mechanisms.

The sigwait() function waits for the delivery of one of the signals in the signal
set pointed to by set, accepts that signal, and returns it in sig.

#define _GNU_SOURCE
#include <signal.h>

int pthread_sigqueue(pthread_t thread, int sig, const union sigval value);

Returns 0 on success, or a positive error number on error

#include <signal.h>

int sigwait(const sigset_t *set, int *sig);

Returns 0 on success, or a positive error number on error
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The operation of sigwait() is the same as sigwaitinfo(), except that:

instead of returning a siginfo_t structure describing the signal, sigwait() returns
just the signal number; and

the return value is consistent with other thread-related functions (rather than
the 0 or –1 returned by traditional UNIX system calls).

If multiple threads are waiting for the same signal with sigwait(), only one of the
threads will actually accept the signal when it arrives. Which of the threads this will
be is indeterminate.

33.3 Threads and Process Control

Like the signals mechanism, exec(), fork(), and exit() predate the Pthreads API. In the
following paragraphs, we note some details concerning the use of these system calls
in threaded programs.

Threads and exec()

When any thread calls one of the exec() functions, the calling program is completely
replaced. All threads, except the one that called exec(), vanish immediately. None of
the threads executes destructors for thread-specific data or calls cleanup handlers.
All of the (process-private) mutexes and condition variables belonging to the process
also disappear. After an exec(), the thread ID of the remaining thread is unspecified.

Threads and fork()

When a multithreaded process calls fork(), only the calling thread is replicated in
the child process. (The ID of the thread in the child is the same as the ID of the
thread that called fork() in the parent.) All of the other threads vanish in the child;
no thread-specific data destructors or cleanup handlers are executed for those
threads. This can lead to various problems:

Although only the calling thread is replicated in the child, the states of global
variables, as well as all Pthreads objects such as mutexes and condition vari-
ables, are preserved in the child. (This is so because these Pthreads objects are
allocated within the parent’s memory, and the child gets a duplicate of that
memory.) This can lead to tricky scenarios. For example, suppose that another
thread had locked a mutex at the time of the fork() and is part-way through
updating a global data structure. In this case, the thread in the child would not
be able to unlock the mutex (since it is not the mutex owner) and would block
if it tried to acquire the mutex. Furthermore, the child’s copy of the global data
structure is probably in an inconsistent state, because the thread that was
updating it vanished part-way through the update.

Since destructors for thread-specific data and cleanup handlers are not called,
a fork() in a multithreaded program can cause memory leaks in the child. Fur-
thermore, the thread-specific data items created by other threads are likely to
be inaccessible to the thread in the new child, since it doesn’t have pointers
referring to these items.
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Because of these problems, the usual recommendation is that the only use of fork()
in a multithreaded process should be one that is followed by an immediate exec().
The exec() causes all of the Pthreads objects in the child process to disappear as the
new program overwrites the memory of the process.

For programs that must use a fork() that is not followed by an exec(), the
Pthreads API provides a mechanism for defining fork handlers. Fork handlers are
established using a pthread_atfork() call of the following form:

pthread_atfork(prepare_func, parent_func, child_func);

Each pthread_atfork() call adds prepare_func to a list of functions that will be auto-
matically executed (in reverse order of registration) before the new child process is
created when fork() is called. Similarly, parent_func and child_func are added to a list
functions that will be called automatically (in order of registration), in, respectively,
the parent and child process, just before fork() returns.

Fork handlers are sometimes useful for library code that makes use of threads.
In the absence of fork handlers, there would be no way for the library to deal with
applications that naively make use of the library and call fork(), unaware that the
library has created some threads.

The child produced by fork() inherits fork handlers from the thread that called
fork(). During an exec(), fork handlers are not preserved (they can’t be, since the
code of the handlers is overwritten during the exec()).

Further details on fork handlers, and examples of their use, can be found in
[Butenhof, 1996].

On Linux, fork handlers are not called if a program using the NPTL threading
library calls vfork(). However, in a program using LinuxThreads, fork handlers
are called in this case.

Threads and exit()

If any thread calls exit() or, equivalently, the main thread does a return, all threads
immediately vanish; no thread-specific data destructors or cleanup handlers are
executed.

33.4 Thread Implementation Models

In this section, we go into some theory, briefly considering three different models
for implementing a threading API. This provides useful background for Section 33.5,
where we consider the Linux threading implementations. The differences between
these implementation models hinge on how threads are mapped onto kernel
scheduling entities (KSEs), which are the units to which the kernel allocates the CPU
and other system resources. (In traditional UNIX implementations that predate
threads, the term kernel scheduling entity is synonymous with the term process.)

Many-to-one (M:1) implementations (user-level threads)

In M:1 threading implementations, all of the details of thread creation, scheduling,
and synchronization (mutex locking, waiting on condition variables, and so on) are
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handled entirely within the process by a user-space threading library. The kernel
knows nothing about the existence of multiple threads within the process.

M:1 implementations have a few advantages. The greatest advantage is that
many threading operations—for example, creating and terminating a thread, context
switching between threads, and mutex and condition variable operations—are fast,
since a switch to kernel mode is not required. Furthermore, since kernel support
for the threading library is not required, an M:1 implementation can be relatively
easily ported from one system to another.

However, M:1 implementations suffer from some serious disadvantages:

When a thread makes a system call such as read(), control passes from the user-
space threading library to the kernel. This means that if the read() call blocks,
then all threads in the process are blocked.

The kernel can’t schedule the threads of a process. Since the kernel is unaware
of the existence of multiple threads within the process, it can’t schedule the
separate threads to different processors on multiprocessor hardware. Nor is it
possible to meaningfully assign a thread in one process a higher priority than a
thread in another process, since the scheduling of the threads is handled
entirely within the process.

One-to-one (1:1) implementations (kernel-level threads)

In a 1:1 threading implementation, each thread maps onto a separate KSE. The
kernel handles each thread’s scheduling separately. Thread synchronization opera-
tions are implemented using system calls into the kernel.

1:1 implementations eliminate the disadvantages suffered by M:1 implementa-
tions. A blocking system call does not cause all of the threads in a process to block,
and the kernel can schedule the threads of a process onto different CPUs on multi-
processor hardware.

However, operations such as thread creation, context switching, and synchro-
nization are slower on a 1:1 implementations, since a switch into kernel mode is
required. Furthermore, the overhead required to maintain a separate KSE for each
of the threads in an application that contains a large number of threads may place a
significant load on the kernel scheduler, degrading overall system performance.

Despite these disadvantages, a 1:1 implementation is usually preferred over an
M:1 implementation. Both of the Linux threading implementations—LinuxThreads
and NPTL—employ the 1:1 model.

During the development of NPTL, significant effort went into rewriting the
kernel scheduler and devising a threading implementation that would allow
the efficient execution of multithreaded processes containing many thousands
of threads. Subsequent testing showed that this goal was achieved.

Many-to-many (M:N) implementations (two-level model)

M:N implementations aim to combine the advantages of the 1:1 and M:1 models,
while eliminating their disadvantages.

In the M:N model, each process can have multiple associated KSEs, and several
threads may map to each KSE. This design permits the kernel to distribute the
threads of an application across multiple CPUs, while eliminating the possible scal-
ing problems associated with applications that employ large numbers of threads.
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The most significant disadvantage of the M:N model is complexity. The task of
thread scheduling is shared between the kernel and the user-space threading
library, which must cooperate and communicate information with one another.
Managing signals according to the requirements of SUSv3 is also complex under an
M:N implementation.

An M:N implementation was initially considered for the NPTL threading
implementation, but rejected as requiring changes to the kernel that were too
wide ranging and perhaps unnecessary, given the ability of the Linux sched-
uler to scale well, even when dealing with large numbers of KSEs.

33.5 Linux Implementations of POSIX Threads

Linux has two main implementations of the Pthreads API:

LinuxThreads: This is the original Linux threading implementation, developed
by Xavier Leroy.

NPTL (Native POSIX Threads Library): This is the modern Linux threading
implementation, developed by Ulrich Drepper and Ingo Molnar as a successor
to LinuxThreads. NPTL provides performance that is superior to LinuxThreads,
and it adheres more closely to the SUSv3 specification for Pthreads. Support
for NPTL required changes to the kernel, and these changes appeared in
Linux 2.6.

For a while, it appeared that the successor to LinuxThreads would be another
implementation, called Next Generation POSIX Threads (NGPT), a threading
implementation developed at IBM. NGPT employed an M:N design and per-
formed significantly better than LinuxThreads. However, the NPTL develop-
ers decided to pursue a new implementation. This approach was justified—the
1:1-design NPTL was shown to perform better than NGPT. Following the
release of NPTL, development of NGPT was discontinued.

In the following sections, we consider further details of these two implementations,
and note the points where they deviate from the SUSv3 requirements for Pthreads.

At this point, it is worth emphasizing that the LinuxThreads implementation is
now obsolete; it is not supported in glibc 2.4 and later. All new thread library devel-
opment occurs only in NPTL.

33.5.1 LinuxThreads
For many years, LinuxThreads was the main threading implementation on Linux,
and it was sufficient for implementing a variety of threaded applications. The
essentials of the LinuxThreads implementation are as follows:

Threads are created using a clone() call that specifies the following flags:

CLONE_VM | CLONE_FILES | CLONE_FS | CLONE_SIGHAND

This means that LinuxThreads threads share virtual memory, file descriptors,
file system–related information (umask, root directory, and current working
directory), and signal dispositions. However, threads don’t share process IDs
and parent process IDs.
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In addition to the threads created by the application, LinuxThreads creates an
additional “manager” thread that handles thread creation and termination.

The implementation uses signals for its internal operation. With kernels that
support realtime signals (Linux 2.2 and later), the first three realtime signals
are used. With older kernels, SIGUSR1 and SIGUSR2 are used. Applications can’t
use these signals. (The use of signals results in high latency for various thread
synchronization operations.)

LinuxThreads deviations from specified behavior

LinuxThreads doesn’t conform to the SUSv3 specification for Pthreads on a num-
ber of points. (The LinuxThreads implementation was constrained by the kernel
features available at the time that it was developed; it was as conformant as practica-
ble within those constraints.) The following list summarizes the nonconformances:

Calls to getpid() return a different value in each of the threads of a process. Calls
to getppid() reflect the fact that every thread other than the main thread is created
by the process’s manager thread (i.e., getppid() returns the process ID of the
manager thread). Calls to getppid() in the other threads should return the same
value as a call to getppid() in the main thread.

If one thread creates a child using fork(), then any other thread should be able
to obtain the termination status of that child using wait() (or similar). However,
this is not so; only the thread that created the child process can wait() for it.

If a thread calls exec(), then, as required by SUSv3, all other threads are terminated.
However, if the exec() is done from any thread other than the main thread, then
the resulting process will have the same process ID as the calling thread—that
is, a process ID that is different from the main thread’s process ID. According
to SUSv3, the process ID should be the same as that of the main thread.

Threads don’t share credentials (user and group IDs). When a multithreaded
process is executing a set-user-ID program, this can lead to scenarios in which
one thread can’t send a signal to another thread using pthread_kill(), because
the credentials of the two threads have been changed in such a way that the
sending thread no longer has permission to signal the target thread (refer to
Figure 20-2, on page 403). Furthermore, since the LinuxThreads implementa-
tion uses signals internally, various Pthreads operations can fail or hang if a
thread changes its credentials.

Various aspects of the SUSv3 specification for the interaction between threads
and signals are not honored:

– A signal that is sent to a process using kill() or sigqueue() should be delivered to,
and handled by, an arbitrary thread in the target process that is not blocking
the signal. However, since LinuxThreads threads have different process
IDs, a signal can be targeted only at a specific thread. If that thread is
blocking the signal, it remains pending, even if there are other threads that
are not blocking the signal.
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– LinuxThreads doesn’t support the notion of signals that are pending for a
process as whole; only per-thread pending signals are supported.

– If a signal is directed at a process group that contains a multithreaded
application, then the signal will be handled by all threads in the application
(i.e., all threads that have established a signal handler), rather than by a single
(arbitrary) thread. Such a signal may, for example, be generated by typing
one of the terminal characters that generates a job-control signal for the
foreground process group.

– The alternate signal stack settings (established by sigaltstack()) are per-
thread. However, because a new thread wrongly inherits its alternate signal
stack settings from the caller of pthread_create(), the two threads share an
alternate signal stack. SUSv3 requires that a new thread should start with
no alternate signal stack defined. The consequence of this LinuxThreads
nonconformance is that if two threads happen to simultaneously handle
different signals on their shared alternate signal stacks at the same time,
chaos is likely to result (e.g., a program crash). This problem may be very
hard to reproduce and debug, since its occurrence depends on the probably
rare event that the two signals are handled at the same time.

In a program using LinuxThreads, a new thread could make a call to
sigaltstack() to ensure that it uses a different alternate signal stack from the
thread that created it (or no stack at all). However, portable programs (and
library functions that create threads) won’t know to do this, since it is not a
requirement on other implementations. Furthermore, even if we employ this
technique, there is still a possible race condition: the new thread could receive
and handle a signal on the alternate stack before it has a chance to call
sigaltstack().

Threads don’t share a common session ID and process group ID. The setsid()
and setpgid() system calls can’t be used to change the session or process group
membership of a multithreaded process.

Record locks established using fcntl() are not shared. Overlapping lock requests
of the same type are not merged.

Threads don’t share resource limits. SUSv3 specifies that resource limits are
process-wide attributes.

The CPU time returned by times() and the resource usage information returned by
getrusage() are per-thread. These system calls should return process-wide totals.

Some versions of ps(1) show all of the threads in a process (including the
manager thread) as separate items with distinct process IDs.

Threads don’t share nice value set by setpriority().

Interval timers created using setitimer() are not shared between the threads.

Threads don’t share System V semaphore undo (semadj) values.
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Other problems with LinuxThreads

In addition to the above deviations from SUSv3, the LinuxThreads implementation
has the following problems:

If the manager thread is killed, then the remaining threads must be manually
cleaned up.

A core dump of a multithreaded program may not include all of the threads of
the process (or even the one that triggered the core dump).

The nonstandard ioctl() TIOCNOTTY operation can remove the process’s associa-
tion with a controlling terminal only when called from the main thread.

33.5.2 NPTL
NPTL was designed to address most of the shortcomings of LinuxThreads. In
particular:

NPTL provides much closer conformance to the SUSv3 specification for
Pthreads.

Applications that employ large numbers of threads scale much better under
NPTL than under LinuxThreads.

NPTL allows an application to create large numbers of threads. The NPTL
implementers were able to run test programs that created 100,000 threads.
With LinuxThreads, the practical limit on the number of threads is a few thou-
sand. (Admittedly, very few applications need such large numbers of threads.)

Work on implementing NPTL began in 2002 and progressed over the next year or
so. In parallel, various changes were made within the Linux kernel to accommo-
date the requirements of NPTL. The changes that appeared in the Linux 2.6 kernel
to support NPTL included the following:

refinements to the implementation of thread groups (Section 28.2.1);

the addition of futexes as a synchronization mechanism (futexes are a generic
mechanism that was designed not just for NPTL);

the addition of new system calls (get_thread_area() and set_thread_area()) to sup-
port thread-local storage;

support for threaded core dumps and debugging of multithreaded processes;

modifications to support management of signals in a manner consistent with
the Pthreads model;

the addition of a new exit_group() system call to terminate all of the threads in a
process (starting with glibc 2.3, _exit()—and thus also the exit() library function—
is aliased as a wrapper that invokes exit_group(), while a call to pthread_exit()
invokes the true _exit() system call in the kernel, which terminates just the call-
ing thread);

a rewrite of the kernel scheduler to allow efficient scheduling of very large
numbers (i.e., thousands) of KSEs;
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improved performance for the kernel’s process termination code; and

extensions to the clone() system call (Section 28.2).

The essentials of the NPTL implementation are as follows:

Threads are created using a clone() call that specifies the following flags:

CLONE_VM | CLONE_FILES | CLONE_FS | CLONE_SIGHAND |
CLONE_THREAD | CLONE_SETTLS | CLONE_PARENT_SETTID |
CLONE_CHILD_CLEARTID | CLONE_SYSVSEM

NPTL threads share all of the information that LinuxThreads threads share,
and more. The CLONE_THREAD flag means that a thread is placed in the same
thread group as its creator and shares the same process ID and parent process
ID. The CLONE_SYSVSEM flag means that a thread shares System V semaphore
undo values with its creator.

When we use ps(1) to list a multithreaded process running under NPTL, we
see just a single line of output. To see information about the threads within a
process, we can use the ps –L option.

The implementation makes internal use of the first two realtime signals. Appli-
cations can’t use these signals.

One of these signals is used to implement thread cancellation. The other signal
is used as part of a technique that ensures that all of the threads in a process
have the same user and group IDs. This technique is required because, at the
kernel level, threads have distinct user and group credentials. Therefore, the
NPTL implementation does some work in the wrapper function for each sys-
tem call that changes user and group IDs (setuid(), setresuid(), and so on, and
their group analogs) that causes the IDs to be changed in all of the threads of
the process.

Unlike LinuxThreads, NPTL doesn’t use manager threads.

NPTL standards conformance

These changes mean that NPTL achieves much closer SUSv3 conformance than
LinuxThreads. At the time of writing, the following nonconformance remains:

Threads don’t share a nice value.

There are some additional NPTL nonconformances in earlier 2.6.x kernels:

In kernels before 2.6.16, the alternate signal stack was per-thread, but a new thread
wrongly inherited alternate signal stack settings (established by sigaltstack())
from the caller of pthread_create(), with the consequence that the two threads
shared an alternate signal stack.

In kernels before 2.6.16, only a thread group leader (i.e., the main thread)
could start a new session by calling setsid().

In kernels before 2.6.16, only a thread group leader could use setpgid() to make
the host process a process group leader.
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In kernels prior to 2.6.12, interval timers created using setitimer() were not
shared between the threads of a process.

In kernels prior to 2.6.10, resource limit settings were not shared between the
threads of a process.

In kernels prior to 2.6.9, the CPU time returned by times() and the resource
usage information returned by getrusage() were per-thread.

NPTL was designed to be ABI-compatible with LinuxThreads. This means that pro-
grams that were linked against a GNU C library providing LinuxThreads don’t
need to be relinked in order to use NPTL. However, some behaviors may change
when the program is run with NPTL, primarily because NPTL adheres more
closely to the SUSv3 specification for Pthreads.

33.5.3 Which Threading Implementation?
Some Linux distributions ship with a GNU C library that provides both
LinuxThreads and NPTL, with the default being determined by the dynamic linker
according to the underlying kernel on which the system is running. (These distribu-
tions are by now historical because, since version 2.4, glibc no longer provides
LinuxThreads.) Therefore, we may sometimes need to answer the following questions:

Which threading implementation is available in a particular Linux distribution?

On a Linux distribution that provides both LinuxThreads and NPTL, which
implementation is used by default, and how can we explicitly select the imple-
mentation that is used by a program?

Discovering the threading implementation

We can use a few techniques to discover the threading implementation that is avail-
able on a particular system, or to discover the default implementation that will be
employed when a program is run on a system that provides both threading imple-
mentations.

On a system providing glibc version 2.3.2 or later, we can use the following
command to discover which threading implementation the system provides, or, if it
provides both implementation, then which one is used by default:

$ getconf GNU_LIBPTHREAD_VERSION

On a system where NPTL is the only or the default implementation, this will display a
string such as the following:

NPTL 2.3.4

Since glibc 2.3.2, a program can obtain similar information by using confstr(3)
to retrieve the value of the glibc-specific _CS_GNU_LIBPTHREAD_VERSION configura-
tion variable.

On systems with older GNU C libraries, we must do a little more work. First, the
following command can be used to show the pathname of the GNU C library that is
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used when we run a program (here, we use the example of the standard ls program,
which resides at /bin/ls):

$ ldd /bin/ls | grep libc.so
        libc.so.6 => /lib/tls/libc.so.6 (0x40050000)

We say a little more about the ldd (list dynamic dependencies) program in
Section 41.5.

The pathname of the GNU C library is shown after the =>. If we execute this path-
name as a command, then glibc displays a range of information about itself. We
can grep though this information to select the line that displays the threading
implementation:

$ /lib/tls/libc.so.6 | egrep -i 'threads|nptl'
        Native POSIX Threads Library by Ulrich Drepper et al

We include nptl in the egrep regular expression because some glibc releases contain-
ing NPTL instead display a string like this:

        NPTL 0.61 by Ulrich Drepper

Since the glibc pathname may vary from one Linux distribution to another, we can
employ shell command substitution to produce a command line that will display
the threading implementation in use on any Linux system, as follows:

$ $(ldd /bin/ls | grep libc.so | awk '{print $3}') | egrep -i 'threads|nptl'
        Native POSIX Threads Library by Ulrich Drepper et al

Selecting the threading implementation used by a program

On a Linux system that provides both NPTL and LinuxThreads, it is sometimes
useful to be able to explicitly control which threading implementation is used. The
most common example of this requirement is when we have an older program that
depends on some (probably nonstandard) behavior of LinuxThreads, so that we
want to force the program to run with that threading implementation, instead of
the default NPTL.

For this purpose, we can employ a special environment variable understood by
the dynamic linker: LD_ASSUME_KERNEL. As its name suggests, this environment vari-
able tells the dynamic linker to operate as though it is running on top of a particular
Linux kernel version. By specifying a kernel version that doesn’t provide support
for NPTL (e.g., 2.2.5), we can ensure that LinuxThreads is used. Thus, we could
run a multithreaded program with LinuxThreads using the following command:

$ LD_ASSUME_KERNEL=2.2.5 ./prog

When we combine this environment variable setting with the command that we
described earlier to show the threading implementation that is used, we see some-
thing like the following:

$ export LD_ASSUME_KERNEL=2.2.5
$ $(ldd /bin/ls | grep libc.so | awk '{print $3}') | egrep -i 'threads|nptl'
        linuxthreads-0.10 by Xavier Leroy
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The range of kernel version numbers that can be specified in LD_ASSUME_KERNEL
is subject to some limits. In several common distributions that supply both
NPTL and LinuxThreads, specifying the version number as 2.2.5 is sufficient
to ensure the use of LinuxThreads. For a fuller description of the use of this
environment variable, see http://people.redhat.com/drepper/assumekernel.html.

33.6 Advanced Features of the Pthreads API

Some advanced features of the Pthreads API include the following:

Realtime scheduling: We can set realtime scheduling policies and priorities for
threads. This is similar to the process realtime scheduling system calls
described in Section 35.3.

Process shared mutexes and condition variables: SUSv3 specifies an option to allow
mutexes and condition variables to be shared between processes (rather than
just among the threads of a single process). In this case, the condition variable
or mutex must be located in a region of memory shared between the processes.
NPTL supports this feature.

Advanced thread-synchronization primitives: These facilities include barriers, read-
write locks, and spin locks.

Further details on all of these features can be found in [Butenhof, 1996].

33.7 Summary

Threads don’t mix well with signals; multithreaded application designs should
avoid the use of signals whenever possible. If a multithreaded application must deal
with asynchronous signals, usually the cleanest way to do so is to block signals in all
threads, and have a single dedicated thread that accepts incoming signals using
sigwait() (or similar). This thread can then safely perform tasks such as modifying
shared variables (under mutex control) and calling non-async-signal-safe functions.

Two threading implementations are commonly available on Linux: LinuxThreads
and NPTL. LinuxThreads has been available on Linux for many years, but there
are a number of points where it doesn’t conform to the requirements of SUSv3 and
it is now obsolete. The more recent NPTL implementation provides closer SUSv3
conformance and superior performance, and is the implementation provided in
modern Linux distributions.

Further information

Refer to the sources of further information listed in Section 29.10.
The author of LinuxThreads documented the implementation in a web page

that can be found at http://pauillac.inria.fr/~xleroy/linuxthreads/. The NPTL imple-
mentation is described by its implementers in a (now somewhat out-of-date) paper
that is available online at http://people.redhat.com/drepper/nptl-design.pdf.
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33.8 Exercises

33-1. Write a program to demonstrate that different threads in the same process can have
different sets of pending signals, as returned by sigpending(). You can do this by using
pthread_kill() to send different signals to two different threads that have blocked
these signals, and then have each of the threads call sigpending() and display
information about pending signals. (You may find the functions in Listing 20-4
useful.)

33-2. Suppose that a thread creates a child using fork(). When the child terminates, is it
guaranteed that the resulting SIGCHLD signal will be delivered to the thread that
called fork() (as opposed to some other thread in the process)?
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P R O C E S S  G R O U P S ,  S E S S I O N S ,  
A N D  J O B  C O N T R O L

Process groups and sessions form a two-level hierarchical relationship between pro-
cesses: a process group is a collection of related processes, and a session is a collec-
tion of related process groups. The meaning of the term related in each case will
become clear in the course of this chapter.

Process groups and sessions are abstractions defined to support shell job con-
trol, which allows interactive users to run commands in the foreground or in the
background. The term job is often used synonymously with the term process group.

This chapter describes process groups, sessions, and job control.

34.1 Overview

A process group is a set of one or more processes sharing the same process group
identifier (PGID). A process group ID is a number of the same type (pid_t) as a pro-
cess ID. A process group has a process group leader, which is the process that creates
the group and whose process ID becomes the process group ID of the group. A
new process inherits its parent’s process group ID.

A process group has a lifetime, which is the period of time beginning when the
leader creates the group and ending when the last member process leaves the
group. A process may leave a process group either by terminating or by joining



another process group. The process group leader need not be the last member of a
process group.

A session is a collection of process groups. A process’s session membership is
determined by its session identifier (SID), which, like the process group ID, is a num-
ber of type pid_t. A session leader is the process that creates a new session and whose
process ID becomes the session ID. A new process inherits its parent’s session ID.

All of the processes in a session share a single controlling terminal. The control-
ling terminal is established when the session leader first opens a terminal device. A
terminal may be the controlling terminal of at most one session.

At any point in time, one of the process groups in a session is the foreground
process group for the terminal, and the others are background process groups. Only pro-
cesses in the foreground process group can read input from the controlling termi-
nal. When the user types one of the signal-generating terminal characters on the
controlling terminal, a signal is sent to all members of the foreground process
group. These characters are the interrupt character (usually Control-C), which generates
SIGINT; the quit character (usually Control-\), which generates SIGQUIT; and the
suspend character (usually Control-Z), which generates SIGTSTP.

As a consequence of establishing the connection to (i.e., opening) the control-
ling terminal, the session leader becomes the controlling process for the terminal.
The principal significance of being the controlling process is that the kernel sends
this process a SIGHUP signal if a terminal disconnect occurs.

By inspecting the Linux-specific /proc/PID/stat files, we can determine the pro-
cess group ID and session ID of any process. We can also determine the device
ID of the process’s controlling terminal (expressed as a single decimal integer
containing both major and minor IDs) and the process ID of the controlling
process for that terminal. See the proc(5) manual page for further details.

The main use of sessions and process groups is for shell job control. Looking at a
specific example from this domain helps clarify these concepts. For an interactive
login, the controlling terminal is the one on which the user logs in. The login shell
becomes the session leader and the controlling process for the terminal, and is also
made the sole member of its own process group. Each command or pipeline of
commands started from the shell results in the creation of one or more processes, and
the shell places all of these processes in a new process group. (These processes are
initially the only members of that process group, although any child processes that
they create will also be members of the group.) A command or pipeline is created
as a background process group if it is terminated with an ampersand (&). Other-
wise, it becomes the foreground process group. All processes created during the
login session are part of the same session.

In a windowing environment, the controlling terminal is a pseudoterminal,
and there is a separate session for each terminal window, with the window’s
startup shell being the session leader and controlling process for the terminal.

Process groups occasionally find uses in areas other than job control,
since they have two useful properties: a parent process can wait on any of its
children in a particular process group (Section 26.1.2), and a signal can be sent
to all of the members of a process group (Section 20.5).
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Figure 34-1 shows the process group and session relationships between the various
processes resulting from the execution of the following commands:

$ echo $$                             Display the PID of the shell
400
$ find / 2> /dev/null | wc -l &       Creates 2 processes in background group
[1] 659
$ sort < longlist | uniq -c           Creates 2 processes in foreground group

At this point, the shell (bash), find, wc, sort, and uniq are all running.

Figure 34-1: Relationships between process groups, sessions, and the controlling terminal 

34.2 Process Groups

Each process has a numeric process group ID that defines the process group to
which it belongs. A new process inherits its parent’s process group ID. A process
can obtain its process group ID using getpgrp().

PID = 400
PPID = 399

bash

PGID = 400
PPID = 400

find

PGID = 658
SID = 400

PID = 659
PPID = 400

wc

PGID = 658
SID = 400

PPID = 400

sort

PGID = 660
SID = 400

PID = 661
PPID = 400

uniq

PGID = 660
SID=400

Process
group 660

Session 400

session
leader

background
process groups

foreg
round

process
 group

co
nt

ro
lli

ng
 p

ro
ce

ss

process group leaders

Controlling terminal

Foreground PGID = 660

Controlling SID = 400

SID = 400

PID = 660PID = 658

Process
group 658

Process
group 400

#include <unistd.h>

pid_t getpgrp(void);

Always successfully returns process group ID of calling process
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If the value returned by getpgrp() matches the caller’s process ID, this process is the
leader of its process group.

The setpgid() system call changes the process group of the process whose pro-
cess ID is pid to the value specified in pgid.

If pid is specified as 0, the calling process’s process group ID is changed. If pgid is
specified as 0, then the process group ID of the process specified by pid is made the
same as its process ID. Thus, the following setpgid() calls are equivalent:

setpgid(0, 0);
setpgid(getpid(), 0);
setpgid(getpid(), getpid());

If the pid and pgid arguments specify the same process (i.e., pgid is 0 or matches the
process ID of the process specified by pid), then a new process group is created,
and the specified process is made the leader of the new group (i.e., the process group
ID of the process is made the same as its process ID). If the two arguments specify
different values (i.e., pgid is not 0 and doesn’t match the process ID of the process
specified by pid), then setpgid() is being used to move a process between process
groups.

The typical callers of setpgid() (and setsid(), described in Section 34.3) are pro-
grams such as the shell and login(1). In Section 37.2, we’ll see that a program also
calls setsid() as one of the steps on the way to becoming a daemon.

Several restrictions apply when calling setpgid():

The pid argument may specify only the calling process or one of its children.
Violation of this rule results in the error ESRCH.

When moving a process between groups, the calling process and the process
specified by pid (which may be one and the same), as well as the target pro-
cess group, must all be part of the same session. Violation of this rule results in
the error EPERM.

The pid argument may not specify a process that is a session leader. Violation
of this rule results in the error EPERM.

A process may not change the process group ID of one of its children after that
child has performed an exec(). Violation of this rule results in the error EACCES.
The rationale for this constraint is that it could confuse a program if its process
group ID were changed after it had commenced.

#include <unistd.h>

int setpgid(pid_t pid, pid_t pgid);

Returns 0 on success, or –1 on error
702 Chapter 34



Using setpgid() in a job-control shell

The restriction that a process may not change the process group ID of one of its
children after that child has performed an exec() affects the programming of job-
control shells, which have the following requirements:

All of the processes in a job (i.e., a command or a pipeline) must be placed in a
single process group. (We can see the desired result by looking at the two pro-
cess groups created by bash in Figure 34-1.) This step permits the shell to use
killpg() (or, equivalently, kill() with a negative pid argument) to simultaneously
send job-control signals to all of the members of the process group. Naturally,
this step must be carried out before any job-control signals are sent.

Each of the child processes must be transferred to the process group before it
execs a program, since the program itself is ignorant of manipulations of the
process group ID.

For each process in the job, either the parent or the child could use setpgid() to change
the process group ID of the child. However, because the scheduling of the parent and
child is indeterminate after a fork() (Section 24.4), we can’t rely on the parent changing
the child’s process group ID before the child does an exec(); nor can we rely on the
child changing its process group ID before the parent tries to send any job-control
signals to it. (Dependence on either one of these behaviors would result in a race con-
dition.) Therefore, job-control shells are programmed so that the parent and the
child process both call setpgid() to change the child’s process group ID to the same
value immediately after a fork(), and the parent ignores any occurrence of the
EACCES error on the setpgid() call. In other words, in a job-control shell, we’ll find
code something like that shown in Listing 34-1.

Listing 34-1: How a job-control shell sets the process group ID of a child process

    pid_t childPid;
    pid_t pipelinePgid;         /* PGID to which processes in a pipeline
                                    are to be assigned */
    /* Other code */

    childPid = fork();
    switch (childPid) {
    case -1: /* fork() failed */
        /* Handle error */

    case 0: /* Child */
        if (setpgid(0, pipelinePgid) == -1)
            /* Handle error */
        /* Child carries on to exec the required program */

    default: /* Parent (shell) */
        if (setpgid(childPid, pipelinePgid) == -1 && errno != EACCES)
            /* Handle error */
        /* Parent carries on to do other things */
    }
Process Groups, Sess ions, and Job Cont ro l 703



Things are slightly more complex than shown in Listing 34-1, since, when creating
the processes for a pipeline, the parent shell records the process ID of the first pro-
cess in the pipeline and uses this as the process group ID (pipelinePgid) for all of the
processes in the group.

Other (obsolete) interfaces for retrieving and modifying process group IDs

The different suffixes in the names of the getpgrp() and setpgid() system calls deserve
explanation.

In the beginning, 4.2BSD provided a getprgp(pid) system call that returned the
process group ID of the process specified by pid. In practice, pid was always used to
specify the calling process. Consequently, the POSIX committee deemed the call to
be more complex than necessary, and instead adopted the System V getpgrp() call,
which took no arguments and returned the process group ID of the calling process.

In order to change the process group ID, 4.2BSD provided the call setpgrp(pid,
pgid), which operated in a similar manner to setpgid(). The principal difference was
that the BSD setpgrp() could be used to set the process group ID to any value. (We
noted earlier that setpgid() can’t transfer a process into a process group in a differ-
ent session.) This resulted in some security issues and was also more flexible than
required for implementing job control. Consequently, the POSIX committee settled
on a more restrictive function and gave it the name setpgid().

To further complicate matters, SUSv3 specifies getpgid(pid), with the same
semantics as the old BSD getpgrp(), and also weakly specifies an alternative, System V–
derived version of setpgrp(), taking no arguments, as being approximately equivalent
to setpgid(0, 0).

Although the setpgid() and getpgrp() system calls that we described earlier are
sufficient for implementing shell job control, Linux, like most other UNIX imple-
mentations, also provides getpgid(pid) and setpgrp(void). For backward compatibility,
many BSD-derived implementations continue to provide setprgp(pid, pgid) as a synonym
for setpgid(pid, pgid).

If we explicitly define the _BSD_SOURCE feature test macro when compiling a pro-
gram, then glibc provides the BSD-derived versions of setpgrp() and getpgrp(),
instead of the default versions.

34.3 Sessions

A session is a collection of process groups. The session membership of a process is
defined by its numeric session ID. A new process inherits its parent’s session ID.
The getsid() system call returns the session ID of the process specified by pid.

If pid is specified as 0, getsid() returns the session ID of the calling process.

#define _XOPEN_SOURCE 500
#include <unistd.h>

pid_t getsid(pid_t pid);

Returns session ID of specified process, or (pid_t) –1 on error
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On a few UNIX implementations (e.g., HP-UX 11), getsid() can be used to
retrieve the session ID of a process only if it is in the same session as the calling
process. (SUSv3 permits this possibility.) In other words, the call merely serves,
by its success or failure (EPERM), to inform us if the specified process is in the
same session as the caller. This restriction doesn’t apply on Linux or on most
other implementations.

If the calling process is not a process group leader, setsid() creates a new session.

The setsid() system call creates a new session as follows:

The calling process becomes the leader of a new session, and is made the
leader of a new process group within that session. The calling process’s process
group ID and session ID are set to the same value as its process ID.
The calling process has no controlling terminal. Any previously existing con-
nection to a controlling terminal is broken.

If the calling process is a process group leader, setsid() fails with the error EPERM. The
simplest way of ensuring that this doesn’t happen is to perform a fork() and have
the parent exit while the child carries on to call setsid(). Since the child inherits its
parent’s process group ID and receives its own unique process ID, it can’t be a pro-
cess group leader.

The restriction against a process group leader being able to call setsid() is neces-
sary because, without it, the process group leader would be able to place itself in
another (new) session, while other members of the process group remained in the
original session. (A new process group would not be created, since, by definition,
the process group leader’s process group ID is already the same as its process ID.)
This would violate the strict two-level hierarchy of sessions and process groups,
whereby all members of a process group must be part of the same session.

When a new process is created via fork(), the kernel ensures not only that it has a
unique process ID, but also that the process ID doesn’t match the process group
ID or session ID of any existing process. Thus, even if the leader of a process
group or a session has exited, a new process can’t reuse the leader’s process ID
and thereby accidentally become the leader of an existing session or process
group.

Listing 34-2 demonstrates the use of setsid() to create a new session. To check that it no
longer has a controlling terminal, this program attempts to open the special file /dev/
tty (described in the next section). When we run this program, we see the following:

$ ps -p $$ -o 'pid pgid sid command'            $$ is PID of shell
  PID  PGID   SID COMMAND
12243 12243 12243 bash                          PID, PGID, and SID of shell
$ ./t_setsid
$ PID=12352, PGID=12352, SID=12352
ERROR [ENXIO Device not configured] open /dev/tty

#include <unistd.h>

pid_t setsid(void);

Returns session ID of new session, or (pid_t) –1 on error
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As can be seen from the output, the process successfully places itself in a new pro-
cess group within a new session. Since this session has no controlling terminal, the
open() call fails. (In the penultimate line of program output above, we see a shell
prompt mixed with the program output, because the shell notices that the parent
process has exited after the fork() call, and so prints its next prompt before the child
has completed.)

Listing 34-2: Creating a new session

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– pgsjc/t_setsid.c

#define _XOPEN_SOURCE 500
#include <unistd.h>
#include <fcntl.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    if (fork() != 0)            /* Exit if parent, or on error */
        _exit(EXIT_SUCCESS);

    if (setsid() == -1)
        errExit("setsid");

    printf("PID=%ld, PGID=%ld, SID=%ld\n", (long) getpid(),
            (long) getpgrp(), (long) getsid(0));

    if (open("/dev/tty", O_RDWR) == -1)
        errExit("open /dev/tty");
    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– pgsjc/t_setsid.c

34.4 Controlling Terminals and Controlling Processes

All of the processes in a session may have a (single) controlling terminal. Upon
creation, a session has no controlling terminal; the controlling terminal is established
when the session leader first opens a terminal that is not already the controlling termi-
nal for a session, unless the O_NOCTTY flag is specified when calling open(). A terminal may
be the controlling terminal for at most one session.

SUSv3 specifies the function tcgetsid(int fd) (prototyped in <termios.h>), which
returns the ID of the session associated with the controlling terminal specified
by fd. This function is provided in glibc (where it is implemented using the
ioctl() TIOCGSID operation).

The controlling terminal is inherited by the child of a fork() and preserved across
an exec().

When a session leader opens a controlling terminal, it simultaneously becomes
the controlling process for the terminal. If a terminal disconnect subsequently
occurs, the kernel sends the controlling process a SIGHUP signal to inform it of this
event. We go into further detail on this point in Section 34.6.2.
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If a process has a controlling terminal, opening the special file /dev/tty obtains
a file descriptor for that terminal. This is useful if standard input and output are
redirected, and a program wants to ensure that it is communicating with the con-
trolling terminal. For example, the getpass() function described in Section 8.5 opens
/dev/tty for this purpose. If the process doesn’t have a controlling terminal, open-
ing /dev/tty fails with the error ENXIO.

Removing a process’s association with the controlling terminal

The ioctl(fd, TIOCNOTTY) operation can be used to remove a process’s association
with its controlling terminal, specified via the file descriptor fd. After this call,
attempts to open /dev/tty will fail. (Although not specified in SUSv3, the TIOCNOTTY
operation is supported on most UNIX implementations.)

If the calling process is the controlling process for the terminal, then as for the
termination of the controlling process (Section 34.6.2), the following steps occur:

1. All processes in the session lose their association with the controlling terminal.

2. The controlling terminal loses its association with the session, and can there-
fore be acquired as the controlling process by another session leader.

3. The kernel sends a SIGHUP signal (and a SIGCONT signal) to all members of the
foreground process group, to inform them of the loss of the controlling terminal.

Establishing a controlling terminal on BSD

SUSv3 leaves the manner in which a session acquires a controlling terminal
unspecified, merely stating that specifying the O_NOCTTY flag when opening a terminal
guarantees that the terminal won’t become a controlling terminal for the session.
The Linux semantics that we have described above derive from System V.

On BSD systems, opening a terminal in the session leader never causes the ter-
minal to become a controlling terminal, regardless of whether the O_NOCTTY flag is
specified. Instead, the session leader uses the ioctl() TIOCSCTTY operation to explicitly
establish the terminal referred to by the file descriptor fd as the controlling terminal:

if (ioctl(fd, TIOCSCTTY) == -1)
    errExit("ioctl");

This operation can be performed only if the session doesn’t already have a control-
ling terminal.

The TIOCSCTTY operation is also available on Linux, but it is not widespread on
other (non-BSD) implementations.

Obtaining a pathname that refers to the controlling terminal: ctermid()

The ctermid() function returns a pathname referring to the controlling terminal.

#include <stdio.h>            /* Defines L_ctermid constant */

char *ctermid(char *ttyname);

Returns pointer to string containing pathname of controlling terminal,
or NULL if pathname could not be determined
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The ctermid() function returns the controlling terminal’s pathname in two different
ways: via the function result and via the buffer pointed to by ttyname.

If ttyname is not NULL, then it should be a buffer of at least L_ctermid bytes, and
the pathname is copied into this array. In this case, the function return value is also
a pointer to this buffer. If ttyname is NULL, ctermid() returns a pointer to a statically
allocated buffer containing the pathname. When ttyname is NULL, ctermid() is not
reentrant.

On Linux and other UNIX implementations, ctermid() typically yields the string
/dev/tty. The purpose of this function is to ease portability to non-UNIX systems.

34.5 Foreground and Background Process Groups

The controlling terminal maintains the notion of a foreground process group.
Within a session, only one process can be in the foreground at a particular moment;
all of the other process groups in the session are background process groups. The
foreground process group is the only process group that can freely read and write
on the controlling terminal. When one of the signal-generating terminal characters
is typed on the controlling terminal, the terminal driver delivers the corresponding
signal to the members of the foreground process group. We describe further
details in Section 34.7.

In theory, situations can arise where a session has no foreground process
group. This could happen, for example, if all processes in the foreground pro-
cess group terminate, and no other process notices this fact and moves itself
into the foreground. In practice, such situations are rare. Normally, the shell is
the process monitoring the status of the foreground process group, and it
moves itself back into the foreground when it notices (via wait()) that the fore-
ground process group has terminated.

The tcgetpgrp() and tcsetpgrp() functions respectively retrieve and change the pro-
cess group of a terminal. These functions are used primarily by job-control shells.

The tcgetpgrp() function returns the process group ID of the foreground process
group of the terminal referred to by the file descriptor fd, which must be the con-
trolling terminal of the calling process.

If there is no foreground process group for this terminal, tcgetpgrp() returns a
value greater than 1 that doesn’t match the ID of any existing process group.
(This is the behavior specified by SUSv3.)

#include <unistd.h>

pid_t tcgetpgrp(int fd);

Returns process group ID of terminal’s foreground process group,
or –1 on error

int tcsetpgrp(int fd, pid_t pgid);

Returns 0 on success, or –1 on error
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The tcsetpgrp() function changes the foreground process group for a terminal. If the
calling process has a controlling terminal, and the file descriptor fd refers to that
terminal, then tcsetpgrp() sets the foreground process group of the terminal to the
value specified in pgid, which must match the process group ID of one of the pro-
cesses in the calling process’s session.

Both tcgetpgrp() and tcsetpgrp() are standardized in SUSv3. On Linux, as on
many other UNIX implementations, these functions are implemented using two
unstandardized ioctl() operations: TIOCGPGRP and TIOCSPGRP.

34.6 The SIGHUP Signal

When a controlling process loses its terminal connection, the kernel sends it a
SIGHUP signal to inform it of this fact. (A SIGCONT signal is also sent, to ensure that the
process is restarted in case it had been previously stopped by a signal.) Typically,
this may occur in two circumstances:

When a “disconnect” is detected by the terminal driver, indicating a loss of signal
on a modem or terminal line.

When a terminal window is closed on a workstation. This occurs because the
last open file descriptor for the master side of the pseudoterminal associated
with the terminal window is closed.

The default action of SIGHUP is to terminate a process. If the controlling process
instead handles or ignores this signal, then further attempts to read from the termi-
nal return end-of-file.

SUSv3 states that if both a terminal disconnect occurs and one of the condi-
tions giving rise to an EIO error from read() exists, then it is unspecified
whether read() returns end-of-file or fails with the error EIO. Portable programs
must allow for both possibilities. We look at the circumstances in which read()
may fail with the EIO error in Sections 34.7.2 and 34.7.4.

The delivery of SIGHUP to the controlling process can set off a kind of chain reaction,
resulting in the delivery of SIGHUP to many other processes. This may occur in two ways:

The controlling process is typically a shell. The shell establishes a handler for
SIGHUP, so that, before terminating, it can send a SIGHUP to each of the jobs that it
has created. This signal terminates those jobs by default, but if instead they
catch the signal, then they are thus informed of the shell’s demise.

Upon termination of the controlling process for a terminal, the kernel disassoci-
ates all processes in the session from the controlling terminal, disassociates the
controlling terminal from the session (so that it may be acquired as the controlling
terminal by another session leader), and informs the members of the foreground
process group of the terminal of the loss of their controlling terminal by sending
them a SIGHUP signal.

We go into the details of each of these two cases in the next sections.
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The SIGHUP signal also finds other uses. In Section 34.7.4, we’ll see that SIGHUP is
generated when a process group becomes orphaned. In addition, manually
sending SIGHUP is conventionally used as a way of triggering a daemon process
to reinitialize itself or reread its configuration file. (By definition, a daemon
process doesn’t have a controlling terminal, and so can’t otherwise receive
SIGHUP from the kernel.) We describe the use of SIGHUP with daemon processes
in Section 37.4.

34.6.1 Handling of SIGHUP by the Shell
In a login session, the shell is normally the controlling process for the terminal.
Most shells are programmed so that, when run interactively, they establish a handler
for SIGHUP. This handler terminates the shell, but beforehand sends a SIGHUP signal
to each of the process groups (both foreground and background) created by the
shell. (The SIGHUP signal may be followed by a SIGCONT signal, depending on the shell
and whether or not the job is currently stopped.) How the processes in these
groups respond to SIGHUP is application-dependent; if no special action is taken,
they are terminated by default.

Some job-control shells also send SIGHUP to stopped background jobs if the
shell exits normally (e.g., when we explicitly log out or type Control-D in a shell
window). This is done by both bash and the Korn shell (after printing a mes-
sage on the first logout attempt).

The nohup(1) command can be used to make a command immune to the
SIGHUP signal—that is, start it with the disposition of SIGHUP set to SIG_IGN. The bash
built-in command disown serves a similar purpose, removing a job from the
shell’s list of jobs, so that the job is not sent SIGHUP when the shell terminates.

We can use the program in Listing 34-3 to demonstrate that when the shell receives
SIGHUP, it in turn sends SIGHUP to the jobs it has created. The main task of this pro-
gram is to create a child process, and then have both the parent and the child pause
to catch SIGHUP and display a message if it is received. If the program is given an
optional command-line argument (which may be any string), the child places itself
in a different process group (within the same session). This is useful to show that the
shell doesn’t send SIGHUP to a process group that it did not create, even if it is in
the same session as the shell. (Since the final for loop of the program loops forever,
this program uses alarm() to establish a timer to deliver SIGALRM. The arrival of an
unhandled SIGALRM signal guarantees process termination, if the process is not other-
wise terminated.)

Listing 34-3: Catching SIGHUP

––––––––––––––––––––––––––––––––––––––––––––––––––––– pgsjc/catch_SIGHUP.c

#define _XOPEN_SOURCE 500
#include <unistd.h>
#include <signal.h>
#include "tlpi_hdr.h"

static void
handler(int sig)
{
}

710 Chapter 34



int
main(int argc, char *argv[])
{
    pid_t childPid;
    struct sigaction sa;

    setbuf(stdout, NULL);       /* Make stdout unbuffered */

    sigemptyset(&sa.sa_mask);
    sa.sa_flags = 0;
    sa.sa_handler = handler;
    if (sigaction(SIGHUP, &sa, NULL) == -1)
        errExit("sigaction");

    childPid = fork();
    if (childPid == -1)
        errExit("fork");

    if (childPid == 0 && argc > 1)
        if (setpgid(0, 0) == -1)        /* Move to new process group */
            errExit("setpgid");

    printf("PID=%ld; PPID=%ld; PGID=%ld; SID=%ld\n", (long) getpid(),
            (long) getppid(), (long) getpgrp(), (long) getsid(0));

    alarm(60);                 /* An unhandled SIGALRM ensures this process
                                  will die if nothing else terminates it */
    for(;;) {                  /* Wait for signals */
        pause();
        printf("%ld: caught SIGHUP\n", (long) getpid());
    }
}

––––––––––––––––––––––––––––––––––––––––––––––––––––– pgsjc/catch_SIGHUP.c

Suppose that we enter the following commands in a terminal window in order to
run two instances of the program in Listing 34-3, and then we close the terminal
window:

$ echo $$                                   PID of shell is ID of session
5533
$ ./catch_SIGHUP > samegroup.log 2>&1 &
$ ./catch_SIGHUP x > diffgroup.log 2>&1

The first command results in the creation of two processes that remain in the pro-
cess group created by the shell. The second command creates a child that places
itself in a separate process group.

When we look at samegroup.log, we see that it contains the following output,
indicating that both members of this process group were signaled by the shell:

$ cat samegroup.log
PID=5612; PPID=5611; PGID=5611; SID=5533    Child
PID=5611; PPID=5533; PGID=5611; SID=5533    Parent
5611: caught SIGHUP
5612: caught SIGHUP
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When we examine diffgroup.log, we find the following output, indicating that when the
shell received SIGHUP, it did not send a signal to the process group that it did not create:

$ cat diffgroup.log
PID=5614; PPID=5613; PGID=5614; SID=5533    Child
PID=5613; PPID=5533; PGID=5613; SID=5533    Parent
5613: caught SIGHUP                         Parent was signaled, but not child

34.6.2 SIGHUP and Termination of the Controlling Process
If the SIGHUP signal that is sent to the controlling process as the result of a terminal
disconnect causes the controlling process to terminate, then SIGHUP is sent to all of
the members of the terminal’s foreground process group (refer to Section 25.2).
This behavior is a consequence of the termination of the controlling process,
rather than a behavior associated specifically with the SIGHUP signal. If the controlling
process terminates for any reason, then the foreground process group is signaled
with SIGHUP.

On Linux, the SIGHUP signal is followed by a SIGCONT signal to ensure that the
process group is resumed if it had earlier been stopped by a signal. However,
SUSv3 doesn’t specify this behavior, and most other UNIX implementations
don’t send a SIGCONT in this circumstance.

We can use the program in Listing 34-4 to demonstrate that termination of the con-
trolling process causes a SIGHUP signal to be sent to all members of the terminal’s
foreground process group. This program creates one child process for each of its
command-line arguments w. If the corresponding command-line argument is the
letter d, then the child process places itself in its own (different) process group e;
otherwise, the child remains in the same process group as its parent. (We use the
letter s to specify the latter action, although any letter other than d can be used.)
Each child then establishes a handler for SIGHUP r. To ensure that they terminate if
no event occurs that would otherwise terminate them, the parent and the children
both call alarm() to set a timer that delivers a SIGALRM signal after 60 seconds t.
Finally, all processes (including the parent) print out their process ID and process
group ID y and then loop waiting for signals to arrive u. When a signal is deliv-
ered, the handler prints the process ID of the process and signal number q.

Listing 34-4: Catching SIGHUP when a terminal disconnect occurs

–––––––––––––––––––––––––––––––––––––––––––––––––––––– pgsjc/disc_SIGHUP.c

#define _GNU_SOURCE     /* Get strsignal() declaration from <string.h> */
#include <string.h>
#include <signal.h>
#include "tlpi_hdr.h"

static void             /* Handler for SIGHUP */
handler(int sig)
{

q     printf("PID %ld: caught signal %2d (%s)\n", (long) getpid(),
            sig, strsignal(sig));
                        /* UNSAFE (see Section 21.1.2) */
}
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int
main(int argc, char *argv[])
{
    pid_t parentPid, childPid;
    int j;
    struct sigaction sa;

    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s {d|s}... [ > sig.log 2>&1 ]\n", argv[0]);

    setbuf(stdout, NULL);               /* Make stdout unbuffered */

    parentPid = getpid();
    printf("PID of parent process is:       %ld\n", (long) parentPid);
    printf("Foreground process group ID is: %ld\n",
            (long) tcgetpgrp(STDIN_FILENO));

w     for (j = 1; j < argc; j++) {        /* Create child processes */
        childPid = fork();
        if (childPid == -1)
            errExit("fork");

        if (childPid == 0) {            /* If child... */
e             if (argv[j][0] == 'd')     /* 'd' --> to different pgrp */

                if (setpgid(0, 0) == -1)
                    errExit("setpgid");

            sigemptyset(&sa.sa_mask);
            sa.sa_flags = 0;
            sa.sa_handler = handler;

r             if (sigaction(SIGHUP, &sa, NULL) == -1)
                errExit("sigaction");
            break;                      /* Child exits loop */
        }
    }

    /* All processes fall through to here */

t     alarm(60);          /* Ensure each process eventually terminates */

y     printf("PID=%ld PGID=%ld\n", (long) getpid(), (long) getpgrp());
    for (;;)

u         pause();        /* Wait for signals */
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– pgsjc/disc_SIGHUP.c

Suppose that we run the program in Listing 34-4 in a terminal window with the fol-
lowing command:

$ exec ./disc_SIGHUP d s s > sig.log 2>&1

The exec command is a shell built-in command that causes the shell to do an exec(),
replacing itself with the named program. Since the shell was the controlling pro-
cess for the terminal, our program is now the controlling process and will receive
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SIGHUP when the terminal window is closed. After closing the terminal window, we
find the following lines in the file sig.log:

PID of parent process is:       12733
Foreground process group ID is: 12733
PID=12755 PGID=12755             First child is in a different process group
PID=12756 PGID=12733             Remaining children are in same PG as parent
PID=12757 PGID=12733
PID=12733 PGID=12733             This is the parent process
PID 12756: caught signal  1 (Hangup)
PID 12757: caught signal  1 (Hangup)

Closing the terminal window caused SIGHUP to be sent to the controlling process
(the parent), which terminated as a result. We see that the two children that were in
the same process group as the parent (i.e., the foreground process group for the
terminal) also both received SIGHUP. However, the child that was in a separate (back-
ground) process group did not receive this signal.

34.7 Job Control

Job control is a feature that first appeared around 1980 in the C shell on BSD. Job
control permits a shell user to simultaneously execute multiple commands (jobs),
one in the foreground and the others in the background. Jobs can be stopped and
resumed, and moved between the foreground and background, as described in the
following paragraphs.

In the initial POSIX.1 standard, support for job control was optional. Later
UNIX standards made support mandatory.

In the days of character-based dumb terminals (physical terminal devices that were
limited to displaying ASCII characters), many shell users knew how to use shell job-
control commands. With the advent of bit-mapped monitors running the X Window
System, knowledge of shell job control is less common. However, job control
remains a useful feature. Using job control to manage multiple simultaneous com-
mands can be faster and simpler than switching back and forth between multiple
windows. For those readers unfamiliar with job control, we begin with a short tutorial
on its use. We then go on to look at a few details of the implementation of job control
and consider the implications of job control for application design.

34.7.1 Using Job Control Within the Shell
When we enter a command terminated by an ampersand (&), it is run as a back-
ground job, as illustrated by the following examples:

$ grep -r SIGHUP /usr/src/linux >x &
[1] 18932                           Job 1: process running grep has PID 18932
$ sleep 60 &
[2] 18934                           Job 2: process running sleep has PID 18934
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Each job that is placed in the background is assigned a unique job number by the
shell. This job number is shown in square brackets after the job is started in the
background, and also when the job is manipulated or monitored by various job-
control commands. The number following the job number is the process ID of the
process created to execute the command, or, in the case of a pipeline, the process
ID of the last process in the pipeline. In the commands described in the following
paragraphs, jobs can be referred to using the notation %num, where num is the
number assigned to this job by the shell.

In many cases, the %num argument can be omitted, in which case the current
job is used by default. The current job is the last job that was stopped in the
foreground (using the suspend character described below), or, if there is no
such job, then the last job that was started in the background. (There are some
variations in the details of how different shells determine which background job
is considered the current job.) In addition, the notation %% or %+ refers to the
current job, and the notation %– refers to the previous current job. The current
and previous current jobs are marked by a plus (+) and a minus (–) sign, respec-
tively, in the output produced by the jobs command, which we describe next.

The jobs shell built-in command lists all background jobs:

$ jobs
[1]- Running        grep -r SIGHUP /usr/src/linux >x &
[2]+ Running        sleep 60 &

At this point, the shell is the foreground process for the terminal. Since only a fore-
ground process can read input from the controlling terminal and receive terminal-
generated signals, sometimes it is necessary to move a background job into the
foreground. This is done using the fg shell built-in command:

$ fg %1
grep -r SIGHUP /usr/src/linux >x

As demonstrated in this example, the shell redisplays a job’s command line whenever
the job is moved between the foreground and the background. Below, we’ll see
that the shell also does this whenever the job’s state changes in the background.

When a job is running in the foreground, we can suspend it using the terminal
suspend character (normally Control-Z), which sends the SIGTSTP signal to the termi-
nal’s foreground process group:

Type Control-Z
[1]+ Stopped        grep -r SIGHUP /usr/src/linux >x

After we typed Control-Z, the shell displays the command that has been stopped in
the background. If desired, we can use the fg command to resume the job in the
foreground, or use the bg command to resume it in the background. In both cases,
the shell resumes the stopped job by sending it a SIGCONT signal.

$ bg %1
[1]+ grep -r SIGHUP /usr/src/linux >x &
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We can stop a background job by sending it a SIGSTOP signal:

$ kill -STOP %1
[1]+ Stopped        grep -r SIGHUP /usr/src/linux >x
$ jobs
[1]+ Stopped        grep -r SIGHUP /usr/src/linux >x
[2]- Running        sleep 60 &
$ bg %1                             Restart job in background
[1]+ grep -r SIGHUP /usr/src/linux >x &

The Korn and C shells provide the command stop as a shorthand for kill –stop.

When a background job eventually completes, the shell prints a message prior to
displaying the next shell prompt:

Press Enter to see a further shell prompt
[1]- Done           grep -r SIGHUP /usr/src/linux >x
[2]+ Done           sleep 60
$

Only processes in the foreground job may read from the controlling terminal. This
restriction prevents multiple jobs from competing for terminal input. If a back-
ground job tries to read from the terminal, it is sent a SIGTTIN signal. The default
action of SIGTTIN is to stop the job:

$ cat > x.txt &
[1] 18947
$
Press Enter once more in order to see job state changes displayed prior to next shell prompt
[1]+ Stopped        cat >x.txt
$

It may not always be necessary to press the Enter key to see the job state
changes in the previous example and some of the following examples.
Depending on kernel scheduling decisions, the shell may receive notification
about changes in the state of the background job before the next shell prompt
is displayed.

At this point, we must bring the job into the foreground ( fg), and provide the
required input. If desired, we can then continue execution of the job in the back-
ground by first suspending it and then resuming it in the background (bg). (Of
course, in this particular example, cat would immediately be stopped again, since it
would once more try to read from the terminal.)

By default, background jobs are allowed to perform output to the controlling
terminal. However, if the TOSTOP flag (terminal output stop, Section 62.5) is set for the
terminal, then attempts by background jobs to perform terminal output result in
the generation of a SIGTTOU signal. (We can set the TOSTOP flag using the stty com-
mand, which is described in Section 62.3.) Like SIGTTIN, a SIGTTOU signal stops the job.

$ stty tostop                       Enable TOSTOP flag for this terminal
$ date &
[1] 19023
$
Press Enter once more to see job state changes displayed prior to next shell prompt
[1]+ Stopped        date
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We can then see the output of the job by bringing it into the foreground:

$ fg
date
Tue Dec 28 16:20:51 CEST 2010

The various states of a job under job control, as well as the shell commands and ter-
minal characters (and the accompanying signals) used to move a job between these
states, are summarized in Figure 34-2. This figure also includes a notional
terminated state for a job. This state can be reached by sending various signals to the
job, including SIGINT and SIGQUIT, which can be generated from the keyboard.

Figure 34-2: Job-control states

34.7.2 Implementing Job Control
In this section, we examine various aspects of the implementation of job control,
and conclude with an example program that makes the operation of job control more
transparent.

Although optional in the original POSIX.1 standard, later standards, including
SUSv3, require that an implementation support job control. This support requires
the following:

The implementation must provide certain job-control signals: SIGTSTP, SIGSTOP,
SIGCONT, SIGTTOU, and SIGTTIN. In addition, the SIGCHLD signal (Section 26.3) is also
necessary, since it allows the shell (the parent of all jobs) to find out when one
of its children terminates or is stopped.

The terminal driver must support generation of the job-control signals, so that
when certain characters are typed, or terminal I/O and certain other terminal
operations (described below) are performed from a background job, an appro-
priate signal (as shown in Figure 34-2) is sent to the relevant process group. In
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order to be able to carry out these actions, the terminal driver must also record
the session ID (controlling process) and foreground process group ID associ-
ated with a terminal (Figure 34-1).

The shell must support job control (most modern shells do so). This support is
provided in the form of the commands described earlier to move a job between
the foreground and background and monitor the state of jobs. Certain of these
commands send signals to a job (as shown in Figure 34-2). In addition, when
performing operations that move a job between the running in foreground and
any of the other states, the shell uses calls to tcsetpgrp() to adjust the terminal
driver’s record of the foreground process group.

In Section 20.5, we saw that signals can generally be sent to a process only if
the real or effective user ID of the sending process matches the real user ID or
saved set-user-ID of the receiving process. However, SIGCONT is an exception to
this rule. The kernel allows a process (e.g., the shell) to send SIGCONT to any pro-
cess in the same session, regardless of process credentials. This relaxation of
the rules for SIGCONT is required so that if a user starts a set-user-ID program
that changes its credentials (in particular, its real user ID), it is still possible to
resume it with SIGCONT if it is stopped.

The SIGTTIN and SIGTTOU signals

SUSv3 specifies (and Linux implements) some special cases that apply with respect
to the generation of the SIGTTIN and SIGTTOU signals for background jobs:

SIGTTIN is not sent if the process is currently blocking or ignoring this signal.
Instead, a read() from the controlling terminal fails, setting errno to EIO. The
rationale for this behavior is that the process would otherwise have no way of
knowing that the read() was not permitted.

Even if the terminal TOSTOP flag is set, SIGTTOU is not sent if the process is cur-
rently blocking or ignoring this signal. Instead, a write() to the controlling terminal
is permitted (i.e., the TOSTOP flag is ignored).

Regardless of the setting of the TOSTOP flag, certain functions that change termi-
nal driver data structures result in the generation of SIGTTOU for a background
process if it tries to apply them to its controlling terminal. These functions
include tcsetpgrp(), tcsetattr(), tcflush(), tcflow(), tcsendbreak(), and tcdrain(). (These
functions are described in Chapter 62.) If SIGTTOU is being blocked or ignored,
these calls succeed.

Example program: demonstrating the operation of job control

The program in Listing 34-5 allows us to see how the shell organizes the commands
in a pipeline into a job (process group). This program also allows us to monitor
certain of the signals sent and the changes made to the terminal’s foreground
process group setting under job control. The program is designed so that multiple
instances can be run in a pipeline, as in the following example:

$ ./job_mon | ./job_mon | ./job_mon
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The program in Listing 34-5 performs the following steps:

On startup, the program installs a single handler for SIGINT, SIGTSTP, and SIGCONT r.
The handler carries out the following steps:

– Display the foreground process group for the terminal q. To avoid multiple
identical lines of output, this is done only by the process group leader.

– Display the ID of the process, the process’s position in the pipeline, and
the signal received w.

– The handler must do some extra work if it catches SIGTSTP, since, when
caught, this signal doesn’t stop a process. So, to actually stop the process,
the handler raises the SIGSTOP signal e, which always stops a process. (We
refine this treatment of SIGTSTP in Section 34.7.3.)

If the program is the initial process in the pipeline, it prints headings for the
output produced by all of the processes y. In order to test whether it is the initial
(or final) process in the pipeline, the program uses the isatty() function
(described in Section 62.10) to check whether its standard input (or output) is
a terminal t. If the specified file descriptor refers to a pipe, isatty() returns
false (0).

The program builds a message to be passed to its successor in the pipeline.
This message is an integer indicating the position of this process in the pipe-
line. Thus, for the initial process, the message contains the number 1. If the
program is the initial process in the pipeline, the message is initialized to 0. If it
is not the initial process in the pipeline, the program first reads this message
from its predecessor u. The program increments the message value before
proceeding to the next steps i.

Regardless of its position in the pipeline, the program displays a line contain-
ing its pipeline position, process ID, parent process ID, process group ID, and
session ID o.

Unless it is the last command in the pipeline, the program writes an integer
message for its successor in the pipeline a.

Finally, the program loops forever, using pause() to wait for signals s.

Listing 34-5: Observing the treatment of a process under job control

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  pgsjc/job_mon.c
#define _GNU_SOURCE     /* Get declaration of strsignal() from <string.h> */
#include <string.h>
#include <signal.h>
#include <fcntl.h>
#include "tlpi_hdr.h"

static int cmdNum;              /* Our position in pipeline */

static void                     /* Handler for various signals */
handler(int sig)
{
    /* UNSAFE: This handler uses non-async-signal-safe functions
       (fprintf(), strsignal(); see Section 21.1.2) */
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q     if (getpid() == getpgrp())          /* If process group leader */
        fprintf(stderr, "Terminal FG process group: %ld\n",
                (long) tcgetpgrp(STDERR_FILENO));

w     fprintf(stderr, "Process %ld (%d) received signal %d (%s)\n",
                (long) getpid(), cmdNum, sig, strsignal(sig));

    /* If we catch SIGTSTP, it won't actually stop us. Therefore we
       raise SIGSTOP so we actually get stopped. */

e     if (sig == SIGTSTP)
        raise(SIGSTOP);
}

int
main(int argc, char *argv[])
{
    struct sigaction sa;

    sigemptyset(&sa.sa_mask);
    sa.sa_flags = SA_RESTART;
    sa.sa_handler = handler;

r     if (sigaction(SIGINT, &sa, NULL) == -1)
        errExit("sigaction");
    if (sigaction(SIGTSTP, &sa, NULL) == -1)
        errExit("sigaction");
    if (sigaction(SIGCONT, &sa, NULL) == -1)
        errExit("sigaction");

    /* If stdin is a terminal, this is the first process in pipeline:
       print a heading and initialize message to be sent down pipe */

t     if (isatty(STDIN_FILENO)) {
        fprintf(stderr, "Terminal FG process group: %ld\n",
                (long) tcgetpgrp(STDIN_FILENO));

y         fprintf(stderr, "Command   PID  PPID  PGRP   SID\n");
        cmdNum = 0;

    } else {            /* Not first in pipeline, so read message from pipe */
u         if (read(STDIN_FILENO, &cmdNum, sizeof(cmdNum)) <= 0)

            fatal("read got EOF or error");
    }

i     cmdNum++;
o     fprintf(stderr, "%4d    %5ld %5ld %5ld %5ld\n", cmdNum,

            (long) getpid(), (long) getppid(),
            (long) getpgrp(), (long) getsid(0));

    /* If not the last process, pass a message to the next process */

    if (!isatty(STDOUT_FILENO))   /* If not tty, then should be pipe */
a         if (write(STDOUT_FILENO, &cmdNum, sizeof(cmdNum)) == -1)

            errMsg("write");

s     for(;;)             /* Wait for signals */
        pause();
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––  pgsjc/job_mon.c
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The following shell session demonstrates the use of the program in Listing 34-5.
We begin by displaying the process ID of the shell (which is the session leader, and
the leader of a process group of which it is the sole member), and then create a
background job containing two processes:

$ echo $$                                   Show PID of the shell
1204
$ ./job_mon | ./job_mon &                   Start a job containing 2 processes
[1] 1227
Terminal FG process group: 1204
Command   PID  PPID  PGRP   SID
   1     1226  1204  1226  1204
   2     1227  1204  1226  1204

From the above output, we can see that the shell remains the foreground process
for the terminal. We can also see that the new job is in the same session as the shell
and that all of the processes are in the same process group. Looking at the process
IDs, we can see that the processes in the job were created in the same order as the
commands were given on the command line. (Most shells do things this way, but
some shell implementations create the processes in a different order.)

We continue, creating a second background job consisting of three processes:

$ ./job_mon | ./job_mon | ./job_mon &
[2] 1230
Terminal FG process group: 1204
Command   PID  PPID  PGRP   SID
   1     1228  1204  1228  1204
   2     1229  1204  1228  1204
   3     1230  1204  1228  1204

We see that the shell is still the foreground process group for the terminal. We also
see that the processes for the new job are in the same session as the shell, but are in
a different process group from the first job. Now we bring the second job into the
foreground and send it a SIGINT signal:

$ fg
./job_mon | ./job_mon | ./job_mon
Type Control-C to generate SIGINT (signal 2)
Process 1230 (3) received signal 2 (Interrupt)
Process 1229 (2) received signal 2 (Interrupt)
Terminal FG process group: 1228
Process 1228 (1) received signal 2 (Interrupt)

From the above output, we see that the SIGINT signal was delivered to all of the
processes in the foreground process group. We also see that this job is now the
foreground process group for the terminal. Next, we send a SIGTSTP signal to the job:

Type Control-Z to generate SIGTSTP (signal 20 on Linux/x86-32).
Process 1230 (3) received signal 20 (Stopped)
Process 1229 (2) received signal 20 (Stopped)
Terminal FG process group: 1228
Process 1228 (1) received signal 20 (Stopped)

[2]+  Stopped       ./job_mon | ./job_mon | ./job_mon
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Now all members of the process group are stopped. The output indicates that pro-
cess group 1228 was the foreground job. However, after this job was stopped, the
shell became the foreground process group, although we can’t tell this from the
output.

We then proceed by restarting the job using the bg command, which delivers a
SIGCONT signal to the processes in the job:

$ bg                                        Resume job in background
[2]+ ./job_mon | ./job_mon | ./job_mon &
Process 1230 (3) received signal 18 (Continued)
Process 1229 (2) received signal 18 (Continued)
Terminal FG process group: 1204             The shell is in the foreground
Process 1228 (1) received signal 18 (Continued)
$ kill %1 %2                                We’ve finished: clean up
[1]-  Terminated    ./job_mon | ./job_mon
[2]+  Terminated    ./job_mon | ./job_mon | ./job_mon

34.7.3 Handling Job-Control Signals
Because the operation of job control is transparent to most applications, they don’t
need to take special action for dealing with job-control signals. One exception is
programs that perform screen handling, such as vi and less. Such programs control
the precise layout of text on a terminal and change various terminal settings,
including settings that allow terminal input to be read a character (rather than a
line) at a time. (We describe the various terminal settings in Chapter 62.)

Screen-handling programs need to handle the terminal stop signal (SIGTSTP).
The signal handler should reset the terminal into canonical (line-at-a-time) input
mode and place the cursor at the bottom-left corner of the terminal. When
resumed, the program sets the terminal back into the mode required by the pro-
gram, checks the terminal window size (which may have been changed by the user
in the meantime), and redraws the screen with the desired contents.

When we suspend or exit a terminal-handling program, such as vi on an xterm
or other terminal emulator, we typically see that the terminal is redrawn with
the text that was visible before the program was started. The terminal emulator
achieves this effect by catching two character sequences that programs
employing the terminfo or termcap packages are required to output when
assuming and releasing control of terminal layout. The first of these
sequences, called smcup (normally Escape followed by [?1049h), causes the ter-
minal emulator to switch to its “alternate” screen. The second sequence, called
rmcup (normally Escape followed by [?1049l), causes the terminal emulator to
revert to its default screen, thus resulting in the reappearance of the original
text that was on display before the screen-handling program took control of
the terminal.

When handling SIGTSTP, we should be aware of some subtleties. We have already
noted the first of these in Section 34.7.2: if SIGTSTP is caught, then it doesn’t per-
form its default action of stopping a process. We dealt with this issue in Listing 34-5
by having the handler for SIGTSTP raise the SIGSTOP signal. Since SIGSTOP can’t be
caught, blocked, or ignored, it is guaranteed to immediately stop the process. How-
ever, this approach is not quite correct. In Section 26.1.3, we saw that a parent process
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can use the wait status value returned by wait() or waitpid() to determine which signal
caused one of its child to stop. If we raise the SIGSTOP signal in the handler for SIGTSTP,
it will (misleadingly) appear to the parent that the child was stopped by SIGSTOP.

The proper approach in this situation is to have the SIGTSTP handler raise a further
SIGTSTP signal to stop the process, as follows:

1. The handler resets the disposition of SIGTSTP to its default (SIG_DFL).

2. The handler raises SIGTSTP.

3. Since SIGTSTP was blocked on entry to the handler (unless the SA_NODEFER flag was
specified), the handler unblocks this signal. At this point, the pending SIGTSTP
raised in the previous step performs its default action: the process is immedi-
ately suspended.

4. At some later time, the process will be resumed upon receipt of SIGCONT. At this
point, execution of the handler continues.

5. Before returning, the handler reblocks the SIGTSTP signal and reestablishes
itself to handle the next occurrence of the SIGTSTP signal.

The step of reblocking the SIGTSTP signal is needed to prevent the handler from
being recursively called if another SIGTSTP signal was delivered after the handler
reestablished itself, but before the handler returned. As noted in Section 22.7,
recursive invocations of a signal handler could cause stack overflow if a rapid
stream of signals is delivered. Blocking the signal also avoids problems if the signal
handler needs to perform some other actions (e.g., saving or restoring values from
global variables) after reestablishing the handler but before returning.

Example program

The handler in Listing 34-6 implements the steps described above to correctly
handle SIGTSTP. (We show another example of the handling of the SIGTSTP signal in
Listing 62-4, on page 1313.) After establishing the SIGTSTP handler, the main() func-
tion of this program sits in a loop waiting for signals. Here is an example of what
we see when running this program:

$ ./handling_SIGTSTP
Type Control-Z, sending SIGTSTP
Caught SIGTSTP                 This message is printed by SIGTSTP handler

[1]+  Stopped       ./handling_SIGTSTP
$ fg                           Sends SIGCONT
./handling_SIGTSTP
Exiting SIGTSTP handler        Execution of handler continues; handler returns
Main                           pause() call in main() was interrupted by handler
Type Control-C to terminate the program

In a screen-handling program such as vi, the printf() calls inside the signal handler
in Listing 34-6 would be replaced by code that caused the program to modify the
terminal mode and redraw the terminal display, as outlined above. (Because of the
need to avoid calling non-async-signal-safe functions, described in Section 21.1.2,
the handler should do this by setting a flag to inform the main program to redraw the
screen.)
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Note that the SIGTSTP handler may interrupt certain blocking system calls (as
described in Section 21.5). This point is illustrated in the above program output
by the fact that, after the pause() call is interrupted, the main program prints the
message Main.

Listing 34-6: Handling SIGTSTP

–––––––––––––––––––––––––––––––––––––––––––––––––– pgsjc/handling_SIGTSTP.c

#include <signal.h>
#include "tlpi_hdr.h"

static void                             /* Handler for SIGTSTP */
tstpHandler(int sig)
{
    sigset_t tstpMask, prevMask;
    int savedErrno;
    struct sigaction sa;

    savedErrno = errno;                 /* In case we change 'errno' here */

    printf("Caught SIGTSTP\n");         /* UNSAFE (see Section 21.1.2) */

    if (signal(SIGTSTP, SIG_DFL) == SIG_ERR)
        errExit("signal");              /* Set handling to default */

    raise(SIGTSTP);                     /* Generate a further SIGTSTP */

    /* Unblock SIGTSTP; the pending SIGTSTP immediately suspends the program */

    sigemptyset(&tstpMask);
    sigaddset(&tstpMask, SIGTSTP);
    if (sigprocmask(SIG_UNBLOCK, &tstpMask, &prevMask) == -1)
        errExit("sigprocmask");

    /* Execution resumes here after SIGCONT */

    if (sigprocmask(SIG_SETMASK, &prevMask, NULL) == -1)
        errExit("sigprocmask");         /* Reblock SIGTSTP */

    sigemptyset(&sa.sa_mask);           /* Reestablish handler */
    sa.sa_flags = SA_RESTART;
    sa.sa_handler = tstpHandler;
    if (sigaction(SIGTSTP, &sa, NULL) == -1)
        errExit("sigaction");

    printf("Exiting SIGTSTP handler\n");
    errno = savedErrno;
}

int
main(int argc, char *argv[])
{
    struct sigaction sa;
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    /* Only establish handler for SIGTSTP if it is not being ignored */

    if (sigaction(SIGTSTP, NULL, &sa) == -1)
        errExit("sigaction");

    if (sa.sa_handler != SIG_IGN) {
        sigemptyset(&sa.sa_mask);
        sa.sa_flags = SA_RESTART;
        sa.sa_handler = tstpHandler;
        if (sigaction(SIGTSTP, &sa, NULL) == -1)
            errExit("sigaction");
    }

    for (;;) {                          /* Wait for signals */
        pause();
        printf("Main\n");
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––– pgsjc/handling_SIGTSTP.c

Dealing with ignored job-control and terminal-generated signals

The program in Listing 34-6 establishes a signal handler for SIGTSTP only if that sig-
nal is not being ignored. This is an instance of the more general rule that applica-
tions should handle job-control and terminal-generated signals only if these signals
were not previously being ignored. In the case of job-control signals (SIGTSTP,
SIGTTIN, and SIGTTOU), this prevents an application from attempting to handle these
signals if it is started from a non-job-control shell (such as the traditional Bourne
shell). In a non-job-control shell, the dispositions of these signals are set to SIG_IGN;
only job-control shells set the dispositions of these signals to SIG_DFL.

A similar statement also applies to the other signals that can be generated from
the terminal: SIGINT, SIGQUIT, and SIGHUP. In the case of SIGINT and SIGQUIT, the reason
is that when a command is executed in the background under non-job-control
shells, the resulting process is not placed in a separate process group. Instead, the
process stays in the same group as the shell, and the shell sets the disposition of
SIGINT and SIGQUIT to be ignored before execing the command. This ensures that
the process is not killed if the user types the terminal interrupt or quit characters
(which should affect only the job that is notionally in the foreground). If the pro-
cess subsequently undoes the shell’s manipulations of the dispositions of these sig-
nals, then it once more becomes vulnerable to receiving them.

The SIGHUP signal is ignored if a command is executed via nohup(1). This prevents
the command from being killed as a consequence of a terminal hangup. Thus, an
application should not attempt to change the disposition if it is being ignored.

34.7.4 Orphaned Process Groups (and SIGHUP Revisited)
In Section 26.2, we saw that an orphaned process is one that has been adopted by
init (process ID 1) after its parent terminated. Within a program, we can create an
orphaned child using the following code:

if (fork() != 0)                /* Exit if parent (or on error) */
    exit(EXIT_SUCCESS);
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Suppose that we include this code in a program executed from the shell. Figure 34-3
shows the state of processes before and after the parent exits.

After the parent terminates, the child process in Figure 34-3 is not only an
orphaned process, it is also part of an orphaned process group. SUSv3 defines a pro-
cess group as orphaned if “the parent of every member is either itself a member of
the group or is not a member of the group’s session.” Put another way, a process
group is not orphaned if at least one of its members has a parent in the same ses-
sion but in a different process group. In Figure 34-3, the process group containing
the child is orphaned because the child is in a process group on its own and its par-
ent (init) is in a different session.

By definition, a session leader is in an orphaned process group. This follows
because setsid() creates a new process group in the new session, and the parent
of the session leader is in a different session.

Figure 34-3: Steps in the creation of an orphaned process group

To see why orphaned process groups are important, we need to view things from the
perspective of shell job control. Consider the following scenario based on Figure 34-3:

1. Before the parent process exits, the child was stopped (perhaps because the
parent sent it a stop signal).

2. When the parent process exits, the shell removes the parent’s process group
from its list of jobs. The child is adopted by init and becomes a background
process for the terminal. The process group containing the child is orphaned.

3. At this point, there is no process that monitors the state of the stopped child
via wait().
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Since the shell did not create the child process, it is not aware of the child’s existence or
that the child is part of the same process group as the deceased parent. Furthermore,
the init process checks only for a terminated child, and then reaps the resulting zombie
process. Consequently, the stopped child might languish forever, since no other pro-
cess knows to send it a SIGCONT signal in order to cause it to resume execution.

Even if a stopped process in an orphaned process group has a still-living parent
in a different session, that parent is not guaranteed to be able to send SIGCONT to the
stopped child. A process may send SIGCONT to any other process in the same session,
but if the child is in a different session, the normal rules for sending signals apply
(Section 20.5), so the parent may not be able to send a signal to the child if the
child is a privileged process that has changed its credentials.

To prevent scenarios such as the one described above, SUSv3 specifies that if a pro-
cess group becomes orphaned and has any stopped members, then all members of the
group are sent a SIGHUP signal, to inform them that they have become disconnected
from their session, followed by a SIGCONT signal, to ensure that they resume execu-
tion. If the orphaned process group doesn’t have any stopped members, no signals
are sent.

A process group may become orphaned either because the last parent in a dif-
ferent process group in the same session terminated or because of the termination
of the last process within the group that had a parent in another group. (The latter
case is the one illustrated in Figure 34-3.) In either case, the treatment of a newly
orphaned process group containing stopped children is the same.

Sending SIGHUP and SIGCONT to a newly orphaned process group that contains
stopped members is done in order to eliminate a specific loophole in the job-
control framework. There is nothing to prevent the members of an already-
orphaned process group from later being stopped if another process (with
suitable privileges) sends them a stop signal. In this case, the processes will
remain stopped until some process (again with suitable privileges) sends them
a SIGCONT signal.

When called by a member of an orphaned process group, the tcsetpgrp()
function (Section 34.5) fails with the error ENOTTY, and calls to the tcsetattr(),
tcflush(), tcflow(), tcsendbreak(), and tcdrain() functions (all described in Chap-
ter 62) fail with the error EIO.

Example program

The program in Listing 34-7 demonstrates the treatment of orphaned processes
that we have just described. After establishing handlers for SIGHUP and SIGCONT w,
this program creates one child process for each command-line argument e. Each
child then stops itself (by raising SIGSTOP) r, or waits for signals (using pause()) t.
The choice of action by the child is determined by whether or not the corresponding
command-line argument starts with the letter s (for stop). (We use a command-line
argument starting with the letter p to specify the converse action of calling pause(),
although any character other than the letter s can be used.)

After creating all of the children, the parent sleeps for a few seconds to allow
the children time to get set up y. (As noted in Section 24.2, using sleep() in this way
is an imperfect, but sometimes viable method of accomplishing this result.) The
parent then exits u, at which point the process group containing the children
becomes orphaned. If any of the children receives a signal as a consequence of the
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process group becoming orphaned, the signal handler is invoked, and it displays
the child’s process ID and the signal number q.

Listing 34-7: SIGHUP and orphaned process groups

––––––––––––––––––––––––––––––––––––––––––––––– pgsjc/orphaned_pgrp_SIGHUP.c
#define _GNU_SOURCE     /* Get declaration of strsignal() from <string.h> */
#include <string.h>
#include <signal.h>
#include "tlpi_hdr.h"

static void             /* Signal handler */
handler(int sig)
{

q     printf("PID=%ld: caught signal %d (%s)\n", (long) getpid(),
            sig, strsignal(sig));     /* UNSAFE (see Section 21.1.2) */
}

int
main(int argc, char *argv[])
{
    int j;
    struct sigaction sa;

    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s {s|p} ...\n", argv[0]);

    setbuf(stdout, NULL);               /* Make stdout unbuffered */

    sigemptyset(&sa.sa_mask);
    sa.sa_flags = 0;
    sa.sa_handler = handler;

w     if (sigaction(SIGHUP, &sa, NULL) == -1)
        errExit("sigaction");
    if (sigaction(SIGCONT, &sa, NULL) == -1)
        errExit("sigaction");

    printf("parent: PID=%ld, PPID=%ld, PGID=%ld, SID=%ld\n",
            (long) getpid(), (long) getppid(),
            (long) getpgrp(), (long) getsid(0));

    /* Create one child for each command-line argument */

e     for (j = 1; j < argc; j++) {
        switch (fork()) {
        case -1:
            errExit("fork");

        case 0:         /* Child */
            printf("child:  PID=%ld, PPID=%ld, PGID=%ld, SID=%ld\n",
                    (long) getpid(), (long) getppid(),
                    (long) getpgrp(), (long) getsid(0));

            if (argv[j][0] == 's') {    /* Stop via signal */
                printf("PID=%ld stopping\n", (long) getpid());
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r                 raise(SIGSTOP);
            } else {                    /* Wait for signal */
                alarm(60);              /* So we die if not SIGHUPed */
                printf("PID=%ld pausing\n", (long) getpid());

t                 pause();
            }

            _exit(EXIT_SUCCESS);

        default:        /* Parent carries on round loop */
            break;
        }
    }

    /* Parent falls through to here after creating all children */

y     sleep(3);                           /* Give children a chance to start */
    printf("parent exiting\n");

u     exit(EXIT_SUCCESS);                 /* And orphan them and their group */
}

––––––––––––––––––––––––––––––––––––––––––––––– pgsjc/orphaned_pgrp_SIGHUP.c

The following shell session log shows the results of two different runs of the pro-
gram in Listing 34-7:

$ echo $$                     Display PID of shell, which is also the session ID
4785
$ ./orphaned_pgrp_SIGHUP s p
parent: PID=4827, PPID=4785, PGID=4827, SID=4785
child:  PID=4828, PPID=4827, PGID=4827, SID=4785
PID=4828 stopping
child:  PID=4829, PPID=4827, PGID=4827, SID=4785
PID=4829 pausing
parent exiting
$ PID=4828: caught signal 18 (Continued)
PID=4828: caught signal 1 (Hangup)
PID=4829: caught signal 18 (Continued)
PID=4829: caught signal 1 (Hangup)
Press Enter to get another shell prompt
$ ./orphaned_pgrp_SIGHUP p p
parent: PID=4830, PPID=4785, PGID=4830, SID=4785
child:  PID=4831, PPID=4830, PGID=4830, SID=4785
PID=4831 pausing
child:  PID=4832, PPID=4830, PGID=4830, SID=4785
PID=4832 pausing
parent exiting

The first run creates two children in the to-be-orphaned process group: one stops
itself and the other pauses. (In this run, the shell prompt appears in the middle of
the children’s output because the shell notices that the parent has already exited.)
As can be seen, both children receive SIGCONT and SIGHUP after the parent exits. In
the second run, two children are created, neither stops itself, and consequently no
signals are sent when the parent exits.
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Orphaned process groups and the SIGTSTP, SIGTTIN, and SIGTTOU signals

Orphaned process groups also affect the semantics for delivery of the SIGTSTP,
SIGTTIN, and SIGTTOU signals.

In Section 34.7.1, we saw that SIGTTIN is sent to a background process if it tries
to read() from the controlling terminal, and SIGTTOU is sent to a background process
that tries to write() to the controlling terminal if the terminal’s TOSTOP flag is set.
However, it makes no sense to send these signals to an orphaned process group
since, once stopped, it will never be resumed again. For this reason, instead of
sending SIGTTIN or SIGTTOU, the kernel causes read() or write() to fail with the error EIO.

For similar reasons, if delivery of SIGTSTP, SIGTTIN, or SIGTTOU would stop a mem-
ber of an orphaned process group, then the signal is silently discarded. (If the sig-
nal is being handled, then it is delivered to the process.) This behavior occurs no
matter how the signal is sent—for example, whether the signal is generated by the
terminal driver or sent by an explicit call to kill().

34.8 Summary

Sessions and process groups (also known as jobs) form a two-level hierarchy of pro-
cesses: a session is a collection of process groups, and a process group is a collection
of processes. A session leader is the process that created the session using setsid().
Similarly, a process group leader is the process that created the group using
setpgid(). All of the members of a process group share the same process group ID
(which is the same as the process group ID of the process group leader), and all
processes in the process groups that constitute a session have the same session ID
(which is the same as the ID of the session leader). Each session may have a controlling
terminal (/dev/tty), which is established when the session leader opens a terminal
device. Opening the controlling terminal also causes the session leader to become
the controlling process for the terminal.

Sessions and process groups were defined to support shell job control (although
occasionally they find other uses in applications). Under job control, the shell is the
session leader and controlling process for the terminal on which it is running. Each
job (a simple command or a pipeline) executed by the shell is created as a separate
process group, and the shell provides commands to move a job between three
states: running in the foreground, running in the background, and stopped in the
background.

To support job control, the terminal driver maintains a record of the fore-
ground process group (job) for the controlling terminal. The terminal driver delivers
job-control signals to the foreground job when certain characters are typed. These
signals either terminate or stop the foreground job.

The notion of the terminal’s foreground job is also used to arbitrate terminal
I/O requests. Only processes in the foreground job may read from the controlling
terminal. Background jobs are prevented from reading by delivery of the SIGTTIN
signal, whose default action is to stop the job. If the terminal TOSTOP is set, then
background jobs are also prevented from writing to the controlling terminal by
delivery of a SIGTTOU signal, whose default action is to stop the job.

When a terminal disconnect occurs, the kernel delivers a SIGHUP signal to the
controlling process to inform it of the fact. Such an event may result in a chain reaction
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whereby a SIGHUP signal is delivered to many other processes. First, if the controlling
process is a shell (as is typically the case), then, before terminating, the shell sends
SIGHUP to each of the process groups it has created. Second, if delivery of SIGHUP results
in termination of a controlling process, then the kernel also sends SIGHUP to all of the
members of the foreground process group of the controlling terminal.

In general, applications don’t need to be cognizant of job-control signals. One
exception is when a program performs screen-handling operations. Such programs
need to correctly handle the SIGTSTP signal, resetting terminal attributes to sane
values before the process is suspended, and restoring the correct (application-
specific) terminal attributes when the application is once more resumed following
delivery of a SIGCONT signal.

A process group is considered to be orphaned if none of its member processes
has a parent in a different process group in the same session. Orphaned process
groups are significant because there is no process outside the group that can both
monitor the state of any stopped processes within the group and is always allowed
to send a SIGCONT signal to these stopped processes in order to restart them. This
could result in such stopped processes languishing forever on the system. To avoid
this possibility, when a process group with stopped member processes becomes
orphaned, all members of the process group are sent a SIGHUP signal, followed by a
SIGCONT signal, to notify them that they have become orphaned and ensure that they
are restarted.

Further information

Chapter 9 of [Stevens & Rago, 2005] covers similar material to this chapter, and
includes a description of the steps that occur during login to establish the session
for a login shell. The glibc manual contains a lengthy description of the functions
relating to job control and the implementation of job control within the shell. The
SUSv3 rationale contains an extensive discussion of sessions, process groups, and
job control.

34.9 Exercises

34-1. Suppose a parent process performs the following steps:

/* Call fork() to create a number of child processes, each of which
   remains in same process group as the parent */

/* Sometime later... */
signal(SIGUSR1, SIG_IGN);     /* Parent makes itself immune to SIGUSR1 */

killpg(getpgrp(), SIGUSR1);   /* Send signal to children created earlier */

What problem might be encountered with this application design? (Consider shell
pipelines.) How could this problem be avoided?

34-2. Write a program to verify that a parent process can change the process group ID of
one of its children before the child performs an exec(), but not afterward.

34-3. Write a program to verify that a call to setsid() from a process group leader fails.
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34-4. Modify the program in Listing 34-4 (disc_SIGHUP.c) to verify that, if the controlling
process doesn’t terminate as a consequence of receiving SIGHUP, then the kernel
doesn’t send SIGHUP to the members of the foreground process.

34-5. Suppose that, in the signal handler of Listing 34-6, the code that unblocks the
SIGTSTP signal was moved to the start of the handler. What potential race condition
does this create?

34-6. Write a program to verify that when a process in an orphaned process group
attempts to read() from the controlling terminal, the read() fails with the error EIO.

34-7. Write a program to verify that if one of the signals SIGTTIN, SIGTTOU, or SIGTSTP is sent
to a member of an orphaned process group, then the signal is discarded (i.e., has
no effect) if it would stop the process (i.e., the disposition is SIG_DFL), but is
delivered if a handler is installed for the signal.
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P R O C E S S  P R I O R I T I E S  
A N D S C H E D U L I N G

This chapter discusses various system calls and process attributes that determine
when and which processes obtain access to the CPU(s). We begin by describing the
nice value, a process characteristic that influences the amount of CPU time that a
process is allocated by the kernel scheduler. We follow this with a description of the
POSIX realtime scheduling API. This API allows us to define the policy and priority
used for scheduling processes, giving us much tighter control over how processes
are allocated to the CPU. We conclude with a discussion of the system calls for set-
ting a process’s CPU affinity mask, which determines the set of CPUs on which a
process running on a multiprocessor system will run.

35.1 Process Priorities (Nice Values)

On Linux, as with most other UNIX implementations, the default model for sched-
uling processes for use of the CPU is round-robin time-sharing. Under this model,
each process in turn is permitted to use the CPU for a brief period of time, known
as a time slice or quantum. Round-robin time-sharing satisfies two important require-
ments of an interactive multitasking system:

Fairness: Each process gets a share of the CPU.

Responsiveness: A process doesn’t need to wait for long periods before it
receives use of the CPU.



Under the round-robin time-sharing algorithm, processes can’t exercise direct control
over when and for how long they will be able to use the CPU. By default, each process
in turn receives use of the CPU until its time slice runs out or it voluntarily gives up the
CPU (for example, by putting itself to sleep or performing a disk read). If all processes
attempt to use the CPU as much as possible (i.e., no process ever sleeps or blocks on an
I/O operation), then they will receive a roughly equal share of the CPU.

However, one process attribute, the nice value, allows a process to indirectly
influence the kernel’s scheduling algorithm. Each process has a nice value in the
range –20 (high priority) to +19 (low priority); the default is 0 (refer to Figure 35-1).
In traditional UNIX implementations, only privileged processes can assign themselves
(or other processes) a negative (high) priority. (We’ll explain some Linux differ-
ences in Section 35.3.2.) Unprivileged processes can only lower their priority, by
assuming a nice value greater than the default of 0. By doing this, they are being
“nice” to other processes, and this fact gives the attribute its name.

The nice value is inherited by a child created via fork() and preserved across
an exec().

Rather than returning the actual nice value, the getpriority() system call service
routine returns a number in the range 1 (low priority) to 40 (high priority), calcu-
lated according to the formula unice = 20 – knice. This is done to avoid having a
negative return value from a system call service routine, which is used to indicate
an error. (See the description of system call service routines in Section 3.1.)
Applications are unaware of the manipulated value returned by the system call
service routine, since the C library getpriority() wrapper function reverses the
calculation, returning the value 20 – unice to the calling program.

Figure 35-1: Range and interpretation of the process nice value

Effect of the nice value

Processes are not scheduled in a strict hierarchy by nice value; rather, the nice
value acts as weighting factor that causes the kernel scheduler to favor processes
with higher priorities. Giving a process a low priority (i.e., high nice value) won’t
cause it to be completely starved of the CPU, but causes it to receive relatively less
CPU time. The extent to which the nice value influences the scheduling of a pro-
cess has varied across Linux kernel versions, as well as across UNIX systems.

Starting in kernel 2.6.23, a new kernel scheduling algorithm means that relative
differences in nice values have a much stronger effect than in previous kernels.
As a result, processes with low nice values receive less CPU than before, and pro-
cesses with high nice values obtain a greater proportion of the CPU.
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Retrieving and modifying priorities

The getpriority() and setpriority() system calls allow a process to retrieve and change
its own nice value or that of another process.

Both system calls take the arguments which and who, identifying the process(es)
whose priority is to be retrieved or modified. The which argument determines how
who is interpreted. This argument takes one of the following values:

PRIO_PROCESS

Operate on the process whose process ID equals who. If who is 0, use the
caller’s process ID.

PRIO_PGRP

Operate on all of the members of the process group whose process group
ID equals who. If who is 0, use the caller’s process group.

PRIO_USER

Operate on all processes whose real user ID equals who. If who is 0, use the
caller’s real user ID.

The id_t data type, used for the who argument, is an integer type of sufficient size to
accommodate a process ID or a user ID.

The getpriority() system call returns the nice value of the process specified by
which and who. If multiple processes match the criteria specified (which may occur
if which is PRIO_PGRP or PRIO_USER), then the nice value of the process with the highest
priority (i.e., lowest numerical value) is returned. Since getpriority() may legitimately
return a value of –1 on a successful call, we must test for an error by setting errno to 0
prior to the call, and then checking for a –1 return status and a nonzero errno value
after the call.

The setpriority() system call sets the nice value of the process(es) specified by
which and who to the value specified in prio. Attempts to set a nice value to a number
outside the permitted range (–20 to +19) are silently bounded to this range.

Historically, the nice value was changed using the call nice(incr), which added
incr to the calling process’s nice value. This function is still available, but it is
superseded by the more general setpriority() system call.

The command-line analogs of setpriority() are nice(1), which can be used by
unprivileged users to run a command with a lower priority or by privileged
users to run a command with a raised priority, and renice(8), which can be used
by the superuser to change the nice value of an existing process.

#include <sys/resource.h>

int getpriority(int which, id_t who);

Returns (possibly negative) nice value of specified process on success,
or –1 on error

int setpriority(int which, id_t who, int prio);

Returns 0 on success, or –1 on error
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A privileged (CAP_SYS_NICE) process can change the priority of any process. An
unprivileged process may change its own priority (by specifying which as
PRIO_PROCESS, and who as 0) or the priority of another (target) process, if its effective
user ID matches the real or effective user ID of the target process. The Linux permis-
sion rules for setpriority() differ from SUSv3, which specifies that an unprivileged
process can change the priority of another process if its real or effective user ID
matches the effective user ID of the target process. UNIX implementations show
some variation on this point. Some follow the SUSv3 rules, but others—notably the
BSDs—behave in the same way as Linux.

In Linux kernels before 2.6.12, the permission rules for calls to setpriority() by
unprivileged processes are different from later kernels (and also deviate from
SUSv3). An unprivileged process can change the priority of another process if
its real or effective user ID matches the real user ID of the target process. From
Linux 2.6.12 onward, the permissions checks were changed to be consistent
with other similar APIs available on Linux, such as sched_setscheduler() and
sched_setaffinity().

In Linux kernels before 2.6.12, an unprivileged process may use setpriority() only to
(irreversibly) lower its own or another process’s nice value. A privileged (CAP_SYS_NICE)
process can use setpriority() to raise nice values.

Since kernel 2.6.12, Linux provides the RLIMIT_NICE resource limit, which permits
unprivileged processes to increase nice values. An unprivileged process can raise
its own nice value to the maximum specified by the formula 20 – rlim_cur, where
rlim_cur is the current RLIMIT_NICE soft resource limit. As an example, if a process’s
RLIMIT_NICE soft limit is 25, then its nice value can be raised to –5. From this formula,
and the knowledge that the nice value has the range +19 (low) to –20 (high), we can
deduce that the effectively useful range of the RLIMIT_NICE limit is 1 (low) to 40 (high).
(RLIMIT_NICE doesn’t use the number range +19 to –20 because some negative
resource-limit values have special meanings—for example, RLIM_INFINITY has the
same representation as –1.)

An unprivileged process can make a setpriority() call to change the nice value of
another (target) process, if the effective user ID of the process calling setpriority()
matches the real or effective user ID of the target process, and the change to the
nice value is consistent with the target process’s RLIMIT_NICE limit.

The program in Listing 35-1 uses setpriority() to change the nice value of the
process(es) specified by its command-line arguments (which correspond to the argu-
ments of setpriority()), and then calls getpriority() to verify the change.

Listing 35-1: Modifying and retrieving a process’s nice value

––––––––––––––––––––––––––––––––––––––––––––––––––– procpri/t_setpriority.c

#include <sys/time.h>
#include <sys/resource.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int which, prio;
    id_t who;
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    if (argc != 4 || strchr("pgu", argv[1][0]) == NULL)
        usageErr("%s {p|g|u} who priority\n"
                "    set priority of: p=process; g=process group; "
                "u=processes for user\n", argv[0]);

    /* Set nice value according to command-line arguments */

    which = (argv[1][0] == 'p') ? PRIO_PROCESS :
                (argv[1][0] == 'g') ? PRIO_PGRP : PRIO_USER;
    who = getLong(argv[2], 0, "who");
    prio = getInt(argv[3], 0, "prio");

    if (setpriority(which, who, prio) == -1)
        errExit("getpriority");

    /* Retrieve nice value to check the change */

    errno = 0;                  /* Because successful call may return -1 */
    prio = getpriority(which, who);
    if (prio == -1 && errno != 0)
        errExit("getpriority");

    printf("Nice value = %d\n", prio);

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––– procpri/t_setpriority.c

35.2 Overview of Realtime Process Scheduling

The standard kernel scheduling algorithm usually provides adequate performance
and responsiveness for the mixture of interactive and background processes typically
run on a system. However, realtime applications have more stringent requirements
of a scheduler, including the following:

A realtime application must provide a guaranteed maximum response time for
external inputs. In many cases, these guaranteed maximum response times
must be quite small (e.g., of the order of a fraction of a second). For example, a
slow response by a vehicle navigation system could be catastrophic. To satisfy
this requirement, the kernel must provide the facility for a high-priority process
to obtain control of the CPU in a timely fashion, preempting any process that
may currently be running.

A time-critical application may need to take other steps to avoid unacceptable
delays. For example, to avoid being delayed by a page fault, an application can
lock all of its virtual memory into RAM using mlock() or mlockall() (described in
Section 50.2).

A high-priority process should be able to maintain exclusive access to the CPU
until it completes or voluntarily relinquishes the CPU.
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A realtime application should be able to control the precise order in which its
component processes are scheduled.

SUSv3 specifies a realtime process scheduling API (originally defined in POSIX.1b)
that partly addresses these requirements. This API provides two realtime scheduling
policies: SCHED_RR and SCHED_FIFO. Processes operating under either of these policies
always have priority over processes scheduled using the standard round-robin time-
sharing policy described in Section 35.1, which the realtime scheduling API identi-
fies using the constant SCHED_OTHER.

Each of the realtime policies allows for a range of priority levels. SUSv3
requires that an implementation provide at least 32 discrete priorities for the real-
time policies. In each scheduling policy, runnable processes with higher priority
always have precedence over lower-priority processes when seeking access to the CPU.

The statement that runnable processes with higher priority always have prece-
dence over lower-priority processes needs to be qualified for multiprocessor
Linux systems (including hyperthreaded systems). On a multiprocessor sys-
tem, each CPU has a separate run queue (this provides better performance
than a single system-wide run queue), and processes are prioritized only per
CPU run queue. For example, on a dual-processor system with three pro-
cesses, process A with realtime priority 20 could be queued waiting for CPU 0,
which is currently running process B with priority 30, even though CPU 1 is
running process C with a priority of 10.

Realtime applications that employ multiple processes (or threads) can use
the CPU affinity API described in Section 35.4 to avoid any problems that
might result from this scheduling behavior. For example, on a four-processor
system, all noncritical processes could be isolated onto a single CPU, leaving
the other three CPUs available for use by the application.

Linux provides 99 realtime priority levels, numbered 1 (lowest) to 99 (highest), and
this range applies in both realtime scheduling policies. The priorities in each policy
are equivalent. This means that, given two processes with the same priority, one
operating under the SCHED_RR policy and the other under SCHED_FIFO, either may be
the next one eligible for execution, depending on the order in which they were
scheduled. In effect, each priority level maintains a queue of runnable processes,
and the next process to run is selected from the front of the highest-priority non-
empty queue.

POSIX realtime versus hard realtime

Applications with all of the requirements listed at the start of this section are some-
times referred to as hard realtime applications. However, the POSIX realtime pro-
cess scheduling API doesn’t satisfy all of these requirements. In particular, it
provides no way for an application to guarantee response times for handling input.
To make such guarantees requires operating system features that are not part of
the mainline Linux kernel (nor most other standard operating systems). The
POSIX API merely provides us with so-called soft realtime, allowing us to control
which processes are scheduled for use of the CPU.
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Adding support for hard realtime applications is difficult to achieve without
imposing an overhead on the system that conflicts with the performance require-
ments of the time-sharing applications that form the majority of applications on
typical desktop and server systems. This is why most UNIX kernels—including,
historically, Linux—have not natively supported realtime applications. Nevertheless,
starting from around version 2.6.18, various features have been added to the Linux
kernel with the eventual aim of allowing Linux to natively provide full support for
hard realtime applications, without imposing the aforementioned overhead for
time-sharing operation.

35.2.1 The SCHED_RR Policy
Under the SCHED_RR (round-robin) policy, processes of equal priority are executed in
a round-robin time-sharing fashion. A process receives a fixed-length time slice
each time it uses the CPU. Once scheduled, a process employing the SCHED_RR policy
maintains control of the CPU until either:

it reaches the end of its time slice;

it voluntarily relinquishes the CPU, either by performing a blocking system call
or by calling the sched_yield() system call (described in Section 35.3.3);

it terminates; or

it is preempted by a higher-priority process.

For the first two events above, when a process running under the SCHED_RR policy
loses access to the CPU, it is placed at the back of the queue for its priority level. In
the final case, when the higher-priority process has ceased execution, the pre-
empted process continues execution, consuming the remainder of its time slice
(i.e., the preempted process remains at the head of the queue for its priority level).

In both the SCHED_RR and the SCHED_FIFO policies, the currently running process
may be preempted for one of the following reasons:

a higher-priority process that was blocked became unblocked (e.g., an I/O
operation on which it was waiting completed);

the priority of another process was raised to a higher level than the currently
running process; or

the priority of the currently running process was decreased to a lower value
than that of some other runnable process.

The SCHED_RR policy is similar to the standard round-robin time-sharing scheduling
algorithm (SCHED_OTHER), in that it allows a group of processes with the same priority
to share access to the CPU. The most notable difference is the existence of strictly
distinct priority levels, with higher-priority processes always taking precedence
over lower-priority processes. By contrast, a low nice value (i.e., high priority)
doesn’t give a process exclusive access to the CPU; it merely gives the process a
favorable weighting in scheduling decisions. As noted in Section 35.1, a process
with a low priority (i.e., high nice value) always receives at least some CPU time.
The other important difference is that the SCHED_RR policy allows us to precisely
control the order in which processes are scheduled.
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35.2.2 The SCHED_FIFO Policy
The SCHED_FIFO (first-in, first-out) policy is similar to the SCHED_RR policy. The major
difference is that there is no time slice. Once a SCHED_FIFO process gains access to the
CPU, it executes until either:

it voluntarily relinquishes the CPU (in the same manner as described for the
SCHED_FIFO policy above);

it terminates; or

it is preempted by a higher-priority process (in the same circumstances as
described for the SCHED_FIFO policy above).

In the first case, the process is placed at the back of the queue for its priority level. In
the last case, when the higher-priority process has ceased execution (by blocking or
terminating), the preempted process continues execution (i.e., the preempted process
remains at the head of the queue for its priority level).

35.2.3 The SCHED_BATCH and SCHED_IDLE Policies
The Linux 2.6 kernel series added two nonstandard scheduling policies: SCHED_BATCH
and SCHED_IDLE. Although these policies are set via the POSIX realtime scheduling
API, they are not actually realtime policies.

The SCHED_BATCH policy, added in kernel 2.6.16, is similar to the default
SCHED_OTHER policy. The difference is that the SCHED_BATCH policy causes jobs that fre-
quently wake up to be scheduled less often. This policy is intended for batch-style
execution of processes.

The SCHED_IDLE policy, added in kernel 2.6.23, is also similar to SCHED_OTHER,
but provides functionality equivalent to a very low nice value (i.e., lower than +19).
The process nice value has no meaning for this policy. It is intended for running
low-priority jobs that will receive a significant proportion of the CPU only if no
other job on the system requires the CPU.

35.3 Realtime Process Scheduling API

We now look at the various system calls constituting the realtime process scheduling
API. These system calls allow us to control process scheduling policies and priorities.

Although realtime scheduling has been a part of Linux since version 2.0 of the
kernel, several problems persisted for a long time in the implementation. A
number of features of the implementation remained broken in the 2.2 kernel,
and even in early 2.4 kernels. Most of these problems were rectified by about
kernel 2.4.20.

35.3.1 Realtime Priority Ranges
The sched_get_priority_min() and sched_get_priority_max() system calls return the
available priority range for a scheduling policy.
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For both system calls, policy specifies the scheduling policy about which we wish to
obtain information. For this argument, we specify either SCHED_RR or SCHED_FIFO. The
sched_get_priority_min() system call returns the minimum priority for the specified
policy, and sched_get_priority_max() returns the maximum priority. On Linux, these
system calls return the numbers 1 and 99, respectively, for both the SCHED_RR and
SCHED_FIFO policies. In other words, the priority ranges of the two realtime policies
completely coincide, and SCHED_RR and SCHED_FIFO processes with the same priority
are equally eligible for scheduling. (Which one is scheduled first depends on their
order in the queue for that priority level.)

The range of realtime priorities differs from one UNIX implementation to
another. Therefore, instead of hard-coding priority values into an application, we
should specify priorities relative to the return value from one of these functions. Thus,
the lowest SCHED_RR priority would be specified as sched_get_priority_min(SCHED_FIFO),
the next higher priority as sched_get_priority_min(SCHED_FIFO) + 1, and so on.

SUSv3 doesn’t require that the SCHED_RR and SCHED_FIFO policies use the same
priority ranges, but they do so on most UNIX implementations. For example,
on Solaris 8, the priority range for both policies is 0 to 59, and on FreeBSD 6.1,
it is 0 to 31.

35.3.2 Modifying and Retrieving Policies and Priorities
In this section, we look at the system calls that modify and retrieve scheduling
policies and priorities.

Modifying scheduling policies and priorities

The sched_setscheduler() system call changes both the scheduling policy and the pri-
ority of the process whose process ID is specified in pid. If pid is specified as 0, the
attributes of the calling process are changed.

The param argument is a pointer to a structure of the following form:

struct sched_param {
     int sched_priority;        /* Scheduling priority */
};

#include <sched.h>

int sched_get_priority_min(int policy);
int sched_get_priority_max(int policy);

Both return nonnegative integer priority on success, or –1 on error

#include <sched.h>

int sched_setscheduler(pid_t pid, int policy, const struct sched_param *param);

Returns 0 on success, or –1 on error
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SUSv3 defines the param argument as a structure to allow an implementation to
include additional implementation-specific fields, which may be useful if an imple-
mentation provides additional scheduling policies. However, like most UNIX
implementations, Linux provides just the sched_priority field, which specifies the
scheduling priority. For the SCHED_RR and SCHED_FIFO policies, this must be a value in
the range indicated by sched_get_priority_min() and sched_get_priority_max(); for
other policies, the priority must be 0.

The policy argument determines the scheduling policy for the process. It is
specified as one of the policies shown in Table 35-1.

A successful sched_setscheduler() call moves the process specified by pid to the back
of the queue for its priority level.

SUSv3 specifies that the return value of a successful sched_setscheduler() call
should be the previous scheduling policy. However, Linux deviates from the stan-
dard in that a successful call returns 0. A portable application should test for suc-
cess by checking that the return status is not –1.

The scheduling policy and priority are inherited by a child created via fork(),
and they are preserved across an exec().

The sched_setparam() system call provides a subset of the functionality of
sched_setscheduler(). It modifies the scheduling priority of a process while leaving the
policy unchanged.

The pid and param arguments are the same as for sched_setscheduler().
A successful sched_setparam() call moves the process specified by pid to the back

of the queue for its priority level.
The program in Listing 35-2 uses sched_setscheduler() to set the policy and prior-

ity of the processes specified by its command-line arguments. The first argument is
a letter specifying a scheduling policy, the second is an integer priority, and the
remaining arguments are the process IDs of the processes whose scheduling
attributes are to be changed.

Table 35-1: Linux realtime and nonrealtime scheduling policies

Policy Description SUSv3

SCHED_FIFO Realtime first-in first-out •
SCHED_RR Realtime round-robin •
SCHED_OTHER Standard round-robin time-sharing •
SCHED_BATCH Similar to SCHED_OTHER, but intended for batch execution (since 

Linux 2.6.16)
SCHED_IDLE Similar to SCHED_OTHER, but with priority even lower than nice value 

+19 (since Linux 2.6.23)

#include <sched.h>

int sched_setparam(pid_t pid, const struct sched_param *param);

Returns 0 on success, or –1 on error
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Listing 35-2: Modifying process scheduling policies and priorities

–––––––––––––––––––––––––––––––––––––––––––––––––––––– procpri/sched_set.c

#include <sched.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int j, pol;
    struct sched_param sp;

    if (argc < 3 || strchr("rfo", argv[1][0]) == NULL)
        usageErr("%s policy priority [pid...]\n"
                "    policy is 'r' (RR), 'f' (FIFO), "
#ifdef SCHED_BATCH              /* Linux-specific */
                "'b' (BATCH), "
#endif
#ifdef SCHED_IDLE               /* Linux-specific */
                "'i' (IDLE), "
#endif
                "or 'o' (OTHER)\n",
                argv[0]);

    pol = (argv[1][0] == 'r') ? SCHED_RR :
                (argv[1][0] == 'f') ? SCHED_FIFO :
#ifdef SCHED_BATCH
                (argv[1][0] == 'b') ? SCHED_BATCH :
#endif
#ifdef SCHED_IDLE
                (argv[1][0] == 'i') ? SCHED_IDLE :
#endif
                SCHED_OTHER;
    sp.sched_priority = getInt(argv[2], 0, "priority");

    for (j = 3; j < argc; j++)
        if (sched_setscheduler(getLong(argv[j], 0, "pid"), pol, &sp) == -1)
       errExit("sched_setscheduler");

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– procpri/sched_set.c

Privileges and resource limits affecting changes to scheduling parameters

In kernels before 2.6.12, a process generally must be privileged (CAP_SYS_NICE) to
make changes to scheduling policies and priorities. The one exception to this
requirement is that an unprivileged process can change the scheduling policy of a
process to SCHED_OTHER if the effective user ID of the caller matches either the real or
effective user ID of the target process.

Since kernel 2.6.12, the rules about setting realtime scheduling policies and
priorities have changed with the introduction of a new, nonstandard resource
limit, RLIMIT_RTPRIO. As with older kernels, privileged (CAP_SYS_NICE) processes can
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make arbitrary changes to the scheduling policy and priority of any process. How-
ever, an unprivileged process can also change scheduling policies and priorities,
according to the following rules:

If the process has a nonzero RLIMIT_RTPRIO soft limit, then it can make arbitrary
changes to its scheduling policy and priority, subject to the constraint that the
upper limit on the realtime priority that it may set is the maximum of its current
realtime priority (if the process is currently operating under a realtime policy)
and the value of its RLIMIT_RTPRIO soft limit.

If the value of a process’s RLIMIT_RTPRIO soft limit is 0, then the only change that
it can make is to lower its realtime scheduling priority or to switch from a real-
time policy to a nonrealtime policy.

The SCHED_IDLE policy is special. A process that is operating under this policy
can’t make any changes to its policy, regardless of the value of the RLIMIT_RTPRIO
resource limit.

Policy and priority changes can also be performed from another unprivileged
process, as long as the effective user ID of that process matches either the real
or effective user ID of the target process.

A process’s soft RLIMIT_RTPRIO limit determines only what changes can be made
to its own scheduling policy and priority, either by the process itself or by
another unprivileged process. A nonzero limit doesn’t give an unprivileged
process the ability to change the scheduling policy and priority of other processes.

Starting with kernel 2.6.25, Linux adds the concept of realtime scheduling
groups, configurable via the CONFIG_RT_GROUP_SCHED kernel option, which also
affect the changes that can be made when setting realtime scheduling policies.
See the kernel source file Documentation/scheduler/sched-rt-group.txt for details.

Retrieving scheduling policies and priorities

The sched_getscheduler() and sched_getparam() system calls retrieve the scheduling
policy and priority of a process.

For both of these system calls, pid specifies the ID of the process about which infor-
mation is to be retrieved. If pid is 0, information is retrieved about the calling process.
Both system calls can be used by an unprivileged process to retrieve information
about any process, regardless of credentials.

The sched_getparam() system call returns the realtime priority of the specified
process in the sched_priority field of the sched_param structure pointed to by param.

#include <sched.h>

int sched_getscheduler(pid_t pid);

Returns scheduling policy, or –1 on error

int sched_getparam(pid_t pid, struct sched_param *param);

Returns 0 on success, or –1 on error
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Upon successful execution, sched_getscheduler() returns one of the policies
shown earlier in Table 35-1.

The program in Listing 35-3 uses sched_getscheduler() and sched_getparam() to
retrieve the policy and priority of all of the processes whose process IDs are given
as command-line arguments. The following shell session demonstrates the use of
this program, as well as the program in Listing 35-2:

$ su                          Assume privilege so we can set realtime policies
Password:
# sleep 100 &                 Create a process
[1] 2006
# ./sched_view 2006           View initial policy and priority of sleep process
2006: OTHER  0
# ./sched_set f 25 2006       Switch process to SCHED_FIFO policy, priority 25
# ./sched_view 2006           Verify change
2006: FIFO  25

Listing 35-3: Retrieving process scheduling policies and priorities

–––––––––––––––––––––––––––––––––––––––––––––––––––––– procpri/sched_view.c
#include <sched.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int j, pol;
    struct sched_param sp;

    for (j = 1; j < argc; j++) {
        pol = sched_getscheduler(getLong(argv[j], 0, "pid"));
        if (pol == -1)
            errExit("sched_getscheduler");

        if (sched_getparam(getLong(argv[j], 0, "pid"), &sp) == -1)
            errExit("sched_getparam");

        printf("%s: %-5s %2d\n", argv[j],
                (pol == SCHED_OTHER) ? "OTHER" :
                (pol == SCHED_RR) ? "RR" :
                (pol == SCHED_FIFO) ? "FIFO" :
#ifdef SCHED_BATCH              /* Linux-specific */
                (pol == SCHED_BATCH) ? "BATCH" :
#endif
#ifdef SCHED_IDLE               /* Linux-specific */
                (pol == SCHED_IDLE) ? "IDLE" :
#endif
                "???", sp.sched_priority);
    }

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– procpri/sched_view.c
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Preventing realtime processes from locking up the system

Since SCHED_RR and SCHED_FIFO processes preempt any lower-priority processes (e.g.,
the shell under which the program is run), when developing applications that use
these policies, we need to be aware of the possibility that a runaway realtime pro-
cess could lock up the system by hogging the CPU. Programmatically, there are a
few of ways to avoid this possibility:

Establish a suitably low soft CPU time resource limit (RLIMIT_CPU, described in
Section 36.3) using setrlimit(). If the process consumes too much CPU time, it
will be sent a SIGXCPU signal, which kills the process by default.

Set an alarm timer using alarm(). If the process continues running for a wall
clock time that exceeds the number of seconds specified in the alarm() call,
then it will be killed by a SIGALRM signal.

Create a watchdog process that runs with a high realtime priority. This process
can loop repeatedly, sleeping for a specified interval, and then waking and
monitoring the status of other processes. Such monitoring could include mea-
suring the value of the CPU time clock for each process (see the discussion of
the clock_getcpuclockid() function in Section 23.5.3) and checking its scheduling
policy and priority using sched_getscheduler() and sched_getparam(). If a process is
deemed to be misbehaving, the watchdog thread could lower the process’s
priority, or stop or terminate it by sending an appropriate signal.

Since kernel 2.6.25, Linux provides a nonstandard resource limit, RLIMIT_RTTIME, for
controlling the amount of CPU time that can be consumed in a single burst by a
process running under a realtime scheduling policy. Specified in microseconds,
RLIMIT_RTTIME limits the amount of CPU time that the process may consume with-
out performing a system call that blocks. When the process does perform such a
call, the count of consumed CPU time is reset to 0. The count of consumed CPU
time is not reset if the process is preempted by a higher-priority process, is sched-
uled off the CPU because its time slice expired (for a SCHED_RR process), or calls
sched_yield() (Section 35.3.3). If the process reaches its limit of CPU time, then, as
with RLIMIT_CPU, it will be sent a SIGXCPU signal, which kills the process by default.

The changes in kernel 2.6.25 can also help prevent runaway realtime processes
from locking up the system. For details, see the kernel source file Documentation/
scheduler/sched-rt-group.txt.

Preventing child processes from inheriting privileged scheduling policies

Linux 2.6.32 added SCHED_RESET_ON_FORK as a value that can be specified in policy
when calling sched_setscheduler(). This is a flag value that is ORed with one of the
policies in Table 35-1. If this flag is set, then children that are created by this pro-
cess using fork() do not inherit privileged scheduling policies and priorities. The
rules are as follows:

If the calling process has a realtime scheduling policy (SCHED_RR or SCHED_FIFO),
then the policy in child processes is reset to the standard round-robin time-
sharing policy, SCHED_OTHER.

If the process has a negative (i.e., high) nice value, then the nice value in child
processes is reset to 0.
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The SCHED_RESET_ON_FORK flag was designed to be used in media-playback applica-
tions. It permits the creation of single processes that have realtime scheduling poli-
cies that can’t be passed to child processes. Using the SCHED_RESET_ON_FORK flag
prevents the creation of fork bombs that try to evade the ceiling set by the
RLIMIT_RTTIME resource limit by creating multiple children running under realtime
scheduling policies.

Once the SCHED_RESET_ON_FORK flag has been enabled for a process, only a privileged
process (CAP_SYS_NICE) can disable it. When a child process is created, its reset-on-
fork flag is disabled.

35.3.3 Relinquishing the CPU
A realtime process may voluntarily relinquish the CPU in two ways: by invoking a sys-
tem call that blocks the process (e.g., a read() from a terminal) or by calling sched_yield().

The operation of sched_yield() is simple. If there are any other queued runnable
processes at the same priority level as the calling process, then the calling process is
placed at the back of the queue, and the process at the head of the queue is sched-
uled to use the CPU. If no other runnable processes are queued at this priority,
then sched_yield() does nothing; the calling process simply continues using the CPU.

Although SUSv3 permits a possible error return from sched_yield(), this system
call always succeeds on Linux, as well as on many other UNIX implementations.
Portable applications should nevertheless always check for an error return.

The use of sched_yield() for nonrealtime processes is undefined.

35.3.4 The SCHED_RR Time Slice
The sched_rr_get_interval() system call enables us to find out the length of the time
slice allocated to a SCHED_RR process each time it is granted use of the CPU.

As with the other process scheduling system calls, pid identifies the process about
which we want to obtain information, and specifying pid as 0 means the calling pro-
cess. The time slice is returned in the timespec structure pointed to by tp:

struct timespec {
    time_t tv_sec;          /* Seconds */
    long   tv_nsec;         /* Nanoseconds */
};

On recent 2.6 kernels, the realtime round-robin time slice is 0.1 seconds.

#include <sched.h>

int sched_yield(void);

Returns 0 on success, or –1 on error

#include <sched.h>

int sched_rr_get_interval(pid_t pid, struct timespec *tp);

Returns 0 on success, or –1 on error
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35.4 CPU Affinity

When a process is rescheduled to run on a multiprocessor system, it doesn’t neces-
sarily run on the same CPU on which it last executed. The usual reason it may run
on another CPU is that the original CPU is already busy.

When a process changes CPUs, there is a performance impact: in order for a
line of the process’s data to be loaded into the cache of the new CPU, it must first
be invalidated (i.e., either discarded if it is unmodified, or flushed to main memory
if it was modified), if present in the cache of the old CPU. (To prevent cache incon-
sistencies, multiprocessor architectures allow data to be kept in only one CPU cache
at a time.) This invalidation costs execution time. Because of this performance impact,
the Linux (2.6) kernel tries to ensure soft CPU affinity for a process—wherever
possible, the process is rescheduled to run on the same CPU.

A cache line is the cache analog of a page in a virtual memory management system.
It is the size of the unit used for transfers between the CPU cache and main
memory. Typical line sizes range from 32 to 128 bytes. For further informa-
tion, see [Schimmel, 1994] and [Drepper, 2007].

One of the fields in the Linux-specific /proc/PID/stat file displays the
number of the CPU on which a process is currently executing or last executed.
See the proc(5) manual page for details.

Sometimes, it is desirable to set hard CPU affinity for a process, so that it is explic-
itly restricted to always running on one, or a subset, of the available CPUs. Among
the reasons we may want to do this are the following:

We can avoid the performance impacts caused by invalidation of cached data.

If multiple threads (or processes) are accessing the same data, then we may obtain
performance benefits by confining them all to the same CPU, so that they
don’t contend for the data and thus cause cache misses.

For a time-critical application, it may be desirable to confine most processes on
the system to other CPUs, while reserving one or more CPUs for the time-critical
application.

The isolcpus kernel boot option can be used to isolate one or more CPUs from
the normal kernel scheduling algorithms. The only way to move a process on or
off a CPU that has been isolated is via the CPU affinity system calls described in
this section. The isolcpus boot option is the preferred method of implementing
the last of the scenarios listed above. For details, see the kernel source file
Documentation/kernel-parameters.txt.

Linux also provides a cpuset kernel option, which can be used on systems
containing large numbers of CPUs to achieve more sophisticated control over
how the CPUs and memory are allocated to processes. For details, see the ker-
nel source file Documentation/cpusets.txt.

Linux 2.6 provides a pair of nonstandard system calls to modify and retrieve the
hard CPU affinity of a process: sched_setaffinity() and sched_getaffinity().

Many other UNIX implementations provide interfaces for controlling CPU
affinity. For example, HP-UX and Solaris provide a pset_bind() system call.
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The sched_setaffinity() system call sets the CPU affinity of the process specified by
pid. If pid is 0, the CPU affinity of the calling process is changed.

The CPU affinity to be assigned to the process is specified in the cpu_set_t structure
pointed to by set.

CPU affinity is actually a per-thread attribute that can be adjusted indepen-
dently for each of the threads in a thread group. If we want to change the CPU
affinity of a specific thread in a multithreaded process, we can specify pid as the
value returned by a call to gettid() in that thread. Specifying pid as 0 means the
calling thread.

Although the cpu_set_t data type is implemented as a bit mask, we should treat it as
an opaque structure. All manipulations of the structure should be done using the
macros CPU_ZERO(), CPU_SET(), CPU_CLR(), and CPU_ISSET().

These macros operate on the CPU set pointed to by set as follows:

CPU_ZERO() initializes set to be empty.

CPU_SET() adds the CPU cpu to set.

CPU_CLR() removes the CPU cpu from set.

CPU_ISSET() returns true if the CPU cpu is a member of set.

The GNU C library also provides a number of other macros for working with
CPU sets. See the CPU_SET(3) manual page for details.

The CPUs in a CPU set are numbered starting at 0. The <sched.h> header file
defines the constant CPU_SETSIZE to be one greater than the maximum CPU number
that can be represented in a cpu_set_t variable. CPU_SETSIZE has the value 1024.

The len argument given to sched_setaffinity() should specify the number of bytes
in the set argument (i.e., sizeof(cpu_set_t)).

#define _GNU_SOURCE
#include <sched.h>

int sched_setaffinity(pid_t pid, size_t len, cpu_set_t *set);

Returns 0 on success, or –1 on error

#define _GNU_SOURCE
#include <sched.h>

void CPU_ZERO(cpu_set_t *set);
void CPU_SET(int cpu, cpu_set_t *set);
void CPU_CLR(int cpu, cpu_set_t *set);

int CPU_ISSET(int cpu, cpu_set_t *set);

Returns true (1) if cpu is in set, or false (0) otherwise
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The following code confines the process identified by pid to running on any
CPU other than the first CPU of a four-processor system:

cpu_set_t set;

CPU_ZERO(&set);
CPU_SET(1, &set);
CPU_SET(2, &set);
CPU_SET(3, &set);

sched_setaffinity(pid, CPU_SETSIZE, &set);

If the CPUs specified in set don’t correspond to any CPUs on the system, then
sched_setaffinity() fails with the error EINVAL.

If set doesn’t include the CPU on which the calling process is currently run-
ning, then the process is migrated to one of the CPUs in set.

An unprivileged process may set the CPU affinity of another process only if its
effective user ID matches the real or effective user ID of the target process. A privi-
leged (CAP_SYS_NICE) process may set the CPU affinity of any process.

The sched_getaffinity() system call retrieves the CPU affinity mask of the process
specified by pid. If pid is 0, the CPU affinity mask of the calling process is returned.

The CPU affinity mask is returned in the cpu_set_t structure pointed to by set. The
len argument should be set to indicate the number of bytes in this structure (i.e.,
sizeof(cpu_set_t)). We can use the CPU_ISSET() macro to determine which CPUs are in
the returned set.

If the CPU affinity mask of the target process has not otherwise been modified,
sched_getaffinity() returns a set containing all of the CPUs on the system.

No permission checking is performed by sched_getaffinity(); an unprivileged
process can retrieve the CPU affinity mask of any process on the system.

A child process created by fork() inherits its parent’s CPU affinity mask, and
this mask is preserved across an exec().

The sched_setaffinity() and sched_getaffinity() system calls are Linux-specific.

The t_sched_setaffinity.c and t_sched_getaffinity.c programs in the procpri
subdirectory in the source code distribution for this book demonstrate the use
of sched_setaffinity() and sched_getaffinity().

#define _GNU_SOURCE
#include <sched.h>

int sched_getaffinity(pid_t pid, size_t len, cpu_set_t *set);

Returns 0 on success, or –1 on error
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35.5 Summary

The default kernel scheduling algorithm employs a round-robin time-sharing policy.
By default, all processes have equal access to the CPU under this policy, but we can
set a process’s nice value to a number in the range –20 (high priority) to +19 (low
priority) to cause the scheduler to favor or disfavor that process. However, even if
we give a process the lowest priority, it is not completely starved of the CPU.

Linux also implements the POSIX realtime scheduling extensions. These allow
an application to precisely control the allocation of the CPU to processes. Processes
operating under the two realtime scheduling policies, SCHED_RR (round-robin) and
SCHED_FIFO (first-in, first-out), always have priority over processes operating under
nonrealtime policies. Realtime processes have priorities in the range 1 (low) to 99
(high). As long as it is runnable, a higher-priority process completely excludes
lower-priority processes from the CPU. A process operating under the SCHED_FIFO
policy maintains exclusive access to the CPU until either it terminates, it voluntarily
relinquishes the CPU, or it is preempted because a higher-priority process became
runnable. Similar rules apply to the SCHED_RR policy, with the addition that if multiple
processes are running at the same priority, then the CPU is shared among these
processes in a round-robin fashion.

A process’s CPU affinity mask can be used to restrict the process to running on
a subset of the CPUs available on a multiprocessor system. This can improve the
performance of certain types of applications.

Further information

[Love, 2010] provides background detail on process priorities and scheduling on
Linux. [Gallmeister, 1995] provides further information about the POSIX realtime
scheduling API. Although targeted at POSIX threads, much of the discussion of
the realtime scheduling API in [Butenhof, 1996] is useful background to the real-
time scheduling discussion in this chapter.

For further information about CPU affinity and controlling the allocation of
threads to CPUs and memory nodes on multiprocessor systems, see the kernel
source file Documentation/cpusets.txt, and the mbind(2), set_mempolicy(2), and cpuset(7)
manual pages.

35.6 Exercises

35-1. Implement the nice(1) command.

35-2. Write a set-user-ID-root program that is the realtime scheduling analog of nice(1).
The command-line interface of this program should be as follows:

# ./rtsched policy priority command arg...

In the above command, policy is r for SCHED_RR or f for SCHED_FIFO. This program
should drop its privileged ID before execing the command, for the reasons
described in Sections 9.7.1 and 38.3.
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35-3. Write a program that places itself under the SCHED_FIFO scheduling policy and then
creates a child process. Both processes should execute a function that causes the
process to consume a maximum of 3 seconds of CPU time. (This can be done by
using a loop in which the times() system call is repeatedly called to determine the
amount of CPU time so far consumed.) After each quarter of a second of
consumed CPU time, the function should print a message that displays the process
ID and the amount of CPU time so far consumed. After each second of consumed
CPU time, the function should call sched_yield() to yield the CPU to the other
process. (Alternatively, the processes could raise each other’s scheduling priority
using sched_setparam().) The program’s output should demonstrate that the two
processes alternately execute for 1 second of CPU time. (Note carefully the advice
given in Section 35.3.2 about preventing a runaway realtime process from hogging
the CPU.)

35-4. If two processes use a pipe to exchange a large amount of data on a multiprocessor
system, the communication should be faster if the processes run on the same CPU
than if they run on different CPUs. The reason is that when the two processes run
on the same CPU, the pipe data will be more quickly accessed because it can
remain in that CPU’s cache. By contrast, when the processes run on separate CPUs,
the benefits of the CPU cache are lost. If you have access to a multiprocessor
system, write a program that uses sched_setaffinity() to demonstrate this effect,
by forcing the processes either onto the same CPUs or onto different CPUs.
(Chapter 44 describes the use of pipes.)

The advantage in favor of processes running on the same CPU won’t hold true
on hyperthreaded systems and on some modern multiprocessor architectures
where the CPUs do share the cache. In these cases, the advantage will be in
favor of processes running on different CPUs. Information about the CPU
topology of a multiprocessor system can be obtained by inspecting the contents
of the Linux-specific /proc/cpuinfo file.
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P R O C E S S  R E S O U R C E S

Each process consumes system resources such as memory and CPU time. This
chapter looks at resource-related system calls. We begin with the getrusage() system
call, which allows a process to monitor the resources that it has used or that its children
have used. We then look at the setrlimit() and getrlimit() system calls, which can be
used to change and retrieve limits on the calling process’s consumption of various
resources.

36.1 Process Resource Usage

The getrusage() system call retrieves statistics about various system resources used
by the calling process or by all of its children.

#include <sys/resource.h>

int getrusage(int who, struct rusage *res_usage);

Returns 0 on success, or –1 on error



The who argument specifies the process(es) for which resource usage information
is to be retrieved. It has one of the following values:

RUSAGE_SELF

Return information about the calling process.

RUSAGE_CHILDREN

Return information about all children of the calling process that have ter-
minated and been waited for.

RUSAGE_THREAD (since Linux 2.6.26)
Return information about the calling thread. This value is Linux-specific.

The res_usage argument is a pointer to a structure of type rusage, defined as shown
in Listing 36-1.

Listing 36-1: Definition of the rusage structure

struct rusage {
    struct timeval ru_utime;      /* User CPU time used */
    struct timeval ru_stime;      /* System CPU time used */
    long           ru_maxrss;     /* Maximum size of resident set (kilobytes)
                                     [used since Linux 2.6.32] */
    long           ru_ixrss;      /* Integral (shared) text memory size
                                     (kilobyte-seconds) [unused] */
    long           ru_idrss;      /* Integral (unshared) data memory used
                                     (kilobyte-seconds) [unused] */
    long           ru_isrss;      /* Integral (unshared) stack memory used
                                     (kilobyte-seconds) [unused] */
    long           ru_minflt;     /* Soft page faults (I/O not required) */
    long           ru_majflt;     /* Hard page faults (I/O required) */
    long           ru_nswap;      /* Swaps out of physical memory [unused] */
    long           ru_inblock;    /* Block input operations via file
                                     system [used since Linux 2.6.22] */
    long           ru_oublock;    /* Block output operations via file
                                     system [used since Linux 2.6.22] */
    long           ru_msgsnd;     /* IPC messages sent [unused] */
    long           ru_msgrcv;     /* IPC messages received [unused] */
    long           ru_nsignals;   /* Signals received [unused] */
    long           ru_nvcsw;      /* Voluntary context switches (process
                                     relinquished CPU before its time slice
                                     expired) [used since Linux 2.6] */
    long          ru_nivcsw;      /* Involuntary context switches (higher
                                     priority process became runnable or time
                                     slice ran out) [used since Linux 2.6] */
};

As indicated in the comments in Listing 36-1, on Linux, many of the fields in the
rusage structure are not filled in by getrusage() (or wait3() and wait4()), or they are
filled in only by more recent kernel versions. Some of the fields that are unused
on Linux are used on other UNIX implementations. These fields are provided on
Linux so that, if they are implemented at a future date, the rusage structure does
not need to undergo a change that would break existing application binaries.
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Although getrusage() appears on most UNIX implementations, it is only weakly
specified in SUSv3 (which specifies only the fields ru_utime and ru_stime). In
part, this is because the meaning of much of the information in the rusage
structure is implementation-dependent.

The ru_utime and ru_stime fields are structures of type timeval (Section 10.1), which
return the number of seconds and microseconds of CPU time consumed by a pro-
cess in user mode and kernel mode, respectively. (Similar information is retrieved
by the times() system call described in Section 10.7.)

The Linux-specific /proc/PID/stat files expose some resource usage informa-
tion (CPU time and page faults) about all processes on the system. See the proc(5)
manual page for further details.

The rusage structure returned by the getrusage() RUSAGE_CHILDREN operation includes
the resource usage statistics of all of the descendants of the calling process. For
example, if we have three processes related as parent, child, and grandchild, then,
when the child does a wait() on the grandchild, the resource usage values of the
grandchild are added to the child’s RUSAGE_CHILDREN values; when the parent per-
forms a wait() for the child, the resource usage values of both the child and the
grandchild are added to the parent’s RUSAGE_CHILDREN values. Conversely, if the child
does not wait() on the grandchild, then the grandchild’s resource usages are not
recorded in the RUSAGE_CHILDREN values of the parent.

For the RUSAGE_CHILDREN operation, the ru_maxrss field returns the maximum resi-
dent set size among all of the descendants of the calling process (rather than a sum
for all descendants).

SUSv3 specifies that if SIGCHLD is being ignored (so that children are not turned
into zombies that can be waited on), then the child statistics should not be added
to the values returned by RUSAGE_CHILDREN. However, as noted in Section 26.3.3,
in kernels before 2.6.9, Linux deviates from this requirement—if SIGCHLD is
ignored, then the resource usage values for dead children are included in the
values returned for RUSAGE_CHILDREN.

36.2 Process Resource Limits

Each process has a set of resource limits that can be used to restrict the amounts of
various system resources that the process may consume. For example, we may want
to set resource limits on a process before execing an arbitrary program, if we are
concerned that it may consume excessive resources. We can set the resource limits
of the shell using the ulimit built-in command (limit in the C shell). These limits are
inherited by the processes that the shell creates to execute user commands.

Since kernel 2.6.24, the Linux-specific /proc/PID/limits file can be used to
view all of the resource limits of any process. This file is owned by the real user
ID of the corresponding process and its permissions allow reading only by that
user ID (or by a privileged process).

The getrlimit() and setrlimit() system calls allow a process to fetch and modify its
resource limits.
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The resource argument identifies the resource limit to be retrieved or changed. The
rlim argument is used to return resource limit values (getrlimit()) or to specify new
resource limit values (setrlimit()), and is a pointer to a structure containing two fields:

struct rlimit {
    rlim_t rlim_cur;        /* Soft limit (actual process limit) */
    rlim_t rlim_max;        /* Hard limit (ceiling for rlim_cur) */
};

These fields correspond to the two associated limits for a resource: the soft
(rlim_cur) and hard (rlim_max) limits. (The rlim_t data type is an integer type.) The
soft limit governs the amount of the resource that may be consumed by the process. A
process can adjust the soft limit to any value from 0 up to the hard limit. For most
resources, the sole purpose of the hard limit is to provide this ceiling for the soft
limit. A privileged (CAP_SYS_RESOURCE) process can adjust the hard limit in either
direction (as long as its value remains greater than the soft limit), but an unprivi-
leged process can adjust the hard limit only to a lower value (irreversibly). The
value RLIM_INFINITY in rlim_cur or rlim_max means infinity (no limit on the
resource), both when retrieved via getrlimit() and when set via setrlimit().

In most cases, resource limits are enforced for both privileged and unprivi-
leged processes. They are inherited by child processes created via fork() and are
preserved across an exec().

The values that can be specified for the resource argument of getrlimit() and
setrlimit() are summarized in Table 36-1 and detailed in Section 36.3.

Although a resource limit is a per-process attribute, in some cases, the limit is
measured against not just that process’s consumption of the corresponding
resource, but also against the sum of resources consumed by all processes with the
same real user ID. The RLIMIT_NPROC limit, which places a limit on the number of
processes that can be created, is a good example of the rationale for this approach.
Applying this limit against only the number of children that the process itself created
would be ineffective, since each child that the process created would also be able to
create further children, which could create more children, and so on. Instead, the
limit is measured against the count of all processes that have the same real user ID.
Note, however, that the resource limit is checked only in the processes where it has
been set (i.e., the process itself and its descendants, which inherit the limit). If
another process owned by the same real user ID has not set the limit (i.e., the limit
is infinite) or has set a different limit, then that process’s capacity to create children
will be checked according to the limit that it has set.

As we describe each resource limit below, we note those limits that are mea-
sured against the resources consumed by all processes with the same real user ID. If
not otherwise specified, then a resource limit is measured only against the pro-
cess’s own consumption of the resource.

#include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlim);
int setrlimit(int resource, const struct rlimit *rlim);

Both return 0 on success, or –1 on error
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Be aware that, in many cases, the shell commands for getting and setting
resource limits (ulimit in bash and the Korn shell, and limit in the C shell) use
different units from those used in getrlimit() and setrlimit(). For example, the
shell commands typically express the limits on the size of various memory seg-
ments in kilobytes.

Example program

Before going into the specifics of each resource limit, we look at a simple example
of the use of resource limits. Listing 36-2 defines the function printRlimit(), which
displays a message, along with the soft and hard limits for a specified resource.

The rlim_t data type is typically represented in the same way as off_t, to handle
the representation of RLIMIT_FSIZE, the file size resource limit. For this reason,
when printing rlim_t values (as in Listing 36-2), we cast them to long long and
use the %lld printf() specifier, as explained in Section 5.10.

The program in Listing 36-3 calls setrlimit() to set the soft and hard limits on the
number of processes that a user may create (RLIMIT_NPROC), uses the printRlimit()
function of Listing 36-2 to display the limits before and after the change, and then
creates as many processes as possible. When we run this program, setting the soft
limit to 30 and the hard limit to 100, we see the following:

$ ./rlimit_nproc 30 100
Initial maximum process limits:  soft=1024; hard=1024
New maximum process limits:      soft=30; hard=100
Child 1 (PID=15674) started
Child 2 (PID=15675) started
Child 3 (PID=15676) started
Child 4 (PID=15677) started
ERROR [EAGAIN Resource temporarily unavailable] fork

Table 36-1: Resource values for getrlimit() and setrlimit()

resource Limit on SUSv3

RLIMIT_AS Process virtual memory size (bytes) •
RLIMIT_CORE Core file size (bytes) •
RLIMIT_CPU CPU time (seconds) •
RLIMIT_DATA Process data segment (bytes) •
RLIMIT_FSIZE File size (bytes) •
RLIMIT_MEMLOCK Locked memory (bytes)
RLIMIT_MSGQUEUE Bytes allocated for POSIX message queues for real user ID 

(since Linux 2.6.8)
RLIMIT_NICE Nice value (since Linux 2.6.12)
RLIMIT_NOFILE Maximum file descriptor number plus one •
RLIMIT_NPROC Number of processes for real user ID
RLIMIT_RSS Resident set size (bytes; not implemented)
RLIMIT_RTPRIO Realtime scheduling priority (since Linux 2.6.12)
RLIMIT_RTTIME Realtime CPU time (microseconds; since Linux 2.6.25)
RLIMIT_SIGPENDING Number of queued signals for real user ID (since 

Linux 2.6.8)
RLIMIT_STACK Size of stack segment (bytes) •
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In this example, the program managed to create only 4 new processes, because
26 processes were already running for this user.

Listing 36-2: Displaying process resource limits
––––––––––––––––––––––––––––––––––––––––––––––––––––  procres/print_rlimit.c
#include <sys/resource.h>
#include "print_rlimit.h"           /* Declares function defined here */
#include "tlpi_hdr.h"

int                     /* Print 'msg' followed by limits for 'resource' */
printRlimit(const char *msg, int resource)
{
    struct rlimit rlim;

    if (getrlimit(resource, &rlim) == -1)
        return -1;

    printf("%s soft=", msg);
    if (rlim.rlim_cur == RLIM_INFINITY)
        printf("infinite");
#ifdef RLIM_SAVED_CUR               /* Not defined on some implementations */
    else if (rlim.rlim_cur == RLIM_SAVED_CUR)
        printf("unrepresentable");
#endif
    else
        printf("%lld", (long long) rlim.rlim_cur);

    printf("; hard=");
    if (rlim.rlim_max == RLIM_INFINITY)
        printf("infinite\n");
#ifdef RLIM_SAVED_MAX               /* Not defined on some implementations */
    else if (rlim.rlim_max == RLIM_SAVED_MAX)
        printf("unrepresentable");
#endif
    else
        printf("%lld\n", (long long) rlim.rlim_max);

    return 0;
}

––––––––––––––––––––––––––––––––––––––––––––––––––––  procres/print_rlimit.c

Listing 36-3: Setting the RLIMIT_NPROC resource limit
––––––––––––––––––––––––––––––––––––––––––––––––––––  procres/rlimit_nproc.c
#include <sys/resource.h>
#include "print_rlimit.h"               /* Declaration of printRlimit() */
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    struct rlimit rl;
    int j;
    pid_t childPid;
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    if (argc < 2 || argc > 3 || strcmp(argv[1], "--help") == 0)
        usageErr("%s soft-limit [hard-limit]\n", argv[0]);

    printRlimit("Initial maximum process limits: ", RLIMIT_NPROC);

    /* Set new process limits (hard == soft if not specified) */

    rl.rlim_cur = (argv[1][0] == 'i') ? RLIM_INFINITY :
                                getInt(argv[1], 0, "soft-limit");
    rl.rlim_max = (argc == 2) ? rl.rlim_cur :
                (argv[2][0] == 'i') ? RLIM_INFINITY :
                                getInt(argv[2], 0, "hard-limit");
    if (setrlimit(RLIMIT_NPROC, &rl) == -1)
        errExit("setrlimit");

    printRlimit("New maximum process limits:     ", RLIMIT_NPROC);

    /* Create as many children as possible */

    for (j = 1; ; j++) {
        switch (childPid = fork()) {
        case -1: errExit("fork");

        case 0: _exit(EXIT_SUCCESS);            /* Child */

        default:        /* Parent: display message about each new child
                           and let the resulting zombies accumulate */
            printf("Child %d (PID=%ld) started\n", j, (long) childPid);
            break;
        }
    }
}

––––––––––––––––––––––––––––––––––––––––––––––––––––  procres/rlimit_nproc.c

Unrepresentable limit values

In some programming environments, the rlim_t data type may not be able to represent
the full range of values that could be maintained for a particular resource limit.
This may be the case on a system that offers multiple programming environments
in which the size of the rlim_t data type differs. Such systems can arise if a large-file
compilation environment with a 64-bit off_t is added to a system on which off_t was
traditionally 32 bits. (In each environment, rlim_t would be the same size as off_t.)
This leads to the situation where a program with a small rlim_t can, after being
execed by a program with a 64-bit off_t, inherit a resource limit (e.g., the file size
limit) that is greater than the maximum rlim_t value.

To assist portable applications in handling the possibility that a resource limit
may be unrepresentable, SUSv3 specifies two constants to indicate unrepresent-
able limit values: RLIM_SAVED_CUR and RLIM_SAVED_MAX. If a soft resource limit can’t be
represented in rlim_t, then getrlimit() will return RLIM_SAVED_CUR in the rlim_cur field.
RLIM_SAVED_MAX performs an analogous function for an unrepresentable hard limit
returned in the rlim_max field.
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If all possible resource limit values can be represented in rlim_t, then SUSv3
permits an implementation to define RLIM_SAVED_CUR and RLIM_SAVED_MAX to be the
same as RLIM_INFINITY. This is how these constants are defined on Linux, implying
that all possible resource limit values can be represented in rlim_t. However, this is
not the case on 32-bit architectures such as x86-32. On those architectures, in a
large-file compilation environment (i.e., setting the _FILE_OFFSET_BITS feature test
macro to 64 as described in Section 5.10), the glibc definition of rlim_t is 64 bits wide,
but the kernel data type for representing a resource limit is unsigned long, which is
only 32 bits wide. Current versions of glibc deal with this situation as follows: if a
program compiled with _FILE_OFFSET_BITS=64 tries to set a resource limit to a value
larger than can be represented in a 32-bit unsigned long, then the glibc wrapper for
setrlimit() silently converts the value to RLIM_INFINITY. In other words, the requested
setting of the resource limit is not honored.

Because utilities that handle files are normally compiled with _FILE_OFFSET_BITS=64
in many x86-32 distributions, the failure to honor resource limits larger that
the value that can be represented in 32 bits is a problem that can affect not
only application programmers, but also end users.

One could argue that it might be better for the glibc setrlimit() wrapper to
give an error if the requested resource limit exceeds the capacity of a 32-bit
unsigned long. However, the fundamental problem is a kernel limitation, and
the behavior described in the main text is the approach that the glibc developers
have taken to dealing with it.

36.3 Details of Specific Resource Limits

In this section, we provide details on each of the resource limits available on Linux,
noting those that are Linux-specific.

RLIMIT_AS

The RLIMIT_AS limit specifies the maximum size for the process’s virtual memory
(address space), in bytes. Attempts (brk(), sbrk(), mmap(), mremap(), and shmat()) to
exceed this limit fail with the error ENOMEM. In practice, the most common place
where a program may hit this limit is in calls to functions in the malloc package,
which make use of sbrk() and mmap(). Upon encountering this limit, stack growth
can also fail with the consequences listed below for RLIMIT_STACK.

RLIMIT_CORE

The RLIMIT_CORE limit specifies the maximum size, in bytes, for core dump files pro-
duced when a process is terminated by certain signals (Section 22.1). Production of
a core dump file will stop at this limit. Specifying a limit of 0 prevents creation of core
dump files, which is sometimes useful because core dump files can be very large,
and end users usually don’t know what to do with them. Another reason for dis-
abling core dumps is security—to prevent the contents of a program’s memory
from being dumped to disk. If the RLIMIT_FSIZE limit is lower than this limit, core
dump files are limited to RLIMIT_FSIZE bytes.
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RLIMIT_CPU

The RLIMIT_CPU limit specifies the maximum number of seconds of CPU time (in
both system and user mode) that can be used by the process. SUSv3 requires that
the SIGXCPU signal be sent to the process when the soft limit is reached, but leaves
other details unspecified. (The default action for SIGXCPU is to terminate a process
with a core dump.) It is possible to establish a handler for SIGXCPU that does what-
ever processing is desired and then returns control to the main program. Thereaf-
ter, (on Linux) SIGXCPU is sent once per second of consumed CPU time. If the
process continues executing until the hard CPU limit is reached, then the kernel
sends it a SIGKILL signal, which always terminates the process.

UNIX implementations vary in the details of how they deal with processes that
continue consuming CPU time after handling a SIGXCPU signal. Most continue to
deliver SIGXCPU at regular intervals. If aiming for portable use of this signal, we
should code an application so that, on first receipt of this signal, it does whatever
cleanup is required and terminates. (Alternatively, the program could change the
resource limit after receiving the signal.)

RLIMIT_DATA

The RLIMIT_DATA limit specifies the maximum size, in bytes, of the process’s data seg-
ment (the sum of the initialized data, uninitialized data, and heap segments
described in Section 6.3). Attempts (sbrk() and brk()) to extend the data segment
(program break) beyond this limit fail with the error ENOMEM. As with RLIMIT_AS, the
most common place where a program may hit this limit is in calls to functions in
the malloc package.

RLIMIT_FSIZE

The RLIMIT_FSIZE limit specifies the maximum size of files that the process may cre-
ate, in bytes. If a process attempts to extend a file beyond the soft limit, it is sent a
SIGXFSZ signal, and the system call (e.g., write() or truncate()) fails with the error
EFBIG. The default action for SIGXFSZ is to terminate a process and produce a core
dump. It is possible to instead catch this signal and return control to the main
program. However, any further attempt to extend the file will yield the same signal
and error.

RLIMIT_MEMLOCK

The RLIMIT_MEMLOCK limit (BSD-derived; absent from SUSv3 and available only on
Linux and the BSDs) specifies the maximum number of bytes of virtual memory
that a process may lock into physical memory, to prevent the memory from being
swapped out. This limit affects the mlock() and mlockall() system calls, and the
locking options for the mmap() and shmctl() system calls. We describe the details in
Section 50.2.

If the MCL_FUTURE flag is specified when calling mlockall(), then the RLIMIT_MEMLOCK
limit may also cause later calls to brk(), sbrk(), mmap(), or mremap() to fail.

RLIMIT_MSGQUEUE

The RLIMIT_MSGQUEUE limit (Linux-specific; since Linux 2.6.8) specifies the maximum
number of bytes that can be allocated for POSIX message queues for the real user
Process Resources 761



ID of the calling process. When a POSIX message queue is created using mq_open(),
bytes are deducted against this limit according to the following formula:

bytes = attr.mq_maxmsg * sizeof(struct msg_msg *) +
        attr.mq_maxmsg * attr.mq_msgsize;

In this formula, attr is the mq_attr structure that is passed as the fourth argument to
mq_open(). The addend that includes sizeof(struct msg_msg *) ensures that the user
can’t queue an unlimited number of zero-length messages. (The msg_msg structure
is a data type used internally by the kernel.) This is necessary because, although
zero-length messages contain no data, they do consume some system memory for
bookkeeping overhead.

The RLIMIT_MSGQUEUE limit affects only the calling process. Other processes
belonging to this user are not affected unless they also set this limit or inherit it.

RLIMIT_NICE

The RLIMIT_NICE limit (Linux-specific; since Linux 2.6.12) specifies a ceiling on the
nice value that may be set for this process using sched_setscheduler() and nice(). The
ceiling is calculated as 20 – rlim_cur, where rlim_cur is the current RLIMIT_NICE soft
resource limit. Refer to Section 35.1 for further details.

RLIMIT_NOFILE

The RLIMIT_NOFILE limit specifies a number one greater than the maximum file
descriptor number that a process may allocate. Attempts (e.g., open(), pipe(),
socket(), accept(), shm_open(), dup(), dup2(), fcntl(F_DUPFD), and epoll_create()) to
allocate descriptors beyond this limit fail. In most cases, the error is EMFILE, but for
dup2(fd, newfd) it is EBADF, and for fcntl(fd, F_DUPFD, newfd) with newfd is greater
than or equal to the limit, it is EINVAL.

Changes to the RLIMIT_NOFILE limit are reflected in the value returned by
sysconf(_SC_OPEN_MAX). SUSv3 permits, but doesn’t require, an implementation
to return different values for a call to sysconf(_SC_OPEN_MAX) before and after
changing the RLIMIT_NOFILE limit; other implementations may not behave the same
as Linux on this point.

SUSv3 states that if an application sets the soft or hard RLIMIT_NOFILE limit to a
value less than or equal to the number of the highest file descriptor that the
process currently has open, unexpected behavior may occur.

On Linux, we can check which file descriptors a process currently has
open by using readdir() to scan the contents of the /proc/PID/fd directory,
which contains symbolic links for each of the file descriptors currently opened
by the process.

The kernel imposes a ceiling on the value to which the RLIMIT_NOFILE limit may be
raised. In kernels before 2.6.25, this ceiling is a hard-coded value defined by the
kernel constant NR_OPEN, whose value is 1,048,576. (A kernel rebuild is required to
raise this ceiling.) Since kernel 2.6.25, the limit is defined by the value in the Linux-
specific /proc/sys/fs/nr_open file. The default value in this file is 1,048,576; this can
be modified by the superuser. Attempts to set the soft or hard RLIMIT_NOFILE limit
higher than the ceiling value yield the error EPERM.
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There is also a system-wide limit on the total number of files that may be
opened by all processes. This limit can be retrieved and modified via the Linux-specific
/proc/sys/fs/file-max file. (Referring to Section 5.4, we can define file-max more
precisely as a system-wide limit on the number of open file descriptions.) Only priv-
ileged (CAP_SYS_ADMIN) processes can exceed the file-max limit. In an unprivileged
process, a system call that encounters the file-max limit fails with the error ENFILE.

RLIMIT_NPROC

The RLIMIT_NPROC limit (BSD-derived; absent from SUSv3 and available only on
Linux and the BSDs) specifies the maximum number of processes that may be
created for the real user ID of the calling process. Attempts ( fork(), vfork(), and
clone()) to exceed this limit fail with the error EAGAIN.

The RLIMIT_NPROC limit affects only the calling process. Other processes belong-
ing to this user are not affected unless they also set or inherit this limit. This limit is
not enforced for privileged (CAP_SYS_ADMIN or CAP_SYS_RESOURCE) processes.

Linux also imposes a system-wide limit on the number of processes that can be
created by all users. On Linux 2.4 and later, the Linux-specific /proc/sys/
kernel/threads-max file can be used to retrieve and modify this limit.

To be precise, the RLIMIT_NPROC resource limit and the threads-max file are
actually limits on the numbers of threads that can be created, rather than the
number of processes.

The manner in which the default value for the RLIMIT_NPROC resource limit is set has
varied across kernel versions. In Linux 2.2, it was calculated according to a fixed
formula. In Linux 2.4 and later, it is calculated using a formula based on the
amount of available physical memory.

SUSv3 doesn’t specify the RLIMIT_NPROC resource limit. The SUSv3-mandated
method for retrieving (but not changing) the maximum number of processes
permitted to a user ID is via the call sysconf(_SC_CHILD_MAX). This sysconf()
call is supported on Linux, but in kernel versions before 2.6.23, the call does
not return accurate information—it always returns the value 999. Since Linux
2.6.23 (and with glibc 2.4 and later), this call correctly reports the limit (by
checking the value of the RLIMIT_NPROC resource limit).

There is no portable way of discovering how many processes have already
been created for a specific user ID. On Linux, we can try scanning all of the
/proc/PID/status files on the system and examining the information under the
Uid entry (which lists the four process user IDs in the order: real, effective,
saved set, and file system) in order to estimate the number of processes cur-
rently owned by a user. Be aware, however, that by the time we have com-
pleted such a scan, this information may already have changed.

RLIMIT_RSS

The RLIMIT_RSS limit (BSD-derived; absent from SUSv3, but widely available) speci-
fies the maximum number of pages in the process’s resident set; that is, the total
number of virtual memory pages currently in physical memory. This limit is pro-
vided on Linux, but it currently has no effect.
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In older Linux 2.4 kernels (up to and including 2.4.29), RLIMIT_RSS did have an
effect on the behavior of the madvise() MADV_WILLNEED operation (Section 50.4).
If this operation could not be performed as a result of encountering the
RLIMIT_RSS limit, the error EIO was returned in errno.

RLIMIT_RTPRIO

The RLIMIT_RTPRIO limit (Linux-specific; since Linux 2.6.12) specifies a ceiling on the
realtime priority that may be set for this process using sched_setscheduler() and
sched_setparam(). Refer to Section 35.3.2 for further details.

RLIMIT_RTTIME

The RLIMIT_RTTIME limit (Linux-specific; since Linux 2.6.25) specifies the maximum
amount of CPU time in microseconds that a process running under a realtime
scheduling policy may consume without sleeping (i.e., performing a blocking system
call). The behavior if this limit is reached is the same as for RLIMIT_CPU: if the process
reaches the soft limit, then a SIGXCPU signal is sent to the process, and further SIGXCPU
signals are sent for each additional second of CPU time consumed. On reaching
the hard limit, a SIGKILL signal is sent. Refer to Section 35.3.2 for further details.

RLIMIT_SIGPENDING

The RLIMIT_SIGPENDING limit (Linux-specific; since Linux 2.6.8) specifies the maxi-
mum number of signals that may be queued for the real user ID of the calling pro-
cess. Attempts (sigqueue()) to exceed this limit fail with the error EAGAIN.

The RLIMIT_SIGPENDING limit affects only the calling process. Other processes
belonging to this user are not affected unless they also set or inherit this limit.

As initially implemented, the default value for the RLIMIT_SIGPENDING limit was
1024. Since kernel 2.6.12, the default value has been changed to be the same as the
default value for RLIMIT_NPROC.

For the purposes of checking the RLIMIT_SIGPENDING limit, the count of queued
signals includes both realtime and standard signals. (Standard signals can be
queued only once to a process.) However, this limit is enforced only for sigqueue().
Even if the number of signals specified by this limit has already been queued to
processes belonging to this real user ID, it is still possible to use kill() to queue one
instance of each of the signals (including realtime signals) that are not already
queued to a process.

From kernel 2.6.12 onward, the SigQ field of the Linux-specific /proc/PID/status

file displays the current and maximum number of queued signals for the real user
ID of the process.

RLIMIT_STACK

The RLIMIT_STACK limit specifies the maximum size of the process stack, in bytes.
Attempts to grow the stack beyond this limit result in the generation of a SIGSEGV
signal for the process. Since the stack is exhausted, the only way to catch this signal
is by establishing an alternate signal stack, as described in Section 21.3.

Since Linux 2.6.23, the RLIMIT_STACK limit also determines the amount of space
available for holding the process’s command-line arguments and environment
variables. See the execve(2) manual page for details.
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36.4 Summary

Processes consume various system resources. The getrusage() system call allows a
process to monitor certain of the resources consumed by itself and by its children.

The setrlimit() and getrlimit() system calls allow a process to set and retrieve limits
on its consumption of various resources. Each resource limit has two components:
a soft limit, which is what the kernel enforces when checking a process’s resource
consumption, and a hard limit, which acts as a ceiling on the value of the soft limit.
An unprivileged process can set the soft limit for a resource to any value in the
range from 0 up to the hard limit, but can only lower the hard limit. A privileged
process can make any changes to either limit value, as long as the soft limit is less
than or equal to the hard limit. If a process encounters a soft limit, it is typically
informed of the fact either by receiving a signal or via failure of the system call that
attempts to exceed the limit.

36.5 Exercises

36-1. Write a program that shows that the getrusage() RUSAGE_CHILDREN flag retrieves
information about only the children for which a wait() call has been performed.
(Have the program create a child process that consumes some CPU time, and then
have the parent call getrusage() before and after calling wait().)

36-2. Write a program that executes a command and then displays its resource usage.
This is analogous to what the time(1) command does. Thus, we would use this
program as follows:

$ ./rusage command arg...

36-3. Write programs to determine what happens if a process’s consumption of various
resources already exceeds the soft limit specified in a call to setrlimit().
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D A E M O N S

This chapter examines the characteristics of daemon processes and looks at the
steps required to turn a process into a daemon. We also look at how to log messages
from a daemon using the syslog facility.

37.1 Overview

A daemon is a process with the following characteristics:

It is long-lived. Often, a daemon is created at system startup and runs until the
system is shut down.

It runs in the background and has no controlling terminal. The lack of a control-
ling terminal ensures that the kernel never automatically generates any job-control
or terminal-related signals (such as SIGINT, SIGTSTP, and SIGHUP) for a daemon.

Daemons are written to carry out specific tasks, as illustrated by the following
examples:

cron: a daemon that executes commands at a scheduled time.

sshd: the secure shell daemon, which permits logins from remote hosts using a
secure communications protocol.



httpd: the HTTP server daemon (Apache), which serves web pages.

inetd: the Internet superserver daemon (described in Section 60.5), which lis-
tens for incoming network connections on specified TCP/IP ports and
launches appropriate server programs to handle these connections.

Many standard daemons run as privileged processes (i.e., effective user ID of 0),
and thus should be coded following the guidelines provided in Chapter 38.

It is a convention (not universally observed) that daemons have names ending
with the letter d.

On Linux, certain daemons are run as kernel threads. The code of such daemons
is part of the kernel, and they are typically created during system startup.
When listed using ps(1), the names of these daemons are surrounded by
square brackets ([]). One example of a kernel thread is pdflush, which periodi-
cally flushes dirty pages (e.g., pages from the buffer cache) to disk.

37.2 Creating a Daemon

To become a daemon, a program performs the following steps:

1. Perform a fork(), after which the parent exits and the child continues. (As a con-
sequence, the daemon becomes a child of the init process.) This step is done
for two reasons:

– Assuming the daemon was started from the command line, the parent’s
termination is noticed by the shell, which then displays another shell prompt
and leaves the child to continue in the background.

– The child process is guaranteed not to be a process group leader, since it
inherited its process group ID from its parent and obtained its own unique
process ID, which differs from the inherited process group ID. This is
required in order to be able to successfully perform the next step.

2. The child process calls setsid() (Section 34.3) to start a new session and free
itself of any association with a controlling terminal.

3. If the daemon never opens any terminal devices thereafter, then we don’t need
to worry about the daemon reacquiring a controlling terminal. If the daemon
might later open a terminal device, then we must take steps to ensure that the
device does not become the controlling terminal. We can do this in two ways:

– Specify the O_NOCTTY flag on any open() that may apply to a terminal device.

– Alternatively, and more simply, perform a second fork() after the setsid()
call, and again have the parent exit and the (grand)child continue. This
ensures that the child is not the session leader, and thus, according to the
System V conventions for the acquisition of a controlling terminal (which
Linux follows), the process can never reacquire a controlling terminal
(Section 34.4).

On implementations following the BSD conventions, a process can obtain a
controlling terminal only through an explicit ioctl() TIOCSCTTY operation, and so
this second fork() has no effect with regard to the acquisition of a controlling
terminal, but the superfluous fork() does no harm.
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4. Clear the process umask (Section 15.4.6), to ensure that, when the daemon creates
files and directories, they have the requested permissions.

5. Change the process’s current working directory, typically to the root directory
(/). This is necessary because a daemon usually runs until system shutdown; if
the daemon’s current working directory is on a file system other than the one
containing /, then that file system can’t be unmounted (Section 14.8.2). Alter-
natively, the daemon can change its working directory to a location where it
does its job or a location defined in its configuration file, as long as we know
that the file system containing this directory never needs to be unmounted. For
example, cron places itself in /var/spool/cron.

6. Close all open file descriptors that the daemon has inherited from its parent.
(A daemon may need to keep certain inherited file descriptors open, so this
step is optional, or open to variation.) This is done for a variety of reasons.
Since the daemon has lost its controlling terminal and is running in the back-
ground, it makes no sense for the daemon to keep file descriptors 0, 1, and 2
open if these refer to the terminal. Furthermore, we can’t unmount any file sys-
tems on which the long-lived daemon holds files open. And, as usual, we
should close unused open file descriptors because file descriptors are a finite
resource.

Some UNIX implementations (e.g., Solaris 9 and some of the recent BSD
releases) provide a function named closefrom(n) (or similar), which closes all file
descriptors greater than or equal to n. This function isn’t available on Linux.

7. After having closed file descriptors 0, 1, and 2, a daemon normally opens /dev/null
and uses dup2() (or similar) to make all those descriptors refer to this device.
This is done for two reasons:

– It ensures that if the daemon calls library functions that perform I/O on
these descriptors, those functions won’t unexpectedly fail.

– It prevents the possibility that the daemon later opens a file using descriptor
1 or 2, which is then written to—and thus corrupted—by a library function
that expects to treat these descriptors as standard output and standard error.

/dev/null is a virtual device that always discards the data written to it. When we
want to eliminate the standard output or error of a shell command, we can
redirect it to this file. Reads from this device always return end-of-file.

We now show the implementation of a function, becomeDaemon(), that performs the
steps described above in order to turn the caller into a daemon.

The becomeDaeomon() function takes a bit-mask argument, flags, that allows the
caller to selectively inhibit some of the steps, as described in the comments in the
header file in Listing 37-1.

#include <syslog.h>

int becomeDaemon(int flags);

Returns 0 on success, or –1 on error
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Listing 37-1: Header file for become_daemon.c

––––––––––––––––––––––––––––––––––––––––––––––––––– daemons/become_daemon.h

#ifndef BECOME_DAEMON_H             /* Prevent double inclusion */
#define BECOME_DAEMON_H

/* Bit-mask values for 'flags' argument of becomeDaemon() */

#define BD_NO_CHDIR           01    /* Don't chdir("/") */
#define BD_NO_CLOSE_FILES     02    /* Don't close all open files */
#define BD_NO_REOPEN_STD_FDS  04    /* Don't reopen stdin, stdout, and
                                      stderr to /dev/null */
#define BD_NO_UMASK0         010    /* Don't do a umask(0) */

#define BD_MAX_CLOSE  8192          /* Maximum file descriptors to close if
                                       sysconf(_SC_OPEN_MAX) is indeterminate */

int becomeDaemon(int flags);

#endif

––––––––––––––––––––––––––––––––––––––––––––––––––– daemons/become_daemon.h

The implementation of the becomeDaemon() function is shown in Listing 37-2.

The GNU C library provides a nonstandard function, daemon(), that turns the
caller into a daemon. The glibc daemon() function doesn’t have an equivalent of
the flags argument of our becomeDaemon() function.

Listing 37-2: Creating a daemon process

––––––––––––––––––––––––––––––––––––––––––––––––––– daemons/become_daemon.c

#include <sys/stat.h>
#include <fcntl.h>
#include "become_daemon.h"
#include "tlpi_hdr.h"

int                             /* Returns 0 on success, -1 on error */
becomeDaemon(int flags)
{
    int maxfd, fd;

    switch (fork()) {                   /* Become background process */
    case -1: return -1;
    case 0:  break;                     /* Child falls through... */
    default: _exit(EXIT_SUCCESS);       /* while parent terminates */
    }

    if (setsid() == -1)                 /* Become leader of new session */
        return -1;

    switch (fork()) {                   /* Ensure we are not session leader */
    case -1: return -1;
    case 0:  break;
    default: _exit(EXIT_SUCCESS);
    }
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    if (!(flags & BD_NO_UMASK0))
        umask(0);                       /* Clear file mode creation mask */

    if (!(flags & BD_NO_CHDIR))
        chdir("/");                     /* Change to root directory */

    if (!(flags & BD_NO_CLOSE_FILES)) { /* Close all open files */
        maxfd = sysconf(_SC_OPEN_MAX);
        if (maxfd == -1)                /* Limit is indeterminate... */
            maxfd = BD_MAX_CLOSE;       /* so take a guess */

        for (fd = 0; fd < maxfd; fd++)
            close(fd);
    }

    if (!(flags & BD_NO_REOPEN_STD_FDS)) {
        close(STDIN_FILENO);            /* Reopen standard fd's to /dev/null */

        fd = open("/dev/null", O_RDWR);

        if (fd != STDIN_FILENO)         /* 'fd' should be 0 */
            return -1;
        if (dup2(STDIN_FILENO, STDOUT_FILENO) != STDOUT_FILENO)
            return -1;
        if (dup2(STDIN_FILENO, STDERR_FILENO) != STDERR_FILENO)
            return -1;
    }

    return 0;
}

––––––––––––––––––––––––––––––––––––––––––––––––––– daemons/become_daemon.c

If we write a program that makes the call becomeDaemon(0) and then sleeps for a
while, we can use ps(1) to look at some of the attributes of the resulting process:

$ ./test_become_daemon
$ ps -C test_become_daemon -o "pid ppid pgid sid tty command"
  PID  PPID  PGID   SID TT       COMMAND
24731     1 24730 24730 ?        ./test_become_daemon

We don’t show the source code for daemons/test_become_daemon.c, since it is triv-
ial, but the program is provided in the source code distribution for this book.

In the output of ps, the ? under the TT heading indicates that the process has no
controlling terminal. From the fact that the process ID is not the same as the session
ID (SID), we can also see that the process is not the leader of its session, and so
won’t reacquire a controlling terminal if it opens a terminal device. This is as things
should be for a daemon.

37.3 Guidelines for Writing Daemons

As previously noted, a daemon typically terminates only when the system shuts
down. Many standard daemons are stopped by application-specific scripts executed
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during system shutdown. Those daemons that are not terminated in this fashion
will receive a SIGTERM signal, which the init process sends to all of its children during
system shutdown. By default, SIGTERM terminates a process. If the daemon needs to
perform any cleanup before terminating, it should do so by establishing a handler
for this signal. This handler must be designed to perform such cleanup quickly,
since init follows up the SIGTERM signal with a SIGKILL signal after 5 seconds. (This
doesn’t mean that the daemon can perform 5 seconds’ worth of CPU work; init
signals all of the processes on the system at the same time, and they may all be
attempting to clean up within that 5 seconds.)

Since daemons are long-lived, we must be particularly wary of possible memory
leaks (Section 7.1.3) and file descriptor leaks (where an application fails to close all
of the file descriptors it opens). If such bugs affect a daemon, the only remedy is to
kill it and restart it after (fixing the bug).

Many daemons need to ensure that just one instance of the daemon is active at
one time. For example, it makes no sense to have two copies of the cron daemon
both trying to execute scheduled jobs. In Section 55.6, we look at a technique for
achieving this.

37.4 Using SIGHUP to Reinitialize a Daemon

The fact that many daemons should run continuously presents a couple of pro-
gramming hurdles:

Typically, a daemon reads operational parameters from an associated configu-
ration file on startup. Sometimes, it is desirable to be able to change these
parameters “on the fly,” without needing to stop and restart the daemon.

Some daemons produce log files. If the daemon never closes the log file, then
it may grow endlessly, eventually clogging the file system. (In Section 18.3, we
noted that even if we remove the last name of a file, the file continues to exist
as long as any process has it open.) What we need is a way of telling the daemon
to close its log file and open a new file, so that we can rotate log files as required.

The solution to both of these problems is to have the daemon establish a handler for
SIGHUP, and perform the required steps upon receipt of this signal. In Section 34.4, we
noted that SIGHUP is generated for the controlling process on disconnection of a
controlling terminal. Since a daemon has no controlling terminal, the kernel never
generates this signal for a daemon. Therefore, daemons can use SIGHUP for the pur-
pose described here.

The logrotate program can be used to automate rotation of daemon log files.
See the logrotate(8) manual page for details.

Listing 37-3 provides an example of how a daemon can employ SIGHUP. This program
establishes a handler for SIGHUP w, becomes a daemon e, opens the log file r, and
reads its configuration file t. The SIGHUP handler q just sets a global flag variable,
hupReceived, which is checked by the main program. The main program sits in a
loop, printing a message to the log file every 15 seconds i. The calls to sleep() y in
this loop are intended to simulate some sort of processing performed by a real
application. After each return from sleep() in this loop, the program checks to see
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whether hupReceived has been set u; if so, it reopens the log file, rereads the config-
uration file, and clears the hupReceived flag.

For brevity, the functions logOpen(), logClose(), logMessage(), and readConfigFile()
are omitted from Listing 37-3, but are provided with the source code distribution
of this book. The first three functions do what we would expect from their names.
The readConfigFile() function simply reads a line from the configuration file and
echoes it to the log file.

Some daemons use an alternative method to reinitialize themselves on receipt
of SIGHUP: they close all files and then restart themselves with an exec().

The following is an example of what we might see when running the program in
Listing 37-3. We begin by creating a dummy configuration file and then launching
the daemon:

$ echo START > /tmp/ds.conf
$ ./daemon_SIGHUP
$ cat /tmp/ds.log                                     View log file
2011-01-17 11:18:34: Opened log file
2011-01-17 11:18:34: Read config file: START

Now we modify the configuration file and rename the log file before sending SIGHUP
to the daemon:

$ echo CHANGED > /tmp/ds.conf
$ date +'%F %X'; mv /tmp/ds.log /tmp/old_ds.log
2011-01-17 11:19:03 AM
$ date +'%F %X'; killall -HUP daemon_SIGHUP
2011-01-17 11:19:23 AM
$ ls /tmp/*ds.log                                     Log file was reopened
/tmp/ds.log  /tmp/old_ds.log
$ cat /tmp/old_ds.log                                 View old log file
2011-01-17 11:18:34: Opened log file
2011-01-17 11:18:34: Read config file: START
2011-01-17 11:18:49: Main: 1
2011-01-17 11:19:04: Main: 2
2011-01-17 11:19:19: Main: 3
2011-01-17 11:19:23: Closing log file

The output of ls shows that we have both an old and a new log file. When we use cat
to view the contents of the old log file, we see that even after the mv command was
used to rename the file, the daemon continued to log messages there. At this point,
we could delete the old log file if we no longer need it. When we look at the new
log file, we see that the configuration file has been reread:

$ cat /tmp/ds.log
2011-01-17 11:19:23: Opened log file
2011-01-17 11:19:23: Read config file: CHANGED
2011-01-17 11:19:34: Main: 4
$ killall daemon_SIGHUP                               Kill our daemon

Note that a daemon’s log and configuration files are typically placed in standard
directories, not in the /tmp directory, as is done in the program in Listing 37-3. By
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convention, configuration files are placed in /etc or one of its subdirectories, while
log files are often placed in /var/log. Daemon programs commonly provide command-
line options to specify alternative locations instead of the defaults.

Listing 37-3: Using SIGHUP to reinitialize a daemon

––––––––––––––––––––––––––––––––––––––––––––––––––– daemons/daemon_SIGHUP.c

#include <sys/stat.h>
#include <signal.h>
#include "become_daemon.h"
#include "tlpi_hdr.h"

static const char *LOG_FILE = "/tmp/ds.log";
static const char *CONFIG_FILE = "/tmp/ds.conf";

/* Definitions of logMessage(), logOpen(), logClose(), and
   readConfigFile() are omitted from this listing */

static volatile sig_atomic_t hupReceived = 0;
                                    /* Set nonzero on receipt of SIGHUP */
 from
static void
sighupHandler(int sig)
{

q     hupReceived = 1;
}

int
main(int argc, char *argv[])
{
    const int SLEEP_TIME = 15;      /* Time to sleep between messages */
    int count = 0;                  /* Number of completed SLEEP_TIME intervals */
    int unslept;                    /* Time remaining in sleep interval */
    struct sigaction sa;

    sigemptyset(&sa.sa_mask);
    sa.sa_flags = SA_RESTART;
    sa.sa_handler = sighupHandler;

w     if (sigaction(SIGHUP, &sa, NULL) == -1)
        errExit("sigaction");

e     if (becomeDaemon(0) == -1)
        errExit("becomeDaemon");

r     logOpen(LOG_FILE);
t     readConfigFile(CONFIG_FILE);

    unslept = SLEEP_TIME;

    for (;;) {
y         unslept = sleep(unslept);       /* Returns > 0 if interrupted */

u         if (hupReceived) {              /* If we got SIGHUP... */
            logClose();
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            logOpen(LOG_FILE);
            readConfigFile(CONFIG_FILE);
            hupReceived = 0;            /* Get ready for next SIGHUP */
        }

        if (unslept == 0) {             /* On completed interval */
            count++;

i             logMessage("Main: %d", count);
            unslept = SLEEP_TIME;       /* Reset interval */
        }
    }
}

––––––––––––––––––––––––––––––––––––––––––––––––––– daemons/daemon_SIGHUP.c

37.5 Logging Messages and Errors Using syslog

When writing a daemon, one problem we encounter is how to display error mes-
sages. Since a daemon runs in the background, we can’t display messages on an
associated terminal, as we would typically do with other programs. One possible
alternative is to write messages to an application-specific log file, as is done in the
program in Listing 37-3. The main problem with this approach is that it is difficult
for a system administrator to manage multiple application log files and monitor
them all for error messages. The syslog facility was devised to address this problem.

37.5.1 Overview
The syslog facility provides a single, centralized logging facility that can be used to
log messages by all applications on the system. An overview of this facility is pro-
vided in Figure 37-1.

Figure 37-1: Overview of system logging
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The syslog facility has two principal components: the syslogd daemon and the
syslog(3) library function.

The System Log daemon, syslogd, accepts log messages from two different
sources: a UNIX domain socket, /dev/log, which holds locally produced messages, and
(if enabled) an Internet domain socket (UDP port 514), which holds messages sent
across a TCP/IP network. (On some other UNIX implementations, the syslog
socket is located at /var/run/log.)

Each message processed by syslogd has a number of attributes, including a
facility, which specifies the type of program generating the message, and a level,
which specifies the severity (priority) of the message. The syslogd daemon examines
the facility and level of each message, and then passes it along to any of several
possible destinations according to the dictates of an associated configuration file,
/etc/syslog.conf. Possible destinations include a terminal or virtual console, a disk file, a
FIFO, one or more (or all) logged-in users, or a process (typically another syslogd
daemon) on another system connected via a TCP/IP network. (Sending the message
to a process on another system is useful for reducing administrative overhead by con-
solidating messages from multiple systems to a single location.) A single message may
be sent to multiple destinations (or none at all), and messages with different combi-
nations of facility and level can be targeted to different destinations or to different
instances of destinations (i.e., different consoles, different disk files, and so on).

Sending syslog messages to another system via a TCP/IP network can also help
in detecting system break-ins. Break-ins often leave traces in the system log,
but attackers usually try to cover up their activities by erasing log records. With
remote logging, an attacker would need to break into another system in order
to do that.

The syslog(3) library function can be used by any process to log a message. This
function, which we describe in detail in a moment, uses its supplied arguments to
construct a message in a standard format that is then placed on the /dev/log socket
for reading by syslogd.

An alternative source of the messages placed on /dev/log is the Kernel Log dae-
mon, klogd, which collects kernel log messages (produced by the kernel using its
printk() function). These messages are collected using either of two equivalent
Linux-specific interfaces—the /proc/kmsg file and the syslog(2) system call—and then
placed on /dev/log using the syslog(3) library function.

Although syslog(2) and syslog(3) share the same name, they perform quite dif-
ferent tasks. An interface to syslog(2) is provided in glibc under the name
klogctl(). Unless explicitly indicated otherwise, when we refer to syslog() in this
section, we mean syslog(3).

The syslog facility originally appeared in 4.2BSD, but is now provided on most
UNIX implementations. SUSv3 has standardized syslog(3) and related functions,
but leaves the implementation and operation of syslogd, as well as the format of the
syslog.conf file, unspecified. The Linux implementation of syslogd differs from the
original BSD facility in permitting some extensions to the message-processing rules
that can be specified in syslog.conf.
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37.5.2 The syslog API
The syslog API consists of three main functions:

The openlog() function establishes default settings that apply to subsequent calls
to syslog(). The use of openlog() is optional. If it is omitted, a connection to the
logging facility is established with default settings on the first call to syslog().

The syslog() function logs a message.

The closelog() function is called after we have finished logging messages, to dis-
establish the connection with the log.

None of these functions returns a status value. In part, this is because system log-
ging should always be available (the system administrator is soon likely to notice if
it is not). Furthermore, if an error occurs with system logging, there is typically little
that the application can usefully do to report it.

The GNU C library also provides the function void vsyslog(int priority, const char
*format, va_list args). This function performs the same task as syslog(), but takes
an argument list previously processed by the stdarg(3) API. (Thus, vsyslog() is to
syslog() what vprintf() is to printf().) SUSv3 doesn’t specify vsyslog(), and it is not
available on all UNIX implementations.

Establishing a connection to the system log

The openlog() function optionally establishes a connection to the system log facility
and sets defaults that apply to subsequent syslog() calls.

The ident argument is a pointer to a string that is included in each message written
by syslog(); typically, the program name is specified for this argument. Note that
openlog() merely copies the value of this pointer. As long as it continues to call syslog(),
the application should ensure that the referenced string is not later changed.

If ident is specified as NULL, then, like some other implementations, the glibc
syslog implementation automatically uses the program name as the ident value.
However, this feature is not required by SUSv3, and is not provided on some
implementations. Portable applications should avoid reliance on it.

The log_options argument to openlog() is a bit mask created by ORing together any
of the following constants:

LOG_CONS

If there is an error sending to the system logger, then write the message to
the system console (/dev/console).

#include <syslog.h>

void openlog(const char *ident, int log_options, int facility);
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LOG_NDELAY

Open the connection to the logging system (i.e., the underlying UNIX
domain socket, /dev/log) immediately. By default (LOG_ODELAY), the connec-
tion is opened only when (and if) the first message is logged with syslog(). The
O_NDELAY flag is useful in programs that need to precisely control when the
file descriptor for /dev/log is allocated. One example of such a requirement
is in a program that calls chroot(). After a chroot() call, the /dev/log pathname
will no longer be visible, and so an openlog() call specifying LOG_NDELAY must be
performed before the chroot(). The tftpd (Trivial File Transfer) daemon is an
example of a program that uses LOG_NDELAY for this purpose.

LOG_NOWAIT

Don’t wait() for any child process that may have been created in order to
log the message. On implementations that create a child process for log-
ging messages, LOG_NOWAIT is needed if the caller is also creating and waiting
for children, so that syslog() doesn’t attempt to wait for a child that has
already been reaped by the caller. On Linux, LOG_NOWAIT has no effect, since
no child processes are created when logging a message.

LOG_ODELAY

This flag is the converse of LOG_NDELAY—connecting to the logging system is
delayed until the first message is logged. This is the default, and need not
be specified.

LOG_PERROR

Write messages to standard error as well as to the system log. Typically,
daemon processes close standard error or redirect it to /dev/null, in which
case, LOG_PERROR is not useful.

LOG_PID

Log the caller’s process ID with each message. Employing LOG_PID in a server
that forks multiple children allows us to distinguish which process logged a
particular message.

All of the above constants are specified in SUSv3, except LOG_PERROR, which appears
on many (but not all) other UNIX implementations.

The facility argument to openlog() specifies the default facility value to be used in
subsequent calls to syslog(). Possible values for this argument are listed in Table 37-1.

The majority of the facility values in Table 37-1 appear in SUSv3, as indicated
by the SUSv3 column of the table. Exceptions are LOG_AUTHPRIV and LOG_FTP, which
appear on only a few other UNIX implementations, and LOG_SYSLOG, which appears
on most implementations. The LOG_AUTHPRIV value is useful for logging messages
containing passwords or other sensitive information to a different location than
LOG_AUTH.

The LOG_KERN facility value is used for kernel messages. Log messages for this
facility can’t be generated from the user-space programs. The LOG_KERN constant has
the value 0. If it is used in a syslog() call, the 0 translates to “use the default level.”
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Logging a message

To write a log message, we call syslog().

The priority argument is created by ORing together a facility value and a level value. The
facility indicates the general category of the application logging the message, and is
specified as one of the values listed in Table 37-1. If omitted, the facility defaults to
the value specified in a previous openlog() call, or to LOG_USER if that call was omitted.
The level value indicates the severity of the message, and is specified as one of the
values in Table 37-2. All of the level values listed in this table appear in SUSv3.

Table 37-1: facility values for openlog() and the priority argument of syslog()

Value Description SUSv3

LOG_AUTH Security and authorization messages (e.g., su) •
LOG_AUTHPRIV Private security and authorization messages 
LOG_CRON Messages from the cron and at daemons •
LOG_DAEMON Messages from other system daemons •
LOG_FTP Messages from the ftp daemon (ftpd)
LOG_KERN Kernel messages (can’t be generated from a user process) •
LOG_LOCAL0 Reserved for local use (also LOG_LOCAL1 to LOG_LOCAL7) •
LOG_LPR Messages from the line printer system (lpr, lpd, lpc) •
LOG_MAIL Messages from the mail system •
LOG_NEWS Messages related to Usenet network news •
LOG_SYSLOG Internal messages from the syslogd daemon
LOG_USER Messages generated by user processes (default) •
LOG_UUCP Messages from the UUCP system •

#include <syslog.h>

void syslog(int priority, const char *format, ...);

Table 37-2: level values for the priority argument of syslog() (from highest to lowest severity)

Value Description

LOG_EMERG Emergency or panic condition (system is unusable)
LOG_ALERT Condition requiring immediate action (e.g., corrupt system database)
LOG_CRIT Critical condition (e.g., error on disk device)
LOG_ERR General error condition
LOG_WARNING Warning message
LOG_NOTICE Normal condition that may require special handling
LOG_INFO Informational message
LOG_DEBUG Debugging message
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The remaining arguments to syslog() are a format string and corresponding argu-
ments in the manner of printf(). One difference from printf() is that the format string
doesn’t need to include a terminating newline character. Also, the format string may
include the 2-character sequence %m, which is replaced by the error string correspond-
ing to the current value of errno (i.e., the equivalent of strerror(errno)).

The following code demonstrates the use of openlog() and syslog():

openlog(argv[0], LOG_PID | LOG_CONS | LOG_NOWAIT, LOG_LOCALO);
syslog(LOG_ERROR, "Bad argument: %s", argv[1]);
syslog(LOG_USER | LOG_INFO, "Exiting");

Since no facility is specified in the first syslog() call, the default specified by openlog()
(LOG_LOCAL0) is used. In the second syslog() call, explicitly specifying LOG_USER over-
rides the default established by openlog().

From the shell, we can use the logger(1) command to add entries to the system
log. This command allows specification of the level (priority) and ident (tag) to
be associated with the logged messages. For further details, see the logger(1)
manual page. The logger command is (weakly) specified in SUSv3, and a version
of this command is provided on most UNIX implementations.

It is an error to use syslog() to write some user-supplied string in the following
manner:

syslog(priority, user_supplied_string);

The problem with this code is that it leaves the application open to so-called format-
string attacks. If the user-supplied string contains format specifiers (e.g., %s), then
the results are unpredictable and, from a security point of view, potentially dangerous.
(The same observation applies to the use of the conventional printf() function.) We
should instead rewrite the above call as follows:

syslog(priority, "%s", user_supplied_string);

Closing the log

When we have finished logging, we can call closelog() to deallocate the file descrip-
tor used for the /dev/log socket.

Since a daemon typically keeps a connection open to the system log continuously,
it is common to omit calling closelog().

Filtering log messages

The setlogmask() function sets a mask that filters the messages written by syslog().

#include <syslog.h>

void closelog(void);
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Any message whose level is not included in the current mask setting is discarded.
The default mask value allows all severity levels to be logged.

The macro LOG_MASK() (defined in <syslog.h>) converts the level values of Table 37-2
to bit values suitable for passing to setlogmask(). For example, to discard all messages
except those with priorities of LOG_ERR and above, we would make the following call:

setlogmask(LOG_MASK(LOG_EMERG) | LOG_MASK(LOG_ALERT) |
           LOG_MASK(LOG_CRIT) | LOG_MASK(LOG_ERR));

The LOG_MASK() macro is specified by SUSv3. Most UNIX implementations (includ-
ing Linux) also provide the unspecified macro LOG_UPTO(), which creates a bit mask
filtering all messages of a certain level and above. Using this macro, we can simplify
the previous setlogmask() call to the following:

setlogmask(LOG_UPTO(LOG_ERR));

37.5.3 The /etc/syslog.conf File
The /etc/syslog.conf configuration file controls the operation of the syslogd daemon.
This file consists of rules and comments (starting with a # character). Rules have the
following general form:

facility.level       action

Together, the facility and level are referred to as the selector, since they select the
messages to which the rule applies. These fields are strings corresponding to the values
listed in Table 37-1 and Table 37-2. The action specifies where to send the messages
matching this selector. White space separates the selector and the action parts of a
rule. The following are examples of rules:

*.err                           /dev/tty10
auth.notice                     root
*.debug;mail.none;news.none     -/var/log/messages

The first rule says that messages from all facilities (*) with a level of err (LOG_ERR) or
higher should be sent to the /dev/tty10 console device. The second rule says that
authorization facility (LOG_AUTH) messages with a level of notice (LOG_NOTICE) or higher
should be sent to any consoles or terminals where root is logged in. This particular
rule would allow a logged-in root user to immediately see messages about failed su
attempts, for example.

The last rule demonstrates several of the more advanced features of rule syn-
tax. A rule can contain multiple selectors separated by semicolons. The first selec-
tor specifies all messages, using the * wildcard for facility and debug for level,
meaning all messages of level debug (the lowest level) and higher. (On Linux, as on

#include <syslog.h>

int setlogmask(int mask_priority);

Returns previous log priority mask
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some other UNIX implementations, it is possible to specify level as *, with the same
meaning as debug. However, this feature is not available to all syslog implementa-
tions.) Normally, a rule that contains multiple selectors matches messages corre-
sponding to any of the selectors, but specifying a level of none has the effect of
excluding all messages belonging to the corresponding facility. Thus, this rule sends
all messages except those for the mail and news facilities to the file /var/log/messages.
The hyphen (-) preceding the name of this file specifies that a sync to the disk does
not occur on each write to the file (refer to Section 13.3). This means that writes
are faster, but some data may be lost if the system crashes soon after the write.

Whenever we change the syslog.conf file, we must ask the daemon to reinitial-
ize itself from this file in the usual fashion:

$ killall -HUP syslogd                  Send SIGHUP to syslogd

Further features of the syslog.conf rule syntax allow for much more power-
ful rules than we have shown. Full details are provided in the syslog.conf(5)
manual page.

37.6 Summary

A daemon is a long-lived process that has no controlling terminal (i.e., it runs in the
background). Daemons perform specific tasks, such as providing a network login
facility or serving web pages. To become a daemon, a program performs a standard
sequence of steps, including calls to fork() and setsid().

Where appropriate, daemons should correctly handle the arrival of the SIGTERM
and SIGHUP signals. The SIGTERM signal should result in an orderly shutdown of the
daemon, while the SIGHUP signal provides a way to trigger the daemon to reinitialize
itself by rereading its configuration file and reopening any log files it may be using.

The syslog facility provides a convenient way for daemons (and other applica-
tions) to log error and other messages to a central location. These messages are
processed by the syslogd daemon, which redistributes the messages according to the
dictates of the syslogd.conf configuration file. Messages may be redistributed to a
number of targets, including terminals, disk files, logged-in users, and, via a TCP/IP
network, to other processes on remote hosts (typically other syslogd daemons).

Further information

Perhaps the best source of further information about writing daemons is the
source code of various existing daemons.

37.7 Exercise

37-1. Write a program (similar to logger(1)) that uses syslog(3) to write arbitrary messages
to the system log file. As well as accepting a single command-line argument
containing the message to be logged, the program should permit an option to
specify the level of the message.
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W R I T I N G  S E C U R E  
P R I V I L E G E D  P R O G R A M S

Privileged programs have access to features and resources (files, devices, and so
on) that are not available to ordinary users. A program can run with privileges by
two general means:

The program was started under a privileged user ID. Many daemons and net-
work servers, which are typically run as root, fall into this category.

The program has its set-user-ID or set-group-ID permission bit set. When a set-
user-ID (set-group-ID) program is execed, it changes the effective user (group)
ID of the process to be the same as the owner (group) of the program file. (We
first described set-user-ID and set-group-ID programs in Section 9.3.) In this
chapter, we’ll sometimes use the term set-user-ID-root to distinguish a set-user-
ID program that gives superuser privileges to a process from one that gives a
process another effective identity.

If a privileged program contains bugs, or can be subverted by a malicious user,
then the security of the system or an application can be compromised. From a secu-
rity viewpoint, we should write programs so as to minimize both the chance of a
compromise and the damage that can be done if a compromise does occur. These
topics form the subject of this chapter, which provides a set of recommended prac-
tices for secure programming, and describes various pitfalls that should be avoided
when writing privileged programs.



38.1 Is a Set-User-ID or Set-Group-ID Program Required?

One of the best pieces of advice concerning set-user-ID and set-group-ID programs
is to avoid writing them whenever possible. If there is an alternative way of per-
forming a task that doesn’t involve giving a program privilege, we should generally
employ that alternative, since it eliminates the possibility of a security compromise.

Sometimes, we can isolate the functionality that needs privilege into a separate
program that performs a single task, and exec that program in a child process as
required. This technique can be especially useful for libraries. One example of such
a use is provided by the pt_chown program described in Section 64.2.2.

Even in cases where a set-user-ID or set-group-ID is needed, it isn’t always nec-
essary for a set-user-ID program to give a process root credentials. If giving a pro-
cess some other credentials suffices, then this option should be preferred, since
running with root privileges opens the gates to possible security compromises.

Consider a set-user-ID program that needs to allow users to update a file on
which they do not have write permission. A safer way to do this is to create a dedi-
cated group account (group ID) for this program, change the group ownership of
the file to that group (and make the file writable by that group), and write a set-
group-ID program that sets the process’s effective group ID to the dedicated
group ID. Since the dedicated group ID is not otherwise privileged, this greatly
limits the damage that can be done if the program contains bugs or can otherwise
be subverted.

38.2 Operate with Least Privilege

A set-user-ID (or set-group-ID) program typically requires privileges only to per-
form certain operations. While the program (especially one assuming superuser
privileges) is performing other work, it should disable these privileges. When privileges
will never again be required, they should be dropped permanently. In other words,
the program should always operate with the least privilege required to accomplish the
tasks that it is currently performing. The saved set-user-ID facility was designed for
this purpose (Section 9.4).

Hold privileges only while they are required

In a set-user-ID program, we can use the following sequence of seteuid() calls to tem-
porarily drop and then reacquire privileges:

uid_t orig_euid;

orig_euid = geteuid();
if (seteuid(getuid()) == -1)            /* Drop privileges */
    errExit("seteuid");

/* Do unprivileged work */

if (seteuid(orig_euid) == -1)           /* Reacquire privileges */
    errExit("seteuid");

/* Do privileged work */
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The first call makes the effective user ID of the calling process the same as its real
ID. The second call restores the effective user ID to the value held in the saved set-
user-ID.

For set-group-ID programs, the saved set-group-ID saves the program’s initial
effective group ID, and setegid() is used to drop and reacquire privilege. We describe
seteuid(), setegid(), and other similar system calls mentioned in the following recom-
mendations in Chapter 9 and summarize them in Table 9-1 (on page 181).

The safest practice is to drop privileges immediately on program startup, and
then temporarily reacquire them as needed at later points in the program. If, at a
certain point, privileges will never be required again, then the program should
drop them irreversibly, by ensuring that the saved set-user-ID is also changed. This
eliminates the possibility of the program being tricked into reacquiring privilege,
perhaps via the stack-crashing technique described in Section 38.9.

Drop privileges permanently when they will never again be required

If a set-user-ID or set-group-ID program finishes all tasks that require privileges,
then it should drop its privileges permanently in order to eliminate any security
risk that could occur because the program is compromised by a bug or other unex-
pected behavior. Dropping privileges permanently is accomplished by resetting all
process user (group) IDs to the same value as the real (group) ID.

From a set-user-ID-root program whose effective user ID is currently 0, we can
reset all user IDs using the following code:

if (setuid(getuid()) == -1)
    errExit("setuid");

However, the above code does not reset the saved set-user-ID if the effective user ID
of the calling process is currently nonzero: when called from a program whose effective
user ID is nonzero, setuid() changes only the effective user ID (Section 9.7.1). In other
words, in a set-user-ID-root program, the following sequence doesn’t permanently
drop the user ID 0:

/* Initial UIDs:    real=1000 effective=0 saved=0 */

/* 1. Usual call to temporarily drop privilege */

orig_euid = geteuid();
if (seteuid(getuid() == -1)
    errExit("seteuid");

/* UIDs changed to: real=1000 effective=1000 saved=0 */

/* 2. Looks like the right way to permanently drop privilege (WRONG!) */

if (setuid(getuid() == -1)
    errExit("setuid");

/* UIDs unchanged:  real=1000 effective=1000 saved=0 */
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Instead, we must regain privilege prior to dropping it permanently, by inserting the
following call between steps 1 and 2 above:

if (seteuid(orig_euid) == -1)
    errExit("seteuid");

On the other hand, if we have a set-user-ID program owned by a user other than
root, then, because setuid() is insufficient to change the set-user-ID identifier, we
must use either setreuid() or setresuid() to permanently drop the privileged identi-
fier. For example, we could achieve the desired result using setreuid(), as follows:

if (setreuid(getuid(), getuid()) == -1)
    errExit("setreuid");

This code relies on a feature of the Linux implementation of setreuid(): if the first
(ruid) argument is not –1, then the saved set-user-ID is also set to the same value as
the (new) effective user ID. SUSv3 doesn’t specify this feature, but many other
implementations behave the same way as Linux.

The setregid() or setresgid() system call must likewise be used to permanently
drop a privileged group ID in a set-group-ID program, since, when the effective
user ID of a program is nonzero, setgid() changes only the effective group ID of the
calling process.

General points on changing process credentials

In the preceding pages, we described techniques for temporarily and permanently
dropping privileges. We now add a few general points regarding the use of these
techniques:

The semantics of some of the system calls that change process credentials
vary across systems. Furthermore, the semantics of some of these system calls vary
depending on whether or not the caller is privileged (effective user ID of 0).
For details, see Chapter 9, and especially Section 9.7.4. Because of these varia-
tions, [Tsafrir et al., 2008] recommends that applications should use system-
specific nonstandard system calls for changing process credentials, since, in
many cases, these nonstandard system calls provide simpler and more consistent
semantics than their standard counterparts. On Linux, this would translate to
using setresuid() and setresgid() to change user and group credentials. Although
these system calls are not present on all systems, their use is likely to be less
prone to error. ([Tsafrir et al., 2008] proposes a library of functions that make
credential changes using what they consider to be the best interfaces available
on each platform.)

On Linux, even if the caller has an effective user ID of 0, system calls for changing
credentials may not behave as expected if the program has explicitly manipu-
lated its capabilities. For example, if the CAP_SETUID capability has been disabled,
then attempts to change process user IDs will fail or, even worse, silently
change only some of the requested user IDs.
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Because of the possibilities listed in the two preceding points, it is highly rec-
ommended practice (see, for example, [Tsafrir et al., 2008]) to not only check
that a credential-changing system call has succeeded, but also to verify that the
change occurred as expected. For example, if we are temporarily dropping or
reacquiring a privileged user ID using seteuid(), then we should follow that call
with a geteuid() call that verifies that the effective user ID is what we expect.
Similarly, if we are dropping a privileged user ID permanently, then we should ver-
ify that the real user ID, effective user ID, and saved set-user-ID have all been suc-
cessfully changed to the unprivileged user ID. Unfortunately, while there are
standard system calls for retrieving the real and effective IDs, there are no stan-
dard system calls for retrieving the saved set IDs. Linux and a few other systems
provide getresuid() and getresgid() for this purpose; on some other systems, we
may need to employ techniques such as parsing information in /proc files.

Some credential changes can be made only by processes with an effective user
ID of 0. Therefore, when changing multiple IDs—supplementary group IDs,
group IDs, and user IDs—we should drop the privileged effective user ID last
when dropping privileged IDs. Conversely, we should raise the privileged effec-
tive user ID first when raising privileged IDs.

38.3 Be Careful When Executing a Program

Caution is required when a privileged program executes another program, either
directly, via an exec(), or indirectly, via system(), popen(), or a similar library function.

Drop privileges permanently before execing another program

If a set-user-ID (or set-group-ID) program executes another program, then it should
ensure that all process user (group) IDs are reset to the same value as the real user
(group) ID, so that the new program doesn’t start with privileges and also can’t
reacquire them. One way to do this is to reset all of the IDs before performing the
exec(), using the techniques described in Section 38.2.

The same result can be achieved by preceding the exec() with the call
setuid(getuid()). Even though this setuid() call changes only the effective user ID in a
process whose effective user ID is nonzero, privileges are nevertheless dropped
because (as described in Section 9.4) a successful exec() goes on to copy the effective
user ID to the saved set-user-ID. (If the exec() fails, then the saved set-user-ID is left
unchanged. This may be useful if the program then needs to perform other privi-
leged work because the exec() failed.)

A similar approach (i.e., setgid(getgid())) can be used with set-group-ID pro-
grams, since a successful exec() also copies the effective group ID to the saved set-
group-ID.

As an example, suppose that we have a set-user-ID program owned by user ID 200.
When this program is executed by a user whose ID is 1000, the user IDs of the
resulting process will be as follows:

real=1000 effective=200 saved=200
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If this program subsequently executes the call setuid(getuid()), then the process user
IDs are changed to the following:

real=1000 effective=1000 saved=200

When the process executes an unprivileged program, the effective user ID of the
process is copied to the saved set-user-ID, resulting in the following set of process
user IDs:

real=1000 effective=1000 saved=1000

Avoid executing a shell (or other interpreter) with privileges

Privileged programs running under user control should never exec a shell, either
directly or indirectly (via system(), popen(), execlp(), execvp(), or other similar library
functions). The complexity and power of shells (and other unconstrained interpreters
such as awk) mean that it is virtually impossible to eliminate all security loopholes,
even if the execed shell doesn’t allow interactive access. The consequent risk is that
the user may be able to execute arbitrary shell commands under the effective user
ID of the process. If a shell must be execed, ensure that privileges are permanently
dropped beforehand.

An example of the kind of security loophole that can occur when execing a
shell is noted in the discussion of system() in Section 27.6.

A few UNIX implementations honor the set-user-ID and set-group-ID permission
bits when they are applied to interpreter scripts (Section 27.3), so that, when the
script is run, the process executing the script assumes the identity of some other
(privileged) user. Because of the security risks just described, Linux, like some
other UNIX implementations, silently ignores the set-user-ID and set-group-ID per-
mission bits when execing a script. Even on implementations where set-user-ID and
set-group-ID scripts are permitted, their use should be avoided.

Close all unnecessary file descriptors before an exec()

In Section 27.4, we noted that, by default, file descriptors remain open across an
exec(). A privileged program may open a file that normal processes can’t access. The
resulting open file descriptor represents a privileged resource. The file descriptor
should be closed before an exec(), so that the execed program can’t access the asso-
ciated file. We can do this either by explicitly closing the file descriptor or by set-
ting its close-on-exec flag (Section 27.4).

38.4 Avoid Exposing Sensitive Information

When a program reads passwords or other sensitive information, it should per-
form whatever processing is required, and then immediately erase the information
from memory. (We show an example of this in Section 8.5.) Leaving such informa-
tion in memory is a security risk, for the following reasons:

The virtual memory page containing the data may be swapped out (unless it is
locked in memory using mlock() or similar), and could then be read from the
swap area by a privileged program.
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If the process receives a signal that causes it to produce a core dump file, then
that file may be read to obtain the information.

Following on from the last point, as a general principle, a secure program should
prevent core dumps, so that a core dump file can’t be inspected for sensitive infor-
mation. A program can ensure that a core dump file is not created by using
setrlimit() to set the RLIMIT_CORE resource limit to 0 (see Section 36.3).

By default, Linux doesn’t permit a set-user-ID program to perform a core
dump in response to a signal (Section 22.1), even if the program has dropped
all privileges. However, other UNIX implementations may not provide this
security feature.

38.5 Confine the Process

In this section, we consider ways in which we can confine a program to limit the
damage that is done if the program is compromised.

Consider using capabilities

The Linux capabilities scheme divides the traditional all-or-nothing UNIX privilege
scheme into distinct units called capabilities. A process can independently enable or
disable individual capabilities. By enabling just those capabilities that it requires, a
program operates with less privilege than it would have if run with full root privi-
leges. This reduces the potential for damage if the program is compromised.

Furthermore, using capabilities and the securebits flags, we can create a process
that has a limited set of capabilities but is not owned by root (i.e., all of its user IDs
are nonzero). Such a process can no longer use exec() to regain a full set of capabilities.
We describe capabilities and the securebits flags in Chapter 39.

Consider using a chroot jail

A useful security technique in certain cases is to establish a chroot jail to limit the set
of directories and files that a program may access. (Make sure to also call chdir() to
change the process’s current working directory to a location within the jail.) Note,
however, that a chroot jail is insufficient to confine a set-user-ID-root program (see
Section 18.12).

An alternative to using a chroot jail is a virtual server, which is a server imple-
mented on top of a virtual kernel. Because each virtual kernel is isolated from
other virtual kernels that may be running on the same hardware, a virtual
server is more secure and flexible than a chroot jail. (Several other modern
operating systems also provide their own implementations of virtual servers.)
The oldest virtualization implementation on Linux is User-Mode Linux
(UML), which is a standard part of the Linux 2.6 kernel. Further information
about UML can be found at http://user-mode-linux.sourceforge.net/. More recent
virtual kernel projects include Xen (http://www.cl.cam.ac.uk/Research/SRG/
netos/xen/) and KVM (http://kvm.qumranet.com/).
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38.6 Beware of Signals and Race Conditions

A user may send arbitrary signals to a set-user-ID program that they have started.
Such signals may arrive at any time and with any frequency. We need to consider
the race conditions that can occur if a signal is delivered at any point in the execution
of the program. Where appropriate, signals should be caught, blocked, or ignored
to prevent possible security problems. Furthermore, the design of signal handlers
should be as simple as possible, in order to reduce the risk of inadvertently creating
a race condition.

This issue is particularly relevant with the signals that stop a process (e.g.,
SIGTSTP and SIGSTOP). The problematic scenario is the following:

1. A set-user-ID program determines some information about its run-time
environment.

2. The user manages to stop the process running the program and change details
of the run-time environment. Such changes may include modifying the permis-
sions on a file, changing the target of a symbolic link, or removing a file that the
program depends on.

3. The user resumes the process with a SIGCONT signal. At this point, the program
will continue execution based on now false assumptions about its run-time
environment, and these assumptions may lead to a security breach.

The situation described here is really just a special case of a time-of-check, time-of-use
race condition. A privileged process should avoid performing operations based on
previous verifications that may no longer hold (refer to the discussion of the access()
system call in Section 15.4.4 for a specific example). This guideline applies even
when the user can’t send signals to the process. The ability to stop a process simply
allows a user to widen the interval between the time of the check and the time of use.

Although it may be difficult on a single attempt to stop a process between the
time of check and time of use, a malicious user could execute a set-user-ID pro-
gram repeatedly, and use another program or a shell script to repeatedly send
stop signals to the set-user-ID program and change the run-time environment.
This greatly improves the chances of subverting the set-user-ID program.

38.7 Pitfalls When Performing File Operations and File I/O

If a privileged process needs to create a file, then we must take care of that file’s
ownership and permissions to ensure that there is never a point, no matter how
brief, when the file is vulnerable to malicious manipulation. The following guide-
lines apply:

The process umask (Section 15.4.6) should be set to a value that ensures that
the process never creates publicly writable files, since these could be modified
by a malicious user.

Since the ownership of a file is taken from the effective user ID of the creating
process, judicious use of seteuid() or setreuid() to temporarily change process
credentials may be required in order ensure that a newly created file doesn’t
belong to the wrong user. Since the group ownership of the file may be taken
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from process’s effective group ID (see Section 15.3.1), a similar statement
applies with respect to set-group-ID programs, and the corresponding group
ID calls can be used to avoid such problems. (To be strictly accurate, on Linux,
the owner of a new file is determined by the process’s file-system user ID,
which normally has the same value as the process’s effective user ID; refer to
Section 9.5.)

If a set-user-ID-root program must create a file that initially it must own, but
which will eventually be owned by another user, the file should be created so
that it is initially not writable by other users, either by using a suitable mode
argument to open() or by setting the process umask before calling open(). After-
ward, the program can change its ownership with fchown(), and then change its
permissions, if necessary, with fchmod(). The key point is that a set-user-ID pro-
gram should ensure that it never creates a file that is owned by the program
owner and that is even momentarily writable by other users.

Checks on file attributes should be performed on open file descriptors (e.g.,
open() followed by fstat()), rather than by checking the attributes associated
with a pathname and then opening the file (e.g., stat() followed by open()). The
latter method creates a time-of-use, time-of-check problem.

If a program must ensure that it is the creator of a file, then the O_EXCL flag
should be used when calling open().

A privileged program should avoid creating or relying on files in publicly writ-
able directories such as /tmp, since this leaves the program vulnerable to mali-
cious attempts to create unauthorized files with names expected by the
privileged program. A program that absolutely must create a file in a publicly
writable directory should at least ensure that the file has an unpredictable
name, by using a function such as mkstemp() (Section 5.12).

38.8 Don’t Trust Inputs or the Environment

Privileged programs should avoid making assumptions about the input they are
given, or the environment in which they are running.

Don’t trust the environment list

Set-user-ID and set-group-ID programs should not assume that the values of envi-
ronment variables are reliable. Two variables that are particularly relevant are PATH
and IFS.

PATH determines where the shell (and thus system() and popen()), as well as
execlp() and execvp(), search for programs. A malicious user can set PATH to a value
that may trick a set-user-ID program employing one of these functions into execut-
ing an arbitrary program with privilege. If these functions are to be used, PATH should
be set to a trustworthy list of directories (but better still, absolute pathnames
should be specified when execing programs). However, as already noted, it is best
to drop privileges before execing a shell or employing one of the aforementioned
functions.

IFS specifies the delimiting characters that the shell interprets as separating the
words of a command line. This variable should be set to an empty string, which
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means that only white-space characters are interpreted by the shell as word separa-
tors. Some shells always set IFS in this way on startup. (Section 27.6 describes one
vulnerability relating to IFS that appeared in older Bourne shells.)

In some cases, it may be safest to erase the entire environment list (Section 6.7),
and then restore selected environment variables with known-safe values, especially
when executing other programs or calling libraries that may be affected by environ-
ment variable settings.

Handle untrusted user inputs defensively

A privileged program should carefully validate all inputs from untrusted sources
before taking action based on those inputs. Such validation may include verifying
that numbers fall within acceptable limits, and that strings are of an acceptable
length and consist of acceptable characters. Among inputs that may need to be vali-
dated in this way are those coming from user-created files, command-line argu-
ments, interactive inputs, CGI inputs, email messages, environment variables,
interprocess communication channels (FIFOs, shared memory, and so on) accessible
by untrusted users, and network packets.

Avoid unreliable assumptions about the process’s run-time environment

A set-user-ID program should avoid making unreliable assumptions about its initial
run-time environment. For example, standard input, output, or error may have
been closed. (These descriptors might have been closed in the program that execs
the set-user-ID program.) In this case, opening a file could inadvertently reuse
descriptor 1 (for example), so that, while the program thinks it is writing to stan-
dard output, it is actually writing to the file it opened.

There are many other possibilities to consider. For example, a process may
exhaust various resource limits, such as the limit on the number of processes that
may be created, the CPU time resource limit, or the file size resource limit, with the
result that various system calls may fail or various signals may be generated. Mali-
cious users may attempt to deliberately engineer resource exhaustion in an attempt
to subvert a program.

38.9 Beware of Buffer Overruns

Beware of buffer overruns (overflows), where an input value or copied string
exceeds the allocated buffer space. Never use gets(), and employ functions such as
scanf(), sprintf(), strcpy(), and strcat() with caution (e.g., guarding their use with if
statements that prevent buffer overruns).

Buffer overruns allow techniques such as stack crashing (also known as stack
smashing), whereby a malicious user employs a buffer overrun to place carefully
coded bytes into a stack frame in order to force the privileged program to execute
arbitrary code. (Several online sources explain the details of stack crashing; see also
[Erickson, 2008] and [Anley, 2007].) Buffer overruns are probably the single most
common source of security breaches on computer systems, as evidenced by the
frequency of advisories posted by CERT (http://www.cert.org/) and to Bugtraq
(http://www.securityfocus.com/). Buffer overruns are particularly dangerous in network
servers, since they leave a system open to remote attack from anywhere on a network.
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In order to make stack crashing more difficult—in particular, to make such
attacks much more time-consuming when conducted remotely against net-
work servers—from kernel 2.6.12 onward, Linux implements address-space
randomization. This technique randomly varies the location of the stack over an
8 MB range at the top of virtual memory. In addition, the locations of memory
mappings may also be randomized, if the soft RLIMIT_STACK limit is not infinite
and the Linux-specific /proc/sys/vm/legacy_va_layout file contains the value 0.

More recent x86-32 architectures provide hardware support for marking
page tables as NX (“no execute”). This feature is used to prevent execution of
program code on the stack, thus making stack crashing more difficult.

There are safe alternatives to many of the functions mentioned above—for example,
snprintf(), strncpy(), and strncat()—that allow the caller to specify the maximum num-
ber of characters that should be copied. These functions take the specified maxi-
mum into account in order to avoid overrunning the target buffer. In general,
these alternatives are preferable, but must still be handled with care. In particular,
note the following points:

With most of these functions, if the specified maximum is reached, then a trun-
cated version of the source string is placed in the target buffer. Since such a
truncated string may be meaningless in terms of the semantics of the program,
the caller must check if truncation occurred (e.g., using the return value from
snprintf()), and take appropriate action if it has.

Using strncpy() can carry a performance impact. If, in the call strncpy(s1, s2, n),
the string pointed to by s2 is less than n bytes in length, then padding null bytes
are written to s1 to ensure that n bytes in total are written.

If the maximum size value given to strncpy() is not long enough to permit the inclu-
sion of the terminating null character, then the target string is not null-terminated.

Some UNIX implementations provide the strlcpy() function, which, given a
length argument n, copies at most n – 1 bytes to the destination buffer and
always appends a null character at the end of the buffer. However, this function
is not specified in SUSv3 and is not implemented in glibc. Furthermore, in cases
where the caller is not carefully checking string lengths, this function only substi-
tutes one problem (buffer overflows) for another (silently discarding data).

38.10 Beware of Denial-of-Service Attacks

With the increase in Internet-based services has come a corresponding increase in
the opportunities for remote denial-of-service attacks. These attacks attempt to
make a service unavailable to legitimate clients, either by sending the server mal-
formed data that causes it to crash or by overloading it with bogus requests.

Local denial-of-service attacks are also possible. The most well-known example
is when a user runs a simple fork bomb (a program that repeatedly forks, thus
consuming all of the process slots on the system). However, the origin of local
denial-of-service attacks is much easier to determine, and they can generally be
prevented by suitable physical and password security measures.
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Dealing with malformed requests is straightforward—a server should be programmed
to rigorously check its inputs and avoid buffer overruns, as described above.

Overload attacks are more difficult to deal with. Since the server can’t control
the behavior of remote clients or the rate at which they submit requests, such
attacks are impossible to prevent. (The server may not even be able to determine
the true origin of the attack, since the source IP address of a network packet can be
spoofed. Alternatively, distributed attacks may enlist unwitting intermediary hosts
to direct an attack at a target system.) Nevertheless, various measures can be taken
to minimize the risk and consequences of an overload attack:

The server should perform load throttling, dropping requests when the load
exceeds some predetermined limit. This will have the consequence of drop-
ping legitimate requests, but prevents the server and host machine from
becoming overloaded. The use of resource limits and disk quotas may also be
helpful in limiting excessive loads. (Refer to http://sourceforge.net/projects/
linuxquota/ for more information on disk quotas.)

A server should employ timeouts for communication with a client, so that if the
client (perhaps deliberately) doesn’t respond, the server is not tied up indefi-
nitely waiting on the client.

In the event of an overload, the server should log suitable messages so that the
system administrator is notified of the problem. (However, logging should be
throttled, so that logging itself does not overload the system.)

The server should be programmed so that it doesn’t crash in the face of an
unexpected load. For example, bounds checking should be rigorously per-
formed to ensure that excessive requests don’t overflow a data structure.

Data structures should be designed to avoid algorithmic-complexity attacks. For
example, a binary tree may be balanced and deliver acceptable performance
under typical loads. However, an attacker could construct a sequence of inputs
that result in an unbalanced tree (the equivalent of a linked list in the worst
case), which could cripple performance. [Crosby & Wallach, 2003] details the
nature of such attacks and discusses data-structuring techniques that can be
used to avoid them.

38.11 Check Return Statuses and Fail Safely

A privileged program should always check to see whether system calls and library
functions succeed, and whether they return expected values. (This is true for all
programs, of course, but is especially important for privileged programs.) Various
system calls can fail, even for a program running as root. For example, fork() may
fail if the system-wide limit on the number of processes is encountered, an open()
for writing may fail on a read-only file system, or chdir() may fail if the target direc-
tory doesn’t exist.
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Even where a system call succeeds, it may be necessary to check its result. For
example, where it matters, a privileged program should check that a successful
open() has not returned one of the three standard file descriptors: 0, 1, or 2.

Finally, if a privileged program encounters an unexpected situation, then the
appropriate behavior is usually either to terminate or, in the case of a server, to
drop the client request. Attempting to fix unexpected problems typically requires
making assumptions that may not be justified in all circumstances and may lead to
the creation of security loopholes. In such situations, it is safer to have the program
terminate, or to have the server log a message and discard the client’s request.

38.12 Summary

Privileged programs have access to system resources that are not available to ordinary
users. If such programs can be subverted, then the security of the system can be
compromised. In this chapter, we presented a set of guidelines for writing privi-
leged programs. The aim of these guidelines is twofold: to minimize the chances of
a privileged program being subverted, and to minimize the damage that can be
done in the event that a privileged program is subverted.

Further information

[Viega & McGraw, 2002] covers a broad range of topics relating to the design and
implementation of secure software. General information about security on UNIX
systems, as well as a chapter on secure-programming techniques can be found in
[Garfinkel et al., 2003]. Computer security is covered at some length in [Bishop,
2005], and at even greater length by the same author in [Bishop, 2003]. [Peikari &
Chuvakin, 2004] describes computer security with a focus on the various means by
which system may be attacked. [Erickson, 2008] and [Anley, 2007] both provide a
thorough discussion of various security exploits, providing enough detail for wise
programmers to avoid these exploits. [Chen et al., 2002] is a paper describing and
analyzing the UNIX set-user-ID model. [Tsafrir et al., 2008] revises and enhances
the discussion of various points in [Chen et al., 2002]. [Drepper, 2009] provides a
wealth of tips on secure and defensive programming on Linux.

Several sources of information about writing secure programs are available
online, including the following:

Matt Bishop has written a range of security-related papers, which are available
online at http://nob.cs.ucdavis.edu/~bishop/secprog. The most interesting of these is
“How to Write a Setuid Program,” (originally published in ;login: 12(1) Jan/Feb
1986). Although somewhat dated, this paper contains a wealth of useful tips.

The Secure Programming for Linux and Unix HOWTO, written by David Wheeler,
is available at http://www.dwheeler.com/secure-programs/.

A useful checklist for writing set-user-ID programs is available online at http://
www.homeport.org/~adam/setuid.7.html.
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38.13 Exercises

38-1. Log in as a normal, unprivileged user, create an executable file (or copy an existing
file such as /bin/sleep), and enable the set-user-ID permission bit on that file (chmod
u+s). Try modifying the file (e.g., cat >> file). What happens to the file permissions
as a result (ls –l)? Why does this happen?

38-2. Write a set-user-ID-root program similar to the sudo(8) program. This program
should take command-line options and arguments as follows:

$ ./douser [-u user ] program-file arg1 arg2 ...

The douser program executes program-file, with the given arguments, as though it
was run by user. (If the –u option is omitted, then user should default to root.) Before
executing program-file, douser should request the password for user, authenticate it
against the standard password file (see Listing 8-2, on page 164), and then set all of
the process user and group IDs to the correct values for that user.
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C A P A B I L I T I E S

This chapter describes the Linux capabilities scheme, which divides the traditional
all-or-nothing UNIX privilege scheme into individual capabilities that can be inde-
pendently enabled or disabled. Using capabilities allows a program to perform
some privileged operations, while preventing it from performing others.

39.1 Rationale for Capabilities

The traditional UNIX privilege scheme divides processes into two categories: those
whose effective user ID is 0 (superuser), which bypass all privilege checks, and all
other processes, which are subject to privilege checking according to their user and
group IDs.

The coarse granularity of this scheme is a problem. If we want to allow a process
to perform some operation that is permitted only to the superuser—for example,
changing the system time—then we must run that process with an effective user ID
of 0. (If an unprivileged user needs to perform such operations, this is typically
implemented using a set-user-ID-root program.) However, this grants the process
privileges to perform a host of other actions as well—for example, bypassing all per-
mission checks when accessing files—thus opening the door for a range of security
breaches if the program behaves in unexpected ways (which may be the conse-
quence of unforeseen circumstances, or because of deliberate manipulation by a
malicious user). The traditional way of dealing with this problem was outlined in
Chapter 38: we drop effective privileges (i.e., change from an effective user ID of 0,
while maintaining 0 in the saved set-user-ID) and temporarily reacquire them only
when needed.



The Linux capability scheme refines the handling of this problem. Rather than
using a single privilege (i.e., effective user ID of 0) when performing security
checks in the kernel, the superuser privilege is divided into distinct units, called
capabilities. Each privileged operation is associated with a particular capability, and
a process can perform that operation only if it has the corresponding capability
(regardless of its effective user ID). Put another way, everywhere in this book that
we talk about a privileged process on Linux, what we really mean is a process that
has the relevant capability for performing a particular operation.

Most of the time, the Linux capability scheme is invisible to us. The reason for
this is that when an application that is unaware of capabilities assumes an effective
user ID of 0, the kernel grants that process the complete range of capabilities.

The Linux capabilities implementation is based on the POSIX 1003.1e draft
standard (http://wt.tuxomania.net/publications/posix.1e/). This standardization effort
foundered in the late 1990s before it was completed, but various capabilities imple-
mentations are nevertheless based on the draft standard. (Some of the capabilities
listed in Table 39-1 are defined in the POSIX.1e draft, but many are Linux extensions.)

Capability schemes are provided in a few other UNIX implementations, such
as in Sun’s Solaris 10 and earlier Trusted Solaris releases, SGI’s Trusted Irix,
and as part of the TrustedBSD project for FreeBSD ([Watson, 2000]). Similar
schemes exist in some other operating systems; for example, the privilege
mechanism in Digital’s VMS system.

39.2 The Linux Capabilities

Table 39-1 lists the Linux capabilities and provides an abbreviated (and incomplete)
guide to the operations to which they apply.

39.3 Process and File Capabilities

Each process has three associated capability sets—termed permitted, effective, and
inheritable—that can contain zero or more of the capabilities listed in Table 39-1.
Each file can likewise have three associated capability sets, with the same names.
(For reasons that will become evident, the file effective capability set is really just a
single bit that is either enabled or disabled.) We go into the details of each of these
capability sets in the following sections.

39.3.1 Process Capabilities
For each process, the kernel maintains three capability sets (implemented as bit
masks) in which zero or more of the capabilities specified in Table 39-1 are
enabled. The three sets are as follows:

Permitted: These are the capabilities that a process may employ. The permitted
set is a limiting superset for the capabilities that can be added to the effective
and inheritable sets. If a process drops a capability from its permitted set, it can
never reacquire that capability (unless it execs a program that once more confers
the capability).
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Effective: These are the capabilities used by the kernel to perform privilege
checking for the process. As long as it maintains a capability in its permitted
set, a process can temporarily disable the capability by dropping it from the
effective set, and then later restoring it to that set.

Inheritable: These are capabilities that may be carried over to the permitted set
when a program is execed by this process.

We can view hexadecimal representations of the three capability sets for any process
in the three fields CapInh, CapPrm, and CapEff in the Linux-specific /proc/PID/status file.

The getpcap program (part of the libcap package described in Section 39.7) can
be used to display the capabilities of a process in an easier-to-read format.

A child process produced via fork() inherits copies of its parent’s capability sets. We
describe the treatment of capability sets during an exec() in Section 39.5.

In reality, capabilities are a per-thread attribute that can be adjusted indepen-
dently for each of the threads in a process. The capabilities of a specific thread
within a multithreaded process are shown in the /proc/PID/task/TID/status
file. The /proc/PID/status file shows the capabilities of the main thread.

Before kernel 2.6.25, Linux represented capability sets using 32 bits. The
addition of further capabilities in kernel 2.6.25 required a move to 64-bit sets.

39.3.2 File Capabilities
If a file has associated capability sets, then these sets are used to determine the
capabilities that are given to a process if it execs that file. There are three file capa-
bility sets:

Permitted: This is a set of capabilities that may be added to the process’s per-
mitted set during an exec(), regardless of the process’s existing capabilities.

Effective: This is just a single bit. If it is enabled, then, during an exec(), the capa-
bilities that are enabled in the process’s new permitted set are also enabled in
the process’s new effective set. If the file effective bit is disabled, then, after an
exec(), the process’s new effective set is initially empty.

Inheritable: This set is masked against the process’s inheritable set to determine
a set of capabilities that are to be enabled in the process’s permitted set after
an exec().

Section 39.5 provides details of how file capabilities are used during an exec().

The permitted and inheritable file capabilities were formerly known as forced
and allowed. Those terms are now obsolete, but they are still informative. The
permitted file capabilities are the ones that are forced into the process’s permit-
ted set during an exec(), regardless of the process’s existing capabilities. The
inheritable file capabilities are the ones that the file allows into the process’s
permitted set during an exec(), if those capabilities are also enabled in the pro-
cess’s inheritable capability set.

The capabilities associated with a file are stored in a security extended
attribute (Section 16.1) named security.capability. The CAP_SETFCAP capability is
required to update this extended attribute.
Capabi l i t ies 799



Table 39-1: Operations permitted by each Linux capability

Capability Permits process to

CAP_AUDIT_CONTROL (Since Linux 2.6.11) Enable and disable kernel audit logging; change filtering 
rules for auditing; retrieve auditing status and filtering rules

CAP_AUDIT_WRITE (Since Linux 2.6.11) Write records to the kernel auditing log

CAP_CHOWN Change file’s user ID (owner) or change file’s group ID to a group of which 
process is not a member (chown())

CAP_DAC_OVERRIDE Bypass file read, write, and execute permission checks (DAC is an abbreviation 
for discretionary access control); read contents of cwd, exe, and root symbolic 
links in /proc/PID

CAP_DAC_READ_SEARCH Bypass file read permission checks and directory read and execute (search) 
permission checks

CAP_FOWNER Generally ignore permission checks on operations that normally require the 
process’s file-system user ID to match the file’s user ID (chmod(), utime()); set 
i-node flags on arbitrary files; set and modify ACLs on arbitrary files; ignore 
effect of directory sticky bit when deleting files (unlink(), rmdir(), rename()); 
specify O_NOATIME flag for arbitrary files in open() and fcntl(F_SETFL) 

CAP_FSETID Modify a file without having the kernel turn off set-user-ID and set-group-ID 
bits (write(), truncate()); enable set-group-ID bit for a file whose group ID 
doesn’t match the process’s file-system group ID or supplementary group IDs 
(chmod())

CAP_IPC_LOCK Override memory-locking restrictions (mlock(), mlockall(), shmctl(SHM_LOCK), 
shmctl(SHM_UNLOCK)); employ shmget() SHM_HUGETLB flag and mmap() 
MAP_HUGETLB flag.

CAP_IPC_OWNER Bypass permission checks for operations on System V IPC objects

CAP_KILL Bypass permission checks for sending signals (kill(), sigqueue())

CAP_LEASE (Since Linux 2.4) Establish leases on arbitrary files ( fcntl(F_SETLEASE))

CAP_LINUX_IMMUTABLE Set append and immutable i-node flags

CAP_MAC_ADMIN (Since Linux 2.6.25) Configure or make state changes for mandatory access 
control (MAC) (implemented by some Linux security modules)

CAP_MAC_OVERRIDE (Since Linux 2.6.25) Override MAC (implemented by some Linux security 
modules)

CAP_MKNOD (Since Linux 2.4) Use mknod() to create devices

CAP_NET_ADMIN Perform various network-related operations (e.g., setting privileged socket 
options, enabling multicasting, configuring network interfaces, and modifying 
routing tables)

CAP_NET_BIND_SERVICE Bind to privileged socket ports 

CAP_NET_BROADCAST (Unused) Perform socket broadcasts and listen to multicasts 

CAP_NET_RAW Use raw and packet sockets

CAP_SETGID Make arbitrary changes to process group IDs (setgid(), setegid(), setregid(), 
setresgid(), setfsgid(), setgroups(), initgroups()); forge group ID when passing 
credentials via UNIX domain socket (SCM_CREDENTIALS)

CAP_SETFCAP (Since Linux 2.6.24) Set file capabilities
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CAP_SETPCAP If file capabilities are not supported, grant and remove capabilities in the 
process’s permitted set to or from any other process (including self); if file 
capabilities are supported, add any capability in the process’s capability bounding 
set to its inheritable set, drop capabilities from the bounding set, and change 
securebits flags

CAP_SETUID Make arbitrary changes to process user IDs (setuid(), seteuid(), setreuid(), 
setresuid(), setfsuid()); forge user ID when passing credentials via UNIX domain 
socket (SCM_CREDENTIALS)

CAP_SYS_ADMIN Exceed /proc/sys/fs/file-max limit in system calls that open files (e.g., open(), 
shm_open(), pipe(), socket(), accept(), exec(), acct(), epoll_create()); perform various 
system administration operations, including quotactl() (control disk quotas), 
mount() and umount(), swapon() and swapoff(), pivot_root(), sethostname() and 
setdomainname(); perform various syslog(2) operations; override RLIMIT_NPROC 
resource limit ( fork()); call lookup_dcookie(); set trusted and security extended 
attributes; perform IPC_SET and IPC_RMID operations on arbitrary System V IPC 
objects; forge process ID when passing credentials via UNIX domain socket 
(SCM_CREDENTIALS); use ioprio_set() to assign IOPRIO_CLASS_RT scheduling class; 
employ TIOCCONS ioctl(); employ CLONE_NEWNS flag with clone() and unshare(); 
perform KEYCTL_CHOWN and KEYCTL_SETPERM keyctl() operations; administer 
random(4) device; various device-specific operations

CAP_SYS_BOOT Use reboot() to reboot the system; call kexec_load()

CAP_SYS_CHROOT Use chroot() to set process root directory

CAP_SYS_MODULE Load and unload kernel modules (init_module(), delete_module(), 
create_module())

CAP_SYS_NICE Raise nice value (nice(), setpriority()); change nice value for arbitrary processes 
(setpriority()); set SCHED_RR and SCHED_FIFO realtime scheduling policies for 
calling process; reset SCHED_RESET_ON_FORK flag; set scheduling policies and 
priorities for arbitrary processes (sched_setscheduler(), sched_setparam()); set I/O 
scheduling class and priority for arbitrary processes (ioprio_set()); set CPU 
affinity for arbitrary processes (sched_setaffinity()); use migrate_pages() to 
migrate arbitrary processes and allow processes to be migrated to arbitrary 
nodes; apply move_pages() to arbitrary processes; use MPOL_MF_MOVE_ALL flag with 
mbind() and move_pages()

CAP_SYS_PACCT Use acct() to enable or disable process accounting

CAP_SYS_PTRACE Trace arbitrary processes using ptrace(); access /proc/PID/environ for arbitrary 
processes; apply get_robust_list() to arbitrary processes

CAP_SYS_RAWIO Perform operations on I/O ports using iopl() and ioperm(); access /proc/kcore; 
open /dev/mem and /dev/kmem

CAP_SYS_RESOURCE Use reserved space on file systems; make ioctl() calls controlling ext3 
journaling; override disk quota limits; increase hard resource limits (setrlimit()); 
override RLIMIT_NPROC resource limit (fork()); raise msg_qbytes limit for a System V 
message queue above limit in /proc/sys/kernel/msgmnb; bypass various POSIX 
message queue limits defined by files under /proc/sys/fs/mqueue

CAP_SYS_TIME Modify system clock (settimeofday(), stime(), adjtime(), adjtimex()); set hardware 
clock

CAP_SYS_TTY_CONFIG Perform virtual hangup of terminal or pseudoterminal using vhangup()

Table 39-1: Operations permitted by each Linux capability (continued)

Capability Permits process to
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39.3.3 Purpose of the Process Permitted and Effective Capability Sets
The process permitted capability set defines the capabilities that a process may
employ. The process effective capability set defines the capabilities that are currently
in effect for the process—that is, the set of capabilities that the kernel uses when
checking whether the process has the necessary privilege to perform a particular
operation.

The permitted capability set imposes an upper bound on the effective set. A
process can raise a capability in its effective set only if that capability is in the per-
mitted set. (The terms add to and set are sometimes used synonymously with raise.
The converse operation is drop, or synonymously, remove or clear.)

The relationship between the effective and permitted capability sets is analo-
gous to that between the effective user ID and the saved set-user-ID for a set-
user-ID-root program. Dropping a capability from the effective set is analogous
to temporarily dropping an effective user ID of 0, while maintaining 0 in the
saved set-user-ID. Dropping a capability from both the effective and permitted
capability sets is analogous to permanently dropping superuser privileges by
setting both the effective user ID and the saved set-user ID to nonzero values.

39.3.4 Purpose of the File Permitted and Effective Capability Sets
The file permitted capability set provides a mechanism by which an executable file
can give capabilities to a process. It specifies a group of capabilities that are to be
assigned to the process’s permitted capability set during an exec().

The file effective capability set is a single flag (bit) that is either enabled or dis-
abled. To understand why this set consists of just a single bit, we need to consider
the two cases that occur when a program is execed:

The program may be capability-dumb, meaning that it doesn’t know about capa-
bilities (i.e., it is designed as a traditional set-user-ID-root program). Such a program
won’t know that it needs to raise capabilities in its effective set in order to be
able to perform privileged operations. For such programs, an exec() should
have the effect that all of the process’s new permitted capabilities are automati-
cally also assigned to its effective set. This result is achieved by enabling the file
effective bit.

The program may be capability-aware, meaning that it has been designed with
the capabilities framework in mind, and it will make the appropriate system
calls (discussed later) to raise and drop capabilities in its effective set. For such
programs, least-privilege considerations mean that, after an exec(), all capabili-
ties should initially be disabled in the process’s effective capability set. This
result is achieved by disabling the file effective capability bit.

39.3.5 Purpose of the Process and File Inheritable Sets
At first glance, the use of permitted and effective sets for processes and files might
seem a sufficient framework for a capabilities system. However, there are some sit-
uations where they do not suffice. For example, what if a process performing an
exec() wants to preserve some of its current capabilities across the exec()? It might
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appear that the capabilities implementation could provide this feature simply by
preserving the process’s permitted capabilities across an exec(). However, this
approach would not handle the following cases:

Performing the exec() might require certain privileges (e.g., CAP_DAC_OVERRIDE)
that we don’t want to preserve across the exec().

Suppose that we explicitly dropped some permitted capabilities that we didn’t
want to preserve across the exec(), but then the exec() failed. In this case, the pro-
gram might need some of the permitted capabilities that it has already (irrevo-
cably) dropped.

For these reasons, a process’s permitted capabilities are not preserved across an
exec(). Instead, another capability set is introduced: the inheritable set. The inheritable
set provides a mechanism by which a process can preserve some of its capabilities
across an exec().

The process inheritable capability set specifies a group of capabilities that may be
assigned to the process’s permitted capability set during an exec(). The correspond-
ing file inheritable set is masked (ANDed) against the process inherited capability set
to determine the capabilities that are actually added to the process’s permitted
capability set during an exec().

There is a further, philosophical reason for not simply preserving the process
permitted capability set across an exec(). The idea of the capabilities system is
that all privileges given to a process are granted or controlled by the file that
the process execs. Although the process inheritable set specifies capabilities
that are passed across an exec(), these capabilities are masked by the file inherit-
able set.

39.3.6 Assigning and Viewing File Capabilities from the Shell
The setcap(8) and getcap(8) commands, contained in the libcap package described in
Section 39.7, can be used to manipulate file capabilities sets. We demonstrate the
use of these commands with a short example using the standard date(1) program.
(This program is an example of a capability-dumb application according to the def-
inition in Section 39.3.4.) When run with privilege, date(1) can be used to change
the system time. The date program is not set-user-ID-root, so normally the only way
to run it with privilege is to become the superuser.

We begin by displaying the current system time, and then try to change the
time as an unprivileged user:

$ date
Tue Dec 28 15:54:08 CET 2010
$ date -s '2018-02-01 21:39'
date: cannot set date: Operation not permitted
Thu Feb  1 21:39:00 CET 2018

Above, we see that the date command failed to change the system time, but never-
theless displayed its argument in the standard format.
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Next, we become the superuser, which allows us to successfully change the
system time:

$ sudo date -s '2018-02-01 21:39'
root's password:
Thu Feb  1 21:39:00 CET 2018
$ date
Thu Feb  1 21:39:02 CET 2018

We now make a copy of the date program and assign it the capability that it needs:

$ whereis -b date                           Find location of date binary
date: /bin/date
$ cp /bin/date .
$ sudo setcap "cap_sys_time=pe" date
root's password:
$ getcap date
date = cap_sys_time+ep

The setcap command shown above assigns the CAP_SYS_TIME capability to the permitted
(p) and effective (e) capability sets of the executable file. We then used the getcap
command to verify the capabilities assigned to the file. (The syntax used by setcap
and getcap for representing capability sets is described in the cap_from_text(3) manual
page provided in the libcap package.)

The file capabilities of our copy of the date program allow the program to be
used by unprivileged users to set the system time:

$ ./date -s '2010-12-28 15:55'
Tue Dec 28 15:55:00 CET 2010
$ date
Tue Dec 28 15:55:02 CET 2010

39.4 The Modern Capabilities Implementation

A complete implementation of capabilities requires the following:

For each privileged operation, the kernel should check whether the process
has the relevant capability, rather than checking for an effective (or file system)
user ID of 0.

The kernel must provide system calls allowing a process’s capabilities to be
retrieved and modified.

The kernel must support the notion of attaching capabilities to an executable
file, so that the process gains the associated capabilities when that file is
execed. This is analogous to the set-user-ID bit, but allows the independent
specification of all capabilities on the executable file. In addition, the system
must provide a set of programming interfaces and commands for setting and
viewing the capabilities attached to an executable file.

Up to and including kernel 2.6.23, Linux met only the first two of these require-
ments. Since kernel 2.6.24, it is possible to attach capabilities to a file. Various
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other features were added in kernels 2.6.25 and 2.6.26 in order to complete the
capabilities implementation.

For most of our discussion of capabilities, we’ll focus on the modern imple-
mentation. In Section 39.10, we consider how the implementation differed before
file capabilities were introduced. Furthermore, file capabilities are an optional kernel
component in modern kernels, but for the main part of our discussion, we’ll
assume that this component is enabled. Later, we’ll describe the differences that
occur if file capabilities are not enabled. (In several respects, the behavior is similar to
that of Linux in kernels before 2.6.24, where file capabilities were not implemented.)

In the following sections, we go into more detail on the Linux capabilities
implementation.

39.5 Transformation of Process Capabilities During exec()

During an exec(), the kernel sets new capabilities for the process based on the pro-
cess’s current capabilities and the capability sets of the file being executed. The ker-
nel calculates the new capabilities of the process using the following rules:

P'(permitted) = (P(inheritable) & F(inheritable)) | (F(permitted) & cap_bset)

P'(effective) = F(effective) ? P'(permitted) : 0

P'(inheritable) = P(inheritable)

In the above rules, P denotes the value of a capability set prior to the exec(), P’
denotes the value of a capability set after the exec(), and F denotes a file capability
set. The identifier cap_bset denotes the value of the capability bounding set. Note
that exec() leaves the process inheritable capability set unchanged.

39.5.1 Capability Bounding Set
The capability bounding set is a security mechanism that is used to limit the capa-
bilities that a process can gain during an exec(). This set is used as follows:

During an exec(), the capability bounding set is ANDed with the file permitted
capabilities to determine the permitted capabilities that are to be granted to
the new program. In other words, an executable file’s permitted capability set
can’t grant a permitted capability to a process if the capability is not in the
bounding set.

The capability bounding set is a limiting superset for the capabilities that can
be added to the process’s inheritable set. This means that, unless the capability
is in the bounding set, a process can’t add one of its permitted capabilities to its
inheritable set and then—via the first of the capability transformation rules
described above—have that capability preserved in its permitted set when it
execs a file that has the capability in its inheritable set.

The capability bounding set is a per-process attribute that is inherited by a child
created via fork(), and preserved across an exec(). On a kernel that supports file
capabilities, init (the ancestor of all processes) starts with a capability bounding set
that contains all capabilities.
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If a process has the CAP_SETPCAP capability, then it can (irreversibly) remove
capabilities from its bounding set using the prctl() PR_CAPBSET_DROP operation. (Drop-
ping a capability from the bounding set doesn’t affect the process permitted, effec-
tive, and inheritable capability sets.) A process can determine if a capability is in its
bounding set using the prctl() PR_CAPBSET_READ operation.

More precisely, the capability bounding set is a per-thread attribute. Starting
with Linux 2.6.26, this attribute is displayed as the CapBnd field in the Linux-
specific /proc/PID/task/TID/status file. The /proc/PID/status file shows the
bounding set of a process’s main thread.

39.5.2 Preserving root Semantics
In order to preserve the traditional semantics for the root user (i.e., root has all priv-
ileges) when executing a file, any capability sets associated with the file are ignored.
Instead, for the purposes of the algorithm shown in Section 39.5, the file capability
sets are notionally defined as follows during an exec():

If a set-user-ID-root program is being execed, or the real or effective user ID of
the process calling exec() is 0, then the file inheritable and permitted sets are
defined to be all ones.

If a set-user-ID-root program is being execed, or the effective user ID of the pro-
cess calling exec() is 0, then the file effective bit is defined to be set.

Assuming that we are execing a set-user-ID-root program, these notional definitions
of the file capability sets mean that the calculation of the process’s new permitted
and effective capability sets in Section 39.5 simplifies to the following:

P'(permitted) = P(inheritable) | cap_bset
P'(effective) = P'(permitted)

39.6 Effect on Process Capabilities of Changing User IDs

To preserve compatibility with the traditional meanings for transitions between 0
and nonzero user IDs, the kernel does the following when changing process user
IDs (using setuid(), and so on):

1. If the real user ID, effective user ID, or saved set-user-ID previously had the
value 0 and, as a result of the changes to the user IDs, all three of these IDs have
a nonzero value, then the permitted and effective capability sets are cleared
(i.e., all capabilities are permanently dropped).

2. If the effective user ID is changed from 0 to a nonzero value, then the effective
capability set is cleared (i.e., the effective capabilities are dropped, but those in
the permitted set can be raised again).

3. If the effective user ID is changed from a nonzero value to 0, then the permitted
capability set is copied into the effective capability set (i.e., all permitted capa-
bilities become effective).
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4. If the file-system user ID is changed from 0 to a nonzero value, then the follow-
ing file-related capabilities are cleared from the effective capability set: CAP_CHOWN,
CAP_DAC_OVERRIDE, CAP_DAC_READ_SEARCH, CAP_FOWNER, CAP_FSETID, CAP_LINUX_IMMUTABLE
(since Linux 2.6.30), CAP_MAC_OVERRIDE, and CAP_MKNOD (since Linux 2.6.30). Con-
versely, if the file-system user ID is changed from a nonzero value to 0, then
any of these capabilities that are enabled in the permitted set are enabled in
the effective set. These manipulations are done to maintain the traditional
semantics for manipulations of the Linux-specific file-system user ID.

39.7 Changing Process Capabilities Programmatically

A process can raise or drop capabilities from its capability sets using either the
capset() system call or, preferably, the libcap API, which we describe below. Changes
to process capabilities are subject to the following rules:

1. If the process doesn’t have the CAP_SETPCAP capability in its effective set, then the
new inheritable set must be a subset of the combination of the existing inheritable
and permitted sets.

2. The new inheritable set must be a subset of the combination of the existing
inheritable set and the capability bounding set.

3. The new permitted set must be a subset of the existing permitted set. In other
words, a process can’t grant itself permitted capabilities that it doesn’t have.
Put another way, a capability dropped from the permitted set can’t be reacquired.

4. The new effective set is allowed to contain only capabilities that are also in the
new permitted set.

The libcap API

Up to this point, we have deliberately not shown the prototype of the capset() system
call, or its counterpart capget(), which retrieves a process’s capabilities. This is
because the use of these system calls should be avoided. Instead, the functions in
the libcap library should be employed. These functions provide an interface that
conforms with the withdrawn draft POSIX 1003.1e standard, along with some
Linux extensions.

For reasons of space, we don’t describe the libcap API in detail. As an overview,
we note that programs employing these functions typically carry out the follow-
ing steps:

1. Use the cap_get_proc() function to retrieve a copy of the process’s current capa-
bility sets from the kernel and place it in a structure that the function allocates
in user space. (Alternatively, we may use the cap_init() function to create a new,
empty capability set structure.) In the libcap API, the cap_t data type is a pointer
used to refer to such structures.

2. Use the cap_set_flag() function to update the user-space structure to raise
(CAP_SET) and drop (CAP_CLEAR) capabilities from the permitted, effective, and
inheritable sets stored in the user-space structure retrieved in the previous step.
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3. Use the cap_set_proc() function to pass the user-space structure back to the kernel
in order to change the process’s capabilities.

4. Use the cap_free() function to free the structure that was allocated by the libcap
API in the first step.

At the time of writing, work is in progress on libcap-ng, a new, improved capa-
bilities library API. Details can be found at http://freshmeat.net/projects/libcap-ng.

Example program

In Listing 8-2, on page 164, we presented a program that authenticates a username
plus password against the standard password database. We noted that the program
requires privilege in order to read the shadow password file, which is protected to
prevent reading by users other than root or members of the shadow group. The tradi-
tional way of providing this program with the privileges that it requires would be to
run it under a root login or to make it a set-user-ID-root program. We now present a
modified version of this program that employs capabilities and the libcap API.

In order to read the shadow password file as a normal user, we need to bypass
the standard file permission checks. Scanning the capabilities listed in Table 39-1,
we see that the appropriate capability is CAP_DAC_READ_SEARCH. Our modified version
of the password authentication program is shown in Listing 39-1. This program
uses the libcap API to raise CAP_DAC_READ_SEARCH in its effective capability set just
before accessing the shadow password file, and then drops the capability again
immediately after this access. In order for an unprivileged user to employ the pro-
gram, we must set this capability in the file permitted capability set, as shown in the
following shell session:

$ sudo setcap "cap_dac_read_search=p" check_password_caps
root's password:
$ getcap check_password_caps
check_password_caps = cap_dac_read_search+p
$ ./check_password_caps
Username: mtk
Password:
Successfully authenticated: UID=1000

Listing 39-1: A capability-aware program that authenticates a user

––––––––––––––––––––––––––––––––––––––––––––––––– cap/check_password_caps.c

#define _BSD_SOURCE         /* Get getpass() declaration from <unistd.h> */
#define _XOPEN_SOURCE       /* Get crypt() declaration from <unistd.h> */
#include <sys/capability.h>
#include <unistd.h>
#include <limits.h>
#include <pwd.h>
#include <shadow.h>
#include "tlpi_hdr.h"

/* Change setting of capability in caller's effective capabilities */

static int
modifyCap(int capability, int setting)
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{
    cap_t caps;
    cap_value_t capList[1];

    /* Retrieve caller's current capabilities */

    caps = cap_get_proc();
    if (caps == NULL)
        return -1;

    /* Change setting of 'capability' in the effective set of 'caps'. The
       third argument, 1, is the number of items in the array 'capList'. */

    capList[0] = capability;
    if (cap_set_flag(caps, CAP_EFFECTIVE, 1, capList, setting) == -1) {
        cap_free(caps);
        return -1;
    }

    /* Push modified capability sets back to kernel, to change
       caller's capabilities */

    if (cap_set_proc(caps) == -1) {
        cap_free(caps);
        return -1;
    }

    /* Free the structure that was allocated by libcap */

    if (cap_free(caps) == -1)
        return -1;

    return 0;
}

static int              /* Raise capability in caller's effective set */
raiseCap(int capability)
{
    return modifyCap(capability, CAP_SET);
}

/* An analogous dropCap() (unneeded in this program), could be
   defined as: modifyCap(capability, CAP_CLEAR); */

static int              /* Drop all capabilities from all sets */
dropAllCaps(void)
{
    cap_t empty;
    int s;

    empty = cap_init();
    if (empty == NULL)
        return -1;

    s = cap_set_proc(empty);
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    if (cap_free(empty) == -1)
        return -1;

    return s;
}

int
main(int argc, char *argv[])
{
    char *username, *password, *encrypted, *p;
    struct passwd *pwd;
    struct spwd *spwd;
    Boolean authOk;
    size_t len;
    long lnmax;

    lnmax = sysconf(_SC_LOGIN_NAME_MAX);
    if (lnmax == -1)                        /* If limit is indeterminate */
        lnmax = 256;                        /* make a guess */

    username = malloc(lnmax);
    if (username == NULL)
        errExit("malloc");

    printf("Username: ");
    fflush(stdout);
    if (fgets(username, lnmax, stdin) == NULL)
        exit(EXIT_FAILURE);                 /* Exit on EOF */

    len = strlen(username);
    if (username[len - 1] == '\n')
        username[len - 1] = '\0';           /* Remove trailing '\n' */

    pwd = getpwnam(username);
    if (pwd == NULL)
        fatal("couldn't get password record");

    /* Only raise CAP_DAC_READ_SEARCH for as long as we need it */

    if (raiseCap(CAP_DAC_READ_SEARCH) == -1)
        fatal("raiseCap() failed");

    spwd = getspnam(username);
    if (spwd == NULL && errno == EACCES)
        fatal("no permission to read shadow password file");

    /* At this point, we won't need any more capabilities,
       so drop all capabilities from all sets */

    if (dropAllCaps() == -1)
        fatal("dropAllCaps() failed");

    if (spwd != NULL)               /* If there is a shadow password record */
        pwd->pw_passwd = spwd->sp_pwdp;     /* Use the shadow password */
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    password = getpass("Password: ");

    /* Encrypt password and erase cleartext version immediately */

    encrypted = crypt(password, pwd->pw_passwd);
    for (p = password; *p != '\0'; )
        *p++ = '\0';

    if (encrypted == NULL)
        errExit("crypt");

    authOk = strcmp(encrypted, pwd->pw_passwd) == 0;
    if (!authOk) {
        printf("Incorrect password\n");
        exit(EXIT_FAILURE);
    }

    printf("Successfully authenticated: UID=%ld\n", (long) pwd->pw_uid);

    /* Now do authenticated work... */

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––– cap/check_password_caps.c

39.8 Creating Capabilities-Only Environments

In the preceding pages, we have described various ways in which a process with the
user ID 0 (root) is treated specially with respect to capabilities:

When a process with one or more user IDs that equal 0 sets all of its user IDs to
nonzero values, its permitted and effective capability sets are cleared. (See
Section 39.6.)

When a process with an effective user ID of 0 changes that user ID to a non-
zero value, it loses its effective capabilities. When the reverse change is made,
the permitted capability set is copied to the effective set. A similar procedure is
followed for a subset of capabilities when the process’s file-system user ID is
switched between 0 and nonzero values. (See Section 39.6.)

If a process with real or effective user ID of root execs a program, or any pro-
cess execs a set-user-ID-root program, then the file inheritable and permitted
sets are notionally defined to be all ones. If the process’s effective user ID is 0,
or it is execing a set-user-ID-root program, then the file effective bit is notionally
defined to be 1. (See Section 39.5.2.) In the usual cases (i.e., both the real and
effective user ID are root, or a set-user-ID-root program is being execed), this
means the process gets all capabilities in its permitted and effective sets.

In a fully capability-based system, the kernel would not need to perform any of
these special treatments of root. There would be no set-user-ID-root programs, and
file capabilities would be used to grant just the minimum capabilities that a pro-
gram requires.
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Since existing applications aren’t engineered to make use of the file-capabilities
infrastructure, the kernel must maintain the traditional handling of processes with
the user ID 0. Nevertheless, we may want an application to run in a purely capability-
based environment in which root gets none of the special treatments described
above. Starting with kernel 2.6.26, and if file capabilities are enabled in the kernel,
Linux provides the securebits mechanism, which controls a set of per-process flags
that enable or disable each of the three special treatments for root. (To be precise,
the securebits flags are actually a per-thread attribute.)

The securebits mechanism controls the flags shown in Table 39-2. The flags exist
as related pairs of a base flag and a corresponding locked flag. Each of the base flags
controls one of the special treatments of root described above. Setting the corre-
sponding locked flag is a one-time operation that prevents further changes to the
associated base flag—once set, the locked flag can’t be unset.

The securebits flag settings are inherited in a child created by fork(). All of the flag
settings are preserved during exec(), except SECBIT_KEEP_CAPS, which is cleared for his-
torical compatibility with the PR_SET_KEEPCAPS setting, described below.

A process can retrieve the securebits flags using the prctl() PR_GET_SECUREBITS oper-
ation. If a process has the CAP_SETPCAP capability, it can modify the securebits flags
using the prctl() PR_SET_SECUREBITS operations. A purely capability-based application
can irreversibly disable special treatment of root for the calling process and all of its
descendants using the following call:

if (prctl(PR_SET_SECUREBITS,
          /* SECBIT_KEEP_CAPS off */
          SECBIT_NO_SETUID_FIXUP | SECBIT_NO_SETUID_FIXUP_LOCKED |
          SECBIT_NOROOT | SECBIT_NOROOT_LOCKED)
        == -1)
    errExit("prctl");

After this call, the only way in which this process and its descendants can obtain
capabilities is by executing programs that have file capabilities.

Table 39-2: The securebits flags

Flag Meaning if set

SECBIT_KEEP_CAPS Don’t drop permitted capabilities when a process with 
one or more 0 user IDs sets all of its user IDs to nonzero 
values. This flag has an effect only if SECBIT_NO_SETUID_FIXUP 
is not also set. This flag is cleared on an exec().

SECBIT_NO_SETUID_FIXUP Don’t change capabilities when effective or file-system 
user IDs are switched between 0 and nonzero values.

SECBIT_NOROOT If a process with a real or effective user ID of 0 does an 
exec(), or it execs a set-user-ID-root program, don’t grant it 
capabilities (unless the executable has file capabilities).

SECBIT_KEEP_CAPS_LOCKED Lock SECBIT_KEEP_CAPS.

SECBIT_NO_SETUID_FIXUP_LOCKED Lock SECBIT_NO_SETUID_FIXUP.

SECBIT_NOROOT_LOCKED Lock SECBIT_NOROOT.
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SECBIT_KEEP_CAPS and the prctl() PR_SET_KEEPCAPS operation

The SECBIT_KEEP_CAPS flag prevents capabilities from being dropped when a process
with one or more user IDs with the value 0 sets all of its user IDs to nonzero values.
Roughly speaking, SECBIT_KEEP_CAPS provides half of the functionality provided by
SECBIT_NO_SETUID_FIXUP. (As noted in Table 39-2, SECBIT_KEEP_CAPS has an effect only
if SECBIT_NO_SETUID_FIXUP is not set.) This flag exists to provide a securebits flag that
mirrors the older prctl() PR_SET_KEEPCAPS operation, which controls the same attribute.
(The one difference between the two mechanisms is that a process doesn’t need the
CAP_SETPCAP capability to employ the prctl() PR_SET_KEEPCAPS operation.)

Earlier, we noted that all of the securebits flags are preserved during an exec(),
except SECBIT_KEEP_CAPS. The setting of the SECBIT_KEEP_CAPS bit was made the
converse of the other securebits settings in order to maintain consistency with
the treatment of the attribute set by the prctl() PR_SET_KEEPCAPS operation.

The prctl() PR_SET_KEEPCAPS operation is designed for use by set-user-ID-root pro-
grams running on older kernels that don’t support file capabilities. Such programs
can still improve their security by programmatically dropping and raising capabili-
ties as required (refer to Section 39.10).

However, even if such a set-user-ID-root program drops all capabilities except
those that it requires, it still maintains two important privileges: the ability to access
files owned by root and the ability to regain capabilities by execing a program (Sec-
tion 39.5.2). The only way of permanently dropping these privileges is to set all of the
process’s user IDs to nonzero values. But doing that normally results in the clearing
of the permitted and effective capability sets (see the four points in Section 39.6 con-
cerning the effect of user ID changes on capabilities). This defeats the purpose,
which is to permanently drop user ID 0, while maintaining some capabilities. To
allow this possibility, the prctl() PR_SET_KEEPCAPS operation can be used to set the pro-
cess attribute that prevents the permitted capability set from being cleared when all
user IDs are changed to a nonzero value. (The process’s effective capability set is
always cleared in this case, regardless of the setting of the “keep capabilities” attribute.)

39.9 Discovering the Capabilities Required by a Program

Suppose we have a program that is unaware of capabilities and that is provided
only in binary form, or we have a program whose source code is too large for us to
easily read to determine which capabilities might be required to run it. If the pro-
gram requires privileges, but shouldn’t be a set-user-ID-root program, then how can
we determine the permitted capabilities to assign to the executable file with
setcap(8)? There are two ways to answer this question:

Use strace(1) (Appendix A) to see which system call fails with the error EPERM,
the error used to indicate the lack of a required capability. By consulting the
system call’s manual page or the kernel source code, we can then deduce what
capability is required. This approach isn’t perfect, because an EPERM error can
occasionally be generated for other reasons, some of which may have nothing
to do with the capability requirements for the program. Furthermore, pro-
grams may legitimately make a system call that requires privilege, and then
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change their behavior after determining that they don’t have privilege for a
particular operation. It can sometimes be difficult to distinguish such “false
positives” when trying to determine the capabilities that an executable really
does need.

Use a kernel probe to produce monitoring output when the kernel is asked to
perform capability checks. An example of how to do this is provided in [Hallyn,
2007], an article written by one of the developers of file capabilities. For each
request to check a capability, the probe shown in the article logs the kernel
function that was called, the capability that was requested, and the name of the
requesting program. Although this approach requires more work than the use
of strace(1), it can also help us more accurately determine the capabilities that a
program requires.

39.10 Older Kernels and Systems Without File Capabilities

In this section, we describe various differences in the implementation of capabili-
ties in older kernels. We also describe the differences that occur on kernels where
file capabilities are not supported. There are two scenarios where Linux doesn’t
support file capabilities:

Before Linux 2.6.24, file capabilities were not implemented.

Since Linux 2.6.24, file capabilities can be disabled if the kernel is built without
the CONFIG_SECURITY_FILE_CAPABILITIES option.

Although Linux introduced capabilities and allowed them to be attached to
processes starting with kernel 2.2, the implementation of file capabilities
appeared only several years later. The reasons that file capabilities remained
unimplemented for so long were matters of policy, rather than technical difficul-
ties. (Extended attributes, described in Chapter 16, which are used to implement
file capabilities, had been available since kernel 2.6.) The weight of opinion
among kernel developers was that requiring system administrators to set and
monitor different sets of capabilities—some of whose consequences are subtle
but far-reaching—for each privileged program would create an unmanageably
complex administration task. By contrast, system administrators are familiar
with the existing UNIX privilege model, know to treat set-user-ID programs
with due caution, and can locate the set-user-ID and set-group-ID programs on
a system using simple find commands. Nevertheless, the developers of file
capabilities made the case that file capabilities could be made administratively
workable, and eventually provided a convincing enough argument that file
capabilities were integrated into the kernel.

The CAP_SETPCAP capability

On kernels that don’t support file capabilities (i.e., any kernel before 2.6.24, and
kernels since 2.6.24 with file capabilities disabled), the semantics of the CAP_SETPCAP
capability are different. Subject to rules that are analogous to those described in
Section 39.7, a process that has the CAP_SETPCAP capability in its effective set can theo-
retically change the capabilities of processes other than itself. Changes can be made
to the capabilities of another process, all of the members of a specified process
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group, or all processes on the system except init and the caller itself. The final case
excludes init because it is fundamental to the operation of the system. It also excludes
the caller because the caller may be attempting to remove capabilities from every
other process on the system, and we don’t want to remove the capabilities from the
calling process itself.

However, changing the capabilities of other processes is only a theoretical pos-
sibility. On older kernels, and on modern kernels where support for file capabili-
ties is disabled, the capability bounding set (discussed next) always masks out the
CAP_SETPCAP capability.

The capability bounding set

Since Linux 2.6.25, the capability bounding set is a per-process attribute. However,
on older kernels, the capability bounding set is a system-wide attribute that affects
all processes on the system. The system-wide capability bounding set is initialized
so that it always masks out CAP_SETPCAP (described above).

On kernels after 2.6.25, removing capabilities from the per-process bounding
set is supported only if file capabilities are enabled in the kernel. In that case,
init, the ancestor of all processes, starts with a bounding set containing all
capabilities, and a copy of that bounding set is inherited by other processes
created on the system. If file capabilities are disabled, then, because of the dif-
ferences in the semantics of CAP_SETPCAP described above, init starts with a
bounding set that contains all capabilities except CAP_SETPCAP.

There is one further change in the semantics of the capability bounding set in
Linux 2.6.25. As noted earlier (Section 39.5.1), on Linux 2.6.25 and later, the per-
process capability bounding set acts as a limiting superset for the capabilities that
can be added to the process’s inheritable set. In Linux 2.6.24 and earlier, the system-
wide capability bounding set doesn’t have this masking effect. (It is not needed,
because these kernels don’t support file capabilities.)

The system-wide capability bounding set is accessible via the Linux-specific /proc/
sys/kernel/cap-bound file. A process must have the CAP_SYS_MODULE capability to be able
to change the contents of cap-bound. However, only the init process can turn bits on
in this mask; other privileged processes can only turn bits off. The upshot of these
limitations is that on a system where file capabilities are not supported, we can
never give the CAP_SETPCAP capability to a process. This is reasonable, since that capa-
bility can be used to subvert the entire kernel privilege-checking system. (In the
unlikely case that we want to change this limitation, we must either load a kernel
module that changes the value in the set, modify the source code of the init program,
or change the initialization of the capability bounding set in the kernel source code
and perform a kernel rebuild.)

Confusingly, although it is a bit mask, the value in the system-wide cap-bound file
is displayed as a signed decimal number. For example, the initial value of this
file is –257. This is the two’s complement interpretation of the bit mask with all
bits except (1 << 8) turned on (i.e., in binary, 11111111 11111111 11111110
11111111); CAP_SETPCAP has the value 8.
Capabi l i t ies 815



Using capabilities within a program on a system without file capabilities

Even on a system that doesn’t support file capabilities, we can nevertheless employ
capabilities to improve the security of a program. We do this as follows:

1. Run the program in a process with an effective user ID of 0 (typically a set-user-
ID-root program). Such a process is granted all capabilities (except CAP_SETPCAP,
as noted earlier) in its permitted and effective sets.

2. On program startup, use the libcap API to drop all capabilities from the effec-
tive set, and drop all capabilities except those that we may later need from the
permitted set.

3. Set the SECBIT_KEEP_CAPS flag (or use the prctl() PR_SET_KEEPCAPS operation to
achieve the same result), so that the next step does not drop capabilities.

4. Set all user IDs to nonzero values, to prevent the process from accessing files
owned by root or gaining capabilities by doing an exec().

We could replace the two preceding steps by a single step that sets the
SECBIT_NOROOT flag, if we want to prevent the process from regaining privileges
on an exec(), but must allow it to access files owned by root. (Of course, allowing
access to files owned by root leaves open the risk of some security vulnerability.)

5. During the rest of the program’s lifetime, use the libcap API to raise and drop
the remaining permitted capabilities from the effective set as needed in order
to perform privileged tasks.

Some applications built for Linux kernels before version 2.6.24 employed this
approach.

Among the kernel developers who argued against the implementation of capa-
bilities for executable files, one of the perceived virtues of the approach
described in the main text was that the developer of an application knows which
capabilities an executable requires. By contrast, a system administrator may
not be able to easily determine this information.

39.11 Summary

The Linux capabilities scheme divides privileged operations into distinct categories,
and allows a process to be granted some capabilities, while being denied others.
This scheme represents an improvement over the traditional all-or-nothing privilege
mechanism, whereby a process has either privileges to perform all operations (user
ID 0) or no privileges (nonzero user ID). Since kernel 2.6.24, Linux supports
attaching capabilities to files, so that a process can gain selected capabilities by
execing a program.

39.12 Exercise

39-1. Modify the program in Listing 35-2 (sched_set.c, on page 743) to use file capabilities,
so that it can be used by an unprivileged user.
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L O G I N  A C C O U N T I N G

Login accounting is concerned with recording which users are currently logged in to
the system, and recording past logins and logouts. This chapter looks at the login
accounting files and the library functions used to retrieve and update the informa-
tion they contain. We also describe the steps that an application providing a login ser-
vice should perform in order to update these files when a user logs in and out.

40.1 Overview of the utmp and wtmp Files

UNIX systems maintain two data files containing information about users logging
in and out of the system:

The utmp file maintains a record of users currently logged in to the system (as
well as certain other information that we describe later). As each user logs in, a
record is written to the utmp file. One of the fields in this record, ut_user,
records the login name of the user. This record is later erased on logout. Pro-
grams such as who(1) use the information in the utmp file to display a list of cur-
rently logged-in users.
The wtmp file is an audit trail of all user logins and logouts (as well as certain
other information that we describe later). On each login, a record containing
the same information as is written to the utmp file is appended to the wtmp file.
On logout, a further record is appended to the file. This record contains the
same information, except that the ut_user field is zeroed out. The last(1) com-
mand can be used to display and filter the contents of the wtmp file.



On Linux, the utmp file resides at /var/run/utmp, and the wtmp file resides at /var/
log/wtmp. In general, applications don’t need to know about these pathnames, since
they are compiled into glibc. Programs that do need to refer to the locations of
these files should use the _PATH_UTMP and _PATH_WTMP pathname constants, defined in
<paths.h> (and <utmpx.h>), rather than explicitly coding pathnames into the program.

SUSv3 doesn’t standardize any symbolic names for the pathnames of the utmp
and wtmp files. The names _PATH_UTMP and _PATH_WTMP are used on Linux and the
BSDs. Many other UNIX implementations instead define the constants
UTMP_FILE and WTMP_FILE for these pathnames. Linux also defines these names
in <utmp.h>, but doesn’t define them in <utmpx.h> or <paths.h>.

40.2 The utmpx API

The utmp and wtmp files have been present in the UNIX system since early times, but
underwent steady evolution and divergence across various UNIX implementations,
especially BSD versus System V. System V Release 4 greatly extended the API, in
the process creating a new (parallel) utmpx structure and associated utmpx and wtmpx
files. The letter x was likewise included in the names of header files and additional
functions for processing these new files. Many other UNIX implementations also
added their own extensions to the API.

In this chapter, we describe the Linux utmpx API, which is a hybrid of the BSD
and System V implementations. Linux doesn’t follow System V in creating parallel
utmpx and wtmpx files; instead, the utmp and wtmp files contain all of the required infor-
mation. However, for compatibility with other UNIX implementations, Linux pro-
vides both the traditional utmp and the System V–derived utmpx APIs for accessing
the contents of these files. On Linux, these two APIs return exactly the same infor-
mation. (One of the few differences between the two APIs is that the utmp API con-
tains reentrant versions of a few functions, while the utmpx API does not.)
However, we confine our discussion to the utmpx interface, since that is the API spec-
ified in SUSv3 and is thus preferred for portability to other UNIX implementations.

The SUSv3 specification doesn’t cover all aspects of the utmpx API (e.g., the loca-
tions of the utmp and wtmp files are not specified). The precise contents of the login
accounting files differ somewhat across implementations, and various implementa-
tions provide additional login accounting functions that are not specified in SUSv3.

Chapter 17 of [Frisch, 2002] summarizes some of the variations in the location
and use of the wtmp and utmp files across different UNIX implementations. It
also describes the use of the ac(1) command, which can be used to summarize
login information from the wtmp file.

40.3 The utmpx Structure

The utmp and wtmp files consist of utmpx records. The utmpx structure is defined in
<utmpx.h>, as shown in Listing 40-1.
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The SUSv3 specification of the utmpx structure doesn’t include the ut_host,
ut_exit, ut_session, or ut_addr_v6 fields. The ut_host and ut_exit fields are
present on most other implementations; ut_session is present on a few other
implementations; and ut_addr_v6 is Linux-specific. SUSv3 specifies the ut_line
and ut_user fields, but leaves their lengths unspecified.

The int32_t data type used to define the ut_addr_v6 field of the utmpx
structure is a 32-bit integer.

Listing 40-1: Definition of the utmpx structure

#define _GNU_SOURCE             /* Without _GNU_SOURCE the two field
struct exit_status {               names below are prepended by "__" */
    short e_termination;        /* Process termination status (signal) */
    short e_exit;               /* Process exit status */
};

#define __UT_LINESIZE    32
#define __UT_NAMESIZE    32
#define __UT_HOSTSIZE   256

struct utmpx {
    short ut_type;                      /* Type of record */
    pid_t ut_pid;                       /* PID of login process */
    char  ut_line[__UT_LINESIZE];       /* Terminal device name */
    char  ut_id[4];                     /* Suffix from terminal name, or
                                           ID field from inittab(5) */
    char  ut_user[__UT_NAMESIZE];       /* Username */
    char  ut_host[__UT_HOSTSIZE];       /* Hostname for remote login, or kernel
                                           version for run-level messages */
    struct exit_status ut_exit;         /* Exit status of process marked
                                           as DEAD_PROCESS (not filled
                                           in by init(8) on Linux) */
    long  ut_session;                   /* Session ID */
    struct timeval ut_tv;               /* Time when entry was made */
    int32_t ut_addr_v6[4];              /* IP address of remote host (IPv4
                                           address uses just ut_addr_v6[0],
                                           with other elements set to 0) */
    char __unused[20];                  /* Reserved for future use */
};

Each of the string fields in the utmpx structure is null-terminated unless it com-
pletely fills the corresponding array.

For login processes, the information stored in the ut_line and ut_id fields is
derived from the name of the terminal device. The ut_line field contains the com-
plete filename of the terminal device. The ut_id field contains the suffix part of the
filename—that is, the string following tty, pts, or pty (the last two are for System-V
and BSD-style pseudoterminals, respectively). Thus, for the terminal /dev/tty2,
ut_line would be tty2 and ut_id would be 2.

In a windowing environment, some terminal emulators use the ut_session field
to record the session ID for the terminal window. (Refer to Section 34.3 for an
explanation of session IDs.)
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The ut_type field is an integer defining the type of record being written to the
file. The following set of constants (with their corresponding numeric values shown
in parentheses) can be used as values for this field:

EMPTY (0)
This record doesn’t contain valid accounting information.

RUN_LVL (1)
This record indicates a change in the system’s run-level during system star-
tup or shutdown. (Information about run-levels can be found in the init(8)
manual page.) The _GNU_SOURCE feature test macro must be defined in order
to obtain the definition of this constant from <utmpx.h>.

BOOT_TIME (2)
This record contains the time of system boot in the ut_tv field. The usual
author of RUN_LVL and BOOT_TIME records is init. These records are written to
both the utmp file and the wtmp file.

NEW_TIME (3)
This record contains the new time after a system clock change, recorded in
the ut_tv field.

OLD_TIME (4)
This record contains the old time before a system clock change, recorded
in the ut_tv field. Records of type OLD_TIME and NEW_TIME are written to the
utmp and wtmp files by the NTP (or a similar) daemon when it makes changes
to the system clock.

INIT_PROCESS (5)
This is a record for a process spawned by init, such as a getty process. Refer
to the inittab(5) manual page for details.

LOGIN_PROCESS (6)
This is a record for a session leader process for a user login, such as a
login(1) process.

USER_PROCESS (7)
This is a record for a user process, usually a login session, with the user-
name appearing in the ut_user field. The login session may have been
started by login(1) or by some application offering a remote login facility,
such as ftp or ssh.

DEAD_PROCESS (8)
This record identifies a process that has exited.

We show the numeric values of these constants because various applications
depend on the constants having the above numerical order. For example, in the
source code of the agetty program, we find checks such as the following:

utp->ut_type >= INIT_PROCESS && utp->ut_type <= DEAD_PROCESS

Records of the type INIT_PROCESS usually correspond to invocations of getty(8) (or a
similar program, such as agetty(8) or mingetty(8)). On system boot, the init process
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creates a child for each terminal line and virtual console, and each child execs the
getty program. The getty program opens the terminal, prompts the user for a login
name, and then execs login(1). After successfully validating the user and perform-
ing various other steps, login forks a child that execs the user’s login shell. The com-
plete life of such a login session is represented by four records written to the wtmp
file in the following order:

an INIT_PROCESS record, written by init;

a LOGIN_PROCESS record, written by getty;

a USER_PROCESS record, written by login; and

a DEAD_PROCESS record, written by init when it detects the death of the child login
process (which occurs on user logout).

Further details on the operation of getty and login during user login can be found in
Chapter 9 of [Stevens & Rago, 2005].

Some versions of init spawn the getty process before updating the wtmp file.
Consequently, init and getty race with each other to update the wtmp file, with
the result that the INIT_PROCESS and LOGIN_PROCESS records may be written in the
opposite order from that described in the main text.

40.4 Retrieving Information from the utmp and wtmp Files

The functions described in this section retrieve records from files containing
utmpx-format records. By default, these functions use the standard utmp file, but this
can be changed using the utmpxname() function (described below).

These functions employ the notion of a current location within the file from
which they are retrieving records. This location is updated by each function.

The setutxent() function rewinds the utmp file to the beginning.

Normally, we should call setutxent() before employing any of the getutx*() functions
(described below). This prevents possible confusion that might result if some third-
party function that we have called has previously made use of these functions.
Depending on the task being performed, it may also be necessary to call setutxent()
again at appropriate points later in a program.

The setutxent() function and the getutx*() functions open the utmp file if it is
not already open. When we have finished using the file, we can close it with the
endutxent() function.

#include <utmpx.h>

void setutxent(void);

#include <utmpx.h>

void endutxent(void);
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The getutxent(), getutxid(), and getutxline() functions read a record from the utmp file
and return a pointer to a (statically allocated) utmpx structure.

The getutxent() function retrieves the next sequential record from the utmp file. The
getutxid() and getutxline() functions perform searches, starting from the current file
location, for a record matching the criteria specified in the utmpx structure pointed
to by the ut argument.

The getutxid() function searches the utmp file for a record based on the values
specified in the ut_type and ut_id fields of the ut argument:

If the ut_type field is RUN_LVL, BOOT_TIME, NEW_TIME, or OLD_TIME, then getutxid() finds
the next record whose ut_type field matches the specified value. (Records of
these types don’t correspond to user logins.) This permits searches for records
of changes to the system time and run-level.

If the ut_type field is one of the remaining valid values (INIT_PROCESS,
LOGIN_PROCESS, USER_PROCESS, or DEAD_PROCESS), then getutxent() finds the next
record whose ut_type field matches any of these values and whose ut_id field
matches that specified in its ut argument. This permits scanning the file for
records corresponding to a particular terminal.

The getutxline() function searches forward for a record whose ut_type field is either
LOGIN_PROCESS or USER_PROCESS, and whose ut_line field matches that specified in the ut
argument. This is useful for finding records corresponding to user logins.

Both getutxid() and getutxline() return NULL if the search fails (i.e., end-of-file is
encountered without finding a matching record).

On some UNIX implementations, getutxline() and getutxid() treat the static area
used for returning the utmpx structure as a kind of cache. If they determine that the
record placed in this cache by a previous getutx*() call matches the criteria specified
in ut, then no file read is performed; the call simply returns the same record once more
(SUSv3 permits this behavior). Therefore, to prevent the same record from being
repeatedly returned when calling getutxline() and getutxid() within a loop, we must
zero out this static data structure, using code such as the following:

struct utmpx *res = NULL;

/* Other code omitted */

if (res != NULL)            /* If 'res' was set via a previous call */
    memset(res, 0, sizeof(struct utmpx));
res = getutxline(&ut);

#include <utmpx.h>

struct utmpx *getutxent(void);
struct utmpx *getutxid(const struct utmpx *ut);
struct utmpx *getutxline(const struct utmpx *ut);

All return a pointer to a statically allocated utmpx structure,
or NULL if no matching record or EOF was encountered
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The glibc implementation doesn’t perform this type of caching, but we should never-
theless employ this technique for the sake of portability.

Because the getutx*() functions return a pointer to a statically allocated struc-
ture, they are not reentrant. The GNU C library provides reentrant versions of
the traditional utmp functions (getutent_r(), getutid_r(), and getutline_r()), but
doesn’t provide reentrant versions of their utmpx counterparts. (SUSv3 doesn’t
specify the reentrant versions.)

By default, all of the getutx*() functions work on the standard utmp file. If we want to
use another file, such as the wtmp file, then we must first call utmpxname(), specifying
the desired pathname.

The utmpxname() function merely records a copy of the pathname given to it. It
doesn’t open the file, but does close any file previously opened by one of the other
calls. This means that utmpxname() doesn’t return an error if an invalid pathname is
specified. Instead, when one of the getutx*() functions is later called, it will return
an error (i.e., NULL, with errno set to ENOENT) when it fails to open the file.

Although not specified in SUSv3, most UNIX implementations provide
utmpxname() or the analogous utmpname() function.

Example program

The program in Listing 40-2 uses some of the functions described in this section to
dump the contents of a utmpx-format file. The following shell session log demon-
strates the results when we use this program to dump the contents of /var/run/utmp
(the default used by these functions if utmpxname() is not called):

$ ./dump_utmpx
user     type        PID line   id  host      date/time
LOGIN    LOGIN_PR   1761 tty1   1             Sat Oct 23 09:29:37 2010
LOGIN    LOGIN_PR   1762 tty2   2             Sat Oct 23 09:29:37 2010
lynley   USER_PR   10482 tty3   3             Sat Oct 23 10:19:43 2010
david    USER_PR    9664 tty4   4             Sat Oct 23 10:07:50 2010
liz      USER_PR    1985 tty5   5             Sat Oct 23 10:50:12 2010
mtk      USER_PR   10111 pts/0  /0            Sat Oct 23 09:30:57 2010

For brevity, we edited out much of the output produced by the program. The lines
matching tty1 to tty5 are for logins on virtual consoles (/dev/tty[1-6]). The last line
of output is for an xterm session on a pseudoterminal.

The following output produced by dumping /var/log/wtmp shows that when a
user logs in and out, two records are written to the wtmp file. (We edited out all of

#define _GNU_SOURCE
#include <utmpx.h>

int utmpxname(const char *file);

Returns 0 on success, or –1 on error
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the other output produced by the program.) By searching sequentially through the
wtmp file (using getutxline()), these records can be matched via the ut_line field.

$ ./dump_utmpx /var/log/wtmp
user     type        PID line   id  host      date/time
lynley   USER_PR   10482 tty3   3             Sat Oct 23 10:19:43 2010
         DEAD_PR   10482 tty3   3   2.4.20-4G Sat Oct 23 10:32:54 2010

Listing 40-2: Displaying the contents of a utmpx-format file

––––––––––––––––––––––––––––––––––––––––––––––––––––  loginacct/dump_utmpx.c
#define _GNU_SOURCE
#include <time.h>
#include <utmpx.h>
#include <paths.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    struct utmpx *ut;

    if (argc > 1 && strcmp(argv[1], "--help") == 0)
        usageErr("%s [utmp-pathname]\n", argv[0]);

    if (argc > 1)               /* Use alternate file if supplied */
        if (utmpxname(argv[1]) == -1)
            errExit("utmpxname");

    setutxent();

    printf("user     type        PID line   id  host      date/time\n");

    while ((ut = getutxent()) != NULL) {        /* Sequential scan to EOF */
        printf("%-8s ", ut->ut_user);
        printf("%-9.9s ",
                (ut->ut_type == EMPTY) ?         "EMPTY" :
                (ut->ut_type == RUN_LVL) ?       "RUN_LVL" :
                (ut->ut_type == BOOT_TIME) ?     "BOOT_TIME" :
                (ut->ut_type == NEW_TIME) ?      "NEW_TIME" :
                (ut->ut_type == OLD_TIME) ?      "OLD_TIME" :
                (ut->ut_type == INIT_PROCESS) ?  "INIT_PR" :
                (ut->ut_type == LOGIN_PROCESS) ? "LOGIN_PR" :
                (ut->ut_type == USER_PROCESS) ?  "USER_PR" :
                (ut->ut_type == DEAD_PROCESS) ?  "DEAD_PR" : "???");
        printf("%5ld %-6.6s %-3.5s %-9.9s ", (long) ut->ut_pid,
                ut->ut_line, ut->ut_id, ut->ut_host);
        printf("%s", ctime((time_t *) &(ut->ut_tv.tv_sec)));
    }

    endutxent();
    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––  loginacct/dump_utmpx.c
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40.5 Retrieving the Login Name: getlogin()

The getlogin() function returns the name of the user logged in on the controlling
terminal of the calling process. This function uses the information maintained in
the utmp file.

The getlogin() function calls ttyname() (Section 62.10) to find the name of the termi-
nal associated with the calling process’s standard input. It then searches the utmp
file for a record whose ut_line value matches this terminal name. If a matching
record is found, then getlogin() returns the ut_user string from that record.

If a match is not found or an error occurs, then getlogin() returns NULL and sets
errno to indicate the error. One reason getlogin() may fail is that the process doesn’t
have a terminal associated with its standard input (ENOTTY), perhaps because it is
daemon. Another possibility is that this terminal session is not recorded in utmp; for
example, some software terminal emulators don’t create entries in the utmp file.

Even in the (unusual) case where a user ID has multiple login names in /etc/
passwd, getlogin() is able to return the actual username that was used to log in on this
terminal because it relies on the utmp file. By contrast, using getpwuid(getuid())
always retrieves the first matching record from /etc/passwd, regardless of the name
that was used to log in.

A reentrant version of getlogin() is specified by SUSv3, in the form of
getlogin_r(), and this function is provided by glibc.

The LOGNAME environment variable can also be used to find a user’s login
name. However, the value of this variable can be changed by the user, which
means that it can’t be used to securely identify a user.

40.6 Updating the utmp and wtmp Files for a Login Session

When writing an application that creates a login session (in the manner of, say,
login or sshd), we should update the utmp and wtmp files as follows:

On login, a record should be written to the utmp file to indicate that this user
logged in. The application must check whether a record for this terminal
already exists in the utmp file. If a previous record exists, it is overwritten; otherwise,
a new record is appended to the file. Often, calling pututxline() (described shortly)
is enough to ensure that these steps are correctly performed (see Listing 40-3
for an example). The output utmpx record should have at least the ut_type, ut_user,
ut_tv, ut_pid, ut_id, and ut_line fields filled in. The ut_type field should be set to
USER_PROCESS. The ut_id field should contain the suffix of the name of the device
(i.e., the terminal or pseudoterminal) on which the user is logging in, and the
ut_line field should contain the name of the login device, with the leading /dev/
string removed. (Examples of the contents of these two fields are shown in the

#include <unistd.h>

char *getlogin(void);

Returns pointer to username string, or NULL on error
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sample runs of the program in Listing 40-2.) A record containing exactly the
same information is appended to the wtmp file.

The terminal name acts (via the ut_line and ut_id fields) as a unique key for
records in the utmp file.

On logout, the record previously written to the utmp file should be erased. This
is done by creating a record with ut_type set to DEAD_PROCESS, and with the same
ut_id and ut_line values as the record written during login, but with the ut_user
field zeroed out. This record is written over the earlier record. A copy of the
same record is appended to the wtmp file.

If we fail to clean up the utmp record on logout, perhaps because of a program
crash, then, on the next reboot, init automatically cleans up the record, setting
its ut_type to DEAD_PROCESS and zeroing out various other fields of the record.

The utmp and wtmp files are normally protected so that only privileged users can per-
form updates on these files. The accuracy of getlogin() depends on the integrity of
the utmp file. For this, as well as other reasons, the permissions on the utmp and wtmp
files should never be set to allow writing by unprivileged users.

What qualifies as a login session? As we might expect, logins via login, telnet,
and ssh are recorded in the login accounting files. Most ftp implementations also
create login accounting records. However, are login accounting records created for
each terminal window started on the system or for invocations of su, for example?
The answer to that question varies across UNIX implementations.

Under some terminal emulator programs (e.g., xterm), command-line options
or other mechanisms can be used to determine whether the program updates
the login accounting files.

The pututxline() function writes the utmpx structure pointed to by ut into the /var/
run/utmp file (or an alternative file if utmpxname() was previously called).

Before writing the record, pututxline() first uses getutxid() to search forward for a
record that may be overwritten. If such a record is found, it is overwritten; other-
wise, a new record is appended to the end of the file. In many cases, an application
precedes a call to pututxline() by a call to one of the getutx*() functions, which sets
the current file location to the correct record—that is, one matching the getutxid()-
style criteria in the utmpx structure pointed to by ut. If pututxline() determines that
this has occurred, it doesn’t call getutxid().

If pututxline() makes an internal call to getutxid(), this call doesn’t change the
static area used by the getutx*() functions to return the utmpx structure. SUSv3
requires this behavior from an implementation.

#include <utmpx.h>

struct utmpx *pututxline(const struct utmpx *ut);

Returns pointer to copy of successfully updated record on success,
or NULL on error
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When updating the wtmp file, we simply open the file and append a record to it.
Because this is a standard operation, glibc encapsulates it in the updwtmpx() function.

The updwtmpx() function appends the utmpx record pointed to by ut to the file spec-
ified in wtmpx_file.

SUSv3 doesn’t specify updwtmpx(), and it appears on only a few other UNIX
implementations. Other implementations provide related functions—login(3),
logout(3), and logwtmp(3)—which are also in glibc and described in the manual pages.
If such functions are not present, we need to write our own equivalents. (The
implementation of these functions is not complex.)

Example program

Listing 40-3 uses the functions described in this section to update the utmp and wtmp
files. This program performs the required updates to utmp and wtmp in order to log
in the user named on the command line, and then, after sleeping a few seconds, log
them out again. Normally, such actions would be associated with the creation and
termination of a login session for a user. This program uses ttyname() to retrieve the
name of the terminal device associated with a file descriptor. We describe ttyname()
in Section 62.10.

The following shell session log demonstrates the operation of the program in
Listing 40-3. We assume privilege in order to be able to update the login account-
ing files, and then use the program to create a record for the user mtk:

$ su
Password:
# ./utmpx_login mtk
Creating login entries in utmp and wtmp
        using pid 1471, line pts/7, id /7
Type Control-Z to suspend program
[1]+  Stopped                 ./utmpx_login mtk

While the utmpx_login program was sleeping, we typed Control-Z to suspend the
program and push it into the background. Next, we use the program in Listing 40-2
to examine the contents of the utmp file:

# ./dump_utmpx /var/run/utmp
user     type        PID line   id  host      date/time
cecilia  USER_PR     249 tty1   1             Fri Feb  1 21:39:07 2008
mtk      USER_PR    1471 pts/7  /7            Fri Feb  1 22:08:06 2008
# who
cecilia tty1     Feb  1 21:39
mtk      pts/7    Feb  1 22:08

Above, we used the who(1) command to show that the output of who derives from utmp.

#define _GNU_SOURCE
#include <utmpx.h>

void updwtmpx(char *wtmpx_file, struct utmpx *ut);
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Next we use our program to examine the contents of the wtmp file:

# ./dump_utmpx /var/log/wtmp
user     type        PID line   id  host      date/time
cecilia  USER_PR     249 tty1   1             Fri Feb  1 21:39:07 2008
mtk      USER_PR    1471 pts/7  /7            Fri Feb  1 22:08:06 2008
# last mtk
mtk      pts/7                      Fri Feb  1 22:08   still logged in

Above, we used the last(1) command to show that the output of last derives from wtmp.
(For brevity, we have edited the output of the dump_utmpx and last commands in this
shell session log to remove lines of output that are irrelevant to our discussion.)

Next, we use the fg command to resume the utmpx_login program in the fore-
ground. It subsequently writes logout records to the utmp and wtmp files.

# fg
./utmpx_login mtk
Creating logout entries in utmp and wtmp

We then once more examine the contents of the utmp file. We see that the utmp
record was overwritten:

# ./dump_utmpx /var/run/utmp
user     type        PID line   id  host      date/time
cecilia  USER_PR     249 tty1   1             Fri Feb  1 21:39:07 2008
         DEAD_PR    1471 pts/7  /7            Fri Feb  1 22:09:09 2008
# who
cecilia  tty1     Feb  1 21:39

The final line of output shows that who ignored the DEAD_PROCESS record.
When we examine the wtmp file, we see that the wtmp record was superseded:

# ./dump_utmpx /var/log/wtmp
user     type        PID line   id  host      date/time
cecilia  USER_PR     249 tty1   1             Fri Feb  1 21:39:07 2008
mtk      USER_PR    1471 pts/7  /7            Fri Feb  1 22:08:06 2008
         DEAD_PR    1471 pts/7  /7            Fri Feb  1 22:09:09 2008
# last mtk
mtk      pts/7                      Fri Feb  1 22:08 - 22:09  (00:01)

The final line of output above demonstrates that last matches the login and logout
records in wtmp to show the starting and ending times of the completed login session.

Listing 40-3: Updating the utmp and wtmp files 

––––––––––––––––––––––––––––––––––––––––––––––––––– loginacct/utmpx_login.c

#define _GNU_SOURCE
#include <time.h>
#include <utmpx.h>
#include <paths.h>              /* Definitions of _PATH_UTMP and _PATH_WTMP */
#include "tlpi_hdr.h"
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int
main(int argc, char *argv[])
{
    struct utmpx ut;
    char *devName;

    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s username [sleep-time]\n", argv[0]);

    /* Initialize login record for utmp and wtmp files */

    memset(&ut, 0, sizeof(struct utmpx));
    ut.ut_type = USER_PROCESS;          /* This is a user login */
    strncpy(ut.ut_user, argv[1], sizeof(ut.ut_user));
    if (time((time_t *) &ut.ut_tv.tv_sec) == -1)
        errExit("time");                /* Stamp with current time */
    ut.ut_pid = getpid();

    /* Set ut_line and ut_id based on the terminal associated with
       'stdin'. This code assumes terminals named "/dev/[pt]t[sy]*".
       The "/dev/" dirname is 5 characters; the "[pt]t[sy]" filename
       prefix is 3 characters (making 8 characters in all). */

    devName = ttyname(STDIN_FILENO);
    if (devName == NULL)
        errExit("ttyname");
    if (strlen(devName) <= 8)           /* Should never happen */
        fatal("Terminal name is too short: %s", devName);

    strncpy(ut.ut_line, devName + 5, sizeof(ut.ut_line));
    strncpy(ut.ut_id, devName + 8, sizeof(ut.ut_id));

    printf("Creating login entries in utmp and wtmp\n");
    printf("        using pid %ld, line %.*s, id %.*s\n",
            (long) ut.ut_pid, (int) sizeof(ut.ut_line), ut.ut_line,
            (int) sizeof(ut.ut_id), ut.ut_id);

    setutxent();                        /* Rewind to start of utmp file */
    if (pututxline(&ut) == NULL)        /* Write login record to utmp */
        errExit("pututxline");
    updwtmpx(_PATH_WTMP, &ut);          /* Append login record to wtmp */

    /* Sleep a while, so we can examine utmp and wtmp files */

    sleep((argc > 2) ? getInt(argv[2], GN_NONNEG, "sleep-time") : 15);

    /* Now do a "logout"; use values from previously initialized 'ut',
       except for changes below */

    ut.ut_type = DEAD_PROCESS;          /* Required for logout record */
    time((time_t *) &ut.ut_tv.tv_sec);  /* Stamp with logout time */
    memset(&ut.ut_user, 0, sizeof(ut.ut_user));
                                        /* Logout record has null username */
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    printf("Creating logout entries in utmp and wtmp\n");
    setutxent();                        /* Rewind to start of utmp file */
    if (pututxline(&ut) == NULL)        /* Overwrite previous utmp record */
        errExit("pututxline");
    updwtmpx(_PATH_WTMP, &ut);          /* Append logout record to wtmp */

    endutxent();
    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––– loginacct/utmpx_login.c

40.7 The lastlog File

The lastlog file records the time each user last logged in to the system. (This is dif-
ferent from the wtmp file, which records all logins and logouts by all users.) Among
other things, the lastlog file allows the login program to inform users (at the start of
a new login session) when they last logged in. In addition to updating utmp and wtmp,
applications providing login services should also update lastlog.

As with the utmp and wtmp files, there is variation in the location and format of
the lastlog file. (A few UNIX implementations don’t provide this file.) On Linux,
this file resides at /var/log/lastlog, and a constant, _PATH_LASTLOG, is defined in
<paths.h> to point to this location. Like the utmp and wtmp files, the lastlog file is nor-
mally protected so that it can be read by all users but can be updated only by privi-
leged processes.

The records in the lastlog file have the following format (defined in
<lastlog.h>):

#define UT_NAMESIZE           32
#define UT_HOSTSIZE          256

struct lastlog {
    time_t ll_time;                     /* Time of last login */
    char   ll_line[UT_NAMESIZE];        /* Terminal for remote login */
    char   ll_host[UT_HOSTSIZE];        /* Hostname for remote login */
};

Note that these records don’t include a username or user ID. Instead, the lastlog
file consists of a series of records that are indexed by user ID. Thus, to find the
lastlog record for user ID 1000, we would seek to byte (1000 * sizeof(struct lastlog))
of the file. This is demonstrated in Listing 40-4, a program that allows us to view
the lastlog records for the user(s) listed on its command line. This is similar to the
functionality offered by the lastlog(1) command. Here is an example of the output
produced by running this program:

$ ./view_lastlog annie paulh
annie    tty2                        Mon Jan 17 11:00:12 2011
paulh    pts/11                      Sat Aug 14 09:22:14 2010

Performing updates on lastlog is similarly a matter of opening the file, seeking to
the correct location, and performing a write.
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Since the lastlog file is indexed by user ID, it is not possible to distinguish log-
ins under different usernames that have the same user ID. (In Section 8.1, we
noted that it is possible, though unusual, to have multiple login names with the
same user ID.)

Listing 40-4: Displaying information from the lastlog file

–––––––––––––––––––––––––––––––––––––––––––––––––– loginacct/view_lastlog.c

#include <time.h>
#include <lastlog.h>
#include <paths.h>                      /* Definition of _PATH_LASTLOG */
#include <fcntl.h>
#include "ugid_functions.h"             /* Declaration of userIdFromName() */
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    struct lastlog llog;
    int fd, j;
    uid_t uid;

    if (argc > 1 && strcmp(argv[1], "--help") == 0)
        usageErr("%s [username...]\n", argv[0]);

    fd = open(_PATH_LASTLOG, O_RDONLY);
    if (fd == -1)
        errExit("open");

    for (j = 1; j < argc; j++) {
        uid = userIdFromName(argv[j]);
        if (uid == -1) {
            printf("No such user: %s\n", argv[j]);
            continue;
        }

        if (lseek(fd, uid * sizeof(struct lastlog), SEEK_SET) == -1)
            errExit("lseek");

        if (read(fd, &llog, sizeof(struct lastlog)) <= 0) {
            printf("read failed for %s\n", argv[j]);    /* EOF or error */
            continue;
        }

        printf("%-8.8s %-6.6s %-20.20s %s", argv[j], llog.ll_line,
                llog.ll_host, ctime((time_t *) &llog.ll_time));
    }

    close(fd);
    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––– loginacct/view_lastlog.c
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40.8 Summary

Login accounting records the users currently logged in, as well as all past logins.
This information is maintained in three files: the utmp file, which maintains a record
of all currently logged-in users; the wtmp file, which is an audit trail of all logins and
logouts; and the lastlog file, which records the time of last login for each user. Various
commands, such as who and last, use the information in these files.

The C library provides functions to retrieve and update the information in the
login accounting files. Applications providing login services should use these func-
tions to update the login accounting files, so that commands depending on this
information operate correctly.

Further information

Aside from the utmp(5) manual page, the most useful place to find further informa-
tion about the login accounting functions is in the source code of the various appli-
cations that use these functions. See, for example, the sources of mingetty (or
agetty), login, init, telnet, ssh, and ftp.

40.9 Exercises

40-1. Implement getlogin(). As noted in Section 40.5, getlogin() may not work correctly for
processes running under some software terminal emulators; in that case, test from
a virtual console instead.

40-2. Modify the program in Listing 40-3 (utmpx_login.c) so that it updates the lastlog file
in addition to the utmp and wtmp files.

40-3. Read the manual pages for login(3), logout(3), and logwtmp(3). Implement these
functions.

40-4. Implement a simple version of who(1).
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F U N D A M E N T A L S  O F  
S H A R E D  L I B R A R I E S

Shared libraries are a technique for placing library functions into a single unit that
can be shared by multiple processes at run time. This technique can save both disk
space and RAM. This chapter covers the fundamentals of shared libraries. The next
chapter covers a number of advanced features of shared libraries.

41.1 Object Libraries

One way of building a program is simply to compile each of its source files to pro-
duce corresponding object files, and then link all of these object files together to
produce the executable program, like so:

$ cc -g -c prog.c mod1.c mod2.c mod3.c
$ cc -g -o prog_nolib prog.o mod1.o mod2.o mod3.o

Linking is actually performed by the separate linker program, ld. When we link
a program using the cc (or gcc) command, the compiler invokes ld behind the
scenes. On Linux, the linker should always be invoked indirectly via gcc, since
gcc ensures that ld is invoked with the correct options and links the program
against the correct library files.

In many cases, however, we may have source files that are used by several programs. As
a first step toward saving ourselves some work, we could compile these source files



just once, and then link them into different executables as required. Although this
technique saves us compilation time, it still suffers from the disadvantage that we
must name all of the object files during the link phase. Furthermore, our directo-
ries may be inconveniently cluttered with a large number of object files.

To get around these problems, we can group a set of object files into a single
unit, known as an object library. Object libraries are of two types: static and shared.
Shared libraries are the more modern type of object library, and provide several
advantages over static libraries, as we describe in Section 41.3.

An aside: including debugger information when compiling a program

In the cc command shown above, we used the –g option to include debugging infor-
mation in the compiled program. In general, it is a good idea to always create pro-
grams and libraries that allow debugging. (In earlier times, debugging information was
sometimes omitted so that the resulting executable used less disk and RAM, but
nowadays disk and RAM are cheap.)

In addition, on some architectures, such as x86-32, the –fomit–frame–pointer
option should not be specified because this makes debugging impossible. (On
some architectures, such as x86-64, this option is enabled by default since it doesn’t
prevent debugging.) For the same reason, executables and libraries should not be
stripped of debugging information using strip(1).

41.2 Static Libraries

Before starting our discussion of shared libraries, we begin with a brief description
of static libraries in order to make clear the differences and advantages of shared
libraries.

Static libraries, also known as archives, were the first type of library to be pro-
vided on UNIX systems. They provide the following benefits:

We can place a set of commonly used object files into a single library file that
can then be used to build multiple executables, without needing to recompile
the original source files when building each application.

Link commands become simpler. Instead of listing a long series of object files
on the link command line, we specify just the name of the static library. The
linker knows how to search the static library and extract the objects required by
the executable.

Creating and maintaining a static library

In effect, a static library is simply a file holding copies of all of the object files added
to it. The archive also records various attributes of each of the component object
files, including file permissions, numeric user and group IDs, and last modification
time. By convention, static libraries have names of the form libname.a.

A static library is created and maintained using the ar(1) command, which has
the following general form:

$ ar options archive object-file...
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The options argument consists of a series of letters, one of which is the operation
code, while the others are modifiers that influence the way the operation is carried
out. Some commonly used operation codes are the following:

r (replace): Insert an object file into the archive, replacing any previous object
file of the same name. This is the standard method for creating and updating
an archive. Thus, we might build an archive with the following commands:

$ cc -g -c mod1.c mod2.c mod3.c
$ ar r libdemo.a mod1.o mod2.o mod3.o
$ rm mod1.o mod2.o mod3.o

As shown above, after building the library, we can delete the original object
files if desired, since they are no longer required.

t (table of contents): Display a table of contents of the archive. By default, this
lists just the names of the object files in the archive. By adding the v (verbose)
modifier, we additionally see all of the other attributes recorded in the archive
for each object file, as in the following example:

$ ar tv libdemo.a
rw-r--r-- 1000/100 1001016 Nov 15 12:26 2009 mod1.o
rw-r--r-- 1000/100 406668 Nov 15 12:21 2009 mod2.o
rw-r--r-- 1000/100  46672 Nov 15 12:21 2009 mod3.o

The additional attributes that we see for each object are, from left to right, its
permissions when it was added to the archive, its user ID and group ID, its size,
and the date and time when it was last modified.

d (delete): Delete a named module from the archive, as in this example:

$ ar d libdemo.a mod3.o

Using a static library

We can link a program against a static library in two ways. The first is to name the
static library as part of the link command, as in the following:

$ cc -g -c prog.c
$ cc -g -o prog prog.o libdemo.a

Alternatively, we can place the library in one of the standard directories searched
by the linker (e.g., /usr/lib), and then specify the library name (i.e., the filename of
the library without the lib prefix and .a suffix) using the –l option:

$ cc -g -o prog prog.o -ldemo

If the library resides in a directory not normally searched by the linker, we can
specify that the linker should search this additional directory using the –L option:

$ cc -g -o prog prog.o -Lmylibdir -ldemo

Although a static library may contain many object modules, the linker includes only
those modules that the program requires.
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Having linked the program, we can run it in the usual way:

$ ./prog
Called mod1-x1
Called mod2-x2

41.3 Overview of Shared Libraries

When a program is built by linking against a static library (or, for that matter, without
using a library at all), the resulting executable file includes copies of all of the
object files that were linked into the program. Thus, when several different execut-
ables use the same object modules, each executable has its own copy of the object
modules. This redundancy of code has several disadvantages:

Disk space is wasted storing multiple copies of the same object modules. Such
wastage can be considerable.

If several different programs using the same modules are running at the same
time, then each holds separate copies of the object modules in virtual memory,
thus increasing the overall virtual memory demands on the system.

If a change is required (perhaps a security or bug fix) to an object module in a
static library, then all executables using that module must be relinked in order
to incorporate the change. This disadvantage is further compounded by the
fact that the system administrator needs to be aware of which applications were
linked against the library.

Shared libraries were designed to address these shortcomings. The key idea of a
shared library is that a single copy of the object modules is shared by all programs
requiring the modules. The object modules are not copied into the linked executable;
instead, a single copy of the library is loaded into memory at run time, when the
first program requiring modules from the shared library is started. When other
programs using the same shared library are later executed, they use the copy of the
library that is already loaded into memory. The use of shared libraries means that
executable programs require less space on disk and (when running) in virtual memory.

Although the code of a shared library is shared among multiple processes, its
variables are not. Each process that uses the library has its own copies of the
global and static variables that are defined within the library.

Shared libraries provide the following further advantages:

Because overall program size is smaller, in some cases, programs can be loaded
into memory and started more quickly. This point holds true only for large
shared libraries that are already in use by another program. The first program
to load a shared library will actually take longer to start, since the shared library
must be found and loaded into memory.

Since object modules are not copied into the executable files, but instead main-
tained centrally in the shared library, it is possible (subject to limitations
described in Section 41.8) to make changes to the object modules without
requiring programs to be relinked in order to see the changes. Such changes
can be carried out even while running programs are using an existing version
of the shared library.
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The principal costs of this added functionality are the following:

Shared libraries are more complex than static libraries, both at the conceptual
level, and at the practical level of creating shared libraries and building the pro-
grams that use them.

Shared libraries must be compiled to use position-independent code
(described in Section 41.4.2), which has a performance overhead on most
architectures because it requires the use of an extra register ([Hubicka, 2003]).

Symbol relocation must be performed at run time. During symbol relocation, ref-
erences to each symbol (a variable or function) in a shared library need to be
modified to correspond to the actual run-time location at which the symbol is
placed in virtual memory. Because of this relocation process, a program using
a shared library may take a little more time to execute than its statically linked
equivalent.

One further use of shared libraries is as a building block in the Java Native
Interface ( JNI), which allows Java code to directly access features of the under-
lying operating system by calling C functions within a shared library. For fur-
ther information, see [Liang, 1999] and [Rochkind, 2004].

41.4 Creating and Using Shared Libraries—A First Pass

To begin understanding how shared libraries operate, we look at the minimum
sequence of steps required to build and use a shared library. For the moment, we’ll
ignore the convention that is normally used to name shared library files. This con-
vention, described in Section 41.6, allows programs to automatically load the most
up-to-date version of the libraries they require, and also allows multiple incompatible
versions (so-called major versions) of a library to coexist peacefully.

In this chapter, we concern ourselves only with Executable and Linking Format
(ELF) shared libraries, since ELF is the format employed for executables and
shared libraries in modern versions of Linux, as well as in many other UNIX imple-
mentations.

ELF supersedes the older a.out and COFF formats.

41.4.1 Creating a Shared Library
In order to build a shared version of the static library we created earlier, we per-
form the following steps:

$ gcc -g -c -fPIC -Wall mod1.c mod2.c mod3.c
$ gcc -g -shared -o libfoo.so mod1.o mod2.o mod3.o

The first of these commands creates the three object modules that are to be put
into the library. (We explain the cc –fPIC option in the next section.) The cc –shared
command creates a shared library containing the three object modules.

By convention, shared libraries have the prefix lib and the suffix .so (for shared
object).

In our examples, we use the gcc command, rather than the equivalent cc command,
to emphasize that the command-line options we are using to create shared libraries

û
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are compiler-dependent. Using a different C compiler on another UNIX imple-
mentation will probably require different options.

Note that it is possible to compile the source files and create the shared library
in a single command:

$ gcc -g -fPIC -Wall mod1.c mod2.c mod3.c -shared -o libfoo.so

However, to clearly distinguish the compilation and library building steps, we’ll
write the two as separate commands in the examples shown in this chapter.

Unlike static libraries, it is not possible to add or remove individual object
modules from a previously built shared library. As with normal executables, the
object files within a shared library no longer maintain distinct identities.

41.4.2 Position-Independent Code
The cc –fPIC option specifies that the compiler should generate position-independent
code. This changes the way that the compiler generates code for operations such as
accessing global, static, and external variables; accessing string constants; and tak-
ing the addresses of functions. These changes allow the code to be located at any
virtual address at run time. This is necessary for shared libraries, since there is no
way of knowing at link time where the shared library code will be located in memory.
(The run-time memory location of a shared library depends on various factors,
such as the amount of memory already taken up by the program that is loading the
library and which other shared libraries the program has already loaded.)

On Linux/x86-32, it is possible to create a shared library using modules com-
piled without the –fPIC option. However, doing so loses some of the benefits of
shared libraries, since pages of program text containing position-dependent memory
references are not shared across processes. On some architectures, it is impossible
to build shared libraries without the –fPIC option.

In order to determine whether an existing object file has been compiled with
the –fPIC option, we can check for the presence of the name _GLOBAL_OFFSET_TABLE_
in the object file’s symbol table, using either of the following commands:

$ nm mod1.o | grep _GLOBAL_OFFSET_TABLE_
$ readelf -s mod1.o | grep _GLOBAL_OFFSET_TABLE_

Conversely, if either of the following equivalent commands yields any output, then
the specified shared library includes at least one object module that was not com-
piled with –fPIC:

$ objdump --all-headers libfoo.so | grep TEXTREL
$ readelf -d libfoo.so | grep TEXTREL

The string TEXTREL indicates the presence of an object module whose text segment
contains a reference that requires run-time relocation.

We say more about the nm, readelf, and objdump commands in Section 41.5.
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41.4.3 Using a Shared Library
In order to use a shared library, two steps must occur that are not required for pro-
grams that use static libraries:

Since the executable file no longer contains copies of the object files that it
requires, it must have some mechanism for identifying the shared library that it
needs at run time. This is done by embedding the name of the shared library
inside the executable during the link phase. (In ELF parlance, the library depen-
dency is recorded in a DT_NEEDED tag in the executable.) The list of all of a program’s
shared library dependencies is referred to as its dynamic dependency list.

At run time, there must be some mechanism for resolving the embedded
library name—that is, for finding the shared library file corresponding to the
name specified in the executable file—and then loading the library into memory,
if it is not already present.

Embedding the name of the library inside the executable happens automatically
when we link our program with a shared library:

$ gcc -g -Wall -o prog prog.c libfoo.so

If we now attempt to run our program, we receive the following error message:

$ ./prog
./prog: error in loading shared libraries: libfoo.so: cannot
open shared object file: No such file or directory

This brings us to the second required step: dynamic linking, which is the task of resolv-
ing the embedded library name at run time. This task is performed by the dynamic
linker (also called the dynamic linking loader or the run-time linker). The dynamic linker
is itself a shared library, named /lib/ld-linux.so.2, which is employed by every ELF
executable that uses shared libraries.

The pathname /lib/ld-linux.so.2 is normally a symbolic link pointing to the
dynamic linker executable file. This file has the name ld-version.so, where
version is the glibc version installed on the system—for example, ld-2.11.so. The
pathname of the dynamic linker differs on some architectures. For example,
on IA-64, the dynamic linker symbolic link is named /lib/ld-linux-ia64.so.2.

The dynamic linker examines the list of shared libraries required by a program and
uses a set of predefined rules in order to find the library files in the file system.
Some of these rules specify a set of standard directories in which shared libraries
normally reside. For example, many shared libraries reside in /lib and /usr/lib.
The error message above occurs because our library resides in the current working
directory, which is not part of the standard list searched by the dynamic linker.

Some architectures (e.g., zSeries, PowerPC64, and x86-64) support execution
of both 32-bit and 64-bit programs. On such systems, the 32-bit libraries reside
in */lib subdirectories, and the 64-bit libraries reside in */lib64 subdirectories.
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The LD_LIBRARY_PATH environment variable

One way of informing the dynamic linker that a shared library resides in a non-
standard directory is to specify that directory as part of a colon-separated list of
directories in the LD_LIBRARY_PATH environment variable. (Semicolons can also be
used to separate the directories, in which case the list must be quoted to prevent
the shell from interpreting the semicolons.) If LD_LIBRARY_PATH is defined, then the
dynamic linker searches for the shared library in the directories it lists before looking
in the standard library directories. (Later, we’ll see that a production application
should never rely on LD_LIBRARY_PATH, but for now, this variable provides us with a
simple way of getting started with shared libraries.) Thus, we can run our program
with the following command:

$ LD_LIBRARY_PATH=. ./prog
Called mod1-x1
Called mod2-x2

The (bash, Korn, and Bourne) shell syntax used in the above command creates an
environment variable definition within the process executing prog. This definition
tells the dynamic linker to search for shared libraries in ., the current working
directory.

An empty directory specification in the LD_LIBRARY_PATH list (e.g., the middle
specification in dirx::diry) is equivalent to ., the current working directory (but
note that setting LD_LIBRARY_PATH to an empty string does not achieve the same
result). We avoid this usage (SUSv3 discourages the corresponding usage in
the PATH environment variable).

Static linking and dynamic linking contrasted

Commonly, the term linking is used to describe the use of the linker, ld, to combine
one or more compiled object files into a single executable file. Sometimes, the
term static linking is used to distinguish this step from dynamic linking, the run-time
loading of the shared libraries used by an executable. (Static linking is sometimes
also referred to as link editing, and a static linker such as ld is sometimes referred to
as a link editor.) Every program—including those that use shared libraries—goes
through a static-linking phase. At run time, a program that employs shared libraries
additionally undergoes dynamic linking.

41.4.4 The Shared Library Soname
In the example presented so far, the name that was embedded in the executable
and sought by the dynamic linker at run time was the actual name of the shared
library file. This is referred to as the library’s real name. However, it is possible—in
fact, usual—to create a shared library with a kind of alias, called a soname (the
DT_SONAME tag in ELF parlance).
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If a shared library has a soname, then, during static linking, the soname is
embedded in the executable file instead of the real name, and subsequently used
by the dynamic linker when searching for the library at run time. The purpose of
the soname is to provide a level of indirection that permits an executable to use, at
run time, a version of the shared library that is different from (but compatible with)
the library against which it was linked.

In Section 41.6, we’ll look at the conventions used for the shared library real
name and soname. For now, we show a simplified example to demonstrate the
principles.

The first step in using a soname is to specify it when the shared library is created:

$ gcc -g -c -fPIC -Wall mod1.c mod2.c mod3.c
$ gcc -g -shared -Wl,-soname,libbar.so -o libfoo.so mod1.o mod2.o mod3.o

The –Wl,–soname,libbar.so option is an instruction to the linker to mark the shared
library libfoo.so with the soname libbar.so.

If we want to determine the soname of an existing shared library, we can use
either of the following commands:

$ objdump -p libfoo.so | grep SONAME
  SONAME      libbar.so
$ readelf -d libfoo.so | grep SONAME
 0x0000000e (SONAME)      Library soname: [libbar.so]

Having created a shared library with a soname, we then create the executable as usual:

$ gcc -g -Wall -o prog prog.c libfoo.so

However, this time, the linker detects that the library libfoo.so contains the soname
libbar.so and embeds the latter name inside the executable.

Now when we attempt to run the program, this is what we see:

$ LD_LIBRARY_PATH=. ./prog
prog: error in loading shared libraries: libbar.so: cannot open
shared object file: No such file or directory

The problem here is that the dynamic linker can’t find anything named libbar.so.
When using a soname, one further step is required: we must create a symbolic link
from the soname to the real name of the library. This symbolic link must be created
in one of the directories searched by the dynamic linker. Thus, we could run our
program as follows:

$ ln -s libfoo.so libbar.so         Create soname symbolic link in current directory
$ LD_LIBRARY_PATH=. ./prog
Called mod1-x1
Called mod2-x2
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Figure 41-1 shows the compilation and linking steps involved in producing a shared
library with an embedded soname, linking a program against that shared library,
and creating the soname symbolic link needed to run the program.

Figure 41-1: Creating a shared library and linking a program against it

Figure 41-2 shows the steps that occur when the program created in Figure 41-1 is
loaded into memory in preparation for execution.

To find out which shared libraries a process is currently using, we can list the
contents of the corresponding Linux-specific /proc/PID/maps file (Section 48.5).
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Figure 41-2: Execution of a program that loads a shared library

41.5 Useful Tools for Working with Shared Libraries

In this section, we briefly describe a few tools that are useful for analyzing shared
libraries, executable files, and compiled object (.o) files.

The ldd command

The ldd(1) (list dynamic dependencies) command displays the shared libraries that
a program (or a shared library) requires to run. Here’s an example:

$ ldd prog
         libdemo.so.1 => /usr/lib/libdemo.so.1 (0x40019000)
         libc.so.6 => /lib/tls/libc.so.6 (0x4017b000)
         /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)
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The ldd command resolves each library reference (employing the same search con-
ventions as the dynamic linker) and displays the results in the following form:

library-name => resolves-to-path

For most ELF executables, ldd will list entries for at least ld-linux.so.2, the dynamic
linker, and libc.so.6, the standard C library.

The name of the C library is different on some architectures. For example, this
library is named libc.so.6.1 on IA-64 and Alpha.

The objdump and readelf commands

The objdump command can be used to obtain various information—including disas-
sembled binary machine code—from an executable file, compiled object, or shared
library. It can also be used to display information from the headers of the various
ELF sections of these files; in this usage, it resembles readelf, which displays similar
information, but in a different format. Sources of further information about objdump
and readelf are listed at the end of this chapter.

The nm command

The nm command lists the set of symbols defined within an object library or executable
program. One use of this command is to find out which of several libraries defines
a symbol. For example, to find out which library defines the crypt() function, we
could do the following:

$ nm -A /usr/lib/lib*.so 2> /dev/null | grep ' crypt$'
/usr/lib/libcrypt.so:00007080 W crypt

The –A option to nm specifies that the library name should be listed at the start of
each line displaying a symbol. This is necessary because, by default, nm lists the
library name once, and then, on subsequent lines, all of the symbols it contains,
which isn’t useful for the kind of filtering shown in the above example. In addition,
we discard standard error output in order to hide error messages about files in for-
mats unrecognized by nm. From the above output, we can see that crypt() is defined
in the libcrypt library.

41.6 Shared Library Versions and Naming Conventions

Let’s consider what is entailed by shared library versioning. Typically, successive
versions of a shared library are compatible with one another, meaning that the
functions in each module present the same calling interface and are semantically
equivalent (i.e., they achieve identical results). Such differing but compatible ver-
sions are referred to as minor versions of a shared library. Occasionally, however, it
is necessary to create a new major version of a library—one that is incompatible with
a previous version. (In Section 41.8, we’ll see more precisely what may cause such
incompatibilities.) At the same time, it must still be possible to continue running
programs that require the older version of the library.

To deal with these versioning requirements, a standard naming convention is
employed for shared library real names and sonames.
844 Chapter 41



Real names, sonames, and linker names

Each incompatible version of a shared library is distinguished by a unique major
version identifier, which forms part of its real name. By convention, the major version
identifier takes the form of a number that is sequentially incremented with each
incompatible release of the library. In addition to the major version identifier, the
real name also includes a minor version identifier, which distinguishes compatible
minor versions within the library major version. The real name employs the format
convention libname.so.major-id.minor-id.

Like the major version identifier, the minor version identifier can be any
string, but, by convention, it is either a number, or two numbers separated by a
dot, with the first number identifying the minor version, and the second number
indicating a patch level or revision number within the minor version. Some exam-
ples of real names of shared libraries are the following:

libdemo.so.1.0.1
libdemo.so.1.0.2              Minor version, compatible with version 1.0.1
libdemo.so.2.0.0              New major version, incompatible with version 1.*
libreadline.so.5.0

The soname of the shared library includes the same major version identifier as its
corresponding real library name, but excludes the minor version identifier. Thus,
the soname has the form libname.so.major-id.

Usually, the soname is created as a relative symbolic link in the directory that
contains the real name. The following are some examples of sonames, along with
the real names to which they might be symbolically linked:

libdemo.so.1        -> libdemo.so.1.0.2
libdemo.so.2        -> libdemo.so.2.0.0
libreadline.so.5    -> libreadline.so.5.0

For a particular major version of a shared library, there may be several library files dis-
tinguished by different minor version identifiers. Normally, the soname corresponding
to each major library version points to the most recent minor version within the major
version (as shown in the above examples for libdemo.so). This setup allows for the cor-
rect versioning semantics during the run-time operation of shared libraries. Because
the static-linking phase embeds a copy of the (minor version–independent) soname
in the executable, and the soname symbolic link may subsequently be modified to
point to a newer (minor) version of the shared library, it is possible to ensure that
an executable loads the most up-to-date minor version of the library at run time.
Furthermore, since different major versions of a library have different sonames,
they can happily coexist and be accessed by the programs that require them.

In addition to the real name and soname, a third name is usually defined for
each shared library: the linker name, which is used when linking an executable
against the shared library. The linker name is a symbolic link containing just the
library name without the major or minor version identifiers, and thus has the form
libname.so. The linker name allows us to construct version-independent link com-
mands that automatically operate with the correct (i.e., most up-to-date) version of
the shared library.
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Typically, the linker name is created in the same directory as the file to which it
refers. It can be linked either to the real name or to the soname of the most recent
major version of the library. Usually, a link to the soname is preferable, so that changes
to the soname are automatically reflected in the linker name. (In Section 41.7, we’ll see
that the ldconfig program automates the task of keeping sonames up to date, and
thus implicitly maintains linker names if we use the convention just described.)

If we want to link a program against an older major version of a shared library,
we can’t use the linker name. Instead, as part of the link command, we would
need to indicate the required (major) version by specifying a particular real
name or soname.

The following are some examples of linker names:

libdemo.so           -> libdemo.so.2
libreadline.so       -> libreadline.so.5

Table 41-1 summarizes information about the shared library real name, soname,
and linker name, and Figure 41-3 portrays the relationship between these names.

Figure 41-3: Conventional arrangement of shared library names

Creating a shared library using standard conventions

Putting all of the above information together, we now show how to build our demon-
stration library following the standard conventions. First, we create the object files:

$ gcc -g -c -fPIC -Wall mod1.c mod2.c mod3.c

Then we create the shared library with the real name libdemo.so.1.0.1 and the
soname libdemo.so.1.

Table 41-1: Summary of shared library names

Name Format Description

real name libname.so.maj.min File holding library code; one instance per major-
plus-minor version of the library.

soname libname.so.maj One instance per major version of library; 
embedded in executable at link time; used at run 
time to find library via a symbolic link with same 
name that points to corresponding (most up-to-
date) real name.

linker name libname.so Symbolic link to latest real name or (more usually) 
latest soname; single instance; allows construction 
of version-independent link commands.
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$ gcc -g -shared -Wl,-soname,libdemo.so.1 -o libdemo.so.1.0.1 \
          mod1.o mod2.o mod3.o

Next, we create appropriate symbolic links for the soname and linker name:

$ ln -s libdemo.so.1.0.1 libdemo.so.1
$ ln -s libdemo.so.1 libdemo.so

We can employ ls to verify the setup (with awk used to select the fields of interest):

$ ls -l libdemo.so* | awk '{print $1, $9, $10, $11}'
lrwxrwxrwx libdemo.so -> libdemo.so.1
lrwxrwxrwx libdemo.so.1 -> libdemo.so.1.0.1
-rwxr-xr-x libdemo.so.1.0.1

Then we can build our executable using the linker name (note that the link com-
mand makes no mention of version numbers), and run the program as usual:

$ gcc -g -Wall -o prog prog.c -L. -ldemo
$ LD_LIBRARY_PATH=. ./prog
Called mod1-x1
Called mod2-x2

41.7 Installing Shared Libraries

In the examples up to now, we created a shared library in a user-private directory,
and then used the LD_LIBRARY_PATH environment variable to ensure that the dynamic
linker searched that directory. Both privileged and unprivileged users may use this
technique. However, this technique should not be employed in production appli-
cations. More usually, a shared library and its associated symbolic links are
installed in one of a number of standard library directories, in particular, one of
the following:

/usr/lib, the directory in which most standard libraries are installed;

/lib, the directory into which libraries required during system startup should
be installed (since, during system startup, /usr/lib may not be mounted yet);

/usr/local/lib, the directory into which nonstandard or experimental libraries
should be installed (placing libraries in this directory is also useful if /usr/lib is
a network mount shared among multiple systems and we want to install a
library just for use on this system); or

one of the directories listed in /etc/ld.so.conf (described shortly).

In most cases, copying a file into one of these directories requires superuser privilege.
After installation, the symbolic links for the soname and linker name must be

created, usually as relative symbolic links in the same directory as the library file.
Thus, to install our demonstration library in /usr/lib (whose permissions only allow
updates by root), we would do the following:

$ su
Password:
# mv libdemo.so.1.0.1 /usr/lib
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# cd /usr/lib
# ln -s libdemo.so.1.0.1 libdemo.so.1
# ln -s libdemo.so.1 libdemo.so

The last two lines in this shell session create the soname and linker name sym-
bolic links.

ldconfig

The ldconfig(8) program addresses two potential problems with shared libraries:

Shared libraries can reside in a variety of directories. If the dynamic linker
needed to search all of these directories in order to find a library, then loading
libraries could be very slow.

As new versions of libraries are installed or old versions are removed, the
soname symbolic links may become out of date.

The ldconfig program solves these problems by performing two tasks:

1. It searches a standard set of directories and creates or updates a cache file,
/etc/ld.so.cache, to contain a list of the (latest minor versions of each of the)
major library versions in all of these directories. The dynamic linker in turn
uses this cache file when resolving library names at run time. To build the
cache, ldconfig searches the directories specified in the file /etc/ld.so.conf and
then /lib and /usr/lib. The /etc/ld.so.conf file consists of a list of directory
pathnames (these should be specified as absolute pathnames), separated by
newlines, spaces, tabs, commas, or colons. In some distributions, the directory
/usr/local/lib is included in this list. (If not, we may need to add it manually.)

The command ldconfig –p displays the current contents of /etc/ld.so.cache.

2. It examines the latest minor version (i.e., the version with the highest minor
number) of each major version of each library to find the embedded soname
and then creates (or updates) relative symbolic links for each soname in the
same directory.

In order to correctly perform these actions, ldconfig expects libraries to be named
according to the conventions described earlier (i.e., library real names include major
and minor identifiers that increase appropriately from one library version to the next).

By default, ldconfig performs both of the above actions. Command-line options
can be used to selectively inhibit either action: the –N option prevents rebuilding of
the cache, and the –X option inhibits the creation of the soname symbolic links. In
addition, the –v (verbose) option causes ldconfig to display output describing its actions.

We should run ldconfig whenever a new library is installed, an existing library is
updated or removed, or the list of directories in /etc/ld.so.conf is changed.

As an example of the operation of ldconfig, suppose we wanted to install two
different major versions of a library. We would do this as follows:

$ su
Password:
# mv libdemo.so.1.0.1 libdemo.so.2.0.0 /usr/lib
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# ldconfig -v | grep libdemo
        libdemo.so.1 -> libdemo.so.1.0.1 (changed)
        libdemo.so.2 -> libdemo.so.2.0.0 (changed)

Above, we filter the output of ldconfig, so that we see just the information relating
to libraries named libdemo.

Next, we list the files named libdemo in /usr/lib to verify the setup of the
soname symbolic links:

# cd /usr/lib
# ls -l libdemo* | awk '{print $1, $$9, $10, $11}'
lrwxrwxrwx libdemo.so.1 -> libdemo.so.1.0.1
-rwxr-xr-x libdemo.so.1.0.1
lrwxrwxrwx libdemo.so.2 -> libdemo.so.2.0.0
-rwxr-xr-x libdemo.so.2.0.0

We must still create the symbolic link for the linker name, as shown in the next
command:

# ln -s libdemo.so.2 libdemo.so

However, if we install a new 2.x minor version of our library, then, since the linker
name points to the latest soname, ldconfig has the effect of also keeping the linker name
up to date, as the following example shows:

# mv libdemo.so.2.0.1 /usr/lib
# ldconfig -v | grep libdemo
        libdemo.so.1 -> libdemo.so.1.0.1
        libdemo.so.2 -> libdemo.so.2.0.1 (changed)

If we are building and using a private library (i.e., one that is not installed in one of
the standard directories), we can have ldconfig create the soname symbolic link
for us by using the –n option. This specifies that ldconfig should process only
libraries in the directories on the command line and should not update the cache
file. In the following example, we use ldconfig to process libraries in the current
working directory:

$ gcc -g -c -fPIC -Wall mod1.c mod2.c mod3.c
$ gcc -g -shared -Wl,-soname,libdemo.so.1 -o libdemo.so.1.0.1 \
           mod1.o mod2.o mod3.o
$ /sbin/ldconfig -nv .
.:
        libdemo.so.1 -> libdemo.so.1.0.1
$ ls -l libdemo.so* | awk '{print $1, $9, $10, $11}'
lrwxrwxrwx libdemo.so.1 -> libdemo.so.1.0.1
-rwxr-xr-x libdemo.so.1.0.1

In the above example, we specified the full pathname when running ldconfig,
because we were using an unprivileged account whose PATH environment variable
did not include the /sbin directory.
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41.8 Compatible Versus Incompatible Libraries

Over time, we may need to make changes to the code of a shared library. Such
changes result in a new version of the library that is either compatible with previous
version(s), meaning that we need to change only the minor version identifier of the
library’s real name, or incompatible, meaning that we must define a new major version
of the library.

A change to a library is compatible with an existing library version if all of the
following conditions hold true:

The semantics of each public function and variable in the library remain
unchanged. In other words, each function keeps the same argument list, and
continues to produce its specified effect on global variables and returned argu-
ments, and returns the same result value. Thus, changes that result in an
improvement in performance or fix a bug (resulting in closer conformance to
specified behavior) can be regarded as compatible changes.

No function or variable in the library’s public API is removed. It is, however,
compatible to add new functions and variables to the public API.

Structures allocated within and returned by each function remain unchanged.
Similarly, public structures exported by the library remain unchanged. One
exception to this rule is that, under certain circumstances, new items may be
added to the end of an existing structure, though even this may be subject to
pitfalls if, for example, the calling program tries to allocate arrays of this struc-
ture type. Library designers sometimes circumvent this limitation by defining
exported structures to be larger than is required in the initial release of the
library, with some extra padding fields being “reserved for future use.”

If none of these conditions is violated, then the new library name can be updated
by adjusting the minor version of the existing name. Otherwise, a new major version
of the library should be created.

41.9 Upgrading Shared Libraries

One of the advantages of shared libraries is that a new major or minor version of a
library can be installed even while running programs are using an existing version.
All that we need to do is create the new library version, install it in the appropriate
directory, and update the soname and linker name symbolic links as required (or,
more usually, have ldconfig do the job for us). To produce a new minor version (i.e.,
a compatible upgrade) of the shared library /usr/lib/libdemo.1.0.1, we would do the
following:

$ su
Password:
# gcc -g -c -fPIC -Wall mod1.c mod2.c mod3.c
# gcc -g -shared -Wl,-soname,libdemo.so.1 -o libdemo.so.1.0.2 \
        mod1.o mod2.o mod3.o
# mv libdemo.so.1.0.2 /usr/lib
# ldconfig -v | grep libdemo
        libdemo.so.1 -> libdemo.so.1.0.2 (changed)
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Assuming the linker name was already correctly set up (i.e., to point to the library
soname), we would not need to modify it.

Already running programs will continue to use the previous minor version of the
shared library. Only when they are terminated and restarted will they too use the
new minor version of the shared library.

If we subsequently wanted to create a new major version (2.0.0) of the shared
library, we would do the following:

# gcc -g -c -fPIC -Wall mod1.c mod2.c mod3.c
# gcc -g -shared -Wl,-soname,libdemo.so.2 -o libdemo.so.2.0.0 \
        mod1.o mod2.o mod3.o
# mv libdemo.so.2.0.0 /usr/lib
# ldconfig -v | grep libdemo
        libdemo.so.1 -> libdemo.so.1.0.2
        libdemo.so.2 -> libdemo.so.2.0.0 (changed)
# cd /usr/lib
# ln -sf libdemo.so.2 libdemo.so

As can be seen in the above output, ldconfig automatically creates a soname symbolic
link for the new major version. However, as the last command shows, we must man-
ually update the linker name symbolic link.

41.10 Specifying Library Search Directories in an Object File

We have already seen two ways of informing the dynamic linker of the location of
shared libraries: using the LD_LIBRARY_PATH environment variable and installing a shared
library into one of the standard library directories (/lib, /usr/lib, or one of the
directories listed in /etc/ld.so.conf).

There is a third way: during the static editing phase, we can insert into the exe-
cutable a list of directories that should be searched at run time for shared libraries.
This is useful if we have libraries that reside in fixed locations that are not among
the standard locations searched by the dynamic linker. To do this, we employ the
–rpath linker option when creating an executable:

$ gcc -g -Wall -Wl,-rpath,/home/mtk/pdir -o prog prog.c libdemo.so

The above command copies the string /home/mtk/pdir into the run-time library
path (rpath) list of the executable prog, so, that when the program is run, the dynamic
linker will also search this directory when resolving shared library references.

If necessary, the –rpath option can be specified multiple times; all of the direc-
tories are concatenated into a single ordered rpath list placed in the executable file.
Alternatively, multiple directories can be specified as a colon-separated list within a
single –rpath option. At run time, the dynamic linker searches the directories in the
order they were specified in the –rpath option(s).

An alternative to the –rpath option is the LD_RUN_PATH environment variable.
This variable can be assigned a string containing a series of colon-separated
directories that are to be used as the rpath list when building the executable
file. LD_RUN_PATH is employed only if the –rpath option is not specified when
building the executable.
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Using the –rpath linker option when building a shared library

The –rpath linker option can also be useful when building a shared library. Suppose
we have one shared library, libx1.so, that depends on another, libx2.so, as shown in
Figure 41-4. Suppose also that these libraries reside in the nonstandard directories
d1 and d2, respectively. We now go through the steps required to build these libraries
and the program that uses them.

Figure 41-4: A shared library that depends on another shared library

First, we build libx2.so, in the directory pdir/d2. (To keep the example simple, we
dispense with library version numbering and explicit sonames.)

$ cd /home/mtk/pdir/d2
$ gcc -g -c -fPIC -Wall modx2.c
$ gcc -g -shared -o libx2.so modx2.o

Next, we build libx1.so, in the directory pdir/d1. Since libx1.so depends on libx2.so,
which is not in a standard directory, we specify the latter’s run-time location with the
–rpath linker option. This could be different from the link-time location of the library
(specified by the –L option), although in this case the two locations are the same.

$ cd /home/mtk/pdir/d1
$ gcc -g -c -Wall -fPIC modx1.c
$ gcc -g -shared -o libx1.so modx1.o -Wl,-rpath,/home/mtk/pdir/d2 \
            -L/home/mtk/pdir/d2 -lx2

Finally, we build the main program, in the pdir directory. Since the main program
makes use of libx1.so, and this library resides in a nonstandard directory, we again
employ the –rpath linker option:

$ cd /home/mtk/pdir
$ gcc -g -Wall -o prog prog.c -Wl,-rpath,/home/mtk/pdir/d1 \
            -L/home/mtk/pdir/d1 -lx1

Note that we did not need to mention libx2.so when linking the main program.
Since the linker is capable of analyzing the rpath list in libx1.so, it can find libx2.so,
and thus is able to satisfy the requirement that all symbols can be resolved at static
link time.

We can use the following commands to examine prog and libx1.so in order to
see the contents of their rpath lists:

$ objdump -p prog | grep PATH
  RPATH       /home/mtk/pdir/d1         libx1.so will be sought here at run time
$ objdump -p d1/libx1.so | grep PATH
  RPATH       /home/mtk/pdir/d2         libx2.so will be sought here at run time

x1() {
   x2();
}

x2() {

}

d1/libx1.so
(modx1.c)

d2/libx2.so
(modx2.c)

main() {
   x1();
}

prog
(prog.c)
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We can also view the rpath lists by grepping the output of the readelf ––dynamic
(or, equivalently, readelf –d) command.

We can use the ldd command to show the complete set of dynamic dependencies
of prog:

$ ldd prog
        libx1.so => /home/mtk/pdir/d1/libx1.so (0x40017000)
        libc.so.6 => /lib/tls/libc.so.6 (0x40024000)
        libx2.so => /home/mtk/pdir/d2/libx2.so (0x4014c000)
        /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

The ELF DT_RPATH and DT_RUNPATH entries

In the original ELF specification, only one type of rpath list could be embedded in
an executable or shared library. This corresponded to the DT_RPATH tag in an ELF file.
Later ELF specifications deprecated DT_RPATH, and introduced a new tag, DT_RUNPATH,
for representing rpath lists. The difference between these two types of rpath lists is
their relative precedence with respect to the LD_LIBRARY_PATH environment variable
when the dynamic linker searches for shared libraries at run time: DT_RPATH has
higher precedence, while DT_RUNPATH has lower precedence (refer to Section 41.11).

By default, the linker creates the rpath list as a DT_RPATH tag. To have the linker
instead create the rpath list as a DT_RUNPATH entry, we must additionally employ the
––enable–new–dtags (enable new dynamic tags) linker option. If we rebuild our pro-
gram using this option, and inspect the resulting executable file with objdump, we
see the following:

$ gcc -g -Wall -o prog prog.c -Wl,--enable-new-dtags \
        -Wl,-rpath,/home/mtk/pdir/d1 -L/home/mtk/pdir/d1 -lx1
$ objdump -p prog | grep PATH
  RPATH       /home/mtk/pdir/d1
  RUNPATH     /home/mtk/pdir/d1

As can be seen, the executable contains both DT_RPATH and DT_RUNPATH tags. The
linker duplicates the rpath list in this way for the benefit of older dynamic linkers
that may not understand the DT_RUNPATH tag. (Support for DT_RUNPATH was added in
version 2.2 of glibc.) Dynamic linkers that understand the DT_RUNPATH tag ignore the
DT_RPATH tag (see Section 41.11).

Using $ORIGIN in rpath

Suppose that we want to distribute an application that uses some of its own shared
libraries, but we don’t want to require the user to install the libraries in one of the stan-
dard directories. Instead, we would like to allow the user to unpack the application
under an arbitrary directory of their choice and then immediately be able to run the
application. The problem is that the application has no way of determining where its
shared libraries are located, unless it requests the user to set LD_LIBRARY_PATH or we
require the user to run some sort of installation script that identifies the required
directories. Neither of these approaches is desirable.

To get around this problem, the dynamic linker is built to understand a special
string, $ORIGIN (or, equivalently, ${ORIGIN}), in an rpath specification. The dynamic
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linker interprets this string to mean “the directory containing the application.” This
means that we can, for example, build an application with the following command:

$ gcc -Wl,-rpath,'$ORIGIN'/lib ...

This presumes that at run time the application’s shared libraries will reside in the
subdirectory lib under the directory that contains the application executable. We
can then provide the user with a simple installation package that contains the appli-
cation and associated libraries, and the user can install the package in any location
and then run the application (i.e., a so-called “turn-key application”).

41.11 Finding Shared Libraries at Run Time

When resolving library dependencies, the dynamic linker first inspects each depen-
dency string to see if it contains a slash (/), which can occur if we specified an
explicit library pathname when linking the executable. If a slash is found, then the
dependency string is interpreted as a pathname (either absolute or relative), and
the library is loaded using that pathname. Otherwise, the dynamic linker searches
for the shared library using the following rules:

1. If the executable has any directories listed in its DT_RPATH run-time library path
list (rpath) and the executable does not contain a DT_RUNPATH list, then these direc-
tories are searched (in the order that they were supplied when linking the
program).

2. If the LD_LIBRARY_PATH environment variable is defined, then each of the colon-
separated directories listed in its value is searched in turn. If the executable is
a set-user-ID or set-group-ID program, then LD_LIBRARY_PATH is ignored. This is a
security measure to prevent users from tricking the dynamic linker into load-
ing a private version of a library with the same name as a library required by
the executable.

3. If the executable has any directories listed in its DT_RUNPATH run-time library path
list, then these directories are searched (in the order that they were supplied
when linking the program).

4. The file /etc/ld.so.cache is checked to see if it contains an entry for the library.

5. The directories /lib and /usr/lib are searched (in that order).

41.12 Run-Time Symbol Resolution

Suppose that a global symbol (i.e., a function or variable) is defined in multiple
locations, such as in an executable and in a shared library, or in multiple shared
libraries. How is a reference to that symbol resolved?

For example, suppose that we have a main program and a shared library, both
of which define a global function, xyz(), and another function within the shared
library calls xyz(), as shown in Figure 41-5.
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Figure 41-5: Resolving a global symbol reference

When we build the shared library and the executable program, and then run the
program, this is what we see:

$ gcc -g -c -fPIC -Wall -c foo.c
$ gcc -g -shared -o libfoo.so foo.o
$ gcc -g -o prog prog.c libfoo.so
$ LD_LIBRARY_PATH=. ./prog
main-xyz

From the last line of output, we can see that the definition of xyz() in the main pro-
gram overrides (interposes) the one in the shared library.

Although this may at first appear surprising, there is a good historical reason
why things are done this way. The first shared library implementations were designed
so that the default semantics for symbol resolution exactly mirrored those of appli-
cations linked against static equivalents of the same libraries. This means that the
following semantics apply:

A definition of a global symbol in the main program overrides a definition in
a library.

If a global symbol is defined in multiple libraries, then a reference to that sym-
bol is bound to the first definition found by scanning libraries in the left-to-
right order in which they were listed on the static link command line.

Although these semantics make the transition from static to shared libraries relatively
straightforward, they can cause some problems. The most significant problem is
that these semantics conflict with the model of a shared library as implementing a
self-contained subsystem. By default, a shared library can’t guarantee that a reference
to one of its own global symbols will actually be bound to the library’s definition of
that symbol. Consequently, the properties of a shared library can change when it is
aggregated into a larger unit. This can lead to applications breaking in unexpected
ways, and also makes it difficult to perform divide-and-conquer debugging (i.e., try-
ing to reproduce a problem using fewer or different shared libraries).

In the above scenario, if we wanted to ensure that the invocation of xyz() in the
shared library actually called the version of the function defined within the library,
then we could use the –Bsymbolic linker option when building the shared library:

$ gcc -g -c -fPIC -Wall -c foo.c
$ gcc -g -shared -Wl,-Bsymbolic -o libfoo.so foo.o
$ gcc -g -o prog prog.c libfoo.so
$ LD_LIBRARY_PATH=. ./prog
foo-xyz

libfoo.soprog

xyz(){
  printf("main-xyz\n");
}

main() {
  func();
}

xyz(){
  printf("foo-xyz\n");
}

func() {
  xyz();
}
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The –Bsymbolic linker option specifies that references to global symbols within a
shared library should be preferentially bound to definitions (if they exist) within
that library. (Note that, regardless of this option, calling xyz() from the main pro-
gram would always invoke the version of xyz() defined in the main program.)

41.13 Using a Static Library Instead of a Shared Library

Although it is almost always preferable to use shared libraries, there are occasional
situations where static libraries may be appropriate. In particular, the fact that a
statically linked application contains all of the code that it requires at run time can
be advantageous. For example, static linking is useful if the user can’t, or doesn’t
wish to, install a shared library on the system where the program is to be used, or if
the program is to be run in an environment (perhaps a chroot jail, for example)
where shared libraries are unavailable. In addition, even a compatible shared
library upgrade may unintentionally introduce a bug that breaks an application. By
linking an application statically, we can ensure that it is immune to changes in the
shared libraries on a system and that it has all of the code it requires to run (at the
expense of a larger program size, and consequent increased disk and memory
requirements).

By default, where the linker has a choice of a shared and a static library of the
same name (e.g., we link using –Lsomedir –ldemo, and both libdemo.so and libdemo.a
exist), the shared version of the library is used. To force usage of the static version
of the library, we may do one of the following:

Specify the pathname of the static library (including the .a extension) on the
gcc command line.

Specify the –static option to gcc.

Use the gcc options –Wl,–Bstatic and –Wl,–Bdynamic to explicitly toggle the
linker’s choice between static and shared libraries. These options can be inter-
mingled with –l options on the gcc command line. The linker processes the options
in the order in which they are specified.

41.14 Summary

An object library is an aggregation of compiled object modules that can be
employed by programs that are linked against the library. Like other UNIX imple-
mentations, Linux provides two types of object libraries: static libraries, which were
the only type of library available under early UNIX systems, and the more modern
shared libraries.

Because they provide several advantages over static libraries, shared libraries
are the predominant type of library in use on contemporary UNIX systems. The
advantages of shared libraries spring primarily from the fact that when a program
is linked against the library, copies of the object modules required by the program
are not included in the resulting executable. Instead, the (static) linker merely
includes information in the executable file about the shared libraries that are
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required at run time. When the file is executed, the dynamic linker uses this infor-
mation to load the required shared libraries. At run time, all programs using the
same shared library share a single copy of that library in memory. Since shared
libraries are not copied into executable files, and a single memory-resident copy of
the shared library is employed by all programs at run time, shared libraries
reduce the amount of disk space and memory required by the system.

The shared library soname provides a level of indirection in resolving shared
library references at run time. If a shared library has a soname, then this name, rather
than the library’s real name, is recorded in the resulting executable produced by the
static linker. A versioning scheme, whereby a shared library is given a real name of the
form libname.so.major-id.minor-id, while the soname has the form libname.so.major-id,
allows for the creation of programs that automatically employ the latest minor ver-
sion of the shared library (without requiring the programs to be relinked), while
also allowing for the creation of new, incompatible major versions of the library.

In order to find a shared library at run time, the dynamic linker follows a standard
set of search rules, which include searching a set of directories (e.g., /lib and /usr/lib)
in which most shared libraries are installed.

Further information

Various information related to static and shared libraries can be found in the ar(1),
gcc(1), ld(1), ldconfig(8), ld.so(8), dlopen(3), and objdump(1) manual pages and in the
info documentation for ld and readelf. [Drepper, 2004 (b)] covers many of the finer
details of writing shared libraries on Linux. Further useful information can also be
found in David Wheeler’s Program Library HOWTO, which is online at the LDP web
site, http://www.tldp.org/. The GNU shared library scheme has many similarities to
that implemented in Solaris, and therefore it is worth reading Sun’s Linker and
Libraries Guide (available at http://docs.sun.com/) for further information and
examples. [Levine, 2000] provides an introduction to the operation of static and
dynamic linkers.

Information about GNU Libtool, a tool that shields the programmer from the
implementation-specific details of building shared libraries, can be found online at
http://www.gnu.org/software/libtool and in [Vaughan et al., 2000].

The document Executable and Linking Format, from the Tools Interface
Standards committee, provides details on ELF. This document can be found
online at http://refspecs.freestandards.org/elf/elf.pdf. [Lu, 1995] also provides a lot of
useful detail on ELF.

41.15 Exercise

41-1. Try compiling a program with and without the –static option, to see the difference
in size between an executable dynamically linked with the C library and one that is
linked against the static version of the C library.
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A D V A N C E D  F E A T U R E S  
O F  S H A R E D  L I B R A R I E S

The previous chapter covered the fundamentals of shared libraries. This chapter
describes a number of advanced features of shared libraries, including the following:

dynamically loading shared libraries;

controlling the visibility of symbols defined by a shared library;

using linker scripts to create versioned symbols;

using initialization and finalization functions to automatically execute code
when a library is loaded and unloaded;

shared library preloading; and

using LD_DEBUG to monitor the operation of the dynamic linker.

42.1 Dynamically Loaded Libraries

When an executable starts, the dynamic linker loads all of the shared libraries in
the program’s dynamic dependency list. Sometimes, however, it can be useful to
load libraries at a later time. For example, a plug-in is loaded only when it is
needed. This functionality is provided by an API to the dynamic linker. This API,
usually referred to as the dlopen API, originated on Solaris, and much of it is now
specified in SUSv3.



The dlopen API enables a program to open a shared library at run time, search
for a function by name in that library, and then call the function. A shared library
loaded at run time in this way is commonly referred to as a dynamically loaded
library, and is created in the same way as any other shared library.

The core dlopen API consists of the following functions (all of which are speci-
fied in SUSv3):

The dlopen() function opens a shared library, returning a handle used by sub-
sequent calls.

The dlsym() function searches a library for a symbol (a string containing the
name of a function or variable) and returns its address.

The dlclose() function closes a library previously opened by dlopen().

The dlerror() function returns an error-message string, and is used after a fail-
ure return from one of the preceding functions.

The glibc implementation also includes a number of related functions, some of
which we describe below.

To build programs that use the dlopen API on Linux, we must specify the –ldl
option, in order to link against the libdl library.

42.1.1 Opening a Shared Library: dlopen()
The dlopen() function loads the shared library named in libfilename into the calling
process’s virtual address space and increments the count of open references to the
library.

If libfilename contains a slash (/), dlopen() interprets it as an absolute or relative
pathname. Otherwise, the dynamic linker searches for the shared library using the
rules described in Section 41.11.

On success, dlopen() returns a handle that can be used to refer to the library in
subsequent calls to functions in the dlopen API. If an error occurred (e.g., the
library couldn’t be found), dlopen() returns NULL.

If the shared library specified by libfilename contains dependencies on other
shared libraries, dlopen() also automatically loads those libraries. This procedure
occurs recursively if necessary. We refer to the set of such loaded libraries as this
library’s dependency tree.

It is possible to call dlopen() multiple times on the same library file. The library
is loaded into memory only once (by the initial call), and all calls return the same
handle value. However, the dlopen API maintains a reference count for each library
handle. This count is incremented by each call to dlopen() and decremented by each
call to dlclose(); only when the count reaches 0 does dlclose() unload the library from
memory.

#include <dlfcn.h>

void *dlopen(const char *libfilename, int flags);

Returns library handle on success, or NULL on error
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The flags argument is a bit mask that must include exactly one of the constants
RTLD_LAZY or RTLD_NOW, with the following meanings:

RTLD_LAZY

Undefined function symbols in the library should be resolved only as the
code is executed. If a piece of code requiring a particular symbol is not exe-
cuted, that symbol is never resolved. Lazy resolution is performed only for
function references; references to variables are always resolved immediately.
Specifying the RTLD_LAZY flag provides behavior that corresponds to the normal
operation of the dynamic linker when loading the shared libraries identified
in an executable’s dynamic dependency list.

RTLD_NOW

All undefined symbols in the library should be immediately resolved
before dlopen() completes, regardless of whether they will ever be required.
As a consequence, opening the library is slower, but any potential unde-
fined function symbol errors are detected immediately instead of at some
later time. This can be useful when debugging an application, or simply to
ensure that an application fails immediately on an unresolved symbol,
rather than doing so only after executing for a long time.

By setting the environment variable LD_BIND_NOW to a nonempty string, we can
force the dynamic linker to immediately resolve all symbols (i.e., like RTLD_NOW)
when loading the shared libraries identified in an executable’s dynamic depen-
dency list. This environment variable is effective in glibc 2.1.1 and later. Setting
LD_BIND_NOW overrides the effect of the dlopen() RTLD_LAZY flag.

It is also possible to include further values in flags. The following flags are specified
in SUSv3:

RTLD_GLOBAL

Symbols in this library and its dependency tree are made available for
resolving references in other libraries loaded by this process and also for
lookups via dlsym().

RTLD_LOCAL

This is the converse of RTLD_GLOBAL and the default if neither constant is
specified. It specifies that symbols in this library and its dependency tree
are not available to resolve references in subsequently loaded libraries.

SUSv3 doesn’t specify a default if neither RTLD_GLOBAL nor RTLD_LOCAL is specified.
Most UNIX implementations assume the same default (RTLD_LOCAL) as Linux, but a
few assume a default of RTLD_GLOBAL.

Linux also supports a number of flags that are not specified in SUSv3:

RTLD_NODELETE (since glibc 2.2)
Don’t unload the library during a dlclose(), even if the reference count falls to 0.
This means that the library’s static variables are not reinitialized if the library is
later reloaded by dlopen(). (We can achieve a similar effect for libraries loaded
automatically by the dynamic linker by specifying the gcc –Wl,–znodelete
option when creating the library.)
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RTLD_NOLOAD (since glibc 2.2)
Don’t load the library. This serves two purposes. First, we can use this flag to
check if a particular library is currently loaded as part of the process’s
address space. If it is, dlopen() returns the library’s handle; if it is not, dlopen()
returns NULL. Second, we can use this flag to “promote” the flags of an already
loaded library. For example, we can specify RTLD_NOLOAD | RTLD_GLOBAL in flags
when using dlopen() on a library previously opened with RTLD_LOCAL.

RTLD_DEEPBIND (since glibc 2.3.4)
When resolving symbol references made by this library, search for defini-
tions in the library before searching for definitions in libraries that have
already been loaded. This allows a library to be self-contained, using its
own symbol definitions in preference to global symbols with the same
name defined in other shared libraries that have already been loaded.
(This is similar to the effect of the –Bsymbolic linker option described in
Section 41.12.)

The RTLD_NODELETE and RTLD_NOLOAD flags are also implemented in the Solaris dlopen
API, but are available on few other UNIX implementations. The RTLD_DEEPBIND flag
is Linux-specific.

As a special case, we can specify libfilename as NULL. This causes dlopen() to
return a handle for the main program. (SUSv3 refers to this as a handle for the
“global symbol object.”) Specifying this handle in a subsequent call to dlsym()
causes the requested symbol to be sought in the main program, followed by all
shared libraries loaded at program startup, and then all libraries dynamically
loaded with the RTLD_GLOBAL flag.

42.1.2 Diagnosing Errors: dlerror()
If we receive an error return from dlopen() or one of the other functions in the
dlopen API, we can use dlerror() to obtain a pointer to a string that indicates the cause
of the error.

The dlerror() function returns NULL if no error has occurred since the last call to
dlerror(). We’ll see how this is useful in the next section.

42.1.3 Obtaining the Address of a Symbol: dlsym()
The dlsym() function searches for the named symbol (a function or variable) in the
library referred to by handle and in the libraries in that library’s dependency tree.

#include <dlfcn.h>

const char *dlerror(void);

Returns pointer to error-diagnostic string, or NULL if
no error has occurred since previous call to dlerror()
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If symbol is found, dlsym() returns its address; otherwise, dlsym() returns NULL. The
handle argument is normally a library handle returned by a previous call to dlopen().
Alternatively, it may be one of the so-called pseudohandles described below.

A related function, dlvsym(handle, symbol, version), is similar to dlsym(), but can
be used to search a symbol-versioned library for a symbol definition whose ver-
sion matches the string specified in version. (We describe symbol versioning in
Section 42.3.2.) The _GNU_SOURCE feature test macro must be defined in order to
obtain the declaration of this function from <dlfcn.h>.

The value of a symbol returned by dlsym() may be NULL, which is indistinguishable
from the “symbol not found” return. In order to differentiate the two possibilities,
we must call dlerror() beforehand (to make sure that any previously held error
string is cleared) and then if, after the call to dlsym(), dlerror() returns a non-NULL
value, we know that an error occurred.

If symbol is the name of a variable, then we can assign the return value of dlsym()
to an appropriate pointer type, and obtain the value of the variable by dereferenc-
ing the pointer:

int *ip;

ip = (int *) dlsym(symbol, "myvar");
if (ip != NULL)
    printf("Value is %d\n", *ip);

If symbol is the name of a function, then the pointer returned by dlsym() can be used
to call the function. We can store the value returned by dlsym() in a pointer of the
appropriate type, such as the following:

int (*funcp)(int);              /* Pointer to a function taking an integer
                                   argument and returning an integer */

However, we can’t simply assign the result of dlsym() to such a pointer, as in the fol-
lowing example:

funcp = dlsym(handle, symbol);

The reason is that the C99 standard forbids assignment between a function pointer
and void *. The solution is to use the following (somewhat clumsy) cast:

*(void **) (&funcp) = dlsym(handle, symbol);

Having used dlsym() to obtain a pointer to the function, we can then call the func-
tion using the usual C syntax for dereferencing function pointers:

res = (*funcp)(somearg);

#include <dlfcn.h>

void *dlsym(void *handle, char *symbol);

Returns address of symbol, or NULL if symbol is not found
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Instead of the *(void **) syntax shown above, one might consider using the follow-
ing seemingly equivalent code when assigning the return value of dlsym():

(void *) funcp = dlsym(handle, symbol);

However, for this code, gcc –pedantic warns that “ANSI C forbids the use of cast
expressions as lvalues.” The *(void **) syntax doesn’t incur this warning because we
are assigning to an address pointed to by the assignment’s lvalue.

On many UNIX implementations, we can use casts such as the following to
eliminate warnings from the C compiler:

funcp = (int (*) (int)) dlsym(handle, symbol);

However, the specification of dlsym() in SUSv3 Technical Corrigendum Number 1
notes that the C99 standard nevertheless requires compilers to generate a warning
for such a conversion, and proposes the *(void **) syntax shown above.

SUSv3 TC1 noted that because of the need for the *(void **) syntax, a future
version of the standard may define separate dlsym()-like APIs for handling data
and function pointers. However, SUSv4 contains no changes with respect to
this point.

Using library pseudohandles with dlsym()

Instead of specifying a library handle returned by a call to dlopen(), either of the fol-
lowing pseudohandles may be specified as the handle argument for dlsym():

RTLD_DEFAULT

Search for symbol starting with the main program, and then proceeding in
order through the list of all shared libraries loaded, including those libraries
dynamically loaded by dlopen() with the RTLD_GLOBAL flag. This corresponds
to the default search model employed by the dynamic linker.

RTLD_NEXT

Search for symbol in shared libraries loaded after the one invoking dlsym().
This is useful when creating a wrapper function with the same name as a
function defined elsewhere. For example, in our main program, we may
define our own version of malloc() (which perhaps does some bookkeeping
of memory allocation), and this function can invoke the real malloc() by
first obtaining its address via the call func = dlsym(RTLD_NEXT, “malloc”).

The pseudohandle values listed above are not required by SUSv3 (which nevertheless
reserves them for future use), and are not available on all UNIX implementations.
In order to get the definitions of these constants from <dlfcn.h>, we must define the
_GNU_SOURCE feature test macro.

Example program

Listing 42-1 demonstrates the use of the dlopen API. This program takes two command-
line arguments: the name of a shared library to load and the name of a function to exe-
cute within that library. The following examples demonstrate the use of this program:

$ ./dynload ./libdemo.so.1 x1
Called mod1-x1
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$ LD_LIBRARY_PATH=. ./dynload libdemo.so.1 x1
Called mod1-x1

In the first of the above commands, dlopen() notes that the library path includes a
slash and thus interprets it as a relative pathname (in this case, to a library in the
current working directory). In the second command, we specify a library search
path in LD_LIBRARY_PATH. This search path is interpreted according to the usual rules
of the dynamic linker (in this case, likewise to find the library in the current work-
ing directory).

Listing 42-1: Using the dlopen API

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– shlibs/dynload.c

#include <dlfcn.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    void *libHandle;            /* Handle for shared library */
    void (*funcp)(void);        /* Pointer to function with no arguments */
    const char *err;

    if (argc != 3 || strcmp(argv[1], "--help") == 0)
        usageErr("%s lib-path func-name\n", argv[0]);

    /* Load the shared library and get a handle for later use */

    libHandle = dlopen(argv[1], RTLD_LAZY);
    if (libHandle == NULL)
        fatal("dlopen: %s", dlerror());

    /* Search library for symbol named in argv[2] */

    (void) dlerror();                           /* Clear dlerror() */
    *(void **) (&funcp) = dlsym(libHandle, argv[2]);
    err = dlerror();
    if (err != NULL)
        fatal("dlsym: %s", err);

    /* If the address returned by dlsym() is non-NULL, try calling it
       as a function that takes no arguments */

    if (funcp == NULL)
        printf("%s is NULL\n", argv[2]);
    else
        (*funcp)();

    dlclose(libHandle);                         /* Close the library */

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– shlibs/dynload.c
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42.1.4 Closing a Shared Library: dlclose()
The dlclose() function closes a library.

The dlclose() function decrements the system’s counter of open references to the
library referred to by handle. If this reference count falls to 0, and no symbols in
the library are required by other libraries, then the library is unloaded. This proce-
dure is also (recursively) performed for the libraries in this library’s dependency
tree. An implicit dlclose() of all libraries is performed on process termination.

From glibc 2.2.3 onward, a function within a shared library can use atexit() (or
on_exit()) to establish a function that is called automatically when the library is
unloaded.

42.1.5 Obtaining Information About Loaded Symbols: dladdr()
Given an address in addr (typically, one obtained by an earlier call to dlsym()),
dladdr() returns a structure containing information about that address.

The info argument is a pointer to a caller-allocated structure that has the follow-
ing form:

typedef struct {
    const char *dli_fname;          /* Pathname of shared library
                                       containing 'addr' */
    void       *dli_fbase;          /* Base address at which shared
                                       library is loaded */
    const char *dli_sname;          /* Name of nearest run-time symbol
                                       with an address <= 'addr' */
    void       *dli_saddr;          /* Actual value of the symbol
                                       returned in 'dli_sname' */
} Dl_info;

The first two fields of the Dl_info structure specify the pathname and run-time base
address of the shared library containing the address specified in addr. The last two
fields return information about that address. Assuming that addr points to the
exact address of a symbol in the shared library, then dli_saddr returns the same
value as was passed in addr.

SUSv3 doesn’t specify dladdr(), and this function is not available on all UNIX
implementations.

#include <dlfcn.h>

int dlclose(void *handle);

Returns 0 on success, or –1 on error

#define _GNU_SOURCE
#include <dlfcn.h>

int dladdr(const void *addr, Dl_info *info);

Returns nonzero value if addr was found in a shared library, otherwise 0
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42.1.6 Accessing Symbols in the Main Program
Suppose that we use dlopen() to dynamically load a shared library, use dlsym() to
obtain the address of a function x() from that library, and then call x(). If x() in turn
calls a function y(), then y() would normally be sought in one of the shared libraries
loaded by the program.

Sometimes, it is desirable instead to have x() invoke an implementation of y() in
the main program. (This is similar to a callback mechanism.) In order to do this, we
must make the (global-scope) symbols in the main program available to the dynamic
linker, by linking the program using the ––export–dynamic linker option:

$ gcc -Wl,--export-dynamic main.c     (plus further options and arguments)

Equivalently, we can write the following:

$ gcc -export-dynamic main.c

Using either of these options allows a dynamically loaded library to access global
symbols in the main program.

The gcc –rdynamic option and the gcc –Wl,–E option are further synonyms for
–Wl,––export–dynamic.

42.2 Controlling Symbol Visibility

A well-designed shared library should make visible only those symbols (functions
and variables) that form part of its specified application binary interface (ABI). The
reasons for this are as follows:

If the shared library designer accidentally exports unspecified interfaces, then
authors of applications that use the library may choose to employ these interfaces.
This creates a compatibility problem for future upgrades of the shared library.
The library developer expects to be able to change or remove any interfaces
other than those in the documented ABI, while the library user expects to con-
tinue using the same interfaces (with the same semantics) that they currently
employ.

During run-time symbol resolution, any symbols that are exported by a shared
library might interpose definitions that are provided in other shared libraries
(Section 41.12).

Exporting unnecessary symbols increases the size of the dynamic symbol table
that must be loaded at run time.

All of these problems can be minimized or avoided altogether if the library
designer ensures that only the symbols required by the library’s specified ABI are
exported. The following techniques can be used to control the export of symbols:

In a C program, we can use the static keyword to make a symbol private to a
source-code module, thus rendering it unavailable for binding by other
object files.
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As well as making a symbol private to a source-code module, the static key-
word also has a converse effect. If a symbol is marked as static, then all refer-
ences to the symbol in the same source file will be bound to that definition of
the symbol. Consequently, these references won’t be subject to run-time inter-
position by definitions from other shared libraries (in the manner described in
Section 41.12). This effect of the static keyword is similar to the –Bsymbolic
linker option described in Section 41.12, with the difference that the static
keyword affects a single symbol within a single source file.

The GNU C complier, gcc, provides a compiler-specific attribute declaration
that performs a similar task to the static keyword:

void
__attribute__ ((visibility("hidden")))
func(void) {
    /* Code */
}

Whereas the static keyword limits the visibility of a symbol to a single source
code file, the hidden attribute makes the symbol available across all source code
files that compose the shared library, but prevents it from being visible outside
the library.

As with the static keyword, the hidden attribute also has the converse effect of
preventing symbol interposition at run time.

Version scripts (Section 42.3) can be used to precisely control symbol visibility
and to select the version of a symbol to which a reference is bound.

When dynamically loading a shared library (Section 42.1.1), the dlopen()
RTLD_GLOBAL flag can be used to specify that the symbols defined by the library
should be made available for binding by subsequently loaded libraries, and the
––export–dynamic linker option (Section 42.1.6) can be used to make the global
symbols of the main program available to dynamically loaded libraries.

For further details on the topic of symbol visibility, see [Drepper, 2004 (b)].

42.3 Linker Version Scripts

A version script is a text file containing instructions for the linker, ld. In order to use
a version script, we must specify the ––version–script linker option:

$ gcc -Wl,--version-script,myscriptfile.map ...

Version scripts are commonly (but not universally) identified using the extension .map.
The following sections describe some uses of version scripts.

42.3.1 Controlling Symbol Visibility with Version Scripts
One use of version scripts is to control the visibility of symbols that might other-
wise accidentally be made global (i.e., visible to applications linking against the
library). As a simple example, suppose that we are building a shared library from
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the three source files vis_comm.c, vis_f1.c, and vis_f2.c, which respectively define the
functions vis_comm(), vis_f1(), and vis_f2(). The vis_comm() function is called by
vis_f1() and vis_f2(), but is not intended for direct use by applications linked against
the library. Suppose we build the shared library in the usual way:

$ gcc -g -c -fPIC -Wall vis_comm.c vis_f1.c vis_f2.c
$ gcc -g -shared -o vis.so vis_comm.o vis_f1.o vis_f2.o

If we use the following readelf command to list the dynamic symbols exported by
the library, we see the following:

$ readelf --syms --use-dynamic vis.so | grep vis_
   30  12: 00000790    59    FUNC GLOBAL DEFAULT  10 vis_f1
   25  13: 000007d0    73    FUNC GLOBAL DEFAULT  10 vis_f2
   27  16: 00000770    20    FUNC GLOBAL DEFAULT  10 vis_comm

This shared library exported three symbols: vis_comm(), vis_f1(), and vis_f2(). How-
ever, we would like to ensure that only the symbols vis_f1() and vis_f2() are exported
by the library. We can achieve this result using the following version script:

$ cat vis.map
VER_1 {
    global:
        vis_f1;
        vis_f2;
    local:
        *;
};

The identifier VER_1 is an example of a version tag. As we’ll see in the discussion of
symbol versioning in Section 42.3.2, a version script may contain multiple version
nodes, each grouped within braces ({}) and prefixed with a unique version tag. If we
are using a version script only for the purpose of controlling symbol visibility, then
the version tag is redundant; nevertheless, older versions of ld required it. Modern
versions of ld allow the version tag to be omitted; in this case, the version node is
said to have an anonymous version tag, and no other version nodes may be present
in the script.

Within the version node, the global keyword begins a semicolon-separated list
of symbols that are made visible outside the library. The local keyword begins a list of
symbols that are to be hidden from the outside world. The asterisk (*) here illustrates
the fact that we can use wildcard patterns in these symbol specifications. The wild-
card characters are the same as those used for shell filename matching—for exam-
ple, * and ?. (See the glob(7) manual page for further details.) In this example, using
an asterisk for the local specification says that everything that wasn’t explicitly
declared global is hidden. If we did not say this, then vis_comm() would still be visible,
since the default is to make C global symbols visible outside the shared library.

We can then build our shared library using the version script as follows:

$ gcc -g -c -fPIC -Wall vis_comm.c vis_f1.c vis_f2.c
$ gcc -g -shared -o vis.so vis_comm.o vis_f1.o vis_f2.o \
        -Wl,--version-script,vis.map
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Using readelf once more shows that vis_comm() is no longer externally visible:

$ readelf --syms --use-dynamic vis.so | grep vis_
   25   0: 00000730    73    FUNC GLOBAL DEFAULT  11 vis_f2
   29  16: 000006f0    59    FUNC GLOBAL DEFAULT  11 vis_f1

42.3.2 Symbol Versioning
Symbol versioning allows a single shared library to provide multiple versions of the
same function. Each program uses the version of the function that was current
when the program was (statically) linked against the shared library. As a result, we
can make an incompatible change to a shared library without needing to increase
the library’s major version number. Carried to an extreme, symbol versioning can
replace the traditional shared library major and minor versioning scheme. Symbol
versioning is used in this manner in glibc 2.1 and later, so that all versions of glibc
from 2.0 onward are supported within a single major library version (libc.so.6).

We demonstrate the use of symbol versioning with a simple example. We begin
by creating the first version of a shared library using a version script:

$ cat sv_lib_v1.c
#include <stdio.h>

void xyz(void) { printf("v1 xyz\n"); }
$ cat sv_v1.map
VER_1 {
        global: xyz;
        local:  *;      # Hide all other symbols
};
$ gcc -g -c -fPIC -Wall sv_lib_v1.c
$ gcc -g -shared -o libsv.so sv_lib_v1.o -Wl,--version-script,sv_v1.map

Within a version script, the hash character (#) starts a comment.

(To keep the example simple, we avoid the use of explicit library sonames and
library major version numbers.)

At this stage, our version script, sv_v1.map, serves only to control the visibility of
the shared library’s symbols; xyz() is exported, but all other symbols (of which there
are none in this small example) are hidden. Next, we create a program, p1, which
makes use of this library:

$ cat sv_prog.c
#include <stdlib.h>

int
main(int argc, char *argv[])
{
    void xyz(void);

    xyz();

    exit(EXIT_SUCCESS);
}
$ gcc -g -o p1 sv_prog.c libsv.so
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When we run this program, we see the expected result:

$ LD_LIBRARY_PATH=. ./p1
v1 xyz

Now, suppose that we want to modify the definition of xyz() within our library,
while still ensuring that program p1 continues to use the old version of this func-
tion. To do this, we must define two versions of xyz() within our library:

$ cat sv_lib_v2.c
#include <stdio.h>

__asm__(".symver xyz_old,xyz@VER_1");
__asm__(".symver xyz_new,xyz@@VER_2");

void xyz_old(void) { printf("v1 xyz\n"); }

void xyz_new(void) { printf("v2 xyz\n"); }

void pqr(void) { printf("v2 pqr\n"); }

Our two versions of xyz() are provided by the functions xyz_old() and xyz_new(). The
xyz_old() function corresponds to our original definition of xyz(), which is the one
that should continue to be used by program p1. The xyz_new() function provides the
definition of xyz() to be used by programs linking against the new version of the library.

The two .symver assembler directives are the glue that ties these two functions
to different version tags in the modified version script (shown in a moment) that
we use to create the new version of the shared library. The first of these directives
says that xyz_old() is the implementation of xyz() to be used for applications linked
against version tag VER_1 (i.e., program p1 in our example), and that xyz_new() is
the implementation of xyz() to be used by applications linked against version tag
VER_2.

The use of @@ rather than @ in the second .symver directive indicates that this is
the default definition of xyz() to which applications should bind when statically
linked against this shared library. Exactly one of the .symver directives for a symbol
should be marked using @@.

The corresponding version script for our modified library is as follows:

$ cat sv_v2.map
VER_1 {
        global: xyz;
        local:  *;      # Hide all other symbols
};

VER_2 {
        global: pqr;
} VER_1;

This version script provides a new version tag, VER_2, which depends on the tag
VER_1. This dependency is indicated by the following line:

} VER_1;
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Version tag dependencies indicate the relationships between successive library ver-
sions. Semantically, the only effect of version tag dependencies on Linux is that a
version node inherits global and local specifications from the version node upon
which it depends.

Dependencies can be chained, so that we could have another version node
tagged VER_3, which depended on VER_2, and so on.

The version tag names have no meanings in themselves. Their relationship
with one another is determined only by the specified version dependencies, and we
chose the names VER_1 and VER_2 merely to be suggestive of these relationships.
To assist maintenance, recommended practice is to use version tags that include
the package name and a version number. For example, glibc uses version tags with
names such as GLIBC_2.0, GLIBC_2.1, and so on.

The VER_2 version tag also specifies that the new function pqr() is to be
exported by the library and bound to the VER_2 version tag. If we didn’t declare
pqr() in this manner, then the local specification that VER_2 version tag inherited
from the VER_1 version tag would make pqr() invisible outside the library. Note
also that if we omitted the local specification altogether, then the symbols xyz_old() and
xyz_new() would also be exported by the library (which is typically not what we want).

We now build the new version of our library in the usual way:

$ gcc -g -c -fPIC -Wall sv_lib_v2.c
$ gcc -g -shared -o libsv.so sv_lib_v2.o -Wl,--version-script,sv_v2.map

Now we can create a new program, p2, which uses the new definition of xyz(), while
program p1 uses the old version of xyz().

$ gcc -g -o p2 sv_prog.c libsv.so
$ LD_LIBRARY_PATH=. ./p2
v2 xyz                                        Uses xyz@VER_2
$ LD_LIBRARY_PATH=. ./p1
v1 xyz                                        Uses xyz@VER_1

The version tag dependencies of an executable are recorded at static link time. We
can use objdump –t to display the symbol tables of each executable, thus showing the
different version tag dependencies of each program:

$ objdump -t p1 | grep xyz
08048380       F *UND*  0000002e              xyz@@VER_1
$ objdump -t p2 | grep xyz
080483a0       F *UND*  0000002e              xyz@@VER_2

We can also use readelf –s to obtain similar information.

Further information about symbol versioning can be found using the com-
mand info ld scripts version and at http://people.redhat.com/drepper/symbol-versioning.

42.4 Initialization and Finalization Functions

It is possible to define one or more functions that are executed automatically when
a shared library is loaded and unloaded. This allows us to perform initialization and
finalization actions when working with shared libraries. Initialization and finalization
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functions are executed regardless of whether the library is loaded automatically or
loaded explicitly using the dlopen interface (Section 42.1).

Initialization and finalization functions are defined using the gcc constructor
and destructor attributes. Each function that is to be executed when the library is
loaded should be defined as follows:

void __attribute__ ((constructor)) some_name_load(void)
{
    /* Initialization code */
}

Unload functions are similarly defined:

void __attribute__ ((destructor)) some_name_unload(void)
{
    /* Finalization code */
}

The function names some_name_load() and some_name_unload() can be replaced by
any desired names.

It is also possible to use the gcc constructor and destructor attributes to create
initialization and finalization functions in a main program.

The _init() and _fini() functions

An older technique for shared library initialization and finalization is to create two
functions, _init() and _fini(), as part of the library. The void _init(void) function con-
tains code that is to executed when the library is first loaded by a process. The void
_fini(void) function contains code that is to be executed when the library is unloaded.

If we create _init() and _fini() functions, then we must specify the gcc –nostartfiles
option when building the shared library, in order to prevent the linker from including
default versions of these functions. (Using the –Wl,–init and –Wl,–fini linker
options, we can choose alternative names for these two functions if desired.)

Use of _init() and _fini() is now considered obsolete in favor of the gcc
constructor and destructor attributes, which, among other advantages, allow us to
define multiple initialization and finalization functions.

42.5 Preloading Shared Libraries

For testing purposes, it can sometimes be useful to selectively override functions
(and other symbols) that would normally be found by the dynamic linker using the
rules described in Section 41.11. To do this, we can define the environment vari-
able LD_PRELOAD as a string consisting of space-separated or colon-separated names
of shared libraries that should be loaded before any other shared libraries. Since
these libraries are loaded first, any functions they define will automatically be used
if required by the executable, thus overriding any other functions of the same
name that the dynamic linker would otherwise have searched for. For example,
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suppose that we have a program that calls functions x1() and x2(), defined in our
libdemo library. When we run this program, we see the following output:

$ ./prog
Called mod1-x1 DEMO
Called mod2-x2 DEMO

(In this example, we assume that the shared library is in one of the standard direc-
tories, and thus we don’t need to use the LD_LIBRARY_PATH environment variable.)

We could selectively override the function x1() by creating another shared
library, libalt.so, which contains a different definition of x1(). Preloading this
library when running the program would result in the following:

$ LD_PRELOAD=libalt.so ./prog
Called mod1-x1 ALT
Called mod2-x2 DEMO

Here, we see that the version of x1() defined in libalt.so is invoked, but that the call
to x2(), for which no definition is provided in libalt.so, results in the invocation of
the x2() function defined in libdemo.so.

The LD_PRELOAD environment variable controls preloading on a per-process
basis. Alternatively, the file /etc/ld.so.preload, which lists libraries separated by
white space, can be used to perform the same task on a system-wide basis. (Libraries
specified by LD_PRELOAD are loaded before those specified in /etc/ld.so.preload.)

For security reasons, set-user-ID and set-group-ID programs ignore LD_PRELOAD.

42.6 Monitoring the Dynamic Linker: LD_DEBUG

Sometimes, it is useful to monitor the operation of the dynamic linker in order to
know, for example, where it is searching for libraries. We can use the LD_DEBUG envi-
ronment variable to do this. By setting this variable to one (or more) of a set of
standard keywords, we can obtain various kinds of tracing information from the
dynamic linker.

If we assign the value help to LD_DEBUG, the dynamic linker displays help informa-
tion about LD_DEBUG, and the specified command is not executed:

$ LD_DEBUG=help date
Valid options for the LD_DEBUG environment variable are:

  libs       display library search paths
  reloc      display relocation processing
  files      display progress for input file
  symbols    display symbol table processing
  bindings   display information about symbol binding
  versions   display version dependencies
  all        all previous options combined
  statistics display relocation statistics
  unused     determine unused DSOs
  help       display this help message and exit

To direct the debugging output into a file instead of standard output
a filename can be specified using the LD_DEBUG_OUTPUT environment variable.
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The following example shows an abridged version of the output provided when we
request tracing of information about library searches:

$ LD_DEBUG=libs date
     10687:     find library=librt.so.1 [0]; searching
     10687:      search cache=/etc/ld.so.cache
     10687:       trying file=/lib/librt.so.1
     10687:     find library=libc.so.6 [0]; searching
     10687:      search cache=/etc/ld.so.cache
     10687:       trying file=/lib/libc.so.6
     10687:     find library=libpthread.so.0 [0]; searching
     10687:      search cache=/etc/ld.so.cache
     10687:       trying file=/lib/libpthread.so.0
     10687:     calling init: /lib/libpthread.so.0
     10687:     calling init: /lib/libc.so.6
     10687:     calling init: /lib/librt.so.1
     10687:     initialize program: date
     10687:     transferring control: date
Tue Dec 28 17:26:56 CEST 2010
     10687:     calling fini: date [0]
     10687:     calling fini: /lib/librt.so.1 [0]
     10687:     calling fini: /lib/libpthread.so.0 [0]
     10687:     calling fini: /lib/libc.so.6 [0]

The value 10687 displayed at the start of each line is the process ID of the process
being traced. This is useful if we are monitoring several processes (e.g., parent and
child).

By default, LD_DEBUG output is written to standard error, but we can direct it else-
where by assigning a pathname to the LD_DEBUG_OUTPUT environment variable.

If desired, we can assign multiple options to LD_DEBUG by separating them with
commas (no spaces should appear). The output of the symbols option (which traces
symbol resolution by the dynamic linker) is particularly voluminous.

LD_DEBUG is effective both for libraries implicitly loaded by the dynamic linker
and for libraries dynamically loaded by dlopen().

For security reasons, LD_DEBUG is (since glibc 2.2.5) ignored in set-user-ID and set-
group-ID programs.

42.7 Summary

The dynamic linker provides the dlopen API, which allows programs to explicitly
load additional shared libraries at run time. This allows programs to implement
plug-in functionality.

An important aspect of shared library design is controlling symbol visibility, so
that the library exports only those symbols (functions and variables) that should
actually be used by programs linked against the library. We looked at a range of
techniques that can be used to control symbol visibility. Among these techniques
was the use of version scripts, which provide fine-grained control of symbol visibility.

We also showed how version scripts can be used to implement a scheme that
allows a single shared library to export multiple definitions of a symbol for use by
different applications linked against the library. (Each application uses the definition
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that was current when the application was statically linked against the library.) This
technique provides an alternative to the traditional library versioning approach of
using major and minor version numbers in the shared library real name.

Defining initialization and finalization functions within a shared library allows
us to automatically execute code when the library is loaded and unloaded.

The LD_PRELOAD environment variable allows us to preload shared libraries.
Using this mechanism, we can selectively override functions and other symbols that
the dynamic linker would normally find in other shared libraries.

We can assign various values to the LD_DEBUG environment variable in order to
monitor the operation of the dynamic linker.

Further information

Refer to the sources of further information listed in Section 41.14.

42.8 Exercises

42-1. Write a program to verify that if a library is closed with dlclose(), it is not unloaded if
any of its symbols are used by another library.

42-2. Add a dladdr() call to the program in Listing 42-1 (dynload.c) in order to retrieve
information about the address returned by dlsym(). Print out the values of the fields
of the returned Dl_info structure, and verify that they are as expected.
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I N T E R P R O C E S S  
C O M M U N I C A T I O N  O V E R V I E W

This chapter presents a brief overview of the facilities that processes and threads
can use to communicate with one another and to synchronize their actions. The
following chapters provide more details about these facilities.

43.1 A Taxonomy of IPC Facilities

Figure 43-1 summarizes the rich variety of UNIX communication and synchroniza-
tion facilities, dividing them into three broad functional categories:

Communication: These facilities are concerned with exchanging data between
processes.

Synchronization: These facilities are concerned with synchronizing the actions
of processes or threads.

Signals: Although signals are intended primarily for other purposes, they can
be used as a synchronization technique in certain circumstances. More rarely,
signals can be used as a communication technique: the signal number itself is a
form of information, and realtime signals can be accompanied by associated
data (an integer or a pointer). Signals are described in detail in Chapters 20 to 22.



Although some of these facilities are concerned with synchronization, the general
term interprocess communication (IPC) is often used to describe them all.

Figure 43-1: A taxonomy of UNIX IPC facilities

As Figure 43-1 illustrates, often several facilities provide similar IPC functionality.
There are a couple of reasons for this:

Similar facilities evolved on different UNIX variants, and later came to be
ported to other UNIX systems. For example, FIFOs were developed on System V,
while (stream) sockets were developed on BSD.

New facilities have been developed to address design deficiencies in similar
earlier facilities. For example, the POSIX IPC facilities (message queues, sema-
phores, and shared memory) were designed as an improvement on the older
System V IPC facilities.
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In some cases, facilities that are grouped together in Figure 43-1 actually provide
significantly different functionality. For example, stream sockets can be used to
communicate over a network, while FIFOs can be used only for communication
between processes on the same machine.

43.2 Communication Facilities

The various communication facilities shown in Figure 43-1 allow processes to
exchange data with one another. (These facilities can also be used to exchange data
between the threads of a single process, but this is seldom necessary, since threads
can exchange information via shared global variables.)

We can break the communication facilities into two categories:

Data-transfer facilities: The key factor distinguishing these facilities is the notion
of writing and reading. In order to communicate, one process writes data to
the IPC facility, and another process reads the data. These facilities require two
data transfers between user memory and kernel memory: one transfer from
user memory to kernel memory during writing, and another transfer from
kernel memory to user memory during reading. (Figure 43-2 shows this situa-
tion for a pipe.)

Shared memory: Shared memory allows processes to exchange information by
placing it in a region of memory that is shared between the processes. (The kernel
accomplishes this by making page-table entries in each process point to the
same pages of RAM, as shown in Figure 49-2, on page 1026.) A process can
make data available to other processes by placing it in the shared memory
region. Because communication doesn’t require system calls or data transfer
between user memory and kernel memory, shared memory can provide very
fast communication.

Figure 43-2: Exchanging data between two processes using a pipe

Data transfer

We can further break data-transfer facilities into the following subcategories:

Byte stream: The data exchanged via pipes, FIFOs, and datagram sockets is an
undelimited byte stream. Each read operation may read an arbitrary number of
bytes from the IPC facility, regardless of the size of blocks written by the writer.
This model mirrors the traditional UNIX “file as a sequence of bytes” model.
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Message: The data exchanged via System V message queues, POSIX message
queues, and datagram sockets takes the form of delimited messages. Each read
operation reads a whole message, as written by the writer process. It is not pos-
sible to read part of a message, leaving the remainder on the IPC facility; nor is
it possible to read multiple messages in a single read operation.

Pseudoterminals: A pseudoterminal is a communication facility intended for use
in specialized situations. We provide details in Chapter 64.

A few general features distinguish data-transfer facilities from shared memory:

Although a data-transfer facility may have multiple readers, reads are destruc-
tive. A read operation consumes data, and that data is not available to any
other process.

The MSG_PEEK flag can be used to perform a nondestructive read from a socket
(Section 61.3). UDP (Internet domain datagram) sockets allow a single message to
be broadcast or multicast to multiple recipients (Section 61.12).

Synchronization between the reader and writer processes is automatic. If a
reader attempts to fetch data from a data-transfer facility that currently has no
data, then (by default) the read operation will block until some process writes
data to the facility.

Shared memory

Most modern UNIX systems provide three flavors of shared memory: System V
shared memory, POSIX shared memory, and memory mappings. We consider the
differences between them when describing the facilities in later chapters (see Sec-
tion 54.5 in particular).

Note the following general points about shared memory:

Although shared memory provides fast communication, this speed advantage
is offset by the need to synchronize operations on the shared memory. For
example, one process should not attempt to access a data structure in the
shared memory while another process is updating it. A semaphore is the usual
synchronization method used with shared memory.

Data placed in shared memory is visible to all of the processes that share that
memory. (This contrasts with the destructive read semantics described above
for data-transfer facilities.)

43.3 Synchronization Facilities

The synchronization facilities shown in Figure 43-1 allow processes to coordinate
their actions. Synchronization allows processes to avoid doing things such as
simultaneously updating a shared memory region or the same part of a file. With-
out synchronization, such simultaneous updates could cause an application to pro-
duce incorrect results.
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UNIX systems provide the following synchronization facilities:

Semaphores: A semaphore is a kernel-maintained integer whose value is never
permitted to fall below 0. A process can decrease or increase the value of a
semaphore. If an attempt is made to decrease the value of the semaphore
below 0, then the kernel blocks the operation until the semaphore’s value
increases to a level that permits the operation to be performed. (Alternatively,
the process can request a nonblocking operation; then, instead of blocking, the
kernel causes the operation to return immediately with an error indicating that
the operation can’t be performed immediately.) The meaning of a semaphore
is determined by the application. A process decrements a semaphore (from,
say, 1 to 0) in order to reserve exclusive access to some shared resource, and
after completing work on the resource, increments the semaphore so that the
shared resource is released for use by some other process. The use of a binary
semaphore—a semaphore whose value is limited to 0 or 1—is common. However,
an application that deals with multiple instances of a shared resource would
employ a semaphore whose maximum value equals the number of shared
resources. Linux provides both System V semaphores and POSIX semaphores,
which have essentially similar functionality.

File locks: File locks are a synchronization method explicitly designed to coordi-
nate the actions of multiple processes operating on the same file. They can also
be used to coordinate access to other shared resources. File locks come in two
flavors: read (shared) locks and write (exclusive) locks. Any number of processes
can hold a read lock on the same file (or region of a file). However, when one
process holds a write lock on a file (or file region), other processes are prevented
from holding either read or write locks on that file (or file region). Linux provides
file-locking facilities via the flock() and fcntl() system calls. The flock() system call
provides a simple locking mechanism, allowing processes to place a shared or
an exclusive lock on an entire file. Because of its limited functionality, flock()
locking facility is rarely used nowadays. The fcntl() system call provides record
locking, allowing processes to place multiple read and write locks on different
regions of the same file.

Mutexes and condition variables: These synchronization facilities are normally
used with POSIX threads, as described in Chapter 30.

Some UNIX implementations, including Linux systems with a glibc that pro-
vides the NPTL threading implementation, also allow mutexes and condition
variables to be shared between processes. SUSv3 permits, but doesn’t require,
an implementation to support process-shared mutexes and condition variables.
They are not available on all UNIX systems, and so are not commonly
employed for process synchronization.

When performing interprocess synchronization, our choice of facility is typically
determined by the functional requirements. When coordinating access to a file, file
record locking is usually the best choice. Semaphores are often the better choice
for coordinating access to other types of shared resource.

Communication facilities can also be used for synchronization. For example, in
Section 44.3, we show how a pipe can be used to synchronize the actions of a parent
process with its children. More generally, any of the data-transfer facilities can be
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used for synchronization, with the synchronization operation taking the form of
exchanging messages via the facility.

Since kernel 2.6.22, Linux provides an additional, nonstandard synchroniza-
tion mechanism via the eventfd() system call. This system call creates an eventfd
object that has an associated 8-byte unsigned integer maintained by the kernel.
The system call returns a file descriptor that refers to the object. Writing an
integer to this file descriptor adds that integer to the object’s value. A read()
from the file descriptor blocks if the object’s value is 0. If the object has a non-
zero value, a read() returns that value and resets it to 0. In addition, poll(),
select(), or epoll can be used to test if the object has a nonzero value; if it does,
the file descriptor indicates as being readable. An application that wishes to
use an eventfd object for synchronization must first create the object using
eventfd(), and then call fork() to create related processes that inherit file descriptors
referring to the object. For further details, see the eventfd(2) manual page.

43.4 Comparing IPC Facilities

When it comes to IPC, we face a range of choices that can at first seem bewildering.
In later chapters that describe each IPC facility, we include sections that compare
each facility against other similar facilities. In the following pages, we consider a
number of general points that may determine the choice of IPC facility.

IPC object identification and handles for open objects

In order to access an IPC object, a process must have some means of identifying
the object, and once the object has been “opened,” the process must use some type
of handle to refer to the open object. Table 43-1 summarizes these properties for
the various types of IPC facilities.

Table 43-1: Identifiers and handles for various types of IPC facilities

Facility type Name used to 
identify object

Handle used to refer to 
object in programs

Pipe no name file descriptor
FIFO pathname file descriptor

UNIX domain socket pathname file descriptor
Internet domain socket IP address + port number file descriptor

System V message queue System V IPC key System V IPC identifier
System V semaphore System V IPC key System V IPC identifier
System V shared memory System V IPC key System V IPC identifier

POSIX message queue POSIX IPC pathname mqd_t (message queue descriptor)
POSIX named semaphore POSIX IPC pathname sem_t * (semaphore pointer)
POSIX unnamed semaphore no name sem_t * (semaphore pointer)
POSIX shared memory POSIX IPC pathname file descriptor

Anonymous mapping no name none
Memory-mapped file pathname file descriptor

flock() lock pathname file descriptor
fcntl() lock pathname file descriptor
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Functionality

There are functional differences between the various IPC facilities that can be rele-
vant in determining which facility to use. We begin by summarizing the differences
between data-transfer facilities and shared memory:

Data-transfer facilities involve read and write operations, with transferred data
being consumable by just one reader process. Flow control between writer and
reader, as well as synchronization (so that a reader is blocked when trying to
read data from a facility that is currently empty) is automatically handled by the
kernel. This model fits well with many application designs.

Other application designs more naturally suit a shared-memory model. Shared
memory allows one process to make data visible to any number of other processes
sharing the same memory region. Communication “operations” are simple—a
process can access data in shared memory in the same manner as it accesses
any other memory in its virtual address space. On the other hand, the need to
handle synchronization (and perhaps flow control) can add to the complexity
of a shared-memory design. This model fits well with application designs that
need to maintain shared state (e.g., a shared data structure).

With respect to the various data-transfer facilities, the following points are worth
noting:

Some data-transfer facilities transfer data as a byte stream (pipes, FIFOs, and
stream sockets); others are message-oriented (message queues and datagram
sockets). Which approach is preferable depends on the application. (An appli-
cation can also impose a message-oriented model on a byte-stream facility, by
using delimiter characters, fixed-length messages, or message headers that
encode the length of the total message; see Section 44.8.)

A distinctive feature of System V and POSIX message queues, compared with
other data-transfer facilities, is the ability to assign a numeric type or priority to
a message, so that messages can be delivered in a different order from that in
which they were sent.

Pipes, FIFOs, and sockets are implemented using file descriptors. These IPC
facilities all support a range of alternative I/O models that we describe in
Chapter 63: I/O multiplexing (the select() and poll() system calls), signal-
driven I/O, and the Linux-specific epoll API. The primary benefit of these tech-
niques is that they allow an application to simultaneously monitor multiple
file descriptors to see whether I/O is possible on any of them. By contrast,
System V message queues don’t employ file descriptors and don’t support
these techniques.

On Linux, POSIX message queues are also implemented using file descrip-
tors and support the alternative I/O techniques described above. However,
this behavior is not specified in SUSv3, and is not supported on most other
implementations.

POSIX message queues provide a notification facility that can send a signal to a
process, or instantiate a new thread, when a message arrives on a previously
empty queue.
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UNIX domain sockets provide a feature that allows a file descriptor to be
passed from one process to another. This allows one process to open a file and
make it available to another process that otherwise might not be able to access
the file. We briefly describe this feature in Section 61.13.3.

UDP (Internet domain datagram) sockets allow a sender to broadcast or multi-
cast a message to multiple recipients. We briefly describe this feature in
Section 61.12.

With respect to process-synchronization facilities, the following points are worth
noting:

Record locks placed using fcntl() are considered to be owned by the process
placing the lock. The kernel uses this ownership property to detect deadlocks
(situations where two or more processes are holding locks that block each
other’s further lock requests). If a deadlock situation occurs, the kernel denies
the lock request of one of the processes, returning an error from the fcntl() call
to indicate that a deadlock occurred. System V and POSIX semaphores don’t
have an ownership property; no deadlock detection occurs for semaphores.

Record locks placed using fcntl() are automatically released when the process
that owns the locks terminates. System V semaphores provide a similar feature
in the form of an “undo” feature, but this feature is not reliable in all circum-
stances (Section 47.8). POSIX semaphores don’t provide an analog of this feature.

Network communication

Of all of the IPC methods shown in Figure 43-1, only sockets permit processes to
communicate over a network. Sockets are generally used in one of two domains:
the UNIX domain, which allows communication between processes on the same
system, and the Internet domain, which allows communication between processes
on different hosts connected via a TCP/IP network. Often, only minor changes are
required to convert a program that uses UNIX domain sockets into one that uses
Internet domain sockets, so an application that is built using UNIX domain sockets
can be made network-capable with relatively little effort.

Portability

Modern UNIX implementations support most of the IPC facilities shown in Fig-
ure 43-1. However, the POSIX IPC facilities (message queues, semaphores, and
shared memory) are not quite as widely available as their System V IPC counter-
parts, especially on older UNIX systems. (An implementation of POSIX message
queues and full support for POSIX semaphores have appeared on Linux only in
the 2.6.x kernel series.) Therefore, from a portability point of view, System V IPC
may be preferable to POSIX IPC.

System V IPC design issues

The System V IPC facilities were designed independently of the traditional UNIX
I/O model, and consequently suffer a few peculiarities that make their programming
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interfaces more complicated to use. The corresponding POSIX IPC facilities were
designed to address these problems. The following points are of particular note:

The System V IPC facilities are connectionless. These facilities provide no
notion of a handle (like a file descriptor) referring to an open IPC object. In
later chapters, we’ll sometimes talk of “opening” a System V IPC object, but
this is really just shorthand to describe the process of obtaining a handle to
refer to the object. The kernel does not record the process as having “opened”
the object (unlike other types of IPC objects). This means that the kernel can’t
maintain a reference count of the number of processes that are currently using
an object. Consequently, it can require additional programming effort for an
application to be able to know when an object can safely be deleted.

The programming interfaces for the System V IPC facilities are inconsistent
with the traditional UNIX I/O model (they use integer key values and IPC
identifiers instead of pathnames and file descriptors). The programming inter-
faces are also overly complex. This last point applies particularly to System V
semaphores (refer to Sections 47.11 and 53.5).

By contrast, the kernel counts open references for POSIX IPC objects. This simpli-
fies decisions about when an object can be deleted. Furthermore, the POSIX IPC
facilities provide an interface that is simpler and more consistent with the tradi-
tional UNIX model.

Accessibility

The second column of Table 43-2 summarizes an important characteristic of each
type of IPC object: the permissions scheme that governs which processes can access
the object. The following list adds some details on the various schemes:

For some IPC facilities (e.g., FIFOs and sockets), object names live in the file
system, and accessibility is determined according to the associated file permissions
mask, which specifies permissions for owner, group, and other (Section 15.4).
Although System V IPC objects don’t reside in the file system, each object has
an associated permissions mask whose semantics are similar to those for files.

A few IPC facilities (pipes, anonymous memory mappings) are marked as being
accessible only by related processes. Here, related means related via fork(). In
order for two processes to access the object, one of them must create the object
and then call fork(). As a consequence of the fork(), the child process inherits a
handle referring to the object, allowing both processes to share the object.

The accessibility of a POSIX unnamed semaphore is determined by the accessi-
bility of the shared memory region containing the semaphore.

In order to place a lock on a file, a process must have a file descriptor referring
to the file (i.e., in practice, it must have permission to open the file).

There are no restrictions on accessing (i.e., connecting or sending a datagram
to) an Internet domain socket. If necessary, access control must be imple-
mented within the application.
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Persistence

The term persistence refers to the lifetime of an IPC object. (Refer to the third column
of Table 43-2.) We can distinguish three types of persistence:

Process persistence: A process-persistent IPC object remains in existence only as
long as it is held open by at least one process. If the object is closed by all pro-
cesses, then all kernel resources associated with the object are freed, and any
unread data is destroyed. Pipes, FIFOs, and sockets are examples of IPC facilities
with process persistence.

The persistence of a FIFO’s data is not the same as the persistence of its name.
A FIFO has a name in the file system that persists even after all file descriptors
referring to the FIFO have been closed.

Kernel persistence: A kernel-persistent IPC object exists until either it is explicitly
deleted or the system is shut down. The lifetime of the object is independent of
whether any process holds the object open. This means that, for example, one
process can create an object, write data to it, and then close it (or terminate).
At a later point, another process can open the object and read the data.
Examples of facilities with kernel persistence are System V IPC and POSIX
IPC. We exploit this property in the example programs that we present when
describing these facilities in later chapters: for each facility, we implement separate
programs that create an object, delete an object, and perform communication
or synchronization.

File-system persistence: An IPC object with file-system persistence retains its infor-
mation even when the system is rebooted. The object exists until it is explicitly
deleted. The only type of IPC object that demonstrates file-system persistence
is shared memory based on a memory-mapped file.

Table 43-2: Accessibility and persistence for various types of IPC facilities

Facility type Accessibility Persistence

Pipe only by related processes process
FIFO permissions mask process

UNIX domain socket permissions mask process
Internet domain socket by any process process

System V message queue permissions mask kernel
System V semaphore permissions mask kernel
System V shared memory permissions mask kernel

POSIX message queue permissions mask kernel
POSIX named semaphore permissions mask kernel
POSIX unnamed semaphore permissions of underlying memory depends
POSIX shared memory permissions mask kernel

Anonymous mapping only by related processes process
Memory-mapped file permissions mask file system

flock() file lock open() of file process 
fcntl() file lock open() of file process
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Performance

In some circumstances, different IPC facilities may show notable differences in per-
formance. However, in later chapters, we generally refrain from making performance
comparisons, for the following reasons:

The performance of an IPC facility may not be a significant factor in the overall
performance of an application, and it may not be the only factor in determin-
ing the choice of an IPC facility.

The relative performance of the various IPC facilities may vary across UNIX
implementations or between different versions of the Linux kernel.

Most importantly, the performance of an IPC facility will vary depending on
the precise manner and environment in which it is used. Relevant factors
include the size of the data units exchanged in each IPC operation, the amount
of unread data that may be outstanding on the IPC facility, whether or not a
process context switch is required for each unit of data exchanged, and other
load on the system.

If IPC performance is crucial, there is no substitute for application-specific bench-
marks run under an environment that matches the target system. To this end, it
may be worth writing an abstract software layer that hides details of the IPC facility
from the application and then testing performance when different IPC facilities are
substituted underneath the abstract layer.

43.5 Summary

In this chapter, we provided an overview of various facilities that processes (and
threads) can use to communicate with one another and to synchronize their actions.

Among the communication facilities provided on Linux are pipes, FIFOs, sockets,
message queues, and shared memory. Synchronization facilities provided on Linux
include semaphores and file locks.

In many cases, we have a choice of several possible techniques for communica-
tion and synchronization when performing a given task. In the course of this chap-
ter, we compared the different techniques in various ways, with the aim of
highlighting some differences that may influence the choice of one technique over
another.

In the following chapters, we go into each of the communication and synchro-
nization facilities in much more detail.

43.6 Exercises

43-1. Write a program that measures the bandwidth provided by pipes. As command-
line arguments, the program should accept the number of data blocks to be sent
and the size of each data block. After creating a pipe, the program splits into two
process: a child that writes the data blocks to the pipe as fast as possible, and a
parent that reads the data blocks. After all data has been read, the parent should
print the elapsed time required and the bandwidth (bytes transferred per second).
Measure the bandwidth for different data block sizes.
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43-2. Repeat the preceding exercise for System V message queues, POSIX message
queues, UNIX domain stream sockets, and UNIX domain datagram sockets. Use
these programs to compare the relative performance of the various IPC facilities
on Linux. If you have access to other UNIX implementations, perform the same
comparisons on those systems.
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P I P E S  A N D  F I F O S

This chapter describes pipes and FIFOs. Pipes are the oldest method of IPC on the
UNIX system, having appeared in Third Edition UNIX in the early 1970s. Pipes
provide an elegant solution to a frequent requirement: having created two pro-
cesses to run different programs (commands), how can the shell allow the output
produced by one process to be used as the input to the other process? Pipes can be
used to pass data between related processes (the meaning of related will become
clear later). FIFOs are a variation on the pipe concept. The important difference is
that FIFOs can be used for communication between any processes.

44.1 Overview

Every user of the shell is familiar with the use of pipes in commands such as the
following, which counts the number of files in a directory:

$ ls | wc -l

In order to execute the above command, the shell creates two processes, executing
ls and wc, respectively. (This is done using fork() and exec(), which are described in
Chapters 24 and 27.) Figure 44-1 shows how the two processes employ the pipe.

Among other things, Figure 44-1 is intended to illustrate how pipes got their
name. We can think of a pipe as a piece of plumbing that allows data to flow from
one process to another.



Figure 44-1: Using a pipe to connect two processes

One point to note in Figure 44-1 is that the two processes are connected to the pipe
so that the writing process (ls) has its standard output (file descriptor 1) joined to
the write end of the pipe, while the reading process (wc) has its standard input (file
descriptor 0) joined to the read end of the pipe. In effect, these two processes are
unaware of the existence of the pipe; they just read from and write to the standard
file descriptors. The shell must do some work in order to set things up in this way,
and we see how this is done in Section 44.4.

In the following paragraphs, we cover a number of important characteristics
of pipes.

A pipe is a byte stream

When we say that a pipe is a byte stream, we mean that there is no concept of
messages or message boundaries when using a pipe. The process reading from a
pipe can read blocks of data of any size, regardless of the size of blocks written by
the writing process. Furthermore, the data passes through the pipe sequentially—
bytes are read from a pipe in exactly the order they were written. It is not possible
to randomly access the data in a pipe using lseek().

If we want to implement the notion of discrete messages in a pipe, we must do
this within our application. While this is feasible (refer to Section 44.8), it may be
preferable to use alternative IPC mechanisms, such as message queues and data-
gram sockets, which we discuss in later chapters.

Reading from a pipe

Attempts to read from a pipe that is currently empty block until at least one byte
has been written to the pipe. If the write end of a pipe is closed, then a process
reading from the pipe will see end-of-file (i.e., read() returns 0) once it has read all
remaining data in the pipe.

Pipes are unidirectional

Data can travel only in one direction through a pipe. One end of the pipe is used
for writing, and the other end is used for reading.

On some other UNIX implementations—notably those derived from System V
Release 4—pipes are bidirectional (so-called stream pipes). Bidirectional pipes are
not specified by any UNIX standards, so that, even on implementations where they
are provided, it is best to avoid reliance on their semantics. As an alternative, we
can use UNIX domain stream socket pairs (created using the socketpair() system call
described in Section 57.5), which provide a standardized bidirectional communi-
cation mechanism that is semantically equivalent to stream pipes.

stdout
(fd 1)

stdin
(fd 0) wc

pipe

read end
of pipe

write end
of pipe

byte stream;
unidirectionalls
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Writes of up to PIPE_BUF bytes are guaranteed to be atomic

If multiple processes are writing to a single pipe, then it is guaranteed that their
data won’t be intermingled if they write no more than PIPE_BUF bytes at a time.

SUSv3 requires that PIPE_BUF be at least _POSIX_PIPE_BUF (512). An implementa-
tion should define PIPE_BUF (in <limits.h>) and/or allow the call fpathconf(fd,
_PC_PIPE_BUF) to return the actual upper limit for atomic writes. PIPE_BUF varies
across UNIX implementations; for example, it is 512 bytes on FreeBSD 6.0, 4096 bytes
on Tru64 5.1, and 5120 bytes on Solaris 8. On Linux, PIPE_BUF has the value 4096.

When writing blocks of data larger than PIPE_BUF bytes to a pipe, the kernel may
transfer the data in multiple smaller pieces, appending further data as the reader
removes bytes from the pipe. (The write() call blocks until all of the data has been
written to the pipe.) When there is only a single process writing to a pipe (the usual
case), this doesn’t matter. However, if there are multiple writer processes, then
writes of large blocks may be broken into segments of arbitrary size (which may be
smaller than PIPE_BUF bytes) and interleaved with writes by other processes.

The PIPE_BUF limit affects exactly when data is transferred to the pipe. When
writing up to PIPE_BUF bytes, write() will block if necessary until sufficient space is
available in the pipe so that it can complete the operation atomically. When more
than PIPE_BUF bytes are being written, write() transfers as much data as possible to
fill the pipe, and then blocks until data has been removed from the pipe by some
reading process. If such a blocked write() is interrupted by a signal handler, then
the call unblocks and returns a count of the number of bytes successfully trans-
ferred, which will be less than was requested (a so-called partial write).

On Linux 2.2, pipe writes of any size are atomic, unless interrupted by a signal
handler. On Linux 2.4 and later, any write greater than PIPE_BUF bytes may be
interleaved with writes by other processes. (The kernel code implementing pipes
underwent substantial changes between kernel versions 2.2 and 2.4.)

Pipes have a limited capacity

A pipe is simply a buffer maintained in kernel memory. This buffer has a maximum
capacity. Once a pipe is full, further writes to the pipe block until the reader removes
some data from the pipe.

SUSv3 makes no requirement about the capacity of a pipe. In Linux kernels
before 2.6.11, the pipe capacity is the same as the system page size (e.g., 4096 bytes
on x86-32); since Linux 2.6.11, the pipe capacity is 65,536 bytes. Other UNIX
implementations have different pipe capacities.

In general, an application never needs to know the exact capacity of a pipe. If
we want to prevent the writer process(es) from blocking, the process(es) reading
from the pipe should be designed to read data as soon as it is available.

In theory, there is no reason why a pipe couldn’t operate with smaller capacities,
even with a single-byte buffer. The reason for employing large buffer sizes is effi-
ciency: each time a writer fills the pipe, the kernel must perform a context switch
to allow the reader to be scheduled so that it can empty some data from the pipe.
Employing a larger buffer size means that fewer context switches are required.

Starting with Linux 2.6.35, the capacity of a pipe can be modified. The
Linux-specific call fcntl(fd, F_SETPIPE_SZ, size) changes the capacity of the
pipe referred to by fd to be at least size bytes. An unprivileged process can
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change the pipe capacity to any value in the range from the system page size
up to the value in /proc/sys/fs/pipe-max-size. The default value for pipe-max-
size is 1,048,576 bytes. A privileged (CAP_SYS_RESOURCE) process can override
this limit. When allocating space for the pipe, the kernel may round size up to
some value convenient for the implementation. The fcntl(fd, F_GETPIPE_SZ)
call returns the actual size allocated for the pipe.

44.2 Creating and Using Pipes

The pipe() system call creates a new pipe.

A successful call to pipe() returns two open file descriptors in the array filedes: one
for the read end of the pipe ( filedes[0]) and one for the write end ( filedes[1]).

As with any file descriptor, we can use the read() and write() system calls to per-
form I/O on the pipe. Once written to the write end of a pipe, data is immediately
available to be read from the read end. A read() from a pipe obtains the lesser of the
number of bytes requested and the number of bytes currently available in the pipe
(but blocks if the pipe is empty).

We can also use the stdio functions (printf(), scanf(), and so on) with pipes by
first using fdopen() to obtain a file stream corresponding to one of the descriptors
in filedes (Section 13.7). However, when doing this, we must be aware of the stdio
buffering issues described in Section 44.6.

The call ioctl(fd, FIONREAD, &cnt) returns the number of unread bytes in the
pipe or FIFO referred to by the file descriptor fd. This feature is also available
on some other implementations, but is not specified in SUSv3.

Figure 44-2 shows the situation after a pipe has been created by pipe(), with the call-
ing process having file descriptors referring to each end.

Figure 44-2: Process file descriptors after creating a pipe

A pipe has few uses within a single process (we consider one in Section 63.5.2).
Normally, we use a pipe to allow communication between two processes. To con-
nect two processes using a pipe, we follow the pipe() call with a call to fork(). Dur-
ing a fork(), the child process inherits copies of its parent’s file descriptors
(Section 24.2.1), bringing about the situation shown on the left side of Figure 44-3.

#include <unistd.h>

int pipe(int filedes[2]);

Returns 0 on success, or –1 on error

calling process
filedes[0]filedes[1]

pipe

direction of
data flow
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Figure 44-3: Setting up a pipe to transfer data from a parent to a child

While it is possible for the parent and child to both read from and write to the
pipe, this is not usual. Therefore, immediately after the fork(), one process closes its
descriptor for the write end of the pipe, and the other closes its descriptor for the
read end. For example, if the parent is to send data to the child, then it would close
its read descriptor for the pipe, filedes[0], while the child would close its write
descriptor for the pipe, filedes[1], bringing about the situation shown on the right
side of Figure 44-3. The code to create this setup is shown in Listing 44-1.

Listing 44-1: Steps in creating a pipe to transfer data from a parent to a child

    int filedes[2];

    if (pipe(filedes) == -1)                    /* Create the pipe */
        errExit("pipe");

    switch (fork()) {                           /* Create a child process */
    case -1:
        errExit("fork");

    case 0:  /* Child */
        if (close(filedes[1]) == -1)            /* Close unused write end */
            errExit("close");

        /* Child now reads from pipe */
        break;

    default: /* Parent */
        if (close(filedes[0]) == -1)            /* Close unused read end */
            errExit("close");

        /* Parent now writes to pipe */
        break;
    }

One reason that it is not usual to have both the parent and child reading from a
single pipe is that if two processes try to simultaneously read from a pipe, we can’t

parent process

filedes[0]filedes[1]

pipe

child process

filedes[0]filedes[1]

a) After fork() b) After closing unused descriptors

parent process

filedes[1]

pipe
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be sure which process will be the first to succeed—the two processes race for data.
Preventing such races would require the use of some synchronization mechanism.
However, if we require bidirectional communication, there is a simpler way: just
create two pipes, one for sending data in each direction between the two processes.
(If employing this technique, then we need to be wary of deadlocks that may occur
if both processes block while trying to read from empty pipes or while trying to
write to pipes that are already full.)

While it is possible to have multiple processes writing to a pipe, it is typical to
have only a single writer. (We show one example of where it is useful to have multiple
writers to a pipe in Section 44.3.) By contrast, there are situations where it can be useful
to have multiple writers on a FIFO, and we see an example of this in Section 44.8.

Starting with kernel 2.6.27, Linux supports a new, nonstandard system call,
pipe2(). This system call performs the same task as pipe(), but supports an addi-
tional argument, flags, that can be used to modify the behavior of the system
call. Two flags are supported. The O_CLOEXEC flag causes the kernel to enable the
close-on-exec flag (FD_CLOEXEC) for the two new file descriptors. This flag is useful
for the same reasons as the open() O_CLOEXEC flag described in Section 4.3.1. The
O_NONBLOCK flag causes the kernel to mark both underlying open file descriptions
as nonblocking, so that future I/O operations will be nonblocking. This saves
additional calls to fcntl() to achieve the same result.

Pipes allow communication between related processes

In the discussion so far, we have talked about using pipes for communication
between a parent and a child process. However, pipes can be used for communica-
tion between any two (or more) related processes, as long as the pipe was created
by a common ancestor before the series of fork() calls that led to the existence of
the processes. (This is what we meant when we referred to related processes at the
beginning of this chapter.) For example, a pipe could be used for communication
between a process and its grandchild. The first process creates the pipe, and then
forks a child that in turn forks to yield the grandchild. A common scenario is that a
pipe is used for communication between two siblings—their parent creates the pipe,
and then creates the two children. This is what the shell does when building a pipeline.

There is an exception to the statement that pipes can be used to communicate
only between related processes. Passing a file descriptor over a UNIX domain
socket (a technique that we briefly describe in Section 61.13.3) makes it possible
to pass a file descriptor for a pipe to an unrelated process.

Closing unused pipe file descriptors

Closing unused pipe file descriptors is more than a matter of ensuring that a pro-
cess doesn’t exhaust its limited set of file descriptors—it is essential to the correct
use of pipes. We now consider why the unused file descriptors for both the read
and write ends of the pipe must be closed.

The process reading from the pipe closes its write descriptor for the pipe, so
that, when the other process completes its output and closes its write descriptor,
the reader sees end-of-file (once it has read any outstanding data in the pipe).

If the reading process doesn’t close the write end of the pipe, then, after the
other process closes its write descriptor, the reader won’t see end-of-file, even after
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it has read all data from the pipe. Instead, a read() would block waiting for data,
because the kernel knows that there is still at least one write descriptor open for the
pipe. That this descriptor is held open by the reading process itself is irrelevant; in
theory, that process could still write to the pipe, even if it is blocked trying to read.
For example, the read() might be interrupted by a signal handler that writes data to
the pipe. (This is a realistic scenario, as we’ll see in Section 63.5.2.)

The writing process closes its read descriptor for the pipe for a different reason.
When a process tries to write to a pipe for which no process has an open read
descriptor, the kernel sends the SIGPIPE signal to the writing process. By default,
this signal kills a process. A process can instead arrange to catch or ignore this signal,
in which case the write() on the pipe fails with the error EPIPE (broken pipe). Receiving
the SIGPIPE signal or getting the EPIPE error is a useful indication about the status
of the pipe, and this is why unused read descriptors for the pipe should be closed.

Note that the treatment of a write() that is interrupted by a SIGPIPE handler is
special. Normally, when a write() (or other “slow” system call) is interrupted by
a signal handler, the call is either automatically restarted or fails with the error
EINTR, depending on whether the handler was installed with the sigaction()
SA_RESTART flag (Section 21.5). The behavior in the case of SIGPIPE is different
because it makes no sense either to automatically restart the write() or to simply
indicate that the write() was interrupted by a handler (thus implying that
the write() could usefully be manually restarted). In neither case can a subse-
quent write() attempt succeed, because the pipe will still be broken.

If the writing process doesn’t close the read end of the pipe, then, even after the
other process closes the read end of the pipe, the writing process will still be able to
write to the pipe. Eventually, the writing process will fill the pipe, and a further
attempt to write will block indefinitely.

One final reason for closing unused file descriptors is that it is only after all file
descriptors in all processes that refer to a pipe are closed that the pipe is destroyed
and its resources released for reuse by other processes. At this point, any unread
data in the pipe is lost.

Example program

The program in Listing 44-2 demonstrates the use of a pipe for communication
between parent and child processes. This example demonstrates the byte-stream
nature of pipes referred to earlier—the parent writes its data in a single operation,
while the child reads data from the pipe in small blocks.

The main program calls pipe() to create a pipe q, and then calls fork() to create
a child w. After the fork(), the parent process closes its file descriptor for the read
end of the pipe i, and writes the string given as the program’s command-line argu-
ment to the write end of the pipe o. The parent then closes the read end of the
pipe a, and calls wait() to wait for the child to terminate s. After closing its file
descriptor for the write end of the pipe e, the child process enters a loop where it
reads r blocks of data (of up to BUF_SIZE bytes) from the pipe and writes y them to
standard output. When the child encounters end-of-file on the pipe t, it exits the
loop u, writes a trailing newline character, closes its descriptor for the read end of
the pipe, and terminates.
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Here’s an example of what we might see when running the program in Listing 44-2:

$ ./simple_pipe 'It was a bright cold day in April, '\
'and the clocks were striking thirteen.'
It was a bright cold day in April, and the clocks were striking thirteen.

Listing 44-2: Using a pipe to communicate between a parent and child process

–––––––––––––––––––––––––––––––––––––––––––––––––––––– pipes/simple_pipe.c

#include <sys/wait.h>
#include "tlpi_hdr.h"

#define BUF_SIZE 10

int
main(int argc, char *argv[])
{
    int pfd[2];                             /* Pipe file descriptors */
    char buf[BUF_SIZE];
    ssize_t numRead;

    if (argc != 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s string\n", argv[0]);

q     if (pipe(pfd) == -1)                    /* Create the pipe */
        errExit("pipe");

w     switch (fork()) {
    case -1:
        errExit("fork");

    case 0:             /* Child  - reads from pipe */
e         if (close(pfd[1]) == -1)            /* Write end is unused */

            errExit("close - child");

        for (;;) {              /* Read data from pipe, echo on stdout */
r             numRead = read(pfd[0], buf, BUF_SIZE);

            if (numRead == -1)
                errExit("read");

t             if (numRead == 0)
                break;                      /* End-of-file */

y             if (write(STDOUT_FILENO, buf, numRead) != numRead)
                fatal("child - partial/failed write");
        }

u         write(STDOUT_FILENO, "\n", 1);
        if (close(pfd[0]) == -1)
            errExit("close");
        _exit(EXIT_SUCCESS);

    default:            /* Parent - writes to pipe */
i         if (close(pfd[0]) == -1)            /* Read end is unused */

            errExit("close - parent");
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o         if (write(pfd[1], argv[1], strlen(argv[1])) != strlen(argv[1]))
            fatal("parent - partial/failed write");

a         if (close(pfd[1]) == -1)            /* Child will see EOF */
            errExit("close");

s         wait(NULL);                         /* Wait for child to finish */
        exit(EXIT_SUCCESS);
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– pipes/simple_pipe.c

44.3 Pipes as a Method of Process Synchronization

In Section 24.5, we looked at how signals could be used to synchronize the actions
of parent and child processes in order to avoid race conditions. Pipes can be used
to achieve a similar result, as shown by the skeleton program in Listing 44-3. This
program creates multiple child processes (one for each command-line argument),
each of which is intended to accomplish some action, simulated in the example
program by sleeping for some time. The parent waits until all children have com-
pleted their actions.

To perform the synchronization, the parent builds a pipe q before creating the
child processes w. Each child inherits a file descriptor for the write end of the pipe
and closes this descriptor once it has completed its action e. After all of the chil-
dren have closed their file descriptors for the write end of the pipe, the parent’s
read() t from the pipe will complete, returning end-of-file (0). At this point, the
parent is free to carry on to do other work. (Note that closing the unused write end
of the pipe in the parent r is essential to the correct operation of this technique;
otherwise, the parent would block forever when trying to read from the pipe.)

The following is an example of what we see when we use the program in List-
ing 44-3 to create three children that sleep for 4, 2, and 6 seconds:

$ ./pipe_sync 4 2 6
08:22:16  Parent started
08:22:18  Child 2 (PID=2445) closing pipe
08:22:20  Child 1 (PID=2444) closing pipe
08:22:22  Child 3 (PID=2446) closing pipe
08:22:22  Parent ready to go

Listing 44-3: Using a pipe to synchronize multiple processes

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– pipes/pipe_sync.c

#include "curr_time.h"                      /* Declaration of currTime() */
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int pfd[2];                             /* Process synchronization pipe */
    int j, dummy;
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    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s sleep-time...\n", argv[0]);

    setbuf(stdout, NULL);                   /* Make stdout unbuffered, since we
                                               terminate child with _exit() */
    printf("%s  Parent started\n", currTime("%T"));

q     if (pipe(pfd) == -1)
        errExit("pipe");

    for (j = 1; j < argc; j++) {
w         switch (fork()) {

        case -1:
            errExit("fork %d", j);

        case 0: /* Child */
            if (close(pfd[0]) == -1)        /* Read end is unused */
                errExit("close");

            /* Child does some work, and lets parent know it's done */

            sleep(getInt(argv[j], GN_NONNEG, "sleep-time"));
                                            /* Simulate processing */
            printf("%s  Child %d (PID=%ld) closing pipe\n",
                    currTime("%T"), j, (long) getpid());

e             if (close(pfd[1]) == -1)
                errExit("close");

            /* Child now carries on to do other things... */

            _exit(EXIT_SUCCESS);

        default: /* Parent loops to create next child */
            break;
        }
    }

    /* Parent comes here; close write end of pipe so we can see EOF */

r     if (close(pfd[1]) == -1)                /* Write end is unused */
        errExit("close");

    /* Parent may do other work, then synchronizes with children */

t     if (read(pfd[0], &dummy, 1) != 0)
        fatal("parent didn't get EOF");
    printf("%s  Parent ready to go\n", currTime("%T"));

    /* Parent can now carry on to do other things... */

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– pipes/pipe_sync.c
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Synchronization using pipes has an advantage over the earlier example of synchro-
nization using signals: it can be used to coordinate the actions of one process with
multiple other (related) processes. The fact that multiple (standard) signals can’t be
queued makes signals unsuitable in this case. (Conversely, signals have the advantage
that they can be broadcast by one process to all of the members of a process group.)

Other synchronization topologies are possible (e.g., using multiple pipes). Fur-
thermore, this technique could be extended so that, instead of closing the pipe,
each child writes a message to the pipe containing its process ID and some status
information. Alternatively, each child might write a single byte to the pipe. The parent
process could then count and analyze these messages. This approach guards
against the possibility of the child accidentally terminating, rather than explicitly
closing the pipe.

44.4 Using Pipes to Connect Filters

When a pipe is created, the file descriptors used for the two ends of the pipe are the
next lowest-numbered descriptors available. Since, in normal circumstances, descrip-
tors 0, 1, and 2 are already in use for a process, some higher-numbered descriptors
will be allocated for the pipe. So how do we bring about the situation shown in
Figure 44-1, where two filters (i.e., programs that read from stdin and write to
stdout) are connected using a pipe, such that the standard output of one program is
directed into the pipe and the standard input of the other is taken from the pipe? And
in particular, how can we do this without modifying the code of the filters themselves?

The answer is to use the techniques described in Section 5.5 for duplicating file
descriptors. Traditionally, the following series of calls was used to accomplish the
desired result:

int pfd[2];

pipe(pfd);          /* Allocates (say) file descriptors 3 and 4 for pipe */

/* Other steps here, e.g., fork() */

close(STDOUT_FILENO);           /* Free file descriptor 1 */
dup(pfd[1]);                    /* Duplication uses lowest free file
                                   descriptor, i.e., fd 1 */

The end result of the above steps is that the process’s standard output is bound to
the write end of the pipe. A corresponding set of calls can be used to bind a pro-
cess’s standard input to the read end of the pipe.

Note that these steps depend on the assumption that file descriptors 0, 1, and 2
for a process are already open. (The shell normally ensures this for each program it
executes.) If file descriptor 0 was already closed prior to the above steps, then we
would erroneously bind the process’s standard input to the write end of the pipe.
To avoid this possibility, we can replace the calls to close() and dup() with the follow-
ing dup2() call, which allows us to explicitly specify the descriptor to be bound to
the pipe end:

dup2(pfd[1], STDOUT_FILENO);    /* Close descriptor 1, and reopen bound
                                   to write end of pipe */
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After duplicating pfd[1], we now have two file descriptors referring to the write end
of the pipe: descriptor 1 and pfd[1]. Since unused pipe file descriptors should be
closed, after the dup2() call, we close the superfluous descriptor:

close(pfd[1]);

The code we have shown so far relies on standard output having been previously
open. Suppose that, prior to the pipe() call, standard input and standard output had
both been closed. In this case, pipe() would have allocated these two descriptors to
the pipe, perhaps with pfd[0] having the value 0 and pfd[1] having the value 1. Con-
sequently, the preceding dup2() and close() calls would be equivalent to the following:

dup2(1, 1);         /* Does nothing */
close(1);           /* Closes sole descriptor for write end of pipe */

Therefore, it is good defensive programming practice to bracket these calls with an
if statement of the following form:

if (pfd[1] != STDOUT_FILENO) {
    dup2(pfd[1], STDOUT_FILENO);
    close(pfd[1]);
}

Example program

The program in Listing 44-4 uses the techniques described in this section to bring
about the setup shown in Figure 44-1. After building a pipe, this program creates
two child processes. The first child binds its standard output to the write end of the
pipe and then execs ls. The second child binds its standard input to the read end of
the pipe and then execs wc. 

Listing 44-4: Using a pipe to connect ls and wc
––––––––––––––––––––––––––––––––––––––––––––––––––––––– pipes/pipe_ls_wc.c

#include <sys/wait.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int pfd[2];                                     /* Pipe file descriptors */

    if (pipe(pfd) == -1)                            /* Create pipe */
        errExit("pipe");

    switch (fork()) {
    case -1:
        errExit("fork");

    case 0: /* First child: exec 'ls' to write to pipe */
        if (close(pfd[0]) == -1)                    /* Read end is unused */
            errExit("close 1");
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        /* Duplicate stdout on write end of pipe; close duplicated descriptor */

        if (pfd[1] != STDOUT_FILENO) {              /* Defensive check */
            if (dup2(pfd[1], STDOUT_FILENO) == -1)
                errExit("dup2 1");
            if (close(pfd[1]) == -1)
                errExit("close 2");
        }

        execlp("ls", "ls", (char *) NULL);          /* Writes to pipe */
        errExit("execlp ls");

    default:            /* Parent falls through to create next child */
        break;
    }

    switch (fork()) {
    case -1:
        errExit("fork");

    case 0:             /* Second child: exec 'wc' to read from pipe */
        if (close(pfd[1]) == -1)                    /* Write end is unused */
            errExit("close 3");

        /* Duplicate stdin on read end of pipe; close duplicated descriptor */

        if (pfd[0] != STDIN_FILENO) {               /* Defensive check */
            if (dup2(pfd[0], STDIN_FILENO) == -1)
                errExit("dup2 2");
            if (close(pfd[0]) == -1)
                errExit("close 4");
        }

        execlp("wc", "wc", "-l", (char *) NULL);    /* Reads from pipe */
        errExit("execlp wc");

    default:            /* Parent falls through */
        break;
    }

    /* Parent closes unused file descriptors for pipe, and waits for children */

    if (close(pfd[0]) == -1)
        errExit("close 5");
    if (close(pfd[1]) == -1)
        errExit("close 6");
    if (wait(NULL) == -1)
        errExit("wait 1");
    if (wait(NULL) == -1)
        errExit("wait 2");

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––– pipes/pipe_ls_wc.c
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When we run the program in Listing 44-4, we see the following:

$ ./pipe_ls_wc
     24
$ ls | wc -l                    Verify the results using shell commands
     24

44.5 Talking to a Shell Command via a Pipe: popen()

A common use for pipes is to execute a shell command and either read its output
or send it some input. The popen() and pclose() functions are provided to simplify
this task.

The popen() function creates a pipe, and then forks a child process that execs a
shell, which in turn creates a child process to execute the string given in command.
The mode argument is a string that determines whether the calling process will read
from the pipe (mode is r) or write to it (mode is w). (Since pipes are unidirectional,
two-way communication with the executed command is not possible.) The value of
mode determines whether the standard output of the executed command is con-
nected to the write end of the pipe or its standard input is connected to the read
end of the pipe, as shown in Figure 44-4.

Figure 44-4: Overview of process relationships and pipe usage for popen()

On success, popen() returns a file stream pointer that can be used with the stdio
library functions. If an error occurs (e.g., mode is not r or w, pipe creation fails, or
the fork() to create the child fails), then popen() returns NULL and sets errno to indi-
cate the cause of the error.

After the popen() call, the calling process uses the pipe to read the output of
command or to send input to it. Just as with pipes created using pipe(), when reading
from the pipe, the calling process encounters end-of-file once command has closed

#include <stdio.h>

FILE *popen(const char *command, const char *mode);

Returns file stream, or NULL on error
int pclose(FILE *stream);

Returns termination status of child process, or –1 on error
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the write end of the pipe; when writing to the pipe, it is sent a SIGPIPE signal, and
gets the EPIPE error, if command has closed the read end of the pipe.

Once I/O is complete, the pclose() function is used to close the pipe and wait for
the child shell to terminate. (The fclose() function should not be used, since it doesn’t
wait for the child.) On success, pclose() yields the termination status (Section 26.1.3)
of the child shell (which is the termination status of the last command that the shell
executed, unless the shell was killed by a signal). As with system() (Section 27.6), if a
shell could not be execed, then pclose() returns a value as though the child shell had
terminated with the call _exit(127). If some other error occurs, pclose() returns –1.
One possible error is that the termination status could not be obtained. We explain
how this may occur shortly.

When performing a wait to obtain the status of the child shell, SUSv3 requires
that pclose(), like system(), should automatically restart the internal call that it makes
to waitpid() if that call is interrupted by a signal handler.

In general, we can make the same statements for popen() as were made in Sec-
tion 27.6 for system(). Using popen() offers convenience. It builds the pipe, performs
descriptor duplication, closes unused descriptors, and handles all of the details of
fork() and exec() on our behalf. In addition, shell processing is performed on the
command. This convenience comes at the cost of efficiency. At least two extra pro-
cesses must be created: one for the shell and one or more for the command(s) exe-
cuted by the shell. As with system(), popen() should never be used from privileged
programs.

While there are several similarities between system() and popen() plus pclose(),
there are also significant differences. These stem from the fact that, with system(),
the execution of the shell command is encapsulated within a single function call,
whereas with popen(), the calling process runs in parallel with the shell command
and then calls pclose(). The differences are as follows:

Since the calling process and the executed command are operating in parallel,
SUSv3 requires that popen() should not ignore SIGINT and SIGQUIT. If generated
from the keyboard, these signals are sent to both the calling process and the
executed command. This occurs because both processes reside in the same
process group, and terminal-generated signals are sent to all of the members of
the (foreground) process group, as described in Section 34.5.

Since the calling process may create other child processes between the execution
of popen() and pclose(), SUSv3 requires that popen() should not block SIGCHLD.
This means that if the calling process performs a wait operation before the
pclose() call, it may retrieve the status of the child created by popen(). In this
case, when pclose() is later called, it will return –1, with errno set to ECHILD, indi-
cating that pclose() could not retrieve the status of the child.

Example program

Listing 44-5 demonstrates the use of popen() and pclose(). This program repeatedly
reads a filename wildcard pattern w, and then uses popen() to obtain the results
from passing this pattern to the ls command t. (Techniques similar to this were
used on older UNIX implementations to perform filename generation, also known
as globbing, prior to the existence of the glob() library function.)
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Listing 44-5: Globbing filename patterns with popen()
––––––––––––––––––––––––––––––––––––––––––––––––––––––– pipes/popen_glob.c

#include <ctype.h>
#include <limits.h>
#include "print_wait_status.h"          /* For printWaitStatus() */
#include "tlpi_hdr.h"

q #define POPEN_FMT "/bin/ls -d %s 2> /dev/null"
#define PAT_SIZE 50
#define PCMD_BUF_SIZE (sizeof(POPEN_FMT) + PAT_SIZE)

int
main(int argc, char *argv[])
{
    char pat[PAT_SIZE];                 /* Pattern for globbing */
    char popenCmd[PCMD_BUF_SIZE];
    FILE *fp;                           /* File stream returned by popen() */
    Boolean badPattern;                 /* Invalid characters in 'pat'? */
    int len, status, fileCnt, j;
    char pathname[PATH_MAX];

    for (;;) {                  /* Read pattern, display results of globbing */
        printf("pattern: ");
        fflush(stdout);

w         if (fgets(pat, PAT_SIZE, stdin) == NULL)
            break;                      /* EOF */
        len = strlen(pat);
        if (len <= 1)                   /* Empty line */
            continue;

        if (pat[len - 1] == '\n')       /* Strip trailing newline */
            pat[len - 1] = '\0';

        /* Ensure that the pattern contains only valid characters,
           i.e., letters, digits, underscore, dot, and the shell
           globbing characters. (Our definition of valid is more
           restrictive than the shell, which permits other characters
           to be included in a filename if they are quoted.) */

e         for (j = 0, badPattern = FALSE; j < len && !badPattern; j++)
            if (!isalnum((unsigned char) pat[j]) &&
                    strchr("_*?[^-].", pat[j]) == NULL)
                badPattern = TRUE;

        if (badPattern) {
            printf("Bad pattern character: %c\n", pat[j - 1]);
            continue;
        }

        /* Build and execute command to glob 'pat' */

r         snprintf(popenCmd, PCMD_BUF_SIZE, POPEN_FMT, pat);
        popenCmd[PCMD_BUF_SIZE - 1] = '\0';     /* Ensure string is
                                                   null-terminated */
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t         fp = popen(popenCmd, "r");
        if (fp == NULL) {
            printf("popen() failed\n");
            continue;
        }

        /* Read resulting list of pathnames until EOF */

        fileCnt = 0;
        while (fgets(pathname, PATH_MAX, fp) != NULL) {
            printf("%s", pathname);
            fileCnt++;
        }

        /* Close pipe, fetch and display termination status */

        status = pclose(fp);
        printf("    %d matching file%s\n", fileCnt, (fileCnt != 1) ? "s" : "");
        printf("    pclose() status == %#x\n", (unsigned int) status);
        if (status != -1)
            printWaitStatus("\t", status);
    }

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––– pipes/popen_glob.c

The following shell session demonstrates the use of the program in Listing 44-5. In
this example, we first provide a pattern that matches two filenames, and then a pat-
tern that matches no filename:

$ ./popen_glob
pattern: popen_glob*                          Matches two filenames
popen_glob
popen_glob.c
    2 matching files
    pclose() status = 0
        child exited, status=0
pattern: x*                                   Matches no filename
    0 matching files
    pclose() status = 0x100                   ls(1) exits with status 1
        child exited, status=1
pattern: ^D$                                  Type Control-D to terminate

The construction of the command qr for globbing in Listing 44-5 requires some
explanation. Actual globbing of a pattern is performed by the shell. The ls command
is merely being used to list the matching filenames, one per line. We could have
tried using the echo command instead, but this would have had the undesirable
result that if a pattern matched no filenames, then the shell would leave the pattern
unchanged, and echo would simply display the pattern. By contrast, if ls is given the
name of a file that doesn’t exist, it prints an error message on stderr (which we dis-
pose of by redirecting stderr to /dev/null), prints nothing on stdout, and exits with a
status of 1.
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Note also the input checking performed in Listing 44-5 e. This is done to pre-
vent invalid input causing popen() to execute an unexpected shell command. Sup-
pose that these checks were omitted, and the user entered the following input:

pattern: ; rm *

The program would then pass the following command to popen(), with disastrous
results:

/bin/ls -d ; rm * 2> /dev/null

Such checking of input is always required in programs that use popen() (or system())
to execute a shell command built from user input. (An alternative would be for the
application to quote any characters other than those being checked for, so that
those characters don’t undergo special processing by the shell.)

44.6 Pipes and stdio Buffering

Since the file stream pointer returned by a call to popen() doesn’t refer to a terminal,
the stdio library applies block buffering to the file stream (Section 13.2). This means
that when we call popen() with a mode of w, then, by default, output is sent to the
child process at the other end of the pipe only when the stdio buffer is filled or we
close the pipe with pclose(). In many cases, this presents no problem. If, however,
we need to ensure that the child process receives data on the pipe immediately,
then we can either use periodic calls to fflush() or disable stdio buffering using the
call setbuf(fp, NULL). This technique can also be used if we create a pipe using the
pipe() system call and then use fdopen() to obtain a stdio stream corresponding to the
write end of the pipe.

If the process calling popen() is reading from the pipe (i.e., mode is r), things
may not be so straightforward. In this case, if the child process is using the stdio
library, then—unless it includes explicit calls to fflush() or setbuf()—its output will be
available to the calling process only when the child either fills the stdio buffer or
calls fclose(). (The same statement applies if we are reading from a pipe created
using pipe() and the process writing on the other end is using the stdio library.) If
this is a problem, there is little we can do unless we can modify the source code of
the program running in the child process to include calls to setbuf() of fflush().

If modifying the source code is not an option, then instead of using a pipe, we
could use a pseudoterminal. A pseudoterminal is an IPC channel that appears to
the process on one end as though it is a terminal. Consequently, the stdio library
line buffers output. We describe pseudoterminals in Chapter 64.

44.7 FIFOs

Semantically, a FIFO is similar to a pipe. The principal difference is that a FIFO has
a name within the file system and is opened in the same way as a regular file. This
allows a FIFO to be used for communication between unrelated processes (e.g., a
client and server).
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Once a FIFO has been opened, we use the same I/O system calls as are used
with pipes and other files (i.e., read(), write(), and close()). Just as with pipes, a FIFO
has a write end and a read end, and data is read from the pipe in the same order as
it is written. This fact gives FIFOs their name: first in, first out. FIFOs are also some-
times known as named pipes.

As with pipes, when all descriptors referring to a FIFO have been closed, any
outstanding data is discarded.

We can create a FIFO from the shell using the mkfifo command:

$ mkfifo [ -m mode ] pathname

The pathname is the name of the FIFO to be created, and the –m option is used to
specify a permission mode in the same way as for the chmod command.

When applied to a FIFO (or pipe), fstat() and stat() return a file type of S_IFIFO
in the st_mode field of the stat structure (Section 15.1). When listed with ls –l, a FIFO
is shown with the type p in the first column, and ls –F appends an the pipe symbol
(|) to the FIFO pathname.

The mkfifo() function creates a new FIFO with the given pathname.

The mode argument specifies the permissions for the new FIFO. These permissions
are specified by ORing the desired combination of constants from Table 15-4, on
page 295. As usual, these permissions are masked against the process umask value
(Section 15.4.6).

Historically, FIFOs were created using the system call mknod(pathname,
S_IFIFO, 0). POSIX.1-1990 specified mkfifo() as a simpler API avoiding the gen-
erality of mknod(), which allows creation of various types of files, including
device files. (SUSv3 specifies mknod(), but weakly, defining only its use for creating
FIFOs.) Most UNIX implementations provide mkfifo() as a library function layered
on top of mknod().

Once a FIFO has been created, any process can open it, subject to the usual file per-
mission checks (Section 15.4.3).

Opening a FIFO has somewhat unusual semantics. Generally, the only sensible
use of a FIFO is to have a reading process and a writing process on each end.
Therefore, by default, opening a FIFO for reading (the open() O_RDONLY flag) blocks
until another process opens the FIFO for writing (the open() O_WRONLY flag). Conversely,
opening the FIFO for writing blocks until another process opens the FIFO for reading.
In other words, opening a FIFO synchronizes the reading and writing processes. If the
opposite end of a FIFO is already open (perhaps because a pair of processes have
already opened each end of the FIFO), then open() succeeds immediately.

Under most UNIX implementations (including Linux), it is possible to circum-
vent the blocking behavior when opening FIFOs by specifying the O_RDWR flag when
opening a FIFO. In this case, open() returns immediately with a file descriptor that

#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode);

Returns 0 on success, or –1 on error
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can be used for reading and writing on the FIFO. Doing this rather subverts the I/O
model for FIFOs, and SUSv3 explicitly notes that opening a FIFO with the O_RDWR
flag is unspecified; therefore, for portability reasons, this technique should be
avoided. In circumstances where we need to prevent blocking when opening a
FIFO, the open() O_NONBLOCK flag provides a standardized method for doing so (refer
to Section 44.9).

Avoiding the use of the O_RDWR flag when opening a FIFO can be desirable for a
another reason. After such an open(), the calling process will never see end-of-
file when reading from the resulting file descriptor, because there will always
be at least one descriptor open for writing to the FIFO—the same descriptor
from which the process is reading.

Using FIFOs and tee(1) to create a dual pipeline

One of the characteristics of shell pipelines is that they are linear; each process in
the pipeline reads data produced by its predecessor and sends data to its successor.
Using FIFOs, it is possible to create a fork in a pipeline, so that a duplicate copy of
the output of a process is sent to another process in addition to its successor in the
pipeline. In order to do this, we need to use the tee command, which writes two
copies of what it reads from its standard input: one to standard output and the
other to the file named in its command-line argument.

Making the file argument to tee a FIFO allows us to have two processes simulta-
neously reading the duplicate output produced by tee. We demonstrate this in the
following shell session, which creates a FIFO named myfifo, starts a background wc
command that opens the FIFO for reading (this will block until the FIFO is opened
for writing), and then executes a pipeline that sends the output of ls to tee, which
both passes the output further down the pipeline to sort and sends it to the myfifo
FIFO. (The –k5n option to sort causes the output of ls to be sorted in increasing
numerical order on the fifth space-delimited field.)

$ mkfifo myfifo
$ wc -l < myfifo &
$ ls -l | tee myfifo | sort -k5n
(Resulting output not shown)

Diagrammatically, the above commands create the situation shown in Figure 44-5.

The tee program is so named because of its shape. We can consider tee as function-
ing similarly to a pipe, but with an additional branch that sends duplicate output.
Diagrammatically, this has the shape of a capital letter T (see Figure 44-5). In addi-
tion to the purpose described here, tee is also useful for debugging pipelines and
for saving the results produced at some intervening point in a complex pipeline.

Figure 44-5: Using a FIFO and tee(1) to create a dual pipeline
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44.8 A Client-Server Application Using FIFOs

In this section, we present a simple client-server application that employs FIFOs for
IPC. The server provides the (trivial) service of assigning unique sequential numbers
to each client that requests them. In the course of discussing this application, we
introduce a few concepts and techniques in server design.

Application overview

In the example application, all clients send their requests to the server using a
single server FIFO. The header file (Listing 44-6) defines the well-known name
(/tmp/seqnum_sv) that the server uses for its FIFO. This name is fixed, so that all cli-
ents know how to contact the server. (In this example application, we create the
FIFOs in the /tmp directory, since this allows us to conveniently run the programs
without change on most systems. However, as noted in Section 38.7, creating files in
publicly writable directories such as /tmp can lead to various security vulnerabilities
and should be avoided in real-world applications.)

In client-server applications, we’ll repeatedly encounter the concept of a well-
known address or name used by a server to make its service visible to clients.
Using a well-known address is one solution to the problem of how clients can
know where to contact a server. Another possible solution is to provide some
kind of name server with which servers can register the names of their ser-
vices. Each client then contacts the name server to obtain the location of the
service it desires. This solution allows the location of servers to be flexible, at
the cost of some extra programming effort. Of course, clients and servers
then need to know where to contact the name server; typically, it resides at a
well-known address.

It is not, however, possible to use a single FIFO to send responses to all clients,
since multiple clients would race to read from the FIFO, and possibly read each
other’s response messages rather than their own. Therefore, each client creates a
unique FIFO that the server uses for delivering the response for that client, and the
server needs to know how to find each client’s FIFO. One possible way to do this is
for the client to generate its FIFO pathname, and then pass the pathname as part of
its request message. Alternatively, the client and server can agree on a convention
for constructing a client FIFO pathname, and, as part of its request, the client can
pass the server the information required to construct the pathname specific to this
client. This latter solution is used in our example. Each client’s FIFO name is built
from a template (CLIENT_FIFO_TEMPLATE) consisting of a pathname containing the client’s
process ID. The inclusion of the process ID provides an easy way of generating a
name unique to this client.

Figure 44-6 shows how this application uses FIFOs for communication between
the client and server processes of our application.

The header file (Listing 44-6) defines the formats for the request messages sent
from clients to the server, and for the response messages sent from the server to clients.
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Figure 44-6: Using FIFOs in a single-server, multiple-client application

Recall that the data in pipes and FIFOs is a byte stream; boundaries between mul-
tiple messages are not preserved. This means that when multiple messages are
being delivered to a single process, such as the server in our example, then the
sender and receiver must agree on some convention for separating the messages.
Various approaches are possible:

Terminate each message with a delimiter character, such as a newline character.
(For an example of this technique, see the readLine() function in Listing 59-1, on
page 1201.) In this case, either the delimiter character must be one that never
appears as part of the message, or we must adopt a convention for escaping the
delimiter if it does occur within the message. For example, if we use a newline
delimiter, then the characters \ plus newline could be used to represent a real
newline character within the message, while \\ could represent a real \. One
drawback of this approach is that the process reading messages must scan data
from the FIFO a byte at a time until the delimiter character is found.

Include a fixed-size header with a length field in each message specifying the number
of bytes in the remaining variable-length component of the message. In this
case, the reading process first reads the header from the FIFO, and then uses
the header’s length field to determine the number of bytes to read for the
remainder of the message. This approach has the advantage of efficiently
allowing messages of arbitrary size, but could lead to problems if a malformed
message (e.g., bad length field) is written to the pipe.

Use fixed-length messages, and have the server always read messages of this fixed
size. This has the advantage of being simple to program. However, it places an
upper limit on our message size and means that some channel capacity is
wasted (since short messages must be padded to the fixed length). Further-
more, if one of the clients accidentally or deliberately sends a message that is
not of the right length, then all subsequent messages will be out of step; in this
situation, the server can’t easily recover.

These three techniques are illustrated in Figure 44-7. Be aware that for each of
these techniques, the total length of each message must be smaller than PIPE_BUF
bytes in order to avoid the possibility of messages being broken up by the kernel
and interleaved with messages from other writers.
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In the three techniques described in the main text, a single channel (FIFO) is
used for all messages from all clients. An alternative is to use a single connection
for each message. The sender opens the communication channel, sends its message,
and then closes the channel. The reading process knows that the message is
complete when it encounters end-of-file. If multiple writers hold a FIFO open,
then this approach is not feasible, because the reader won’t see end-of-file when
one of the writers closes the FIFO. This approach is, however, feasible when
using stream sockets, where a server process creates a unique communication
channel for each incoming client connection.

Figure 44-7: Separating messages in a byte stream

In our example application, we use the third of the techniques described above,
with each client sending messages of a fixed size to the server. This message is
defined by the request structure defined in Listing 44-6. Each request to the server
includes the client’s process ID, which enables the server to construct the name of
the FIFO used by the client to receive a response. The request also contains a field
(seqLen) specifying how many sequence numbers should be allocated to this client.
The response message sent from server to client consists of a single field, seqNum,
which is the starting value of the range of sequence numbers allocated to this client.

Listing 44-6: Header file for fifo_seqnum_server.c and fifo_seqnum_client.c

–––––––––––––––––––––––––––––––––––––––––––––––––––––– pipes/fifo_seqnum.h

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "tlpi_hdr.h"

#define SERVER_FIFO "/tmp/seqnum_sv"
                                /* Well-known name for server's FIFO */
#define CLIENT_FIFO_TEMPLATE "/tmp/seqnum_cl.%ld"
                                /* Template for building client FIFO name */
#define CLIENT_FIFO_NAME_LEN (sizeof(CLIENT_FIFO_TEMPLATE) + 20)
                                /* Space required for client FIFO pathname
                                   (+20 as a generous allowance for the PID) */

struct request {                /* Request (client --> server) */
    pid_t pid;                  /* PID of client */
    int seqLen;                 /* Length of desired sequence */
};

lenlen len

data data data

delimiter character

data

len bytes

data data

data

n bytes
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3) fixed-length messages data data
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struct response {               /* Response (server --> client) */
    int seqNum;                 /* Start of sequence */
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––– pipes/fifo_seqnum.h

Server program

Listing 44-7 is the code for the server. The server performs the following steps:

Create the server’s well-known FIFO q and open the FIFO for reading w. The
server must be run before any clients, so that the server FIFO exists by the time
a client attempts to open it. The server’s open() blocks until the first client
opens the other end of the server FIFO for writing.

Open the server’s FIFO once more e, this time for writing. This will never
block, since the FIFO has already been opened for reading. This second open
is a convenience to ensure that the server doesn’t see end-of-file if all clients
close the write end of the FIFO.

Ignore the SIGPIPE signal r, so that if the server attempts to write to a client
FIFO that doesn’t have a reader, then, rather than being sent a SIGPIPE signal
(which kills a process by default), it receives an EPIPE error from the write()
system call.

Enter a loop that reads and responds to each incoming client request t. To
send the response, the server constructs the name of the client FIFO y and
then opens that FIFO u.

If the server encounters an error in opening the client FIFO, it abandons that
client’s request i.

This is an example of an iterative server, in which the server reads and handles each
client request before going on to handle the next client. An iterative server design
is suitable when each client request can be quickly processed and responded to, so
that other client requests are not delayed. An alternative design is a concurrent server, in
which the main server process employs a separate child process (or thread) to handle
each client request. We discuss server design further in Chapter 60.

Listing 44-7: An iterative server using FIFOs

–––––––––––––––––––––––––––––––––––––––––––––––– pipes/fifo_seqnum_server.c

#include <signal.h>
#include "fifo_seqnum.h"

int
main(int argc, char *argv[])
{
    int serverFd, dummyFd, clientFd;
    char clientFifo[CLIENT_FIFO_NAME_LEN];
    struct request req;
    struct response resp;
    int seqNum = 0;                     /* This is our "service" */
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    /* Create well-known FIFO, and open it for reading */

    umask(0);                           /* So we get the permissions we want */
q     if (mkfifo(SERVER_FIFO, S_IRUSR | S_IWUSR | S_IWGRP) == -1

            && errno != EEXIST)
        errExit("mkfifo %s", SERVER_FIFO);

w     serverFd = open(SERVER_FIFO, O_RDONLY);
    if (serverFd == -1)
        errExit("open %s", SERVER_FIFO);

    /* Open an extra write descriptor, so that we never see EOF */

e     dummyFd = open(SERVER_FIFO, O_WRONLY);
    if (dummyFd == -1)
        errExit("open %s", SERVER_FIFO);

r     if (signal(SIGPIPE, SIG_IGN) == SIG_ERR)
        errExit("signal");

t     for (;;) {                          /* Read requests and send responses */
        if (read(serverFd, &req, sizeof(struct request))
                != sizeof(struct request)) {
            fprintf(stderr, "Error reading request; discarding\n");
            continue;                   /* Either partial read or error */
        }

        /* Open client FIFO (previously created by client) */

y         snprintf(clientFifo, CLIENT_FIFO_NAME_LEN, CLIENT_FIFO_TEMPLATE,
                (long) req.pid);

u         clientFd = open(clientFifo, O_WRONLY);
        if (clientFd == -1) {           /* Open failed, give up on client */
            errMsg("open %s", clientFifo);

i             continue;
        }

        /* Send response and close FIFO */

        resp.seqNum = seqNum;
        if (write(clientFd, &resp, sizeof(struct response))
                != sizeof(struct response))
            fprintf(stderr, "Error writing to FIFO %s\n", clientFifo);
        if (close(clientFd) == -1)
            errMsg("close");

        seqNum += req.seqLen;           /* Update our sequence number */
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––– pipes/fifo_seqnum_server.c
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Client program

Listing 44-8 is the code for the client. The client performs the following steps:

Create a FIFO to be used for receiving a response from the server w. This is
done before sending the request, in order to ensure that the FIFO exists by the
time the server attempts to open it and send a response message.

Construct a message for the server containing the client’s process ID and a
number (taken from an optional command-line argument) specifying the
length of the sequence that the client wishes the server to assign to it r. (If no
command-line argument is supplied, the default sequence length is 1.)

Open the server FIFO t and send the message to the server y.

Open the client FIFO u, and read and print the server’s response i.

The only other detail of note is the exit handler q, established with atexit() e,
which ensures that the client’s FIFO is deleted when the process exits. Alterna-
tively, we could have simply placed an unlink() call immediately after the open() of
the client FIFO. This would work because, at that point, after they have both per-
formed blocking open() calls, the server and the client would each hold open file
descriptors for the FIFO, and removing the FIFO name from the file system
doesn’t affect these descriptors or the open file descriptions to which they refer.

Here is an example of what we see when we run the client and server programs:

$ ./fifo_seqnum_server &
[1] 5066
$ ./fifo_seqnum_client 3                Request a sequence of three numbers
0                                       Assigned sequence begins at 0
$ ./fifo_seqnum_client 2                Request a sequence of two numbers
3                                       Assigned sequence begins at 3
$ ./fifo_seqnum_client                  Request a single number
5

Listing 44-8: Client for the sequence-number server

–––––––––––––––––––––––––––––––––––––––––––––––– pipes/fifo_seqnum_client.c

#include "fifo_seqnum.h"

static char clientFifo[CLIENT_FIFO_NAME_LEN];

static void             /* Invoked on exit to delete client FIFO */
q removeFifo(void)

{
    unlink(clientFifo);
}

int
main(int argc, char *argv[])
{
    int serverFd, clientFd;
    struct request req;
    struct response resp;
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    if (argc > 1 && strcmp(argv[1], "--help") == 0)
        usageErr("%s [seq-len...]\n", argv[0]);

    /* Create our FIFO (before sending request, to avoid a race) */

    umask(0);                   /* So we get the permissions we want */
w     snprintf(clientFifo, CLIENT_FIFO_NAME_LEN, CLIENT_FIFO_TEMPLATE,

            (long) getpid());
    if (mkfifo(clientFifo, S_IRUSR | S_IWUSR | S_IWGRP) == -1
                && errno != EEXIST)
        errExit("mkfifo %s", clientFifo);

e     if (atexit(removeFifo) != 0)
        errExit("atexit");

    /* Construct request message, open server FIFO, and send request */

r     req.pid = getpid();
    req.seqLen = (argc > 1) ? getInt(argv[1], GN_GT_0, "seq-len") : 1;

t     serverFd = open(SERVER_FIFO, O_WRONLY);
    if (serverFd == -1)
        errExit("open %s", SERVER_FIFO);

y     if (write(serverFd, &req, sizeof(struct request)) !=
            sizeof(struct request))
        fatal("Can't write to server");

    /* Open our FIFO, read and display response */

u     clientFd = open(clientFifo, O_RDONLY);
    if (clientFd == -1)
        errExit("open %s", clientFifo);

i     if (read(clientFd, &resp, sizeof(struct response))
            != sizeof(struct response))
        fatal("Can't read response from server");

    printf("%d\n", resp.seqNum);
    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––– pipes/fifo_seqnum_client.c

44.9 Nonblocking I/O

As noted earlier, when a process opens one end of a FIFO, it blocks if the other end
of the FIFO has not yet been opened. Sometimes, it is desirable not to block, and
for this purpose, the O_NONBLOCK flag can be specified when calling open():

fd = open("fifopath", O_RDONLY | O_NONBLOCK);
if (fd == -1)
    errExit("open");
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If the other end of the FIFO is already open, then the O_NONBLOCK flag has no effect
on the open() call—it successfully opens the FIFO immediately, as usual. The
O_NONBLOCK flag changes things only if the other end of the FIFO is not yet open, and
the effect depends on whether we are opening the FIFO for reading or writing:

If the FIFO is being opened for reading, and no process currently has the write
end of the FIFO open, then the open() call succeeds immediately ( just as
though the other end of the FIFO was already open).

If the FIFO is being opened FIFO for writing, and the other end of the FIFO is
not already open for reading, then open() fails, setting errno to ENXIO.

The asymmetry of the O_NONBLOCK flag depending on whether the FIFO is being
opened for reading or for writing can be explained as follows. It is okay to open a
FIFO for reading when there is no writer at the other end of the FIFO, since any
attempt to read from the FIFO simply returns no data. However, attempting to
write to a FIFO for which there is no reader would result in the generation of the
SIGPIPE signal and an EPIPE error from write().

Table 44-1 summarizes the semantics of opening a FIFO, including the effects
of O_NONBLOCK described above.

Using the O_NONBLOCK flag when opening a FIFO serves two main purposes:

It allows a single process to open both ends of a FIFO. The process first opens
the FIFO for reading specifying O_NONBLOCK, and then opens the FIFO for writing.

It prevents deadlocks between processes opening two FIFOs.

A deadlock is a situation where two or more process are blocked because each is
waiting on the other process(es) to complete some action. The two processes
shown in Figure 44-8 are deadlocked. Each process is blocked waiting to open a
FIFO for reading. This blocking would not happen if each process could perform
its second step (opening the other FIFO for writing). This particular deadlock
problem could be solved by reversing the order of steps 1 and 2 in process Y, while
leaving the order in process X unchanged, or vice versa. However, such an arrange-
ment of steps may not be easy to achieve in some applications. Instead, we can
resolve the problem by having either process, or both, specify the O_NONBLOCK flag
when opening the FIFOs for reading.

Table 44-1: Semantics of open() for a FIFO

Type of open() Result of open()

open for additional flags other end of FIFO open other end of FIFO closed

reading
none (blocking) succeeds immediately blocks
O_NONBLOCK succeeds immediately succeeds immediately

writing
none (blocking) succeeds immediately blocks
O_NONBLOCK succeeds immediately fails (ENXIO)
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Figure 44-8: Deadlock between processes opening two FIFOs

Nonblocking read() and write()

The O_NONBLOCK flag affects not only the semantics of open() but also—because the
flag then remains set for the open file description—the semantics of subsequent
read() and write() calls. We describe these effects in the next section.

Sometimes, we need to change the state of the O_NONBLOCK flag for a FIFO (or
another type of file) that is already open. Scenarios where this need may arise
include the following:

We opened a FIFO using O_NONBLOCK, but we want subsequent read() and write()
calls to operate in blocking mode.

We want to enable nonblocking mode for a file descriptor that was returned by
pipe(). More generally, we might want to change the nonblocking status of any
file descriptor that was obtained other than from a call to open()—for example,
one of the three standard descriptors that are automatically opened for each
new program run by the shell or a file descriptor returned by socket().

For some application-specific purpose, we need to switch the setting of the
O_NONBLOCK setting of a file descriptor on and off.

For these purposes, we can use fcntl() to enable or disable the O_NONBLOCK open file
status flag. To enable the flag, we write the following (omitting error checking):

int flags;

flags = fcntl(fd, F_GETFL);       /* Fetch open files status flags */
flags |= O_NONBLOCK;              /* Enable O_NONBLOCK bit */
fcntl(fd, F_SETFL, flags);        /* Update open files status flags */

And to disable it, we write the following:

flags = fcntl(fd, F_GETFL);
flags &= ~O_NONBLOCK;             /* Disable O_NONBLOCK bit */
fcntl(fd, F_SETFL, flags);

44.10 Semantics of read() and write() on Pipes and FIFOs

Table 44-2 summarizes the operation of read() for pipes and FIFOs, and includes
the effect of the O_NONBLOCK flag.

The only difference between blocking and nonblocking reads occurs when no
data is present and the write end is open. In this case, a normal read() blocks, while
a nonblocking read() fails with the error EAGAIN.

Process X

1. Open FIFO A for reading

2. Open FIFO B for writing
blocks

Process Y

1. Open FIFO B for reading

2. Open FIFO A for writing
blocks
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The impact of the O_NONBLOCK flag when writing to a pipe or FIFO is made complex
by interactions with the PIPE_BUF limit. The write() behavior is summarized in
Table 44-3.

The O_NONBLOCK flag causes a write() on a pipe or FIFO to fail (with the error EAGAIN)
in any case where data can’t be transferred immediately. This means that if we are
writing up to PIPE_BUF bytes, then the write() will fail if there is not sufficient space in
the pipe or FIFO, because the kernel can’t complete the operation immediately
and can’t perform a partial write, since that would break the requirement that
writes of up to PIPE_BUF bytes are atomic.

When writing more than PIPE_BUF bytes at a time, a write is not required to be
atomic. For this reason, write() transfers as many bytes as possible (a partial write)
to fill up the pipe or FIFO. In this case, the return value from write() is the number
of bytes actually transferred, and the caller must retry later in order to write the
remaining bytes. However, if the pipe or FIFO is full, so that not even one byte can
be transferred, then write() fails with the error EAGAIN.

44.11 Summary

Pipes were the first method of IPC under the UNIX system, and they are used fre-
quently by the shell, as well as in other applications. A pipe is a unidirectional, limited-
capacity byte stream that can be used for communication between related processes.
Although blocks of data of any size can be written to a pipe, only writes that do not
exceed PIPE_BUF bytes are guaranteed to be atomic. As well as being used as a
method of IPC, pipes can also be used for process synchronization.

Table 44-2: Semantics of reading n bytes from a pipe or FIFO containing p bytes

O_NONBLOCK 
enabled?

Data bytes available in pipe or FIFO (p)

p = 0, write end open p = 0, write end closed p < n p >= n

No block return 0 (EOF) read p bytes read n bytes

Yes fail (EAGAIN) return 0 (EOF) read p bytes read n bytes

Table 44-3: Semantics of writing n bytes to a pipe or FIFO

O_NONBLOCK 
enabled?

Read end open Read end 
closedn <= PIPE_BUF n > PIPE_BUF

No

Atomically write n bytes; 
may block until sufficient 
data is read for write() to 
be performed

Write n bytes; may block until 
sufficient data read for write() to 
complete; data may be interleaved 
with writes by other processes

SIGPIPE
+
EPIPE

Yes

If sufficient space is 
available to immediately 
write n bytes, then write() 
succeeds atomically; 
otherwise, it fails (EAGAIN)

If there is sufficient space to 
immediately write some bytes, 
then write between 1 and n bytes 
(which may be interleaved with 
data written by other processes); 
otherwise, write() fails (EAGAIN)
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When using pipes, we must be careful to close unused descriptors in order to
ensure that reading processes detect end-of-file and writing processes receive the
SIGPIPE signal or the EPIPE error. (Usually, it is easiest to have the application writing
to a pipe ignore SIGPIPE and detect a “broken” pipe via the EPIPE error.)

The popen() and pclose() functions allow a program to transfer data to or from a
standard shell command, without needing to handle the details of creating a pipe,
execing a shell, and closing unused file descriptors.

FIFOs operate in exactly the same way as pipes, except that they are created
using mkfifo(), have a name in the file system, and can be opened by any process
with appropriate permissions. By default, opening a FIFO for reading blocks until
another process opens the FIFO for writing, and vice versa.

In the course of this chapter, we looked at a number of related topics. First, we
saw how to duplicate file descriptors in such a manner that the standard input or
output of a filter can be bound to a pipe. While presenting a client-server example
using FIFOs, we touched on a number of topics in client-server design, including
the use of a well-known address for a server and iterative versus concurrent server
design. In developing the example FIFO application, we noted that, although data
transmitted through a pipe is a byte stream, it is sometimes useful for communicat-
ing processes to package the data into messages, and we looked at various ways in
which this could be accomplished.

Finally, we noted the effect of the O_NONBLOCK (nonblocking I/O) flag when
opening and performing I/O on a FIFO. The O_NONBLOCK flag is useful if we don’t
want to block while opening a FIFO. It is also useful if we don’t want reads to block
if no data is available, or writes to block if there is insufficient space within a pipe
or FIFO.

Further information

The implementation of pipes is discussed in [Bach, 1986] and [Bovet & Cesati, 2005].
Useful details about pipes and FIFOs can also be found in [Vahalia, 1996].

44.12 Exercises

44-1. Write a program that uses two pipes to enable bidirectional communication
between a parent and child process. The parent process should loop reading a
block of text from standard input and use one of the pipes to send the text to the
child, which converts it to uppercase and sends it back to the parent via the other
pipe. The parent reads the data coming back from the child and echoes it on
standard output before continuing around the loop once more.

44-2. Implement popen() and pclose(). Although these functions are simplified by not
requiring the signal handling employed in the implementation of system()
(Section 27.7), you will need to be careful to correctly bind the pipe ends to file
streams in each process, and to ensure that all unused descriptors referring to the
pipe ends are closed. Since children created by multiple calls to popen() may be
running at one time, you will need to maintain a data structure that associates the
file stream pointers allocated by popen() with the corresponding child process IDs.
(If using an array for this purpose, the value returned by the fileno() function, which
obtains the file descriptor corresponding to a file stream, can be used to index the
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array.) Obtaining the correct process ID from this structure will allow pclose() to
select the child upon which to wait. This structure will also assist with the SUSv3
requirement that any still-open file streams created by earlier calls to popen() must
be closed in the new child process.

44-3. The server in Listing 44-7 (fifo_seqnum_server.c) always starts assigning sequence
numbers from 0 each time it is started. Modify the program to use a backup file
that is updated each time a sequence number is assigned. (The open() O_SYNC flag,
described in Section 4.3.1, may be useful.) At startup, the program should check
for the existence of this file, and if it is present, use the value it contains to initialize
the sequence number. If the backup file can’t be found on startup, the program
should create a new file and start assigning sequence numbers beginning at 0. (An
alternative to this technique would be to use memory-mapped files, described in
Chapter 49.)

44-4. Add code to the server in Listing 44-7 (fifo_seqnum_server.c) so that if the program
receives the SIGINT or SIGTERM signals, it removes the server FIFO and terminates.

44-5. The server in Listing 44-7 (fifo_seqnum_server.c) performs a second O_WRONLY open of
the FIFO so that it never sees end-of-file when reading from the reading descriptor
(serverFd) of the FIFO. Instead of doing this, an alternative approach could be tried:
whenever the server sees end-of-file on the reading descriptor, it closes the
descriptor, and then once more opens the FIFO for reading. (This open would
block until the next client opened the FIFO for writing.) What is wrong with this
approach?

44-6. The server in Listing 44-7 (fifo_seqnum_server.c) assumes that the client process is
well behaved. If a misbehaving client created a client FIFO and sent a request to the
server, but did not open its FIFO, then the server’s attempt to open the client FIFO
would block, and other client’s requests would be indefinitely delayed. (If done
maliciously, this would constitute a denial-of-service attack.) Devise a scheme to deal
with this problem. Extend the server (and possibly the client in Listing 44-8)
accordingly.

44-7. Write programs to verify the operation of nonblocking opens and nonblocking I/O
on FIFOs (see Section 44.9).
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I N T R O D U C T I O N  T O  S Y S T E M  V  I P C

System V IPC is the label used to refer to three different mechanisms for interpro-
cess communication:

Message queues can be used to pass messages between processes. Message
queues are somewhat like pipes, but differ in two important respects. First,
message boundaries are preserved, so that readers and writers communicate in
units of messages, rather than via an undelimited byte stream. Second, each
message includes an integer type field, and it is possible to select messages by
type, rather than reading them in the order in which they were written.

Semaphores permit multiple processes to synchronize their actions. A semaphore
is a kernel-maintained integer value that is visible to all processes that have the
necessary permissions. A process indicates to its peers that it is performing some
action by making an appropriate modification to the value of the semaphore.

Shared memory enables multiple processes to share the same region (called a
segment) of memory (i.e., the same page frames are mapped into the virtual
memory of multiple processes). Since access to user-space memory is a fast
operation, shared memory is one of the quickest methods of IPC: once one
process has updated the shared memory, the change is immediately visible to
other processes sharing the same segment.

Although these three IPC mechanisms are quite diverse in function, there are good
reasons for discussing them together. One reason is that they were developed



together, first appearing in the late 1970s in Columbus UNIX. This was a Bell-internal
UNIX implementation used for database and transaction-processing systems for
telephone company record keeping and administration. Around 1983, these IPC
mechanisms made their way into mainstream UNIX by appearing in System V—
hence the appellation System V IPC.

A more significant reason for discussing the System V IPC mechanisms
together is that their programming interfaces share a number of common charac-
teristics, so that many of the same concepts apply to all of these mechanisms.

Because System V IPC is required by SUSv3 for XSI conformance, it is some-
times alternatively labeled XSI IPC.

This chapter provides an overview of the System V IPC mechanisms and details
those features that are common to all three mechanisms. The three mechanisms
are then discussed individually in the following chapters.

System V IPC is a kernel option that is configured via the CONFIG_SYSVIPC option.

45.1 API Overview

Table 45-1 summarizes the header files and system calls used for working with
System V IPC objects.

Some implementations require the inclusion of <sys/types.h> before including
the header files shown in Table 45-1. Some older UNIX implementations may also
require the inclusion of <sys/ipc.h>. (No versions of the Single UNIX Specification
required these header files.)

On most hardware architectures on which Linux is implemented, a single system
call (ipc(2)) acts as the entry point to the kernel for all System V IPC opera-
tions, and all of the calls listed in Table 45-1 are actually implemented as
library functions layered on top of this system call. (Two exceptions to this
arrangement are Alpha and IA-64, where the functions listed in the table really
are implemented as individual system calls.) This somewhat unusual approach
is an artifact of the initial implementation of System V IPC as a loadable kernel
module. Although they are actually library functions on most Linux architec-
tures, throughout this chapter, we’ll refer to the functions in Table 45-1 as sys-
tem calls. Only implementers of C libraries need to use ipc(2); any other use in
applications is not portable.

Table 45-1: Summary of programming interfaces for System V IPC objects

Interface Message queues Semaphores Shared memory

Header file <sys/msg.h> <sys/sem.h> <sys/shm.h>

Associated data structure msqid_ds semid_ds shmid_ds
Create/open object msgget() semget() shmget() + shmat()
Close object (none) (none) shmdt()
Control operations msgctl() semctl() shmctl()
Performing IPC msgsnd()—write message

msgrcv()—read message
semop()—test/adjust 
semaphore

access memory in 
shared region
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Creating and opening a System V IPC object

Each System V IPC mechanism has an associated get system call (msgget(), semget(),
or shmget()), which is analogous to the open() system call used for files. Given an
integer key (analogous to a filename), the get call either:

creates a new IPC object with the given key and returns a unique identifier for
that object; or

returns the identifier of an existing IPC object with the given key.

We’ll (loosely) term the second use opening an existing IPC object. In this case, all
that the get call is doing is converting one number (the key) into another number
(the identifier).

In the context of System V IPC, the object doesn’t carry any of the connotations
associated with object-oriented programming. The term merely serves to distin-
guish the System V IPC mechanisms from files. Although there are several
analogies between files and System V IPC objects, the use of IPC objects differs in
several important respects from the standard UNIX file I/O model, and this is
a source of some complications when using the System V IPC mechanisms.

An IPC identifier is analogous to a file descriptor in that it is used in all subsequent
system calls to refer to the IPC object. There is, however, an important semantic
difference. Whereas a file descriptor is a process attribute, an IPC identifier is a
property of the object itself and is visible system-wide. All processes accessing the
same object use the same identifier. This means that if we know an IPC object
already exists, we can skip the get call, provided we have some other means of
knowing the identifier of the object. For example, the process that created the
object might write the identifier to a file that can then be read by other processes.

The following example shows how to create a System V message queue:

id = msgget(key, IPC_CREAT | S_IRUSR | S_IWUSR);
if (id == -1)
    errExit("msgget");

As with all of the get calls, the key is the first argument, and the identifier is
returned as the function result. We specify the permissions to be placed on the new
object as part of the final (flags) argument to the get call, using the same bit-mask con-
stants as are used for files (Table 15-4, on page 295). In the above example, permission
is granted to just the owner of the object to read and write messages on the queue.

The process umask (Section 15.4.6) is not applied to the permissions placed on
a newly created IPC object.

Several UNIX implementations define the following bit-mask constants for IPC
permissions: MSG_R, MSG_W, SEM_R, SEM_A, SHM_R, and SHM_W. These correspond to
owner (user) read and write permissions for each IPC mechanism. To get the cor-
responding group and other permission bit masks, these constants can be right-
shifted 3 and 6 bits. These constants are not specified by SUSv3, which employs
the same bit masks as are used for files, and are not defined in glibc headers.

Each process that wants to access the same IPC object performs a get call specifying
the same key in order to obtain the same identifier for that object. We consider
how to choose a key for an application in Section 45.2.
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If no IPC object corresponding to the given key currently exists, and IPC_CREAT
(analogous to the open() O_CREAT flag) was specified as part of the flags argument,
then the get call creates a new IPC object. If no corresponding IPC object currently
exists, and IPC_CREAT was not specified (and the key was not specified as IPC_PRIVATE,
described in Section 45.2), then the get call fails with the error ENOENT.

A process can guarantee that it is the one creating an IPC object by specifying
the IPC_EXCL flag (analogous to the open() O_EXCL flag). If IPC_EXCL is specified and the
IPC object corresponding to the given key already exists, then the get call fails with
the error EEXIST.

IPC object deletion and object persistence

The ctl system call (msgctl(), semctl(), shmctl()) for each System V IPC mechanism
performs a range of control operations for the object. Many of these operations are
specific to the IPC mechanism, but a few are generic to all IPC mechanisms. An
example of a generic control operation is IPC_RMID, which is used to delete an object.
For example, we can use the following call to delete a shared memory object:

if (shmctl(id, IPC_RMID, NULL) == -1)
    errExit("shmctl");

For message queues and semaphores, deletion of the IPC object is immediate, and
any information contained within the object is destroyed, regardless of whether any
other process is still using the object. (This is one of a number of points where the
operation of System IPC objects is not analogous to files. In Section 18.3, we saw
that if we remove the last link to a file, then the file is actually removed only after all
open file descriptors referring to it have been closed.)

Deletion of shared memory objects occurs differently. Following the shmctl(id,
IPC_RMID, NULL) call, the shared memory segment is removed only after all pro-
cesses using the segment detach it (using shmdt()). (This is much closer to the situa-
tion with file deletion.)

System V IPC objects have kernel persistence. Once created, an object contin-
ues to exist until it is explicitly deleted or the system is shut down. This property of
System V IPC objects can be advantageous. It is possible for a process to create an
object, modify its state, and then exit, leaving the object to be accessed by some
process that is started at a later time. It can also be disadvantageous for the follow-
ing reasons:

There are system-imposed limits on the number of IPC objects of each type. If
we fail to remove unused objects, we may eventually encounter application
errors as a result of reaching these limits.

When deleting a message queue or semaphore object, a multiprocess application
may not be able to easily determine which will be the last process requiring
access to the object, and thus when the object can be safely deleted. The problem
is that these objects are connectionless—the kernel doesn’t keep a record of
which processes have the object open. (This disadvantage doesn’t apply for
shared memory segments, because of their different deletion semantics,
described above.)
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45.2 IPC Keys

System V IPC keys are integer values represented using the data type key_t. The IPC
get calls translate a key into the corresponding integer IPC identifier. These calls
guarantee that if we create a new IPC object, then that object will have a unique
identifier, and that if we specify the key of an existing object, then we’ll always
obtain the (same) identifier for that object. (Internally, the kernel maintains data
structures mapping keys to identifiers for each IPC mechanism, as described in
Section 45.5.)

So, how do we provide a unique key—one that guarantees that we won’t acci-
dentally obtain the identifier of an existing IPC object used by some other applica-
tion? There are three possibilities:

Randomly choose some integer key value, which is typically placed in a header
file included by all programs using the IPC object. The difficulty with this
approach is that we may accidentally choose a value used by another application.

Specify the IPC_PRIVATE constant as the key value to the get call when creating the
IPC object, which always results in the creation of a new IPC object that is guar-
anteed to have a unique key.

Employ the ftok() function to generate a (likely unique) key.

Using either IPC_PRIVATE or ftok() is the usual technique.

Generating a unique key with IPC_PRIVATE

When creating a new IPC object, the key may be specified as IPC_PRIVATE, as follows:

id = msgget(IPC_PRIVATE, S_IRUSR | S_IWUSR);

In this case, it is not necessary to specify the IPC_CREAT or IPC_EXCL flags.
This technique is especially useful in multiprocess applications where the parent

process creates the IPC object prior to performing a fork(), with the result that the
child inherits the identifier of the IPC object. We can also use this technique in client-
server applications (i.e., those involving unrelated processes), but the clients must
have a means of obtaining the identifiers of the IPC objects created by the server
(and vice versa). For example, after creating an IPC object, the server could then
write its identifier to a file that can be read by the clients.

Generating a unique key with ftok()

The ftok() (file to key) function returns a key value suitable for use in a subsequent
call to one of the System V IPC get system calls.

#include <sys/ipc.h>

key_t ftok(char *pathname, int proj);

Returns integer key on success, or –1 on error
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This key value is generated from the supplied pathname and proj value using an
implementation-defined algorithm. SUSv3 makes the following requirements:

Only the least significant 8 bits of proj are employed by the algorithm.

The application must ensure that the pathname refers to an existing file to
which stat() can be applied (otherwise, ftok() returns –1).

If different pathnames (links) referring to the same file (i.e., i-node) are sup-
plied to ftok() with the same proj value, the same key value must be returned.

To put things another way, ftok() uses the i-node number rather than the name of
the file to generate the key value. (Because the ftok() algorithm depends on the i-node
number, the file should not be removed and re-created during the life of the applica-
tion, since it is likely that the file will be re-created with a different i-node number.)
The purpose of the proj value is simply to allow us to generate multiple keys from
the same file, which is useful when an application needs to create multiple IPC
objects of the same type. Historically, the proj argument was of type char, and it is
often specified as such in calls to ftok().

SUSv3 leaves the behavior of ftok() unspecified if proj is 0. Under AIX 5.1, ftok()
returns –1 if proj is specified as 0. On Linux, this value has no special meaning.
Nevertheless, portable applications should avoid specifying proj as 0; this still
leaves a choice of 255 other values.

Normally, the pathname given to ftok() refers to one of the files or directories that
forms part of, or is created by, the application, and cooperating processes pass the
same pathname to ftok().

On Linux, the key returned by ftok() is a 32-bit value, created by taking the least
significant 8 bits from the proj argument, the least significant 8 bits of the device
number (i.e., the minor device number) of the device containing the file system in
which the file resides, and the least significant 16 bits of the i-node number of the
file referred to by pathname. (The last two pieces of information are obtained by
calling stat() on pathname.)

The glibc ftok() algorithm is similar to that employed on other UNIX implemen-
tations, and suffers a similar limitation: there is a (very small) possibility that two
different files could yield the same key value. This can occur because there is a chance
that the least significant bits of an i-node number could be the same for two files on
different file systems, coupled with the possibility that two different disk devices
(on a system with multiple disk controllers) could have the same minor device num-
ber. However, in practice, the possibility of colliding key values for different appli-
cations is small enough that the use of ftok() for key generation is a viable
technique.

A typical usage of ftok() is the following:

key_t key;
int id;

key = ftok("/mydir/myfile", 'x');
if (key == -1)
    errExit("ftok");
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id = msgget(key, IPC_CREAT | S_IRUSR | S_IWUSR);
if (id == -1)
    errExit("msgget");

45.3 Associated Data Structure and Object Permissions

The kernel maintains an associated data structure for each instance of a System V
IPC object. The form of this data structure varies according to the IPC mechanism
(message queue, semaphore, or shared memory) and is defined in the correspond-
ing header file for the IPC mechanism (see Table 45-1). We discuss mechanism-
specific details of each of these data structures in the following chapters.

The associated data structure for an IPC object is initialized when the object is
created via the appropriate get system call. Once the object has been created, a pro-
gram can obtain a copy of this data structure using the appropriate ctl system call,
by specifying an operation type of IPC_STAT. Conversely, some parts of the data
structure can be modified using the IPC_SET operation.

As well as data specific to the type of IPC object, the associated data structure
for all three IPC mechanisms includes a substructure, ipc_perm, that holds informa-
tion used to determine permissions granted on the object:

struct ipc_perm {
    key_t          __key;           /* Key, as supplied to 'get' call */
    uid_t          uid;             /* Owner's user ID */
    gid_t          gid;             /* Owner's group ID */
    uid_t          cuid;            /* Creator's user ID */
    gid_t          cgid;            /* Creator's group ID */
    unsigned short mode;            /* Permissions */
    unsigned short __seq;           /* Sequence number */
};

SUSv3 mandates all of the ipc_perm fields shown here, except __key and __seq. How-
ever, most UNIX implementations provide some version of these fields.

The uid and gid fields specify the ownership of the IPC object. The cuid and
cgid fields hold the user and group IDs of the process that created the object. Ini-
tially, the corresponding user and creator ID fields have the same values, which are
taken from the effective IDs of the calling processes. The creator IDs are immutable,
but the owner IDs can be changed via the IPC_SET operation. The following code
demonstrates how to change the uid field for a shared memory segment (the associated
data structure is of type shmid_ds):

struct shmid_ds shmds;

if (shmctl(id, IPC_STAT, &shmds) == -1)     /* Fetch from kernel */
    errExit("shmctl");
shmds.shm_perm.uid = newuid;                /* Change owner UID */
if (shmctl(id, IPC_SET, &shmds) == -1)      /* Update kernel copy */
    errExit("shmctl");

The mode field of the ipc_perm substructure holds the permissions mask for the IPC
object. These permissions are initialized using the lower 9 bits of the flags specified
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in the get system call used to create the object, but can be changed subsequently
using the IPC_SET operation.

As with files, permissions are broken into three categories—owner (also known
as user), group, and other—and it is possible to specify different permissions for each
category. There are, however, some notable differences from the scheme used for files:

Only read and write permissions are meaningful for IPC objects. (For sema-
phores, write permission is commonly referred to as alter permission.) Execute
permission is meaningless, and is ignored when performing most access
checks.

Permission checks are made according to a process’s effective user ID, effective
group IDs, and supplementary group IDs. (This contrasts with file-system per-
mission checks on Linux, which are performed using the process’s file-system
IDs, as described in Section 9.5.)

The precise rules governing the permissions a process is granted on an IPC object
are as follows:

1. If the process is privileged (CAP_IPC_OWNER), then all permissions are granted on
the IPC object.

2. If the effective user ID of the process matches either the owner or the creator
user ID of the IPC object, then the process is granted the permissions defined
for the owner (user) of the object.

3. If the effective group ID or any of the supplementary group IDs of the process
match either the owner group ID or the creator group ID of the IPC object,
then the process is granted the group permissions defined for the object.

4. Otherwise, the process is granted the permissions defined for other.

In the kernel code, the above tests are constructed so that the test to see
whether a process is privileged is performed only if the process is not granted
the permissions it needs via one of the other tests. This is done to avoid unnec-
essarily setting the ASU process accounting flag, which indicates that the process
made use of superuser privileges (Section 28.1).

Note that neither the use of the IPC_PRIVATE key value nor the presence of
IPC_EXCL flag has any bearing on which processes may access an IPC object;
such access is determined solely by the ownership and permissions of the object.

How read and write permissions are interpreted for an object, and whether they
are required, depend on the type of object and on the operation being performed.

When a get call is performed to obtain the identifier of an existing IPC object,
an initial permission check is made to ascertain whether the permissions specified
in the flags argument are compatible with those on the existing object. If not, then
the get call fails with the error EACCES. (Except as otherwise noted, this error code is
also returned when permissions are denied in each of the cases listed below.) To
illustrate, consider the example of two different users in the same group, with one
user creating a message queue using the following call:

msgget(key, IPC_CREAT | S_IRUSR | S_IWUSR | S_IRGRP);
                        /* rw-r----- */
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An attempt by the second user to obtain an identifier for this message queue using
the following call would fail, since the user is not permitted write access to the mes-
sage queue:

msgget(key, S_IRUSR | S_IWUSR);

The second user could bypass this check by specifying 0 for the second argument
of the msgget() call, in which case an error would occur only when the program
attempted an operation requiring write permission on the IPC object (e.g., writing
a message with msgsnd()).

The get call represents the one case where execute permission is not ignored.
Even though it has no meaning for IPC objects, if execute permission is
requested in a get call for an existing object, then a check is made to see if that
permission is granted.

The permissions required for other common operations are as follows:

To retrieve information from the object (e.g., to read a message from a message
queue, obtain the value of a semaphore, or attach a shared memory segment
for read access) requires read permission.

To update information within the object (e.g., to write a message to a message
queue, change the value of a semaphore, or attach a shared memory segment
for write access) requires write permission.

To obtain a copy of the associated data structure for an IPC object (the IPC_STAT
ctl operation) requires read permission.

To remove an IPC object (the IPC_RMID ctl operation) or change its associated
data structure (the IPC_SET ctl operation) requires neither read nor write per-
mission. Rather, the calling process must either be privileged (CAP_SYS_ADMIN) or
have an effective user ID matching either the owner user ID or the creator user
ID of the object (otherwise, the error EPERM results).

It is possible to set the permissions on an IPC object so that the owner or creator
can no longer use IPC_STAT to obtain the associated data structure containing
the object permissions (which means that the object won’t be displayed by the
ipcs(1) command described in Section 45.6), although IPC_SET can still be used
to change them.

Various other mechanism-specific operations require read or write permission, or
the CAP_IPC_OWNER capability. We note the required permissions in the following
chapters as the operations are described.

45.4 IPC Identifiers and Client-Server Applications

In client-server applications, the server typically creates the System V IPC objects,
while the client simply accesses them. In other words, the server performs an IPC
get call specifying the flag IPC_CREAT, while the client omits this flag in its get call.
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Suppose a client engages in an extended dialogue with a server, with multiple
IPC operations being performed by each process (e.g., multiple messages
exchanged, a sequence of semaphore operations, or multiple updates to shared
memory). What happens if the server process crashes or is deliberately halted and
then restarted? At this point, it would make no sense to blindly reuse the existing
IPC object created by the previous server process, since the new server process has
no knowledge of the historical information associated with the current state of the
IPC object. (For example, there may be a secondary request within a message
queue that was sent by a client in response to an earlier message from the old
server process.)

In such a scenario, the only option for the server may be to abandon all existing
clients, delete the IPC objects created by the previous server process, and create new
instances of the IPC objects. A newly started server handles the possibility that a pre-
vious instance of the server terminated prematurely by first trying to create an IPC
object by specifying both the IPC_CREAT and the IPC_EXCL flags within the get call. If
the get call fails because an object with the specified key already exists, then the
server assumes the object was created by an old server process; it therefore uses the
IPC_RMID ctl operation to delete the object, and once more performs a get call to create
the object. (This may be combined with other steps to ensure that another server
process is not currently running, such as those described in Section 55.6.) For a
message queue, these steps might appear as shown in Listing 45-1.

Listing 45-1: Cleanup of IPC objects within a server

––––––––––––––––––––––––––––––––––––––––––––––––– svipc/svmsg_demo_server.c

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <sys/stat.h>
#include "tlpi_hdr.h"

#define KEY_FILE "/some-path/some-file"
                                /* Should be an existing file or one
                                   that this program creates */

int
main(int argc, char *argv[])
{
    int msqid;
    key_t key;
    const int MQ_PERMS = S_IRUSR | S_IWUSR | S_IWGRP;   /* rw--w---- */

    /* Optional code here to check if another server process is
       already running */

    /* Generate the key for the message queue */

    key = ftok(KEY_FILE, 1);
    if (key == -1)
        errExit("ftok");
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    /* While msgget() fails, try creating the queue exclusively */

    while ((msqid = msgget(key, IPC_CREAT | IPC_EXCL | MQ_PERMS)) == -1) {
        if (errno == EEXIST) {          /* MQ with the same key already
                                           exists - remove it and try again */
            msqid = msgget(key, 0);
            if (msqid == -1)
                errExit("msgget() failed to retrieve old queue ID");
            if (msgctl(msqid, IPC_RMID, NULL) == -1)
                errExit("msgget() failed to delete old queue");
            printf("Removed old message queue (id=%d)\n", msqid);

        } else {                        /* Some other error --> give up */
            errExit("msgget() failed");
        }
    }

    /* Upon loop exit, we've successfully created the message queue,
       and we can then carry on to do other work... */

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––– svipc/svmsg_demo_server.c

Even if a restarted server re-created the IPC objects, there still would be a potential
problem if supplying the same key to the get call always generated the same identi-
fier whenever a new IPC object was created. Consider the solution just outlined
from the point of view of the client. If the IPC objects re-created by the server use
the same identifiers, then the client would have no way of becoming aware that the
server has been restarted and that the IPC objects don’t contain the expected his-
torical information.

To solve this problem, the kernel employs an algorithm (described in the next
section) that normally ensures that when a new IPC object is created, the object’s
identifier will be different, even when the same key is supplied. Consequently, any
clients of the old server process that attempt to use the old identifier will receive an
error from the relevant IPC system call.

Solutions such as that shown in Listing 45-1 don’t completely solve the problem
of identifying a server restart when using System V shared memory, since a
shared memory object is deleted only when all processes have detached it from
their virtual address space. However, shared memory objects are typically used
in conjunction with System V semaphores, which are immediately deleted in
response to an IPC_RMID operation. This means that a client process will become
aware of a server restart when it tries to access the deleted semaphore object.

45.5 Algorithm Employed by System V IPC get Calls

Figure 45-1 shows some of the structures used internally by the kernel to represent
information about System V IPC objects (in this case semaphores, but the details
are similar for other IPC mechanisms), including the fields used to calculate IPC
keys. For each IPC mechanism (shared memory, message queue, or semaphore),
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the kernel maintains an associated ipc_ids structure that records various global
information about all instances of that IPC mechanism. This information includes
a dynamically sized array of pointers, entries, to the associated data structure for
each object instance (semid_ds structures in the case of semaphores). The current
size of the entries array is recorded in the size field, with the max_id field holding the
index of the highest currently in-use element.

Figure 45-1: Kernel data structures used to represent System V IPC (semaphore) objects

When an IPC get call is made, the algorithm used on Linux (other systems use simi-
lar algorithms) is approximately as follows:

1. The list of associated data structures (pointed to by elements of the entries
array) is searched for one whose key field matches that specified in the get call.

a) If no match is found, and IPC_CREAT was not specified, then the error ENOENT
is returned.

b) If a match is found, but both IPC_CREAT and IPC_EXCL were specified, then the
error EEXIST is returned.

c) Otherwise, if a match is found, then the following step is skipped.

2. If no match was found, and IPC_CREAT was specified, then a new mechanism-specific
associated data structure (semid_ds in Figure 45-1) is allocated and initialized.
This also involves updating various fields of the ipc_ids structure, and may
involve resizing the entries array. A pointer to the new structure is placed in the
first free element of entries. Two substeps are included as part of this initialization:

a) The key value supplied in the get call is copied into the xxx_perm.__key field
of the newly allocated structure.

b) The current value of the seq field of the ipc_ids structure is copied into the
xxx_perm.__seq field of the associated data structure, and the seq field is
incremented by one.

seq = 10

entries 0

1

2

3

sem_perm.__key  = 0x4d0731db

sem_perm.__seq  = 9

sem_perm.__key = 0x4b079002

sem_perm.__seq  = 5

ipc_ids
structure
(sem_ids)

associated data
structures
(semid_ds)

max_id = 3

in_use = 2

size = 128
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3. The identifier for the IPC object is calculated using the following formula:

identifier = index + xxx_perm.__seq * SEQ_MULTIPLIER

In the formula used to calculate the IPC identifier, index is the index of this object
instance within the entries array, and SEQ_MULTIPLIER is a constant defined with the
value 32,768 (IPCMNI in the kernel source file include/linux/ipc.h). For example,
in Figure 45-1, the identifier generated for the semaphore with the key value
0x4b079002 would be (2 + 5 * 32,768) = 163,842.

Note the following points about the algorithm employed by the get calls:

Even if a new IPC object is created with the same key, it will almost certainly
have a different identifier, since the identifier is calculated based on the seq
value saved in the associated data structure, and this value is incremented by
one during the creation of each object of this type.

The algorithm employed within the kernel wraps the seq value back to 0 when
it reaches the value (INT_MAX / IPCMNI)—that is, 2,147,483,647 / 32,768 = 65,535.
Thus, a new IPC object could have the same identifier as a previous object if
65,535 objects are created in the interim and the new object reuses the same
element in the entries array as the previous object (i.e., this element must also
have been freed in the interim). However, the chances of this occurring are small.

The algorithm generates a distinct set of identifier values for each index of the
entries array.

Since the constant IPCMNI defines an upper limit on the number of System V
objects of each type, the algorithm guarantees that each existing IPC object has
a unique identifier.

Given an identifier value, the corresponding index into the entries array can be
quickly calculated using this equation:

index = identifier % SEQ_MULTIPLIER

Being able to rapidly perform this calculation is necessary for the efficient
operation of those IPC system calls that are supplied with the identifier of an
IPC object (i.e., those calls in Table 45-1 other than the get calls).

In passing, it is worth noting that two different errors can result if a process makes
an IPC system call (e.g., msgctl(), semop(), or shmat()) that specifies an identifier that
doesn’t correspond to an existing object. If the corresponding index of entries is
empty, the error EINVAL results. If the index points to an associated data structure,
but the sequence number stored in that structure doesn’t yield the same identifier
value, then it is assumed that an old object pointed to by this array index has been
deleted and the index reused. This scenario is diagnosed with the error EIDRM.
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45.6 The ipcs and ipcrm Commands

The ipcs and ipcrm commands are the System V IPC analogs of the ls and rm file
commands. Using ipcs, we can obtain information about IPC objects on the system.
By default, ipcs displays all objects, as in the following example:

$ ipcs

------ Shared Memory Segments --------
key        shmid     owner     perms    bytes    nattch   status
0x6d0731db 262147    mtk       600      8192      2

------ Semaphore Arrays --------
key        semid     owner     perms    nsems
0x6107c0b8 0         cecilia   660      6
0x6107c0b6 32769     britta    660      1

------ Message Queues --------
key        msqid     owner     perms    used-bytes  messages
0x71075958 229376    cecilia   620      12          2

On Linux, ipcs(1) displays information only about IPC objects for which we have read
permission, regardless of whether we own the objects. On some UNIX implementa-
tions, ipcs shows the same behavior as on Linux. However, on other implementations,
ipcs displays all objects regardless of whether read permission is granted to the user.

By default, for each object, ipcs displays the key, the identifier, the owner, and
the permissions (expressed as an octal number), followed by information specific
to the object:

For shared memory, ipcs displays the size of the shared memory region, the num-
ber of processes that currently have the shared memory region attached to their
virtual address space, and status flags. The status flags indicate whether the region
has been locked into RAM to prevent swapping (Section 48.7) and whether the
region has been marked to be destroyed when all processes have detached it.

For semaphores, ipcs displays the size of the semaphore set.

For message queues, ipcs displays the total number of bytes of data and the
number of messages in the queue.

The ipcs(1) manual page documents various options for displaying other informa-
tion about IPC objects.

The ipcrm command deletes an IPC object. The general form of this command
is one of the following:

$ ipcrm -X key
$ ipcrm -x id

In the above, we either specify key as an IPC object key or id as an IPC object identifier,
and the letter x is replaced by an uppercase or lowercase q (for message queues),
s (for semaphores), or m (for shared memory). Thus, we could use the following
command to delete the semaphore set with the identifier 65538:

$ ipcrm -s 65538
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45.7 Obtaining a List of All IPC Objects

Linux provides two nonstandard methods of obtaining a list of all IPC objects on
the system:

files within the /proc/sysvipc directory that list all IPC objects; and

the use of Linux-specific ctl calls.

We describe the files in /proc/sysvipc directory here, and defer discussion of the ctl
calls until Section 46.6, where we provide an example program that lists all
System V message queues on the system.

Some other UNIX implementations have their own nonstandard methods of
obtaining a list of all IPC identifiers; for example, Solaris provides the msgids(),
semids(), and shmids() system calls for this purpose.

Three read-only files in the /proc/sysvipc directory provide the same information as
can be obtained via ipcs:

/proc/sysvipc/msg lists all messages queues and their attributes.

/proc/sysvipc/sem lists all semaphore sets and their attributes.

/proc/sysvipc/shm lists all shared memory segments and their attributes.

Unlike the ipcs command, these files always show all objects of the corresponding
type, regardless of whether read permission is available on the objects.

An example of the contents of /proc/sysvipc/sem is the following (with some
white space removed to fit this example on the page):

$ cat /proc/sysvipc/sem
key     semid perms   nsems   uid   gid   cuid  cgid     otime        ctime
  0  16646144   600       4  1000   100   1000   100         0   1010166460

The three /proc/sysvipc files provide a (nonportable) method for programs and
scripts to walk through a list of all of the existing IPC objects of a given type.

The best that we can achieve by way of a portable approach to obtaining a list
of all IPC objects of a given type is to parse the output of ipcs(1).

45.8 IPC Limits

Since System V IPC objects consume system resources, the kernel places various
limits on each class of IPC object in order to prevent resources from being
exhausted. The methods for placing limits on System V IPC objects are not speci-
fied by SUSv3, but most UNIX implementations (including Linux) follow a similar
framework for the types of limits that may be placed. As we cover each System V
IPC mechanism in the following chapters, we discuss the associated limits and note
differences from other UNIX implementations.

Although the types of limits that can be placed on each class of IPC object are
generally similar across various UNIX implementations, the methods of viewing
and changing these limits are not. The methods described in the following chapters
are Linux-specific (they generally involve the use of files in the /proc/sys/kernel
directory); things are done differently on other implementations.
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On Linux, the ipcs –l command can be used to list the limits on each of the IPC
mechanisms. Programs can employ the Linux-specific IPC_INFO ctl operation to
retrieve the same information.

45.9 Summary

System V IPC is the name given to three IPC mechanisms that first appeared widely
in System V, and have subsequently been ported to most UNIX implementations
and incorporated into various standards. The three IPC mechanisms are message
queues, which allow processes to exchange messages; semaphores, which allow pro-
cesses to synchronize access to shared resources; and shared memory, which allows
two or more processes to share the same pages of memory.

The three IPC mechanisms have many similarities in their APIs and semantics.
For each IPC mechanism, a get system call creates or opens an object. Given an integer
key, the get calls return an integer identifier used to refer to the object in subsequent
system calls. Each IPC mechanism also has a corresponding a ctl call that is used to
delete an object and to retrieve and modify various attributes (e.g., ownership and
permissions) in an object’s associated data structure.

The algorithm used to generate identifiers for new IPC objects is designed to
minimize the possibility of the same identifier being (immediately) reused if an
object is deleted, even if the same key is used to create a new object. This enables
client-server applications to function correctly—a restarted server process is able to
detect and remove IPC objects created by its predecessor, and this action invali-
dates the identifiers held by any clients of the previous server process.

The ipcs command lists the System V IPC objects that currently exist on the
system. The ipcrm command is used to remove System IPC objects.

On Linux, files in the /proc/sysvipc directory can be used to obtain information
about all of the System V IPC objects on the system.

Each IPC mechanism has an associated set of limits that can be used to avoid
exhaustion of system resources by preventing the creation of an arbitrary number
of IPC objects. Various files under the /proc/sys/kernel directory can be used to
view and modify these limits.

Further information

Information about the implementation of System V IPC on Linux can be found in
[Maxwell, 1999] and [Bovet & Cesati, 2005]. [Goodheart & Cox, 1994] describes
the implementation of System V IPC for System V Release 4.

45.10 Exercises

45-1. Write a program to verify that the algorithm employed by ftok() uses the file’s i-node
number, minor device number, and proj value, as described in Section 45.2. (It is
sufficient to print all of these values, as well as the return value from ftok(), in
hexadecimal, and inspect the results for a few examples.)

45-2. Implement ftok().

45-3. Verify (by experiment) the statements made in Section 45.5 about the algorithm
used to generate System V IPC identifiers.
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S Y S T E M  V  M E S S A G E  Q U E U E S

This chapter describes System V message queues. Message queues allow processes
to exchange data in the form of messages. Although message queues are similar to
pipes and FIFOs in some respects, they also differ in important ways:

The handle used to refer to a message queue is the identifier returned by a call
to msgget(). These identifiers are not the same as the file descriptors used for
most other forms of I/O on UNIX systems.

Communication via message queues is message-oriented; that is, the reader
receives whole messages, as written by the writer. It is not possible to read part
of a message, leaving the remainder in the queue, or to read multiple messages
at a time. This contrasts with pipes, which provide an undifferentiated stream
of bytes (i.e., with pipes, the reader can read an arbitrary number of bytes at a
time, irrespective of the size of data blocks written by the writer).

In addition to containing data, each message has an integer type. Messages can
be retrieved from a queue in first-in, first-out order or retrieved by type.

At the end of this chapter (Section 46.9), we summarize a number of limitations of
System V message queues. These limitations lead us to the conclusion that, where
possible, new applications should avoid the use of System V message queues in
favor of other IPC mechanisms such as FIFOs, POSIX message queues, and sockets.
However, when message queues were initially devised, these alternative mecha-
nisms were unavailable or were not widespread across UNIX implementations.



Consequently, there are various existing applications that employ message queues,
and this fact forms one of the primary motivations for describing them.

46.1 Creating or Opening a Message Queue

The msgget() system call creates a new message queue or obtains the identifier of an
existing queue.

The key argument is a key generated using one of the methods described in Sec-
tion 45.2 (i.e., usually the value IPC_PRIVATE or a key returned by ftok()). The msgflg
argument is a bit mask that specifies the permissions (Table 15-4, on page 295) to
be placed on a new message queue or checked against an existing queue. In addition,
zero or more of the following flags can be ORed (|) in msgflg to control the operation
of msgget():

IPC_CREAT

If no message queue with the specified key exists, create a new queue.

IPC_EXCL

If IPC_CREAT was also specified, and a queue with the specified key already
exists, fail with the error EEXIST.

These flags are described in more detail in Section 45.1.
The msgget() system call begins by searching the set of all existing message

queues for one with the specified key. If a matching queue is found, the identifier
of that queue is returned (unless both IPC_CREAT and IPC_EXCL were specified in msgflg,
in which case an error is returned). If no matching queue was found and IPC_CREAT
was specified in msgflg, a new queue is created and its identifier is returned.

The program in Listing 46-1 provides a command-line interface to the msgget()
system call. The program permits the use of command-line options and arguments
to specify all possibilities for the key and msgflg arguments to msgget(). Details of the
command format accepted by this program are shown in the usageError() function.
Upon successful queue creation, the program prints the queue identifier. We dem-
onstrate the use of this program in Section 46.2.2.

Listing 46-1: Using msgget()
–––––––––––––––––––––––––––––––––––––––––––––––––––––– svmsg/svmsg_create.c

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <sys/stat.h>
#include "tlpi_hdr.h"

#include <sys/types.h>        /* For portability */
#include <sys/msg.h>

int msgget(key_t key, int msgflg);

Returns message queue identifier on success, or –1 on error
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static void             /* Print usage info, then exit */
usageError(const char *progName, const char *msg)
{
    if (msg != NULL)
        fprintf(stderr, "%s", msg);
    fprintf(stderr, "Usage: %s [-cx] {-f pathname | -k key | -p} "
                            "[octal-perms]\n", progName);
    fprintf(stderr, "    -c           Use IPC_CREAT flag\n");
    fprintf(stderr, "    -x           Use IPC_EXCL flag\n");
    fprintf(stderr, "    -f pathname  Generate key using ftok()\n");
    fprintf(stderr, "    -k key       Use 'key' as key\n");
    fprintf(stderr, "    -p           Use IPC_PRIVATE key\n");
    exit(EXIT_FAILURE);
}

int
main(int argc, char *argv[])
{
    int numKeyFlags;            /* Counts -f, -k, and -p options */
    int flags, msqid, opt;
    unsigned int perms;
    long lkey;
    key_t key;

    /* Parse command-line options and arguments */

    numKeyFlags = 0;
    flags = 0;

    while ((opt = getopt(argc, argv, "cf:k:px")) != -1) {
        switch (opt) {
        case 'c':
            flags |= IPC_CREAT;
            break;

        case 'f':               /* -f pathname */
            key = ftok(optarg, 1);
            if (key == -1)
                errExit("ftok");
            numKeyFlags++;
            break;

        case 'k':               /* -k key (octal, decimal or hexadecimal) */
            if (sscanf(optarg, "%li", &lkey) != 1)
                cmdLineErr("-k option requires a numeric argument\n");
            key = lkey;
            numKeyFlags++;
            break;

        case 'p':
            key = IPC_PRIVATE;
            numKeyFlags++;
            break;
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        case 'x':
            flags |= IPC_EXCL;
            break;

        default:
            usageError(argv[0], "Bad option\n");
        }
    }

    if (numKeyFlags != 1)
        usageError(argv[0], "Exactly one of the options -f, -k, "
                            "or -p must be supplied\n");

    perms = (optind == argc) ? (S_IRUSR | S_IWUSR) :
                getInt(argv[optind], GN_BASE_8, "octal-perms");

    msqid = msgget(key, flags | perms);
    if (msqid == -1)
        errExit("msgget");

    printf("%d\n", msqid);
    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– svmsg/svmsg_create.c

46.2 Exchanging Messages

The msgsnd() and msgrcv() system calls perform I/O on message queues. The first
argument to both system calls (msqid) is a message queue identifier. The second
argument, msgp, is a pointer to a programmer-defined structure used to hold the
message being sent or received. This structure has the following general form:

struct mymsg {
    long mtype;                 /* Message type */
    char mtext[];               /* Message body */
}

This definition is really just shorthand for saying that the first part of a message
contains the message type, specified as a long integer, while the remainder of the
message is a programmer-defined structure of arbitrary length and content; it need
not be an array of characters. Thus, the mgsp argument is typed as void * to allow it
to be a pointer to any type of structure.

A zero-length mtext field is permitted, and is sometimes useful if the informa-
tion to be conveyed can be encoded solely in the message type or if the existence of
a message is in itself sufficient information for the receiving process.

46.2.1 Sending Messages
The msgsnd() system call writes a message to a message queue.
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To send a message with msgsnd(), we must set the mtype field of the message structure
to a value greater than 0 (we see how this value is used when we discuss msgrcv() in
the next section) and copy the desired information into the programmer-defined mtext
field. The msgsz argument specifies the number of bytes contained in the mtext field.

When sending messages with msgsnd(), there is no concept of a partial write as
with write(). This is why a successful msgsnd() needs only to return 0, rather
than the number of bytes sent.

The final argument, msgflg, is a bit mask of flags controlling the operation of msgsnd().
Only one such flag is defined:

IPC_NOWAIT

Perform a nonblocking send. Normally, if a message queue is full, msgsnd()
blocks until enough space has become available to allow the message to be
placed on the queue. However, if this flag is specified, then msgsnd()
returns immediately with the error EAGAIN.

A msgsnd() call that is blocked because the queue is full may be interrupted by a signal
handler. In this case, msgsnd() always fails with the error EINTR. (As noted in Sec-
tion 21.5, msgsnd() is among those system calls that are never automatically restarted,
regardless of the setting of the SA_RESTART flag when the signal handler is established.)

Writing a message to a message queue requires write permission on the queue.
The program in Listing 46-2 provides a command-line interface to the msgsnd()

system call. The command-line format accepted by this program is shown in the
usageError() function. Note that this program doesn’t use the msgget() system call. (We
noted that a process doesn’t need to use a get call in order to access an IPC object in
Section 45.1.) Instead, we specify the message queue by providing its identifier as a
command-line argument. We demonstrate the use of this program in Section 46.2.2.

Listing 46-2: Using msgsnd() to send a message

––––––––––––––––––––––––––––––––––––––––––––––––––––––– svmsg/svmsg_send.c

#include <sys/types.h>
#include <sys/msg.h>
#include "tlpi_hdr.h"

#define MAX_MTEXT 1024

struct mbuf {
    long mtype;                         /* Message type */
    char mtext[MAX_MTEXT];              /* Message body */
};

#include <sys/types.h>        /* For portability */
#include <sys/msg.h>

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

Returns 0 on success, or –1 on error
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static void             /* Print (optional) message, then usage description */
usageError(const char *progName, const char *msg)
{
    if (msg != NULL)
        fprintf(stderr, "%s", msg);
    fprintf(stderr, "Usage: %s [-n] msqid msg-type [msg-text]\n", progName);
    fprintf(stderr, "    -n       Use IPC_NOWAIT flag\n");
    exit(EXIT_FAILURE);
}

int
main(int argc, char *argv[])
{
    int msqid, flags, msgLen;
    struct mbuf msg;                    /* Message buffer for msgsnd() */
    int opt;                            /* Option character from getopt() */

    /* Parse command-line options and arguments */

    flags = 0;
    while ((opt = getopt(argc, argv, "n")) != -1) {
        if (opt == 'n')
            flags |= IPC_NOWAIT;
        else
            usageError(argv[0], NULL);
    }

    if (argc < optind + 2 || argc > optind + 3)
        usageError(argv[0], "Wrong number of arguments\n");

    msqid = getInt(argv[optind], 0, "msqid");
    msg.mtype = getInt(argv[optind + 1], 0, "msg-type");

    if (argc > optind + 2) {            /* 'msg-text' was supplied */
        msgLen = strlen(argv[optind + 2]) + 1;
        if (msgLen > MAX_MTEXT)
            cmdLineErr("msg-text too long (max: %d characters)\n", MAX_MTEXT);

        memcpy(msg.mtext, argv[optind + 2], msgLen);

    } else {                            /* No 'msg-text' ==> zero-length msg */
        msgLen = 0;
    }

    /* Send message */

    if (msgsnd(msqid, &msg, msgLen, flags) == -1)
        errExit("msgsnd");

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––– svmsg/svmsg_send.c
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46.2.2 Receiving Messages
The msgrcv() system call reads (and removes) a message from a message queue, and
copies its contents into the buffer pointed to by msgp.

The maximum space available in the mtext field of the msgp buffer is specified by
the argument maxmsgsz. If the body of the message to be removed from the queue
exceeds maxmsgsz bytes, then no message is removed from the queue, and msgrcv()
fails with the error E2BIG. (This default behavior can be changed using the
MSG_NOERROR flag described shortly.)

Messages need not be read in the order in which they were sent. Instead, we
can select messages according to the value in the mtype field. This selection is con-
trolled by the msgtyp argument, as follows:

If msgtyp equals 0, the first message from the queue is removed and returned to
the calling process.

If msgtyp is greater than 0, the first message in the queue whose mtype equals
msgtyp is removed and returned to the calling process. By specifying different
values for msgtyp, multiple processes can read from a message queue without
racing to read the same messages. One useful technique is to have each process
select messages matching its process ID.

If msgtyp is less than 0, treat the waiting messages as a priority queue. The first
message of the lowest mtype less than or equal to the absolute value of msgtyp is
removed and returned to the calling process.

An example helps clarify the behavior when msgtyp is less than 0. Suppose that we
have a message queue containing the sequence of messages shown in Figure 46-1
and we performed a series of msgrcv() calls of the following form:

msgrcv(id, &msg, maxmsgsz, -300, 0);

These msgrcv() calls would retrieve messages in the order 2 (type 100), 5 (type 100),
3 (type 200), and 1 (type 300). A further call would block, since the type of the
remaining message (400) exceeds 300.

The msgflg argument is a bit mask formed by ORing together zero or more of
the following flags:

IPC_NOWAIT

Perform a nonblocking receive. Normally, if no message matching msgtyp
is in the queue, msgrcv() blocks until such a message becomes available.
Specifying the IPC_NOWAIT flag causes msgrcv() to instead return immediately

#include <sys/types.h>        /* For portability */
#include <sys/msg.h>

ssize_t msgrcv(int msqid, void *msgp, size_t maxmsgsz, long msgtyp, int msgflg);

Returns number of bytes copied into mtext field, or –1 on error
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with the error ENOMSG. (The error EAGAIN would be more consistent, as occurs
on a nonblocking msgsnd() or a nonblocking read from a FIFO. However,
failing with ENOMSG is historical behavior, and required by SUSv3.)

MSG_EXCEPT

This flag has an effect only if msgtyp is greater than 0, in which case it forces
the complement of the usual operation; that is, the first message from the
queue whose mtype is not equal to msgtyp is removed from the queue and
returned to the caller. This flag is Linux-specific, and is made available
from <sys/msg.h> only if  _GNU_SOURCE  is defined. Performing a series of calls
of the form msgrcv(id, &msg, maxmsgsz, 100, MSG_EXCEPT) on the message
queue shown in Figure 46-1 would retrieve messages in the order 1, 3, 4,
and then block.

MSG_NOERROR

By default, if the size of the mtext field of the message exceeds the space
available (as defined by the maxmsgsz argument), msgrcv() fails. If the
MSG_NOERROR flag is specified, then msgrcv() instead removes the message from
the queue, truncates its mtext field to maxmsgsz bytes, and returns it to the
caller. The truncated data is lost.

Upon successful completion, msgrcv() returns the size of the mtext field of the
received message; on error, –1 is returned.

Figure 46-1: Example of a message queue containing messages of different types

As with msgsnd(), if a blocked msgrcv() call is interrupted by a signal handler, then
the call fails with the error EINTR, regardless of the setting of the SA_RESTART flag
when the signal handler was established.

Reading a message from a message queue requires read permission on the queue.

Example program

The program in Listing 46-3 provides a command-line interface to the msgrcv() system
call. The command-line format accepted by this program is shown in the
usageError() function. Like the program in Listing 46-2, which demonstrated the use
of msgsnd(), this program doesn’t use the msgget() system call, but instead expects a
message queue identifier as its command-line argument.

Message type
(mtype)

1 300

2 100

3 200

4 400

5 100

Message body
(mtext)

...

...

...

...

...

queue
position
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The following shell session demonstrates the use of the programs in Listing 46-1,
Listing 46-2, and Listing 46-3. We begin by creating a message queue using the
IPC_PRIVATE key, and then write three messages with different types to the queue:

$ ./svmsg_create -p
32769                                                 ID of message queue
$ ./svmsg_send 32769 20 "I hear and I forget."
$ ./svmsg_send 32769 10 "I see and I remember."
$ ./svmsg_send 32769 30 "I do and I understand."

We then use the program in Listing 46-3 to read messages with a type less than or
equal to 20 from the queue:

$ ./svmsg_receive -t -20 32769
Received: type=10; length=22; body=I see and I remember.
$ ./svmsg_receive -t -20 32769
Received: type=20; length=21; body=I hear and I forget.
$ ./svmsg_receive -t -20 32769

The last of the above commands blocked, because there was no message in the
queue whose type was less than or equal to 20. So, we continue by typing Control-C
to terminate the command, and then execute a command that reads a message of
any type from the queue:

Type Control-C to terminate program
$ ./svmsg_receive 32769
Received: type=30; length=23; body=I do and I understand.

Listing 46-3: Using msgrcv() to read a message

––––––––––––––––––––––––––––––––––––––––––––––––––––– svmsg/svmsg_receive.c

#define _GNU_SOURCE     /* Get definition of MSG_EXCEPT */
#include <sys/types.h>
#include <sys/msg.h>
#include "tlpi_hdr.h"

#define MAX_MTEXT 1024

struct mbuf {
    long mtype;                 /* Message type */
    char mtext[MAX_MTEXT];      /* Message body */
};

static void
usageError(const char *progName, const char *msg)
{
    if (msg != NULL)
        fprintf(stderr, "%s", msg);
    fprintf(stderr, "Usage: %s [options] msqid [max-bytes]\n", progName);
    fprintf(stderr, "Permitted options are:\n");
    fprintf(stderr, "    -e       Use MSG_NOERROR flag\n");
    fprintf(stderr, "    -t type  Select message of given type\n");
    fprintf(stderr, "    -n       Use IPC_NOWAIT flag\n");
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#ifdef MSG_EXCEPT
    fprintf(stderr, "    -x       Use MSG_EXCEPT flag\n");
#endif
    exit(EXIT_FAILURE);
}

int
main(int argc, char *argv[])
{
    int msqid, flags, type;
    ssize_t msgLen;
    size_t maxBytes;
    struct mbuf msg;            /* Message buffer for msgrcv() */
    int opt;                    /* Option character from getopt() */

    /* Parse command-line options and arguments */

    flags = 0;
    type = 0;
    while ((opt = getopt(argc, argv, "ent:x")) != -1) {
        switch (opt) {
        case 'e':       flags |= MSG_NOERROR;   break;
        case 'n':       flags |= IPC_NOWAIT;    break;
        case 't':       type = atoi(optarg);    break;
#ifdef MSG_EXCEPT
        case 'x':       flags |= MSG_EXCEPT;    break;
#endif
        default:        usageError(argv[0], NULL);
        }
    }

    if (argc < optind + 1 || argc > optind + 2)
        usageError(argv[0], "Wrong number of arguments\n");

    msqid = getInt(argv[optind], 0, "msqid");
    maxBytes = (argc > optind + 1) ?
                getInt(argv[optind + 1], 0, "max-bytes") : MAX_MTEXT;

    /* Get message and display on stdout */

    msgLen = msgrcv(msqid, &msg, maxBytes, type, flags);
    if (msgLen == -1)
        errExit("msgrcv");

    printf("Received: type=%ld; length=%ld", msg.mtype, (long) msgLen);
    if (msgLen > 0)
        printf("; body=%s", msg.mtext);
    printf("\n");

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––– svmsg/svmsg_receive.c
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46.3 Message Queue Control Operations

The msgctl() system call performs control operations on the message queue identi-
fied by msqid.

The cmd argument specifies the operation to be performed on the queue. It can be
one of the following:

IPC_RMID

Immediately remove the message queue object and its associated msqid_ds
data structure. All messages remaining in the queue are lost, and any
blocked reader or writer processes are immediately awakened, with msgsnd()
or msgrcv() failing with the error EIDRM. The third argument to msgctl() is
ignored for this operation.

IPC_STAT

Place a copy of the msqid_ds data structure associated with this message
queue in the buffer pointed to by buf. We describe the msqid_ds structure
in Section 46.4.

IPC_SET

Update selected fields of the msqid_ds data structure associated with this
message queue using values provided in the buffer pointed to by buf.

Further details about these operations, including the privileges and permissions
required by the calling process, are described in Section 45.3. We describe some
other values for cmd in Section 46.6.

The program in Listing 46-4 demonstrates the use of msgctl() to delete a mes-
sage queue.

Listing 46-4: Deleting System V message queues

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– svmsg/svmsg_rm.c

#include <sys/types.h>
#include <sys/msg.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int j;

#include <sys/types.h>        /* For portability */
#include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);

Returns 0 on success, or –1 on error
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    if (argc > 1 && strcmp(argv[1], "--help") == 0)
        usageErr("%s [msqid...]\n", argv[0]);

    for (j = 1; j < argc; j++)
        if (msgctl(getInt(argv[j], 0, "msqid"), IPC_RMID, NULL) == -1)
            errExit("msgctl %s", argv[j]);

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– svmsg/svmsg_rm.c

46.4 Message Queue Associated Data Structure

Each message queue has an associated msqid_ds data structure of the following form:

struct msqid_ds {
    struct ipc_perm msg_perm;           /* Ownership and permissions */
    time_t          msg_stime;          /* Time of last msgsnd() */
    time_t          msg_rtime;          /* Time of last msgrcv() */
    time_t          msg_ctime;          /* Time of last change */
    unsigned long   __msg_cbytes;       /* Number of bytes in queue */
    msgqnum_t       msg_qnum;           /* Number of messages in queue */
    msglen_t        msg_qbytes;         /* Maximum bytes in queue */
    pid_t           msg_lspid;          /* PID of last msgsnd() */
    pid_t           msg_lrpid;          /* PID of last msgrcv() */
};

The purpose of the abbreviated spelling msq in the name msqid_ds is to confuse
the programmer. This is the only message queue interface employing this spelling.

The msgqnum_t and msglen_t data types—used to type the msg_qnum and msg_qbytes
fields—are unsigned integer types specified in SUSv3.

The fields of the msqid_ds structure are implicitly updated by the various mes-
sage queue system calls, and certain fields can be explicitly updated using the
msgctl() IPC_SET operation. The details are as follows:

msg_perm
When the message queue is created, the fields of this substructure are ini-
tialized as described in Section 45.3. The uid, gid, and mode subfields can be
updated via IPC_SET.

msg_stime
When the queue is created, this field is set to 0; each later successful
msgsnd() sets this field to the current time. This field and the other timestamp
fields in the msqid_ds structure are typed as time_t; they store time in sec-
onds since the Epoch.

msg_rtime
This field is set to 0 when the message queue is created, and then set to the
current time on each successful msgrcv().
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msg_ctime
This field is set to the current time when the message queue is created and
whenever an IPC_SET operation is successfully performed.

__msg_cbytes
This field is set to 0 when the message queue is created, and then adjusted
during each successful msgsnd() and msgrcv() to reflect the total number of
bytes contained in the mtext fields of all messages in the queue.

msg_qnum
When the message queue is created, this field is set to 0. It is then incre-
mented by each successful msgsnd() and decremented by each successful
msgrcv() to reflect the total number of messages in the queue.

msg_qbytes
The value in this field defines an upper limit on the number of bytes in the
mtext fields of all messages in the message queue. This field is initialized to
the value of the MSGMNB limit when the queue is created. A privileged
(CAP_SYS_RESOURCE) process can use the IPC_SET operation to adjust msg_qbytes
to any value in the range 0 to INT_MAX (2,147,483,647 on 32-bit platforms)
bytes. An unprivileged process can adjust msg_qbytes to any value in the
range 0 to MSGMNB. A privileged user can modify the value contained in the
Linux-specific /proc/sys/kernel/msgmnb file in order to change the initial
msg_qbytes setting for all subsequently created message queues, as well as
the upper limit for subsequent changes to msg_qbytes by unprivileged pro-
cesses. We say more about message queue limits in Section 46.5.

msg_lspid
This field is set to 0 when the queue is created, and then set to the process
ID of the calling process on each successful msgsnd().

msg_lrpid
This field is set to 0 when the message queue is created, and then set to the
process ID of the calling process on each successful msgrcv().

All of the above fields are specified by SUSv3, with the exception of __msg_cbytes. Never-
theless, most UNIX implementations provide an equivalent of the __msg_cbytes field.

The program in Listing 46-5 demonstrates the use of the IPC_STAT and IPC_SET
operations to modify the msg_qbytes setting of a message queue.

Listing 46-5: Changing the msg_qbytes setting of a System V message queue

–––––––––––––––––––––––––––––––––––––––––––––––––––– svmsg/svmsg_chqbytes.c

#include <sys/types.h>
#include <sys/msg.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    struct msqid_ds ds;
    int msqid;
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    if (argc != 3 || strcmp(argv[1], "--help") == 0)
        usageErr("%s msqid max-bytes\n", argv[0]);

    /* Retrieve copy of associated data structure from kernel */

    msqid = getInt(argv[1], 0, "msqid");
    if (msgctl(msqid, IPC_STAT, &ds) == -1)
        errExit("msgctl");

    ds.msg_qbytes = getInt(argv[2], 0, "max-bytes");

    /* Update associated data structure in kernel */

    if (msgctl(msqid, IPC_SET, &ds) == -1)
        errExit("msgctl");

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––– svmsg/svmsg_chqbytes.c

46.5 Message Queue Limits

Most UNIX implementations impose various limits on the operation of System V
message queues. Here, we describe the limits under Linux and note a few differ-
ences from other UNIX implementations.

The following limits are enforced on Linux. The system call affected by the
limit and the error that results if the limit is reached are noted in parentheses.

MSGMNI

This is a system-wide limit on the number of message queue identifiers (in
other words, message queues) that can be created. (msgget(), ENOSPC)

MSGMAX

This is a system-wide limit specifying the maximum number of (mtext) bytes
that can be written in a single message. (msgsnd(), EINVAL)

MSGMNB

This is the maximum number of (mtext) bytes that can be held in a message
queue at one time. This limit is a system-wide parameter that is used to ini-
tialize the msg_qbytes field of the msqid_ds data structure associated with this
message queue. Subsequently, the msg_qbytes value can be modified on a
per-queue basis, as described in Section 46.4. If a queue’s msg_qbytes limit is
reached, then msgsnd() blocks, or fails with the error EAGAIN if IPC_NOWAIT was set.

Some UNIX implementations also define the following further limits:

MSGTQL

This is a system-wide limit on the number of messages that can be placed
on all message queues on the system.

MSGPOOL

This is a system-wide limit on the size of the buffer pool that is used to hold
data in all message queues on the system.
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Although Linux doesn’t impose either of the above limits, it does limit the number
of messages on an individual queue to the value specified by the queue’s msg_qbytes
setting. This limitation is relevant only if we are writing zero-length messages to a
queue. It has the effect that the limit on the number of zero-length messages is the
same as the limit on the number of 1-byte messages that can be written to the queue.
This is necessary to prevent an infinite number of zero-length messages being written
to the queue. Although they contain no data, each zero-length message consumes a
small amount of memory for system bookkeeping overhead.

At system startup, the message queue limits are set to default values. These
defaults have varied somewhat across kernel versions. (Some distributors’ kernels
set different defaults from those provided by vanilla kernels.) On Linux, the limits
can be viewed or changed via files in the /proc file system. Table 46-1 shows the /proc
file corresponding to each limit. As an example, here are the default limits that we
see for Linux 2.6.31 on one x86-32 system:

$ cd /proc/sys/kernel
$ cat msgmni
748
$ cat msgmax
8192
$ cat msgmnb
16384

The ceiling value column of Table 46-1 shows the maximum value to which each
limit can be raised on the x86-32 architecture. Note that although the MSGMNB limit
can be raised to the value INT_MAX, some other limit (e.g., lack of memory) will be
reached before a message queue can be loaded with so much data.

The Linux-specific msgctl() IPC_INFO operation retrieves a structure of type
msginfo, which contains the values of the various message queue limits:

struct msginfo buf;

msgctl(0, IPC_INFO, (struct msqid_ds *) &buf);

Details about IPC_INFO and the msginfo structure can be found in the msgctl(2)
manual page.

46.6 Displaying All Message Queues on the System

In Section 45.7, we looked at one way to obtain a list of all of the IPC objects on the
system: via a set of files in the /proc file system. We now look at a second method of
obtaining the same information: via a set of Linux-specific IPC ctl (msgctl(), semctl(),

Table 46-1: System V message queue limits

Limit Ceiling value (x86-32) Corresponding file 
in /proc/sys/kernel

MSGMNI 32768 (IPCMNI) msgmni

MSGMAX Depends on available memory msgmax

MSGMNB 2147483647 (INT_MAX) msgmnb
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and shmctl()) operations. (The ipcs program employs these operations.) These oper-
ations are as follows:

MSG_INFO, SEM_INFO, and SHM_INFO: The MSG_INFO operation serves two purposes. First, it
returns a structure detailing resources consumed by all message queues on the
system. Second, as the function result of the ctl call, it returns the index of the max-
imum item in the entries array pointing to data structures for the message queue
objects (see Figure 45-1, on page 932). The SEM_INFO and SHM_INFO operations
perform an analogous task for semaphore sets and shared memory segments,
respectively. We must define the _GNU_SOURCE feature test macro to obtain the defini-
tions of these three constants from the corresponding System V IPC header files.

An example showing the use of MSG_INFO to retrieve a msginfo structure contain-
ing information about resources used by all message queue objects is provided
in the file svmsg/svmsg_info.c in the source code distribution for this book.

MSG_STAT, SEM_STAT, and SHM_STAT: Like the IPC_STAT operation, these operations
retrieve the associated data structure for an IPC object. However, they differ in
two respects. First, instead of expecting an IPC identifier as the first argument
of the ctl call, these operations expect an index into the entries array. Second, if
the operation is successful, then, as its function result, the ctl call returns the
identifier of the IPC object corresponding to that index. We must define the
_GNU_SOURCE feature test macro to obtain the definitions of these three constants
from the corresponding System V IPC header files.

To list all message queues on the system, we can do the following:

1. Use a MSG_INFO operation to find out the maximum index (maxind) of the entries
array for message queues.

2. Perform a loop for all values from 0 up to and including maxind, employing a
MSG_STAT operation for each value. During this loop, we ignore the errors that
may occur if an item of the entries array is empty (EINVAL) or if we don’t have
permissions on the object to which it refers (EACCES).

Listing 46-6 provides an implementation of the above steps for message queues.
The following shell session log demonstrates the use of this program:

$ ./svmsg_ls
maxind: 4

index     ID       key      messages
   2    98306  0x00000000       0
   4   163844  0x000004d2       2
$ ipcs -q                               Check above against output of ipcs

------ Message Queues --------
key        msqid      owner    perms    used-bytes   messages
0x00000000 98306      mtk      600      0            0
0x000004d2 163844     mtk      600      12           2
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Listing 46-6: Displaying all System V message queues on the system

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– svmsg/svmsg_ls.c

#define _GNU_SOURCE
#include <sys/types.h>
#include <sys/msg.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int maxind, ind, msqid;
    struct msqid_ds ds;
    struct msginfo msginfo;

    /* Obtain size of kernel 'entries' array */

    maxind = msgctl(0, MSG_INFO, (struct msqid_ds *) &msginfo);
    if (maxind == -1)
        errExit("msgctl-MSG_INFO");

    printf("maxind: %d\n\n", maxind);
    printf("index     id       key      messages\n");

    /* Retrieve and display information from each element of 'entries' array */

    for (ind = 0; ind <= maxind; ind++) {
        msqid = msgctl(ind, MSG_STAT, &ds);
        if (msqid == -1) {
            if (errno != EINVAL && errno != EACCES)
                errMsg("msgctl-MSG_STAT");              /* Unexpected error */
            continue;                                   /* Ignore this item */
        }

        printf("%4d %8d  0x%08lx %7ld\n", ind, msqid,
                (unsigned long) ds.msg_perm.__key, (long) ds.msg_qnum);
    }

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– svmsg/svmsg_ls.c

46.7 Client-Server Programming with Message Queues

In this section, we consider two of various possible designs for client-server applica-
tions using System V message queues:

The use of a single message queue for exchanging messages in both directions
between server and client.

The use of separate message queues for the server and for each client. The
server’s queue is used to receive incoming client requests, and responses are
sent to clients via the individual client queues.
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Which approach we choose depends on the requirements of our application. We
next consider some of the factors that may influence our choice.

Using a single message queue for server and clients

Using a single message queue may be suitable when the messages exchanged
between servers and clients are small. However, note the following points:

Since multiple processes may attempt to read messages at the same time, we
must use the message type (mtype) field to allow each process to select only
those messages intended for it. One way to accomplish this is to use the client’s
process ID as the message type for messages sent from the server to the client.
The client can send its process ID as part of its message(s) to the server. Fur-
thermore, messages to the server must also be distinguished by a unique message
type. For this purpose, we can use the number 1, which, being the process ID
of the permanently running init process, can never be the process ID of a client
process. (An alternative would be to use the server’s process ID as the message
type; however, it is difficult for the clients to obtain this information.) This
numbering scheme is shown in Figure 46-2.

Message queues have a limited capacity. This has the potential to cause a couple
of problems. One of these is that multiple simultaneous clients could fill the
message queue, resulting in a deadlock situation, where no new client requests
can be submitted and the server is blocked from writing any responses. The
other problem is that a poorly behaved or intentionally malicious client may
fail to read responses from the server. This can lead to the queue becoming
clogged with unread messages, preventing any communication between clients
and server. (Using two queues—one for messages from clients to the server,
and the other for messages from the server to the clients—would solve the first
of these problems, but not the second.)

Figure 46-2: Using a single message queue for client-server IPC
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problems listed above when using a single message queue. Note the following
points regarding this approach:

Each client must create its own message queue (typically using the IPC_PRIVATE
key) and inform the server of the queue’s identifier, usually by transmitting the
identifier as part of the client’s message(s) to the server.

There is a system-wide limit (MSGMNI) on the number of message queues, and the
default value for this limit is quite low on some systems. If we expect to have a
large number of simultaneous clients, we may need to raise this limit.

The server should allow for the possibility that the client’s message queue no
longer exists (perhaps because the client prematurely deleted it).

We say more about using one message queue per client in the next section.

46.8 A File-Server Application Using Message Queues

In this section, we describe a client-server application that uses one message queue
per client. The application is a simple file server. The client sends a request message
to the server’s message queue asking for the contents of a named file. The server
responds by returning the file contents as a series of messages to the client’s private
message queue. Figure 46-3 provides an overview of the application.

Because the server performs no authentication of the client, any user that can
run the client can obtain any of the files accessible to the server. A more sophisticated
server would require some type of authentication from the client before serving the
requested file.

Figure 46-3: Client-server IPC using one message queue per client
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(SERVER_KEY), and defines the formats of the messages to be passed between the cli-
ent and the server.

The requestMsg structure defines the format of the request sent from the client
to the server. In this structure, the mtext component consists of two fields: the iden-
tifier of the client’s message queue and the pathname of the file requested by the
client. The constant REQ_MSG_SIZE equates to the combined size of these two fields
and is used as the msgsz argument in calls to msgsnd() using this structure.

The responseMsg structure defines the format of the response messages sent
from the server back to the client. The mtype field is used in response messages to
supply information about the message content, as defined by the RESP_MT_* constants.

Listing 46-7: Header file for svmsg_file_server.c and svmsg_file_client.c

––––––––––––––––––––––––––––––––––––––––––––––––––––––– svmsg/svmsg_file.h

#include <sys/types.h>
#include <sys/msg.h>
#include <sys/stat.h>
#include <stddef.h>                       /* For definition of offsetof() */
#include <limits.h>
#include <fcntl.h>
#include <signal.h>
#include <sys/wait.h>
#include "tlpi_hdr.h"

#define SERVER_KEY 0x1aaaaaa1             /* Key for server's message queue */

struct requestMsg {                       /* Requests (client to server) */
    long mtype;                           /* Unused */
    int  clientId;                        /* ID of client's message queue */
    char pathname[PATH_MAX];              /* File to be returned */
};

/* REQ_MSG_SIZE computes size of 'mtext' part of 'requestMsg' structure.
   We use offsetof() to handle the possibility that there are padding
   bytes between the 'clientId' and 'pathname' fields. */

#define REQ_MSG_SIZE (offsetof(struct requestMsg, pathname) - \
        offsetof(struct requestMsg, clientId) + PATH_MAX)

#define RESP_MSG_SIZE 8192

struct responseMsg {                      /* Responses (server to client) */
    long mtype;                           /* One of RESP_MT_* values below */
    char data[RESP_MSG_SIZE];             /* File content / response message */
};

/* Types for response messages sent from server to client */

#define RESP_MT_FAILURE 1                 /* File couldn't be opened */
#define RESP_MT_DATA    2                 /* Message contains file data */
#define RESP_MT_END     3                 /* File data complete */

––––––––––––––––––––––––––––––––––––––––––––––––––––––– svmsg/svmsg_file.h
956 Chapter 46



Server program

Listing 46-8 is the server program for the application. Note the following points
about the server:

The server is designed to handle requests concurrently. A concurrent server
design is preferable to the iterative design employed in Listing 44-7 (page 912),
since we want to avoid the possibility that a client request for a large file would
cause all other client requests to wait.

Each client request is handled by creating a child process that serves the
requested file i. In the meantime, the main server process waits upon further
client requests. Note the following points about the server child:

– Since the child produced via fork() inherits a copy of the parent’s stack, it
thus obtains a copy of the request message read by the main server process.

– The server child terminates after handling its associated client request o.

In order to avoid the creation of zombie processes (Section 26.2), the server
establishes a handler for SIGCHLD y and calls waitpid() within this handler q.

The msgrcv() call in the parent server process may block, and consequently be
interrupted by the SIGCHLD handler. To handle this possibility, a loop is used to
restart the call if it fails with the EINTR error u.

The server child executes the serveRequest() function w, which sends three mes-
sage types back to the client. A request with an mtype of RESP_MT_FAILURE indicates
that the server could not open the requested file e; RESP_MT_DATA is used for a
series of messages containing file data r; and RESP_MT_END (with a zero-length
data field) is used to indicate that transmission of file data is complete t.

We consider a number of ways to improve and extend the server program in
Exercise 46-4.

Listing 46-8: A file server using System V message queues

––––––––––––––––––––––––––––––––––––––––––––––––– svmsg/svmsg_file_server.c

#include "svmsg_file.h"

static void             /* SIGCHLD handler */
grimReaper(int sig)
{
    int savedErrno;

    savedErrno = errno;                 /* waitpid() might change 'errno' */
q     while (waitpid(-1, NULL, WNOHANG) > 0)

        continue;
    errno = savedErrno;
}
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static void             /* Executed in child process: serve a single client */
w serveRequest(const struct requestMsg *req)

{
    int fd;
    ssize_t numRead;
    struct responseMsg resp;

    fd = open(req->pathname, O_RDONLY);
    if (fd == -1) {                     /* Open failed: send error text */

e         resp.mtype = RESP_MT_FAILURE;
        snprintf(resp.data, sizeof(resp.data), "%s", "Couldn't open");
        msgsnd(req->clientId, &resp, strlen(resp.data) + 1, 0);
        exit(EXIT_FAILURE);              /* and terminate */
    }

    /* Transmit file contents in messages with type RESP_MT_DATA. We don't
       diagnose read() and msgsnd() errors since we can't notify client. */

r     resp.mtype = RESP_MT_DATA;
    while ((numRead = read(fd, resp.data, RESP_MSG_SIZE)) > 0)
        if (msgsnd(req->clientId, &resp, numRead, 0) == -1)
            break;

    /* Send a message of type RESP_MT_END to signify end-of-file */

t     resp.mtype = RESP_MT_END;
    msgsnd(req->clientId, &resp, 0, 0);         /* Zero-length mtext */
}

int
main(int argc, char *argv[])
{
    struct requestMsg req;
    pid_t pid;
    ssize_t msgLen;
    int serverId;
    struct sigaction sa;

    /* Create server message queue */

    serverId = msgget(SERVER_KEY, IPC_CREAT | IPC_EXCL |
                            S_IRUSR | S_IWUSR | S_IWGRP);
    if (serverId == -1)
        errExit("msgget");

    /* Establish SIGCHLD handler to reap terminated children */

    sigemptyset(&sa.sa_mask);
    sa.sa_flags = SA_RESTART;
    sa.sa_handler = grimReaper;

y     if (sigaction(SIGCHLD, &sa, NULL) == -1)
        errExit("sigaction");
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    /* Read requests, handle each in a separate child process */

    for (;;) {
        msgLen = msgrcv(serverId, &req, REQ_MSG_SIZE, 0, 0);
        if (msgLen == -1) {

u             if (errno == EINTR)         /* Interrupted by SIGCHLD handler? */
                continue;               /* ... then restart msgrcv() */
            errMsg("msgrcv");           /* Some other error */
            break;                      /* ... so terminate loop */
        }

i         pid = fork();                   /* Create child process */
        if (pid == -1) {
            errMsg("fork");
            break;
        }

        if (pid == 0) {                 /* Child handles request */
            serveRequest(&req);

o             _exit(EXIT_SUCCESS);
        }

        /* Parent loops to receive next client request */
    }

    /* If msgrcv() or fork() fails, remove server MQ and exit */

    if (msgctl(serverId, IPC_RMID, NULL) == -1)
        errExit("msgctl");
    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––– svmsg/svmsg_file_server.c

Client program

Listing 46-9 is the client program for the application. Note the following:

The client creates a message queue with the IPC_PRIVATE key w and uses atexit() e
to establish an exit handler q to ensure that the queue is deleted when the
client exits.

The client passes the identifier for its queue, as well as the pathname of the file
to be served, in a request to the server r.

The client handles the possibility that the first response message sent by the
server may be a failure notification (mtype equals RESP_MT_FAILURE) by printing
the text of the error message returned by the server and exiting t.

If the file is successfully opened, then the client loops y, receiving a series of
messages containing the file contents (mtype equals RESP_MT_DATA). The loop is
terminated by receipt of an end-of-file message (mtype equals RESP_MT_END).

This simple client doesn’t handle various possibilities resulting from failures in the
server. We consider some improvements in Exercise 46-5.
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Listing 46-9: Client for file server using System V message queues

––––––––––––––––––––––––––––––––––––––––––––––––– svmsg/svmsg_file_client.c

#include "svmsg_file.h"

static int clientId;

static void
removeQueue(void)
{
    if (msgctl(clientId, IPC_RMID, NULL) == -1)

q         errExit("msgctl");
}

int
main(int argc, char *argv[])
{
    struct requestMsg req;
    struct responseMsg resp;
    int serverId, numMsgs;
    ssize_t msgLen, totBytes;

    if (argc != 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s pathname\n", argv[0]);

    if (strlen(argv[1]) > sizeof(req.pathname) - 1)
        cmdLineErr("pathname too long (max: %ld bytes)\n",
                (long) sizeof(req.pathname) - 1);

    /* Get server's queue identifier; create queue for response */

    serverId = msgget(SERVER_KEY, S_IWUSR);
    if (serverId == -1)
        errExit("msgget - server message queue");

w     clientId = msgget(IPC_PRIVATE, S_IRUSR | S_IWUSR | S_IWGRP);
    if (clientId == -1)
        errExit("msgget - client message queue");

e     if (atexit(removeQueue) != 0)
        errExit("atexit");

    /* Send message asking for file named in argv[1] */

    req.mtype = 1;                      /* Any type will do */
    req.clientId = clientId;
    strncpy(req.pathname, argv[1], sizeof(req.pathname) - 1);
    req.pathname[sizeof(req.pathname) - 1] = '\0';
                                        /* Ensure string is terminated */

r     if (msgsnd(serverId, &req, REQ_MSG_SIZE, 0) == -1)
        errExit("msgsnd");
960 Chapter 46



    /* Get first response, which may be failure notification */

    msgLen = msgrcv(clientId, &resp, RESP_MSG_SIZE, 0, 0);
    if (msgLen == -1)
        errExit("msgrcv");

t     if (resp.mtype == RESP_MT_FAILURE) {
        printf("%s\n", resp.data);      /* Display msg from server */
        if (msgctl(clientId, IPC_RMID, NULL) == -1)
            errExit("msgctl");
        exit(EXIT_FAILURE);
    }

    /* File was opened successfully by server; process messages
       (including the one already received) containing file data */

    totBytes = msgLen;                  /* Count first message */
y     for (numMsgs = 1; resp.mtype == RESP_MT_DATA; numMsgs++) {

        msgLen = msgrcv(clientId, &resp, RESP_MSG_SIZE, 0, 0);
        if (msgLen == -1)
            errExit("msgrcv");

        totBytes += msgLen;
    }

    printf("Received %ld bytes (%d messages)\n", (long) totBytes, numMsgs);

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––– svmsg/svmsg_file_client.c

The following shell session demonstrates the use of the programs in Listing 46-8
and Listing 46-9:

$ ./svmsg_file_server &                   Run server in background
[1] 9149
$ wc -c /etc/services                     Show size of file that client will request
764360 /etc/services
$ ./svmsg_file_client /etc/services 
Received 764360 bytes (95 messages)       Bytes received matches size above
$ kill %1                                 Terminate server
[1]+  Terminated        ./svmsg_file_server

46.9 Disadvantages of System V Message Queues

UNIX systems provide a number of mechanisms for transmitting data from one pro-
cess to another on the same system, either in the form of an undelimited byte stream
(pipes, FIFOs, and UNIX domain stream sockets) or as delimited messages (System V
message queues, POSIX message queues, and UNIX domain datagram sockets).

A distinctive feature of System V message queues is the ability to attach a
numeric type to each message. This provides for two possibilities that may be useful
to applications: reading processes may select messages by type, or they may employ
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a priority-queue strategy so that higher-priority messages (i.e., those with lower
message type values) are read first.

However, System V message queues have a number of disadvantages:

Message queues are referred to by identifiers, rather than the file descriptors
used by most other UNIX I/O mechanisms. This means that a variety of file
descriptor–based I/O techniques described in Chapter 63 (e.g., select(), poll(),
and epoll) can’t be applied to message queues. Furthermore, writing programs
that simultaneously handle inputs from both message queues and file descriptor–
based I/O mechanisms requires code that is more complex than code that
deals with file descriptors alone. (We look at one way of combining the two I/O
models in Exercise 63-3.)

The use of keys, rather than filenames, to identify message queues results in
additional programming complexity and also requires the use of ipcs and ipcrm
instead of ls and rm. The ftok() function usually generates a unique key, but it is
not guaranteed to do so. Employing the IPC_PRIVATE key guarantees a unique
queue identifier, but leaves us with the task of making that identifier visible to
other processes that require it.

Message queues are connectionless, and the kernel doesn’t maintain a count of
the number of processes referring to the queue as is done with pipes, FIFOs, and
sockets. Consequently, it can be difficult to answer the following questions:

– When is it safe for an application to delete a message queue? (Premature
deletion of the queue results in immediate loss of data, regardless of
whether any process might later be interested in reading from the queue.)

– How can an application ensure that an unused queue is deleted?

There are limits on the total number of message queues, the size of messages,
and the capacity of individual queues. These limits are configurable, but if an
application operates outside the range of the default limits, this requires extra
work when installing the application.

In summary, System V message queues are often best avoided. In situations where
we require the facility to select messages by type, we should consider alternatives.
POSIX message queues (Chapter 52) are one such alternative. As a further alterna-
tive, solutions involving multiple file descriptor–based communication channels
may provide functionality similar to selecting messages by type, while at the same
time allowing the use of the alternative I/O models described in Chapter 63. For
example, if we need to transmit “normal” and “priority” messages, we could use a
pair of FIFOs or UNIX domain sockets for the two message types, and then employ
select() or poll() to monitor file descriptors for both channels.

46.10 Summary

System V message queues allow processes to communicate by exchanging messages
consisting of a numeric type plus a body containing arbitrary data. The distinguish-
ing features of message queues are that message boundaries are preserved and that
the receiver(s) can select messages by type, rather than reading messages in first-in,
first-out order.
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Various factors led us to conclude that other IPC mechanisms are usually pref-
erable to System V message queues. One major difficulty is that message queues
are not referred to using file descriptors. This means that we can’t employ various
alternative I/O models with message queues; in particular, it is complex to simulta-
neously monitor both message queues and file descriptors to see if I/O is possible.
Furthermore, the fact that message queues are connectionless (i.e., not reference
counted) makes it difficult for an application to know when a queue may be
deleted safely.

46.11 Exercises

46-1. Experiment with the programs in Listing 46-1 (svmsg_create.c), Listing 46-2
(svmsg_send.c), and Listing 46-3 (svmsg_receive.c) to confirm your understanding of
the msgget(), msgsnd(), and msgrcv() system calls.

46-2. Recode the sequence-number client-server application of Section 44.8 to use System V
message queues. Use a single message queue to transmit messages from both client
to server and server to client. Employ the conventions for message types described
in Section 46.8.

46-3. In the client-server application of Section 46.8, why does the client pass the
identifier of its message queue in the body of the message (in the clientId field),
rather than in the message type (mtype)?

46-4. Make the following changes to the client-server application of Section 46.8:

a) Replace the use of a hard-coded message queue key with code in the server
that uses IPC_PRIVATE to generate a unique identifier, and then writes this
identifier to a well-known file. The client must read the identifier from this
file. The server should remove this file if it terminates.

b) In the serveRequest() function of the server program, system call errors are
not diagnosed. Add code that logs errors using syslog() (Section 37.5).

c) Add code to the server so that it becomes a daemon on startup (Section 37.2).

d) In the server, add a handler for SIGTERM and SIGINT that performs a tidy exit.
The handler should remove the message queue and (if the earlier part of
this exercise was implemented) the file created to hold the server’s message
queue identifier. Include code in the handler to terminate the server by
disestablishing the handler, and then once more raising the same signal
that invoked the handler (see Section 26.1.4 for the rationale and steps
required for this task).

e) The server child doesn’t handle the possibility that the client may terminate
prematurely, in which case the server child would fill the client’s message
queue, and then block indefinitely. Modify the server to handle this possibility
by establishing a timeout when calling msgsnd(), as described in Section 23.3.
If the server child deems that the client has disappeared, it should attempt
to delete the client’s message queue, and then exit (after perhaps logging a
message via syslog()).
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46-5. The client shown in Listing 46-9 (svmsg_file_client.c) doesn’t handle various
possibilities for failure in the server. In particular, if the server message queue fills
up (perhaps because the server terminated and the queue was filled by other
clients), then the msgsnd() call will block indefinitely. Similarly, if the server fails to
send a response to the client, then the msgrcv() call will block indefinitely. Add code
to the client that sets timeouts (Section 23.3) on these calls. If either call times out,
then the program should report an error to the user and terminate.

46-6. Write a simple chat application (similar to talk(1), but without the curses interface)
using System V messages queues. Use a single message queue for each client.
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S Y S T E M  V  S E M A P H O R E S

This chapter describes System V semaphores. Unlike the IPC mechanisms
described in previous chapters, System V semaphores are not used to transfer data
between processes. Instead, they allow processes to synchronize their actions. One
common use of a semaphore is to synchronize access to a block of shared memory,
in order to prevent one process from accessing the shared memory at the same
time as another process is updating it.

A semaphore is a kernel-maintained integer whose value is restricted to being
greater than or equal to 0. Various operations (i.e., system calls) can be performed
on a semaphore, including the following:

setting the semaphore to an absolute value;

adding a number to the current value of the semaphore;

subtracting a number from the current value of the semaphore; and

waiting for the semaphore value to be equal to 0.

The last two of these operations may cause the calling process to block. When lower-
ing a semaphore value, the kernel blocks any attempt to decrease the value below 0.
Similarly, waiting for a semaphore to equal 0 blocks the calling process if the sema-
phore value is not currently 0. In both cases, the calling process remains blocked
until some other process alters the semaphore to a value that allows the operation
to proceed, at which point the kernel wakes the blocked process. Figure 47-1 shows



the use of a semaphore to synchronize the actions of two processes that alternately
move the semaphore value between 0 and 1.

Figure 47-1: Using a semaphore to synchronize two processes

In terms of controlling the actions of a process, a semaphore has no meaning in
and of itself. Its meaning is determined only by the associations given to it by the
processes using the semaphore. Typically, processes agree on a convention that
associates a semaphore with a shared resource, such as a region of shared memory.
Other uses of semaphores are also possible, such as synchronization between par-
ent and child processes after fork(). (In Section 24.5, we looked at the use of signals
to accomplish the same task.)

47.1 Overview

The general steps for using a System V semaphore are the following:

Create or open a semaphore set using semget().

Initialize the semaphores in the set using the semctl() SETVAL or SETALL operation.
(Only one process should do this.)

Perform operations on semaphore values using semop(). The processes using
the semaphore typically use these operations to indicate acquisition and
release of a shared resource.

When all processes have finished using the semaphore set, remove the set using
the semctl() IPC_RMID operation. (Only one process should do this.)

Most operating systems provide some type of semaphore primitive for use in appli-
cation programs. However, System V semaphores are rendered unusually complex
by the fact that they are allocated in groups called semaphore sets. The number of
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semaphores in a set is specified when the set is created using the semget() system
call. While it is common to operate on a single semaphore at a time, the semop() system
call allows us to atomically perform a group of operations on multiple semaphores
in the same set.

Because System V semaphores are created and initialized in separate steps,
race conditions can result if two processes try to perform these steps at the same
time. Describing this race condition and how to avoid it requires that we describe
semctl() before describing semop(), which means that there is quite a lot of material
to cover before we have all of the details required to fully understand semaphores.

In the meantime, we provide Listing 47-1 as a simple example of the use of the
various semaphore system calls. This program operates in two modes:

Given a single integer command-line argument, the program creates a new
semaphore set containing a single semaphore, and initializes the semaphore to
the value supplied in the command-line argument. The program displays the
identifier of the new semaphore set.

Given two command-line arguments, the program interprets them as (in
order) the identifier of an existing semaphore set and a value to be added to
the first semaphore (numbered 0) in that set. The program carries out the spec-
ified operation on that semaphore. To enable us to monitor the semaphore
operation, the program prints messages before and after the operation. Each
of these messages begins with the process ID, so that we can distinguish the
output of multiple instances of the program.

The following shell session log demonstrates the use of the program in Listing 47-1.
We begin by creating a semaphore that is initialized to 0:

$ ./svsem_demo 0
Semaphore ID = 98307                    ID of new semaphore set

We then execute a background command that tries to decrease the semaphore
value by 2:

$ ./svsem_demo 98307 -2 &
23338: about to semop at  10:19:42
[1] 23338

This command blocked, because the value of the semaphore can’t be decreased
below 0. Now, we execute a command that adds 3 to the semaphore value:

$ ./svsem_demo 98307 +3
23339: about to semop at  10:19:55
23339: semop completed at 10:19:55
23338: semop completed at 10:19:55
[1]+  Done              ./svsem_demo 98307 -2

The semaphore increment operation succeeded immediately, and caused the
semaphore decrement operation in the background command to proceed, since
that operation could now be performed without leaving the semaphore’s value
below 0.
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Listing 47-1: Creating and operating on System V semaphores

––––––––––––––––––––––––––––––––––––––––––––––––––––––– svsem/svsem_demo.c

#include <sys/types.h>
#include <sys/sem.h>
#include <sys/stat.h>
#include "curr_time.h"                  /* Declaration of currTime() */
#include "semun.h"                      /* Definition of semun union */
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int semid;

    if (argc < 2 || argc > 3 || strcmp(argv[1], "--help") == 0)
        usageErr("%s init-value\n"
                 "   or: %s semid operation\n", argv[0], argv[0]);

    if (argc == 2) {            /* Create and initialize semaphore */
        union semun arg;

        semid = semget(IPC_PRIVATE, 1, S_IRUSR | S_IWUSR);
        if (semid == -1)
            errExit("semid");

        arg.val = getInt(argv[1], 0, "init-value");
        if (semctl(semid, /* semnum= */ 0, SETVAL, arg) == -1)
            errExit("semctl");

        printf("Semaphore ID = %d\n", semid);

    } else {                    /* Perform an operation on first semaphore */

        struct sembuf sop;              /* Structure defining operation */

        semid = getInt(argv[1], 0, "semid");

        sop.sem_num = 0;                /* Specifies first semaphore in set */
        sop.sem_op = getInt(argv[2], 0, "operation");
                                        /* Add, subtract, or wait for 0 */
        sop.sem_flg = 0;                /* No special options for operation */

        printf("%ld: about to semop at  %s\n", (long) getpid(), currTime("%T"));
        if (semop(semid, &sop, 1) == -1)
            errExit("semop");

        printf("%ld: semop completed at %s\n", (long) getpid(), currTime("%T"));
    }

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––– svsem/svsem_demo.c
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47.2 Creating or Opening a Semaphore Set

The semget() system call creates a new semaphore set or obtains the identifier of an
existing set.

The key argument is a key generated using one of the methods described in Sec-
tion 45.2 (i.e., usually the value IPC_PRIVATE or a key returned by ftok()).

If we are using semget() to create a new semaphore set, then nsems specifies the
number of semaphores in that set, and must be greater than 0. If we are using
semget() to obtain the identifier of an existing set, then nsems must be less than or
equal to the size of the set (or the error EINVAL results). It is not possible to change
the number of semaphores in an existing set.

The semflg argument is a bit mask specifying the permissions to be placed on a
new semaphore set or checked against an existing set. These permissions are speci-
fied in the same manner as for files (Table 15-4, on page 295). In addition, zero or
more of the following flags can be ORed (|) in semflg to control the operation of
semget():

IPC_CREAT

If no semaphore set with the specified key exists, create a new set.

IPC_EXCL

If IPC_CREAT was also specified, and a semaphore set with the specified key
already exists, fail with the error EEXIST.

These flags are described in more detail in Section 45.1.
On success, semget() returns the identifier for the new or existing semaphore

set. Subsequent system calls referring to individual semaphores must specify both
the semaphore set identifier and the number of the semaphore within that set. The
semaphores within a set are numbered starting at 0.

47.3 Semaphore Control Operations

The semctl() system call performs a variety of control operations on a semaphore set
or on an individual semaphore within a set.

#include <sys/types.h>        /* For portability */
#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

Returns semaphore set identifier on success, or –1 on error

#include <sys/types.h>        /* For portability */
#include <sys/sem.h>

int semctl(int semid, int semnum, int cmd, ... /* union semun arg */);

Returns nonnegative integer on success (see text); returns –1 on error
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The semid argument is the identifier of the semaphore set on which the operation is
to be performed. For those operations performed on a single semaphore, the
semnum argument identifies a particular semaphore within the set. For other opera-
tions, this argument is ignored, and we can specify it as 0. The cmd argument specifies
the operation to be performed.

Certain operations require a fourth argument to semctl(), which we refer to by
the name arg in the remainder of this section. This argument is a union defined as
shown in Listing 47-2. We must explicitly define this union in our programs. We do
this in our example programs by including the header file in Listing 47-2.

Although placing the definition of the semun union in a standard header file
would be sensible, SUSv3 requires the programmer to explicitly define it
instead. Nevertheless, some UNIX implementations do provide this definition
in <sys/sem.h>. Older versions of glibc (up to and including version 2.0) also
provided this definition. In conformance with SUSv3, more recent versions of
glibc do not, and the macro _SEM_SEMUN_UNDEFINED is defined with the value 1 in
<sys/sem.h> to indicate this fact (i.e., an application compiled against glibc can
test this macro to determine if the program must itself define the semun union).

Listing 47-2: Definition of the semun union

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– svsem/semun.h

#ifndef SEMUN_H
#define SEMUN_H                 /* Prevent accidental double inclusion */

#include <sys/types.h>          /* For portability */
#include <sys/sem.h>

union semun {                   /* Used in calls to semctl() */
    int                 val;
    struct semid_ds *   buf;
    unsigned short *    array;
#if defined(__linux__)
    struct seminfo *    __buf;
#endif
};

#endif

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– svsem/semun.h

SUSv2 and SUSv3 specify that the final argument to semctl() is optional. However, a
few (mainly older) UNIX implementations (and older versions of glibc) prototyped
semctl() as follows:

int semctl(int semid, int semnum, int cmd, union semun arg);

This meant that the fourth argument was required even in the cases where it is not
actually used (e.g., the IPC_RMID and GETVAL operations described below). For full
portability, we specify a dummy final argument to semctl() in those calls where it is
not required.

In the remainder of this section, we consider the various control operations
that can be specified for cmd.
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Generic control operations

The following operations are the same ones that can be applied to other types of
System V IPC objects. In each case, the semnum argument is ignored. Further
details about these operations, including the privileges and permissions required
by the calling process, are provided in Section 45.3.

IPC_RMID

Immediately remove the semaphore set and its associated semid_ds data
structure. Any processes blocked in semop() calls waiting on semaphores in
this set are immediately awakened, with semop() reporting the error EIDRM.
The arg argument is not required.

IPC_STAT

Place a copy of the semid_ds data structure associated with this semaphore
set in the buffer pointed to by arg.buf. We describe the semid_ds structure
in Section 47.4.

IPC_SET

Update selected fields of the semid_ds data structure associated with this
semaphore set using values in the buffer pointed to by arg.buf.

Retrieving and initializing semaphore values

The following operations retrieve or initialize the value(s) of an individual semaphore
or of all semaphores in a set. Retrieving a semaphore value requires read permission
on the semaphore, while initializing the value requires alter (write) permission.

GETVAL

As its function result, semctl() returns the value of the semnum-th sema-
phore in the semaphore set specified by semid. The arg argument is not
required.

SETVAL

The value of the semnum-th semaphore in the set referred to by semid is ini-
tialized to the value specified in arg.val.

GETALL

Retrieve the values of all of the semaphores in the set referred to by semid,
placing them in the array pointed to by arg.array. The programmer must
ensure that this array is of sufficient size. (The number of semaphores in a
set can be obtained from the sem_nsems field of the semid_ds data structure
retrieved by an IPC_STAT operation.) The semnum argument is ignored. An
example of the use of the GETALL operation is provided in Listing 47-3.

SETALL

Initialize all semaphores in the set referred to by semid, using the values
supplied in the array pointed to by arg.array. The semnum argument is
ignored. Listing 47-4 demonstrates the use of the SETALL operation.

If another process is waiting to perform an operation on the semaphore(s) modi-
fied by the SETVAL or SETALL operations, and the change(s) made would permit that
operation to proceed, then the kernel wakes up that process.
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Changing the value of a semaphore with SETVAL or SETALL clears the undo
entries for that semaphore in all processes. We describe semaphore undo entries
in Section 47.8.

Note that the information returned by GETVAL and GETALL may already be out of
date by the time the calling process comes to use it. Any program that depends on
the information returned by these operations being unchanged may be subject to
time-of-check, time-of-use race conditions (Section 38.6).

Retrieving per-semaphore information

The following operations return (via the function result value) information about
the semnum-th semaphore of the set referred to by semid. For all of these opera-
tions, read permission is required on the semaphore set, and the arg argument is
not required.

GETPID

Return the process ID of the last process to perform a semop() on this sema-
phore; this is referred to as the sempid value. If no process has yet performed
a semop() on this semaphore, 0 is returned.

GETNCNT

Return the number of processes currently waiting for the value of this
semaphore to increase; this is referred to as the semncnt value.

GETZCNT

Return the number of processes currently waiting for the value of this
semaphore to become 0; this is referred to as the semzcnt value.

As with the GETVAL and GETALL operations described above, the information returned
by the GETPID, GETNCNT, and GETZCNT operations may already be out of date by the time
the calling process comes to use it.

Listing 47-3 demonstrates the use of these three operations.

47.4 Semaphore Associated Data Structure

Each semaphore set has an associated semid_ds data structure of the following form:

struct semid_ds {
    struct ipc_perm sem_perm;       /* Ownership and permissions */
    time_t          sem_otime;      /* Time of last semop() */
    time_t          sem_ctime;      /* Time of last change */
    unsigned long   sem_nsems;      /* Number of semaphores in set */
};

SUSv3 requires all of the fields that we show in the semid_ds structure. Some
other UNIX implementations include additional nonstandard fields. On
Linux 2.4 and later, the sem_nsems field is typed as unsigned long. SUSv3 specifies
the type of this field as unsigned short, and it is so defined in Linux 2.2 and on
most other UNIX implementations.
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The fields of the semid_ds structure are implicitly updated by various semaphore
system calls, and certain subfields of the sem_perm field can be explicitly updated
using the semctl() IPC_SET operation. The details are as follows:

sem_perm
When the semaphore set is created, the fields of this substructure are ini-
tialized as described in Section 45.3. The uid, gid, and mode subfields can be
updated via IPC_SET.

sem_otime
This field is set to 0 when the semaphore set is created, and then set to the
current time on each successful semop(), or when the semaphore value is
modified as a consequence of a SEM_UNDO operation (Section 47.8). This field
and sem_ctime are typed as time_t, and store time in seconds since the Epoch.

sem_ctime
This field is set to the current time when the semaphore set is created and
on each successful IPC_SET, SETALL, or SETVAL operation. (On some UNIX
implementations, the SETALL and SETVAL operations don’t modify sem_ctime.)

sem_nsems
When the set is created, this field is initialized to the number of sema-
phores in the set.

In the remainder of this section, we show two example programs that make use of the
semid_ds data structure and some of the semctl() operations described in Section 47.3.
We demonstrate the use of both of these programs in Section 47.6.

Monitoring a semaphore set

The program in Listing 47-3 makes use of various semctl() operations to display
information about the existing semaphore set whose identifier is provided as its
command-line argument. The program first displays the time fields from the
semid_ds data structure. Then, for each semaphore in the set, the program displays
the semaphore’s current value, as well as its sempid, semncnt, and semzcnt values.

Listing 47-3: A semaphore monitoring program

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– svsem/svsem_mon.c

#include <sys/types.h>
#include <sys/sem.h>
#include <time.h>
#include "semun.h"                      /* Definition of semun union */
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    struct semid_ds ds;
    union semun arg, dummy;             /* Fourth argument for semctl() */
    int semid, j;
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    if (argc != 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s semid\n", argv[0]);

    semid = getInt(argv[1], 0, "semid");

    arg.buf = &ds;
    if (semctl(semid, 0, IPC_STAT, arg) == -1)
        errExit("semctl");

    printf("Semaphore changed: %s", ctime(&ds.sem_ctime));
    printf("Last semop():      %s", ctime(&ds.sem_otime));

    /* Display per-semaphore information */

    arg.array = calloc(ds.sem_nsems, sizeof(arg.array[0]));
    if (arg.array == NULL)
        errExit("calloc");
    if (semctl(semid, 0, GETALL, arg) == -1)
        errExit("semctl-GETALL");

    printf("Sem #  Value  SEMPID  SEMNCNT  SEMZCNT\n");

    for (j = 0; j < ds.sem_nsems; j++)
        printf("%3d   %5d   %5d  %5d    %5d\n", j, arg.array[j],
                semctl(semid, j, GETPID, dummy),
                semctl(semid, j, GETNCNT, dummy),
                semctl(semid, j, GETZCNT, dummy));

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– svsem/svsem_mon.c

Initializing all semaphores in a set

The program in Listing 47-4 provides a command-line interface for initializing all
of the semaphores in an existing set. The first command-line argument is the iden-
tifier of the semaphore set to be initialized. The remaining command-line argu-
ments specify the values to which the semaphores are to be initialized (there must
be as many of these arguments as there are semaphores in the set).

Listing 47-4: Using the SETALL operation to initialize a System V semaphore set

––––––––––––––––––––––––––––––––––––––––––––––––––––– svsem/svsem_setall.c

#include <sys/types.h>
#include <sys/sem.h>
#include "semun.h"                      /* Definition of semun union */
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    struct semid_ds ds;
    union semun arg;                    /* Fourth argument for semctl() */
    int j, semid;
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    if (argc < 3 || strcmp(argv[1], "--help") == 0)
        usageErr("%s semid val...\n", argv[0]);

    semid = getInt(argv[1], 0, "semid");

/* Obtain size of semaphore set */

    arg.buf = &ds;
    if (semctl(semid, 0, IPC_STAT, arg) == -1)
        errExit("semctl");

    if (ds.sem_nsems != argc - 2)
        cmdLineErr("Set contains %ld semaphores, but %d values were supplied\n",
                (long) ds.sem_nsems, argc - 2);

    /* Set up array of values; perform semaphore initialization */

    arg.array = calloc(ds.sem_nsems, sizeof(arg.array[0]));
    if (arg.array == NULL)
        errExit("calloc");

    for (j = 2; j < argc; j++)
        arg.array[j - 2] = getInt(argv[j], 0, "val");

    if (semctl(semid, 0, SETALL, arg) == -1)
        errExit("semctl-SETALL");
    printf("Semaphore values changed (PID=%ld)\n", (long) getpid());

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––– svsem/svsem_setall.c

47.5 Semaphore Initialization

According to SUSv3, an implementation is not required to initialize the values of
the semaphores in a set created by semget(). Instead, the programmer must explicitly
initialize the semaphores using the semctl() system call. (On Linux, the semaphores
returned by semget() are in fact initialized to 0, but we can’t portably rely on this.) As
stated earlier, the fact that semaphore creation and initialization must be per-
formed by separate system calls, instead of in a single atomic step, leads to possible
race conditions when initializing a semaphore. In this section, we detail the nature
of the race and look at a method of avoiding it based on an idea described in
[Stevens, 1999].

Suppose that we have an application consisting of multiple peer processes
employing a semaphore to coordinate their actions. Since no single process is guar-
anteed to be the first to use the semaphore (this is what is meant by the term peer),
each process must be prepared to create and initialize the semaphore if it doesn’t
already exist. For this purpose, we might consider employing the code shown in
Listing 47-5.
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Listing 47-5: Incorrectly initializing a System V semaphore

––––––––––––––––––––––––––––––––––––––––––––––––– from svsem/svsem_bad_init.c
/* Create a set containing 1 semaphore */

    semid = semget(key, 1, IPC_CREAT | IPC_EXCL | perms);

    if (semid != -1) {                  /* Successfully created the semaphore */
        union semun arg;

        /* XXXX */

        arg.val = 0;                    /* Initialize semaphore */
        if (semctl(semid, 0, SETVAL, arg) == -1)
            errExit("semctl");

} else {                            /* We didn't create the semaphore */
        if (errno != EEXIST) {          /* Unexpected error from semget() */
            errExit("semget");

        semid = semget(key, 1, perms);  /* Retrieve ID of existing set */
        if (semid == -1)
           errExit("semget");
    }

    /* Now perform some operation on the semaphore */

    sops[0].sem_op = 1;                 /* Add 1... */
    sops[0].sem_num = 0;                /* to semaphore 0 */
    sops[0].sem_flg = 0;
    if (semop(semid, sops, 1) == -1)
        errExit("semop");

––––––––––––––––––––––––––––––––––––––––––––––––– from svsem/svsem_bad_init.c

The problem with the code in Listing 47-5 is that if two processes execute it at the
same time, then the sequence shown in Figure 47-2 could occur, if the first pro-
cess’s time slice happens to expire at the point marked XXXX in the code. This
sequence is problematic for two reasons. First, process B performs a semop() on an
uninitialized semaphore (i.e., one whose value is arbitrary). Second, the semctl() call
in process A overwrites the changes made by process B.

The solution to this problem relies on a historical, and now standardized, feature
of the initialization of the sem_otime field in the semid_ds data structure associated
with the semaphore set. When a semaphore set is first created, the sem_otime field is
initialized to 0, and it is changed only by a subsequent semop() call. We can exploit
this feature to eliminate the race condition described above. We do this by insert-
ing extra code to force the second process (i.e., the one that does not create the
semaphore) to wait until the first process has both initialized the semaphore and
executed a semop() call that updates the sem_otime field, but does not modify the
semaphore’s value. The modified code is shown in Listing 47-6.

Unfortunately, the solution to the initialization problem described in the main
text doesn’t work on all UNIX implementations. In some versions of the mod-
ern BSD derivatives, semop() doesn’t update the sem_otime field.
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Listing 47-6: Initializing a System V semaphore

–––––––––––––––––––––––––––––––––––––––––––––––– from svsem/svsem_good_init.c
semid = semget(key, 1, IPC_CREAT | IPC_EXCL | perms);

    if (semid != -1) {                  /* Successfully created the semaphore */
        union semun arg;
        struct sembuf sop;

        arg.val = 0;                    /* So initialize it to 0 */
        if (semctl(semid, 0, SETVAL, arg) == -1)
            errExit("semctl");

        /* Perform a "no-op" semaphore operation - changes sem_otime
           so other processes can see we've initialized the set. */

        sop.sem_num = 0;                /* Operate on semaphore 0 */
        sop.sem_op = 0;                 /* Wait for value to equal 0 */
        sop.sem_flg = 0;
        if (semop(semid, &sop, 1) == -1)
            errExit("semop");

} else {                            /* We didn't create the semaphore set */
        const int MAX_TRIES = 10;
        int j;
        union semun arg;
        struct semid_ds ds;

        if (errno != EEXIST) {          /* Unexpected error from semget() */
            errExit("semget");

        semid = semget(key, 1, perms);  /* Retrieve ID of existing set */
        if (semid == -1)
            errExit("semget");

        /* Wait until another process has called semop() */

        arg.buf = &ds;
        for (j = 0; j < MAX_TRIES; j++) {
            if (semctl(semid, 0, IPC_STAT, arg) == -1)
                errExit("semctl");
            if (ds.sem_otime != 0)      /* semop() performed? */
                break;                  /* Yes, quit loop */
            sleep(1);                   /* If not, wait and retry */
        }

        if (ds.sem_otime == 0)          /* Loop ran to completion! */
            fatal("Existing semaphore not initialized");
    }

    /* Now perform some operation on the semaphore */

–––––––––––––––––––––––––––––––––––––––––––––––– from svsem/svsem_good_init.c

We can use variations of the technique shown in Listing 47-6 to ensure that multiple
semaphores in a set are correctly initialized, or that a semaphore is initialized to a
nonzero value.
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This rather complex solution to the race problem is not required in all applica-
tions. We don’t need it if one process is guaranteed to be able to create and initialize
the semaphore before any other processes attempt to use it. This would be the
case, for example, if a parent creates and initializes the semaphore before creating
child processes with which it shares the semaphore. In such cases, it is sufficient for
the first process to follow its semget() call by a semctl() SETVAL or SETALL operation.

Figure 47-2: Two processes racing to initialize the same semaphore

47.6 Semaphore Operations

The semop() system call performs one or more operations on the semaphores in the
semaphore set identified by semid.
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#include <sys/types.h>        /* For portability */
#include <sys/sem.h>

int semop(int semid, struct sembuf *sops, unsigned int nsops);

Returns 0 on success, or –1 on error
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The sops argument is a pointer to an array that contains the operations to be per-
formed, and nsops gives the size of this array (which must contain at least one element).
The operations are performed atomically and in array order. The elements of the
sops array are structures of the following form:

struct sembuf {
    unsigned short sem_num; /* Semaphore number */
    short          sem_op; /* Operation to be performed */
    short          sem_flg; /* Operation flags (IPC_NOWAIT and SEM_UNDO) */
};

The sem_num field identifies the semaphore within the set upon which the opera-
tion is to be performed. The sem_op field specifies the operation to be performed:

If sem_op is greater than 0, the value of sem_op is added to the semaphore value.
As a result, other processes waiting to decrease the semaphore value may be
awakened and perform their operations. The calling process must have alter
(write) permission on the semaphore.

If sem_op equals 0, the value of the semaphore is checked to see whether it cur-
rently equals 0. If it does, the operation completes immediately; otherwise,
semop() blocks until the semaphore value becomes 0. The calling process must
have read permission on the semaphore.

If sem_op is less than 0, decrease the value of the semaphore by the amount
specified in sem_op. If the current value of the semaphore is greater than or
equal to the absolute value of sem_op, the operation completes immediately.
Otherwise, semop() blocks until the semaphore value has been increased to a
level that permits the operation to be performed without resulting in a nega-
tive value. The calling process must have alter permission on the semaphore.

Semantically, increasing the value of a semaphore corresponds to making a
resource available so that others can use it, while decreasing the value of a sema-
phore corresponds to reserving a resource for (exclusive) use by this process. When
decreasing the value of a semaphore, the operation is blocked if the semaphore value is
too low—that is, if some other process has already reserved the resource.

When a semop() call blocks, the process remains blocked until one of the follow-
ing occurs:

Another process modifies the value of the semaphore such that the requested
operation can proceed.

A signal interrupts the semop() call. In this case, the error EINTR results. (As
noted in Section 21.5, semop() is never automatically restarted after being inter-
rupted by a signal handler.)

Another process deletes the semaphore referred to by semid. In this case,
semop() fails with the error EIDRM.

We can prevent semop() from blocking when performing an operation on a particu-
lar semaphore by specifying the IPC_NOWAIT flag in the corresponding sem_flg field.
In this case, if semop() would have blocked, it instead fails with the error EAGAIN.
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While it is usual to operate on a single semaphore at a time, it is possible to
make a semop() call that performs operations on multiple semaphores in a set. The
key point to note is that this group of operations is performed atomically; that is,
semop() either performs all of the operations immediately, if possible, or blocks
until it would be possible to perform all of the operations simultaneously.

Few systems document the fact that semop() performs operations in array
order, although all systems known to the author do so, and a few applica-
tions depend on this behavior. SUSv4 adds text that explicitly requires this
behavior.

Listing 47-7 demonstrates the use of semop() to perform operations on three
semaphores in a set. The operations on semaphores 0 and 2 may not be able to
proceed immediately, depending on the current values of the semaphores. If the
operation on semaphore 0 can’t be performed immediately, then none of the
requested operations is performed, and semop() blocks. On the other hand, if the
operation on semaphore 0 could be performed immediately, but the operation
on semaphore 2 could not, then—because the IPC_NOWAIT flag was specified—none
of the requested operations is performed, and semop() returns immediately with
the error EAGAIN.

The semtimedop() system call performs the same task as semop(), except that the
timeout argument specifies an upper limit on the time for which the call will block.

The timeout argument is a pointer to a timespec structure (Section 23.4.2), which
allows a time interval to be expressed as a number of seconds and nanoseconds. If
the specified time interval expires before it is possible to complete the semaphore
operation, semtimedop() fails with the error EAGAIN. If timeout is specified as NULL,
semtimedop() is exactly the same as semop().

The semtimedop() system call is provided as a more efficient method of setting a
timeout on a semaphore operation than using setitimer() plus semop(). The small
performance benefit that this confers is significant for certain applications (notably,
some database systems) that need to frequently perform such operations. How-
ever, semtimedop() is not specified in SUSv3 and is present on only a few other
UNIX implementations.

The semtimedop() system call appeared as a new feature in Linux 2.6 and was
subsequently back-ported into Linux 2.4, starting with kernel 2.4.22.

#define _GNU_SOURCE
#include <sys/types.h>        /* For portability */
#include <sys/sem.h>

int semtimedop(int semid, struct sembuf *sops, unsigned int nsops,
               struct timespec *timeout);

Returns 0 on success, or –1 on error
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Listing 47-7: Using semop() to perform operations on multiple System V semaphores

   struct sembuf sops[3];

   sops[0].sem_num = 0;                 /* Subtract 1 from semaphore 0 */
   sops[0].sem_op = -1;
   sops[0].sem_flg = 0;

   sops[1].sem_num = 1;                 /* Add 2 to semaphore 1 */
   sops[1].sem_op = 2;
   sops[1].sem_flg = 0;

   sops[2].sem_num = 2;                 /* Wait for semaphore 2 to equal 0 */
   sops[2].sem_op = 0;
   sops[2].sem_flg = IPC_NOWAIT;        /* But don't block if operation
                                           can't be performed immediately */
   if (semop(semid, sops, 3) == -1) {
       if (errno == EAGAIN)             /* Semaphore 2 would have blocked */
           printf("Operation would have blocked\n");
       else
           errExit("semop");            /* Some other error */
   }

Example program

The program in Listing 47-8 provides a command-line interface to the semop() system
call. The first argument to this program is the identifier of the semaphore set upon
which operations are to be performed.

Each of the remaining command-line arguments specifies a group of sema-
phore operations to be performed in a single semop() call. The operations within a
single command-line argument are delimited by commas. Each operation has one
of the following forms:

semnum+value: add value to semaphore semnum.

semnum-value: subtract value from semaphore semnum.

semnum=0: test semaphore semnum to see if it equals 0.

At the end of each operation, we can optionally include an n, a u, or both. The letter
n means include IPC_NOWAIT in the sem_flg value for this operation. The letter u
means include SEM_UNDO in sem_flg. (We describe the SEM_UNDO flag in Section 47.8.)

The following command line specifies two semop() calls on the semaphore set
whose identifier is 0:

$ ./svsem_op 0 0=0 0-1,1-2n

The first command-line argument specifies a semop() call that waits until semaphore
zero equals 0. The second argument specifies a semop() call that subtracts 1 from
semaphore 0, and subtracts 2 from semaphore 1. For the operation on semaphore 0,
sem_flg is 0; for the operation on semaphore 1, sem_flg is IPC_NOWAIT.
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Listing 47-8: Performing System V semaphore operations with semop()
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– svsem/svsem_op.c

#include <sys/types.h>
#include <sys/sem.h>
#include <ctype.h>
#include "curr_time.h"          /* Declaration of currTime() */
#include "tlpi_hdr.h"

#define MAX_SEMOPS 1000         /* Maximum operations that we permit for
                                   a single semop() */

static void
usageError(const char *progName)
{
    fprintf(stderr, "Usage: %s semid op[,op...] ...\n\n", progName);
    fprintf(stderr, "'op' is either: <sem#>{+|-}<value>[n][u]\n");
    fprintf(stderr, "            or: <sem#>=0[n]\n");
    fprintf(stderr, "       \"n\" means include IPC_NOWAIT in 'op'\n");
    fprintf(stderr, "       \"u\" means include SEM_UNDO in 'op'\n\n");
    fprintf(stderr, "The operations in each argument are "
                    "performed in a single semop() call\n\n");
    fprintf(stderr, "e.g.: %s 12345 0+1,1-2un\n", progName);
    fprintf(stderr, "      %s 12345 0=0n 1+1,2-1u 1=0\n", progName);
    exit(EXIT_FAILURE);
}

/* Parse comma-delimited operations in 'arg', returning them in the
   array 'sops'. Return number of operations as function result. */

static int
parseOps(char *arg, struct sembuf sops[])
{
    char *comma, *sign, *remaining, *flags;
    int numOps;                 /* Number of operations in 'arg' */

    for (numOps = 0, remaining = arg; ; numOps++) {
        if (numOps >= MAX_SEMOPS)
            cmdLineErr("Too many operations (maximum=%d): \"%s\"\n",
                        MAX_SEMOPS, arg);

        if (*remaining == '\0')
            fatal("Trailing comma or empty argument: \"%s\"", arg);
        if (!isdigit((unsigned char) *remaining))
            cmdLineErr("Expected initial digit: \"%s\"\n", arg);

        sops[numOps].sem_num = strtol(remaining, &sign, 10);

        if (*sign == '\0' || strchr("+-=", *sign) == NULL)
            cmdLineErr("Expected '+', '-', or '=' in \"%s\"\n", arg);
        if (!isdigit((unsigned char) *(sign + 1)))
            cmdLineErr("Expected digit after '%c' in \"%s\"\n", *sign, arg);

        sops[numOps].sem_op = strtol(sign + 1, &flags, 10);
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        if (*sign == '-')                       /* Reverse sign of operation */
            sops[numOps].sem_op = - sops[numOps].sem_op;
        else if (*sign == '=')                  /* Should be '=0' */
            if (sops[numOps].sem_op != 0)
                cmdLineErr("Expected \"=0\" in \"%s\"\n", arg);

        sops[numOps].sem_flg = 0;
        for (;; flags++) {
            if (*flags == 'n')
                sops[numOps].sem_flg |= IPC_NOWAIT;
            else if (*flags == 'u')
                sops[numOps].sem_flg |= SEM_UNDO;
            else
                break;
        }

        if (*flags != ',' && *flags != '\0')
            cmdLineErr("Bad trailing character (%c) in \"%s\"\n", *flags, arg);

        comma = strchr(remaining, ',');
        if (comma == NULL)
            break;                              /* No comma --> no more ops */
        else
            remaining = comma + 1;
    }

    return numOps + 1;
}

int
main(int argc, char *argv[])
{
    struct sembuf sops[MAX_SEMOPS];
    int ind, nsops;

    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageError(argv[0]);

    for (ind = 2; argv[ind] != NULL; ind++) {
        nsops = parseOps(argv[ind], sops);

        printf("%5ld, %s: about to semop()  [%s]\n", (long) getpid(),
                currTime("%T"), argv[ind]);

        if (semop(getInt(argv[1], 0, "semid"), sops, nsops) == -1)
            errExit("semop (PID=%ld)", (long) getpid());

        printf("%5ld, %s: semop() completed [%s]\n", (long) getpid(),
                currTime("%T"), argv[ind]);
    }

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– svsem/svsem_op.c
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Using the program in Listing 47-8, along with various others shown in this chapter,
we can study the operation of System V semaphores, as demonstrated in the follow-
ing shell session. We begin by using a program that creates a semaphore set con-
taining two semaphores, which we initialize to 1 and 0:

$ ./svsem_create -p 2
32769                                               ID of semaphore set
$ ./svsem_setall 32769 1 0
Semaphore values changed (PID=3658)

We don’t show the code of the svsem/svsem_create.c program in this chapter,
but it is provided in the source code distribution for this book. This program
performs the same function for semaphores as the program in Listing 46-1 (on
page 938) performs for message queues; that is, it creates a semaphore set.
The only notable difference is that svsem_create.c takes an additional argu-
ment specifying the size of the semaphore set to be created.

Next, we start three background instances of the program in Listing 47-8 to per-
form semop() operations on the semaphore set. The program prints messages
before and after each semaphore operation. These messages include the time, so
that we can see when each operation starts and when it completes, and the process
ID, so that we can track the operation of multiple instances of the program. The
first command makes a request to decrease both semaphores by 1:

$ ./svsem_op 32769 0-1,1-1 &                        Operation 1
 3659, 16:02:05: about to semop()  [0-1,1-1]
[1] 3659

In the above output, we see that the program printed a message saying that the
semop() operation is about to be performed, but did not print any further messages,
because the semop() call blocks. The call blocks because semaphore 1 has the value 0.

Next, we execute a command that makes a request to decrease semaphore 1 by 1:

$ ./svsem_op 32769 1-1 &                            Operation 2
 3660, 16:02:22: about to semop()  [1-1]
[2] 3660

This command also blocks. Next, we execute a command that waits for the value of
semaphore 0 to equal 0:

$ ./svsem_op 32769 0=0 &                            Operation 3
 3661, 16:02:27: about to semop()  [0=0]
[3] 3661

Again, this command blocks, in this case because the value of semaphore 0 is cur-
rently 1.

Now, we use the program in Listing 47-3 to inspect the semaphore set:

$ ./svsem_mon 32769
Semaphore changed: Sun Jul 25 16:01:53 2010
Last semop():      Thu Jan  1 01:00:00 1970
Sem #  Value  SEMPID  SEMNCNT  SEMZCNT
  0       1       0      1        1
  1       0       0      2        0
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When a semaphore set is created, the sem_otime field of the associated semid_ds data
structure is initialized to 0. A calendar time value of 0 corresponds to the Epoch
(Section 10.1), and ctime() displays this as 1 AM, 1 January 1970, since the local
timezone is Central Europe, one hour ahead of UTC.

Examining the output further, we can see that, for semaphore 0, the semncnt
value is 1 because operation 1 is waiting to decrease the semaphore value, and
semzcnt is 1 because operation 3 is waiting for this semaphore to equal 0. For sema-
phore 1, the semncnt value of 2 reflects the fact that operation 1 and operation 2 are
waiting to decrease the semaphore value.

Next, we try a nonblocking operation on the semaphore set. This operation
waits for semaphore 0 to equal 0. Since this operation can’t be immediately per-
formed, semop() fails with the error EAGAIN:

$ ./svsem_op 32769 0=0n                             Operation 4
 3673, 16:03:13: about to semop()  [0=0n]
ERROR [EAGAIN/EWOULDBLOCK Resource temporarily unavailable] semop (PID=3673)

Now we add 1 to semaphore 1. This causes two of the earlier blocked operations (1
and 3) to unblock:

$ ./svsem_op 32769 1+1                              Operation 5
 3674, 16:03:29: about to semop()  [1+1]
 3659, 16:03:29: semop() completed [0-1,1-1]        Operation 1 completes
 3661, 16:03:29: semop() completed [0=0]            Operation 3 completes
 3674, 16:03:29: semop() completed [1+1]            Operation 5 completes
[1]   Done              ./svsem_op 32769 0-1,1-1
[3]+  Done              ./svsem_op 32769 0=0

When we use our monitoring program to inspect the state of the semaphore set,
we see that the sem_otime field of the associated semid_ds data structure has been
updated, and the sempid values of both semaphores have been updated. We also see
that the semncnt value for semaphore 1 is 1, since operation 2 is still blocked, wait-
ing to decrease the value of this semaphore:

$ ./svsem_mon 32769
Semaphore changed: Sun Jul 25 16:01:53 2010
Last semop():      Sun Jul 25 16:03:29 2010
Sem #  Value  SEMPID  SEMNCNT  SEMZCNT
  0       0    3661      0        0
  1       0    3659      1        0

From the above output, we see that the sem_otime value has been updated. We also
see that semaphore 0 was last operated on by process ID 3661 (operation 3) and
semaphore 1 was last operated on by process ID 3659 (operation 1).

Finally, we remove the semaphore set. This causes the still blocked operation 2
to fail with the error EIDRM:

$ ./svsem_rm 32769
ERROR [EIDRM Identifier removed] semop (PID=3660)

We don’t show the source code for the svsem/svsem_rm.c program in this chapter,
but it is provided in the source code distribution for this book. This program
removes the semaphore set identified by its command-line argument.
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47.7 Handling of Multiple Blocked Semaphore Operations

If multiple processes are blocked trying to decrease the value of a semaphore by the
same amount, then it is indeterminate which process will be permitted to perform
the operation first when it becomes possible (i.e., which process is able to perform the
operation will depend on vagaries of the kernel process scheduling algorithm).

On the other hand, if processes are blocked trying to decrease a semaphore
value by different amounts, then the requests are served in the order in which they
become possible. Suppose that a semaphore currently has the value 0, and process A
requests to decrease the semaphore’s value by 2, and then process B requests to
decrease the value by 1. If a third process then adds 1 to the semaphore, process B
would be the first to unblock and perform its operation, even though process A was
the first to request an operation against the semaphore. In poorly designed applica-
tions, such scenarios can lead to starvation, whereby a process remains blocked forever
because the state of the semaphore is never such that the requested operation
proceeds. Continuing our example, we can envisage scenarios where multiple
processes adjust the semaphore in such a way that its value is never more than 1,
with the result that process A remains blocked forever.

Starvation can also occur if a process is blocked trying to perform operations
on multiple semaphores. Consider the following scenario, performed on a pair of
semaphores, both of which initially have the value 0:

1. Process A makes a request to subtract 1 from semaphores 0 and 1 (blocks).

2. Process B makes a request to subtract 1 from semaphore 0 (blocks).

3. Process C adds 1 to semaphore 0.

At this point, process B unblocks and completes its request, even though it placed
its request later than process A. Again, it is possible to devise scenarios in which
process A is starved while other processes adjust and block on the values of the
individual semaphores.

47.8 Semaphore Undo Values

Suppose that, having adjusted the value of a semaphore (e.g., decreased the sema-
phore value so that it is now 0), a process then terminates, either deliberately or
accidentally. By default, the semaphore’s value is left unchanged. This may consti-
tute a problem for other processes using the semaphore, since they may be blocked
waiting on that semaphore—that is, waiting for the now-terminated process to undo
the change it made.

To avoid such problems, we can employ the SEM_UNDO flag when changing the
value of a semaphore via semop(). When this flag is specified, the kernel records the
effect of the semaphore operation, and then undoes the operation if the process
terminates. The undo happens regardless of whether the process terminates nor-
mally or abnormally.
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The kernel doesn’t need to keep a record of all operations performed using
SEM_UNDO. It suffices to record the sum of all of the semaphore adjustments performed
using SEM_UNDO in a per-semaphore, per-process integer total called the semadj (sema-
phore adjustment) value. When the process terminates, all that is necessary is to
subtract this total from the semaphore’s current value.

Since Linux 2.6, processes (threads) created using clone() share semadj values if
the CLONE_SYSVSEM flag is employed. Such sharing is required for a conforming
implementation of POSIX threads. The NPTL threading implementation
employs CLONE_SYSVSEM for the implementation of pthread_create().

When a semaphore value is set using the semctl() SETVAL or SETALL operation, the corre-
sponding semadj values are cleared (i.e., set to 0) in all processes using the semaphore.
This makes sense, since absolutely setting the value of a semaphore destroys the
value associated with the historical record maintained in the semadj total.

A child created via fork() doesn’t inherit its parent’s semadj values; it doesn’t
make sense for a child to undo its parent’s semaphore operations. On the other
hand, semadj values are preserved across an exec(). This permits us to adjust a sema-
phore value using SEM_UNDO, and then exec() a program that performs no operation
on the semaphore, but does automatically adjust the semaphore on process termi-
nation. (This can be used as a technique that allows another process to discover
when this process terminates.)

Example of the effect of SEM_UNDO

The following shell session log shows the effect of performing operations on two
semaphores: one operation with the SEM_UNDO flag and one without. We begin by
creating a set containing two semaphores:

$ ./svsem_create -p 2
131073

Next, we execute a command that adds 1 to both semaphores and then terminates.
The operation on semaphore 0 specifies the SEM_UNDO flag:

$ ./svsem_op 131073 0+1u 1+1
 2248, 06:41:56: about to semop()
 2248, 06:41:56: semop() completed

Now, we use the program in Listing 47-3 to check the state of the semaphores:

$ ./svsem_mon 131073
Semaphore changed: Sun Jul 25 06:41:34 2010
Last semop():      Sun Jul 25 06:41:56 2010
Sem #  Value  SEMPID  SEMNCNT  SEMZCNT
  0       0    2248      0        0
  1       1    2248      0        0

Looking at the semaphore values in the last two lines of the above output, we can
see that the operation on semaphore 0 was undone, but the operation on sema-
phore 1 was not undone.
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Limitations of SEM_UNDO

We conclude by noting that the SEM_UNDO flag is less useful than it first appears, for
two reasons. One is that because modifying a semaphore typically corresponds to
acquiring or releasing some shared resource, the use of SEM_UNDO on its own may be
insufficient to allow a multiprocess application to recover in the event that a process
unexpectedly terminates. Unless process termination also automatically returns the
shared resource state to a consistent state (unlikely in many scenarios), undoing a
semaphore operation is probably insufficient to allow the application to recover.

The second factor limiting the utility of SEM_UNDO is that, in some cases, it is not
possible to perform semaphore adjustments when a process terminates. Consider
the following scenario, applied to a semaphore whose initial value is 0:

1. Process A increases the value of a semaphore by 2, specifying the SEM_UNDO flag
for the operation.

2. Process B decreases the value of the semaphore by 1, so that it has the value 1.

3. Process A terminates.

At this point, it is impossible to completely undo the effect of process A’s operation
in step 1, since the value of the semaphore is too low. There are three possible ways
to resolve this situation:

Force the process to block until the semaphore adjustment is possible.

Decrease the semaphore value as far as possible (i.e., to 0) and exit.

Exit without performing any semaphore adjustment.

The first solution is infeasible since it might force a terminating process to block
forever. Linux adopts the second solution. Some other UNIX implementations
adopt the third solution. SUSv3 is silent on what an implementation should do in
this situation.

An undo operation that attempts to raise a semaphore’s value above its permit-
ted maximum value of 32,767 (the SEMVMX limit, described Section 47.10) also
causes anomalous behavior. In this case, the kernel always performs the adjust-
ment, thus (illegitimately) raising the semaphore’s value above SEMVMX.

47.9 Implementing a Binary Semaphores Protocol

The API for System V semaphores is complex, both because semaphore values can
be adjusted by arbitrary amounts, and because semaphores are allocated and oper-
ated upon in sets. Both of these features provide more functionality than is typically
needed within applications, and so it is useful to implement some simpler protocols
(APIs) on top of System V semaphores.

One commonly used protocol is binary semaphores. A binary semaphore has
two values: available (free) and reserved (in use). Two operations are defined for
binary semaphores:

Reserve: Attempt to reserve this semaphore for exclusive use. If the semaphore
is already reserved by another process, then block until the semaphore is released.
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Release: Free a currently reserved semaphore, so that it can be reserved by
another process.

In academic computer science, these two operations often go by the names P
and V, the first letters of the Dutch terms for these operations. This nomenclature
was coined by the late Dutch computer scientist Edsger Dijkstra, who pro-
duced much of the early theoretical work on semaphores. The terms down
(decrement the semaphore) and up (increment the semaphore) are also used.
POSIX terms the two operations wait and post.

A third operation is also sometimes defined:

Reserve conditionally: Make a nonblocking attempt to reserve this semaphore
for exclusive use. If the semaphore is already reserved, then immediately
return a status indicating that the semaphore is unavailable.

In implementing binary semaphores, we must choose how to represent the
available and reserved states, and how to implement the above operations. A
moment’s reflection leads us to realize that the best way to represent the states is to
use the value 1 for free and the value 0 for reserved, with the reserve and release opera-
tions decrementing and incrementing the semaphore value by one.

Listing 47-9 and Listing 47-10 provide an implementation of binary semaphores
using System V semaphores. As well as providing the prototypes of the functions in
the implementation, the header file in Listing 47-9 declares two global Boolean vari-
ables exposed by the implementation. The bsUseSemUndo variable controls whether
the implementation uses the SEM_UNDO flag in semop() calls. The bsRetryOnEintr variable
controls whether the implementation restarts semop() calls that are interrupted by
signals.

Listing 47-9: Header file for binary_sems.c

–––––––––––––––––––––––––––––––––––––––––––––––––––––– svsem/binary_sems.h

#ifndef BINARY_SEMS_H           /* Prevent accidental double inclusion */
#define BINARY_SEMS_H

#include "tlpi_hdr.h"

/* Variables controlling operation of functions below */

extern Boolean bsUseSemUndo;            /* Use SEM_UNDO during semop()? */
extern Boolean bsRetryOnEintr;          /* Retry if semop() interrupted by
                                           signal handler? */

int initSemAvailable(int semId, int semNum);

int initSemInUse(int semId, int semNum);

int reserveSem(int semId, int semNum);

int releaseSem(int semId, int semNum);

#endif

–––––––––––––––––––––––––––––––––––––––––––––––––––––– svsem/binary_sems.h
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Listing 47-10 shows the implementation of the binary semaphore functions. Each
function in this implementation takes two arguments, which identify a semaphore
set and the number of a semaphore within that set. (These functions don’t deal
with the creation and deletion of semaphore sets; nor do they handle the race con-
dition described in Section 47.5.) We employ these functions in the example pro-
grams shown in Section 48.4.

Listing 47-10: Implementing binary semaphores using System V semaphores

–––––––––––––––––––––––––––––––––––––––––––––––––––––– svsem/binary_sems.c

#include <sys/types.h>
#include <sys/sem.h>
#include "semun.h"                      /* Definition of semun union */
#include "binary_sems.h"

Boolean bsUseSemUndo = FALSE;
Boolean bsRetryOnEintr = TRUE;

int                     /* Initialize semaphore to 1 (i.e., "available") */
initSemAvailable(int semId, int semNum)
{
    union semun arg;

    arg.val = 1;
    return semctl(semId, semNum, SETVAL, arg);
}

int                     /* Initialize semaphore to 0 (i.e., "in use") */
initSemInUse(int semId, int semNum)
{
    union semun arg;

    arg.val = 0;
    return semctl(semId, semNum, SETVAL, arg);
}

/* Reserve semaphore (blocking), return 0 on success, or -1 with 'errno'
   set to EINTR if operation was interrupted by a signal handler */

int                     /* Reserve semaphore - decrement it by 1 */
reserveSem(int semId, int semNum)
{
    struct sembuf sops;

    sops.sem_num = semNum;
    sops.sem_op = -1;
    sops.sem_flg = bsUseSemUndo ? SEM_UNDO : 0;

    while (semop(semId, &sops, 1) == -1)
        if (errno != EINTR || !bsRetryOnEintr)
            return -1;

    return 0;
}
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int                     /* Release semaphore - increment it by 1 */
releaseSem(int semId, int semNum)
{
    struct sembuf sops;

    sops.sem_num = semNum;
    sops.sem_op = 1;
    sops.sem_flg = bsUseSemUndo ? SEM_UNDO : 0;

    return semop(semId, &sops, 1);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– svsem/binary_sems.c

47.10 Semaphore Limits

Most UNIX implementations impose various limits on the operation of System V
semaphores. The following is a list of the Linux semaphore limits. The system call
affected by the limit and the error that results if the limit is reached are noted in
parentheses.

SEMAEM

This is the maximum value that can be recorded in a semadj total. SEMAEM is
defined to have the same value as SEMVMX (described below). (semop(), ERANGE)

SEMMNI

This is a system-wide limit on the number of semaphore identifiers (in
other words, semaphore sets) that can be created. (semget(), ENOSPC)

SEMMSL

This is the maximum number of semaphores that can be allocated in a
semaphore set. (semget(), EINVAL)

SEMMNS

This is a system-wide limit on the number of semaphores in all semaphore
sets. The number of semaphores on the system is also limited by SEMMNI and
SEMMSL; in fact, the default value for SEMMNS is the product of the defaults for
these two limits. (semget(), ENOSPC)

SEMOPM

This is the maximum number of operations per semop() call. (semop(), E2BIG)

SEMVMX

This is the maximum value for a semaphore. (semop(), ERANGE)

The limits above appear on most UNIX implementations. Some UNIX implementa-
tions (but not Linux) impose the following additional limits relating to semaphore
undo operations (Section 47.8):

SEMMNU

This is a system-wide limit on the total number of semaphore undo structures.
Undo structures are allocated to store semadj values.

SEMUME

This is the maximum number of undo entries per semaphore undo structure.
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At system startup, the semaphore limits are set to default values. These defaults may
vary across kernel versions. (Some distributors’ kernels set different defaults from
those provided by vanilla kernels.) Some of these limits can be modified by changing
the values stored in the Linux-specific /proc/sys/kernel/sem file. This file contains four
space-delimited numbers defining, in order, the limits SEMMSL, SEMMNS, SEMOPM, and
SEMMNI. (The SEMVMX and SEMAEM limits can’t be changed; both are fixed at 32,767.) As an
example, here are the default limits that we see for Linux 2.6.31 on one x86-32 system:

$ cd /proc/sys/kernel
$ cat sem
250     32000   32      128

The formats employed in the Linux /proc file system are inconsistent for the
three System V IPC mechanisms. For message queues and shared memory, each
configurable limit is controlled by a separate file. For semaphores, one file holds
all configurable limits. This is a historical accident that occurred during the
development of these APIs and is difficult to rectify for compatibility reasons.

Table 47-1 shows the maximum value to which each limit can be raised on the x86-32
architecture. Note the following supplementary information to this table:

It is possible to raise SEMMSL to values larger than 65,536, and create semaphore
sets up to that larger size. However, it isn’t possible to use semop() to adjust
semaphores in the set beyond the 65,536th element.

Because of certain limitations in the current implementation, the practical
recommended upper limit on the size of a semaphore set is around 8000.

The practical ceiling for the SEMMNS limit is governed by the amount of RAM
available on the system.

The ceiling value for the SEMOPM limit is determined by memory allocation prim-
itives used within the kernel. The recommended maximum is 1000. In practical
usage, it is rarely useful to perform more than a few operations in a single
semop() call.

The Linux-specific semctl() IPC_INFO operation retrieves a structure of type seminfo,
which contains the values of the various semaphore limits:

union semun arg;
struct seminfo buf;

arg.__buf = &buf;
semctl(0, 0, IPC_INFO, arg);

Table 47-1: System V semaphore limits

Limit Ceiling value (x86-32)

SEMMNI 32768 (IPCMNI)

SEMMSL 65536

SEMMNS 2147483647 (INT_MAX)

SEMOPM See text
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A related Linux-specific operation, SEM_INFO, retrieves a seminfo structure that con-
tains information about actual resources used for semaphore objects. An example
of the use of SEM_INFO is provided in the file svsem/svsem_info.c in the source code
distribution for this book.

Details about IPC_INFO, SEM_INFO, and the seminfo structure can be found in the
semctl(2) manual page.

47.11 Disadvantages of System V Semaphores

System V semaphores have many of the same disadvantages as message queues
(Section 46.9), including the following:

Semaphores are referred to by identifiers, rather than the file descriptors used
by most other UNIX I/O and IPC mechanisms. This makes it difficult to per-
form operations such as simultaneously waiting both on a semaphore and on
input from a file descriptor. (It is possible to resolve this difficulty by creating a
child process or thread that operates on the semaphore and writes messages to
a pipe monitored, along with other file descriptors, using one of the methods
described in Chapter 63.)

The use of keys, rather than filenames, to identify semaphores results in addi-
tional programming complexity.

The use of separate system calls for creating and initializing semaphores means
that, in some cases, we must do extra programming work to avoid race condi-
tions when initializing a semaphore.

The kernel doesn’t maintain a count of the number of processes referring to
a semaphore set. This complicates the decision about when it is appropriate
to delete a semaphore set and makes it difficult to ensure that an unused set
is deleted.

The programming interface provided by System V is overly complex. In the
common case, a program operates on a single semaphore. The ability to simul-
taneously operate on multiple semaphores in a set is unnecessary.

There are various limits on the operation of semaphores. These limits are con-
figurable, but if an application operates outside the range of the default limits,
this nevertheless requires extra work when installing the application.

However, unlike the situation with message queues, there are fewer alternatives to
System V semaphores, and consequently there are more situations in which we may
choose to employ them. One alternative to the use of semaphores is record locking,
which we describe in Chapter 55. Also, from kernel 2.6 onward, Linux supports the
use of POSIX semaphores for process synchronization. We describe POSIX sema-
phores in Chapter 53.

47.12 Summary

System V semaphores allow processes to synchronize their actions. This is useful
when a process must gain exclusive access to some shared resource, such as a
region of shared memory.
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Semaphores are created and operated upon in sets containing one or more
semaphores. Each semaphore within a set is an integer whose value is always
greater than or equal to 0. The semop() system call allows the caller to add an inte-
ger to a semaphore, subtract an integer from a semaphore, or wait for a semaphore
to equal 0. The last two of these operations may cause the caller to block.

A semaphore implementation is not required to initialize the members of a
new semaphore set, so an application must initialize the set after creating it. When
any of a number of peer processes may try to create and initialize the semaphore,
special care must be taken to avoid the race condition that results from the fact that
these two steps are performed via separate system calls.

Where multiple processes are trying to decrease a semaphore by the same
amount, it is indeterminate which process will actually be permitted to perform the
operation first. However, where different processes are trying to decrease a sema-
phore by different amounts, the operations complete in the order in which they
become possible, and we may need to take care to avoid scenarios where a process
is starved because the semaphore value never reaches a level that would allow the
process’s operation to proceed.

The SEM_UNDO flag allows a process’s semaphore operations to be automatically
undone on process termination. This can be useful to avoid scenarios where a process
accidentally terminates, leaving a semaphore in a state that causes other processes to
block indefinitely waiting for the semaphore’s value to be changed by the termi-
nated process.

System V semaphores are allocated and operated upon in sets, and can be
increased and decreased by arbitrary amounts. This provides more functionality
than is needed by most applications. A common requirement is for individual
binary semaphores, which take on only the values 0 and 1. We showed how to
implement binary semaphores on top of System V semaphores.

Further information

[Bovet & Cesati, 2005] and [Maxwell, 1999] provide some background on the
implementation of semaphores on Linux. [Dijkstra, 1968] is a classic early paper on
semaphore theory.

47.13 Exercises

47-1. Experiment with the program in Listing 47-8 (svsem_op.c) to confirm your under-
standing of the semop() system call.

47-2. Modify the program in Listing 24-6 (fork_sig_sync.c, on page 528) to use sema-
phores instead of signals to synchronize the parent and child processes.

47-3. Experiment with the program in Listing 47-8 (svsem_op.c) and the other semaphore
programs provided in this chapter to see what happens to the sempid value if an
exiting process performs a SEM_UNDO adjustment to a semaphore.

47-4. Add a reserveSemNB() function to the code in Listing 47-10 (binary_sems.c) to
implement the reserve conditionally operation, using the IPC_NOWAIT flag.
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47-5. For the VMS operating system, Digital provided a synchronization method similar
to a binary semaphore, called an event flag. An event flag has two possible values,
clear and set, and the following four operations can be performed: setEventFlag, to
set the flag; clearEventFlag, to clear the flag; waitForEventFlag, to block until the flag
is set; and getFlagState, to obtain the current state of the flag. Devise an implementa-
tion of event flags using System V semaphores. This implementation will require two
arguments for each of the functions above: a semaphore identifier and a semaphore
number. (Consideration of the waitForEventFlag operation will lead you to realize
that the values chosen for clear and set are not the obvious choices.)

47-6. Implement a binary semaphores protocol using named pipes. Provide functions to
reserve, release, and conditionally reserve the semaphore.

47-7. Write a program, analogous to the program in Listing 46-6 (svmsg_ls.c, on page 953),
that uses the semctl() SEM_INFO and SEM_STAT operations to obtain and display a list of
all semaphore sets on the system.
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S Y S T E M  V  S H A R E D  M E M O R Y

This chapter describes System V shared memory. Shared memory allows two or
more processes to share the same region (usually referred to as a segment) of physical
memory. Since a shared memory segment becomes part of a process’s user-space
memory, no kernel intervention is required for IPC. All that is required is that one
process copies data into the shared memory; that data is immediately available to
all other processes sharing the same segment. This provides fast IPC by comparison
with techniques such as pipes or message queues, where the sending process copies
data from a buffer in user space into kernel memory and the receiving process copies
in the reverse direction. (Each process also incurs the overhead of a system call to
perform the copy operation.)

On the other hand, the fact that IPC using shared memory is not mediated by
the kernel means that, typically, some method of synchronization is required so
that processes don’t simultaneously access the shared memory (e.g., two processes
performing simultaneous updates, or one process fetching data from the shared
memory while another process is in the middle of updating it). System V sema-
phores are a natural method for such synchronization. Other methods, such as
POSIX semaphores (Chapter 53) and file locks (Chapter 55), are also possible.

In mmap() terminology, a memory region is mapped at an address, while in Sys-
tem V terminology, a shared memory segment is attached at an address. These
terms are equivalent; the terminology differences are a consequence of the
separate origins of these two APIs.



48.1 Overview

In order to use a shared memory segment, we typically perform the following steps:

Call shmget() to create a new shared memory segment or obtain the identifier of
an existing segment (i.e., one created by another process). This call returns a
shared memory identifier for use in later calls.

Use shmat() to attach the shared memory segment; that is, make the segment
part of the virtual memory of the calling process.

At this point, the shared memory segment can be treated just like any other
memory available to the program. In order to refer to the shared memory, the
program uses the addr value returned by the shmat() call, which is a pointer to
the start of the shared memory segment in the process’s virtual address space.

Call shmdt() to detach the shared memory segment. After this call, the process
can no longer refer to the shared memory. This step is optional, and happens
automatically on process termination.

Call shmctl() to delete the shared memory segment. The segment will be
destroyed only after all currently attached processes have detached it. Only
one process needs to perform this step.

48.2 Creating or Opening a Shared Memory Segment

The shmget() system call creates a new shared memory segment or obtains the iden-
tifier of an existing segment. The contents of a newly created shared memory seg-
ment are initialized to 0.

The key argument is a key generated using one of the methods described in Sec-
tion 45.2 (i.e., usually the value IPC_PRIVATE or a key returned by ftok()).

When we use shmget() to create a new shared memory segment, size specifies a
positive integer that indicates the desired size of the segment, in bytes. The kernel
allocates shared memory in multiples of the system page size, so size is effectively
rounded up to the next multiple of the system page size. If we are using shmget() to
obtain the identifier of an existing segment, then size has no effect on the segment,
but it must be less than or equal to the size of the segment.

The shmflg argument performs the same task as for the other IPC get calls, speci-
fying the permissions (Table 15-4, on page 295) to be placed on a new shared memory
segment or checked against an existing segment. In addition, zero or more of the fol-
lowing flags can be ORed (|) in shmflg to control the operation of shmget():

IPC_CREAT

If no segment with the specified key exists, create a new segment.

#include <sys/types.h>        /* For portability */
#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

Returns shared memory segment identifier on success, or –1 on error
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IPC_EXCL

If IPC_CREAT was also specified, and a segment with the specified key already
exists, fail with the error EEXIST.

The above flags are described in more detail in Section 45.1. In addition, Linux
permits the following nonstandard flags:

SHM_HUGETLB (since Linux 2.6)
A privileged (CAP_IPC_LOCK) process can use this flag to create a shared memory
segment that uses huge pages. Huge pages are a feature provided by many
modern hardware architectures to manage memory using very large page
sizes. (For example, x86-32 allows 4-MB pages as an alternative to 4-kB
pages.) On systems that have large amounts of memory, and where appli-
cations require large blocks of memory, using huge pages reduces the
number of entries required in the hardware memory management unit’s
translation look-aside buffer (TLB). This is beneficial because entries in the
TLB are usually a scarce resource. See the kernel source file Documentation/
vm/hugetlbpage.txt for further information.

SHM_NORESERVE (since Linux 2.6.15)
This flag serves the same purpose for shmget() as the MAP_NORESERVE flag
serves for mmap(). See Section 49.9.

On success, shmget() returns the identifier for the new or existing shared memory
segment.

48.3 Using Shared Memory

The shmat() system call attaches the shared memory segment identified by shmid to
the calling process’s virtual address space.

The shmaddr argument and the setting of the SHM_RND bit in the shmflg bit-mask argu-
ment control how the segment is attached:

If shmaddr is NULL, then the segment is attached at a suitable address selected by
the kernel. This is the preferred method of attaching a segment.

If shmaddr is not NULL, and SHM_RND is not set, then the segment is attached at the
address specified by shmaddr, which must be a multiple of the system page size
(or the error EINVAL results).

If shmaddr is not NULL, and SHM_RND is set, then the segment is mapped at the
address provided in shmaddr, rounded down to the nearest multiple of the con-
stant SHMLBA (shared memory low boundary address). This constant is equal to some

#include <sys/types.h>        /* For portability */
#include <sys/shm.h>

void *shmat(int shmid, const void *shmaddr, int shmflg);

Returns address at which shared memory is attached on success,
or (void *) –1 on error
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multiple of the system page size. Attaching a segment at an address that is
a multiple of SHMLBA is necessary on some architectures in order to improve
CPU cache performance and to prevent the possibility that different attaches
of the same segment have inconsistent views within the CPU cache.

On the x86 architectures, SHMLBA is the same as the system page size, reflecting
the fact that such caching inconsistencies can’t arise on those architectures.

Specifying a non-NULL value for shmaddr (i.e., either the second or third option listed
above) is not recommended, for the following reasons:

It reduces the portability of an application. An address valid on one UNIX
implementation may be invalid on another.

An attempt to attach a shared memory segment at a particular address will fail
if that address is already in use. This could happen if, for example, the applica-
tion (perhaps inside a library function) had already attached another segment
or created a memory mapping at that address.

As its function result, shmat() returns the address at which the shared memory seg-
ment is attached. This value can be treated like a normal C pointer; the segment
looks just like any other part of the process’s virtual memory. Typically, we assign
the return value from shmat() to a pointer to some programmer-defined structure,
in order to impose that structure on the segment (see, for example, Listing 48-2).

To attach a shared memory segment for read-only access, we specify the flag
SHM_RDONLY in shmflg. Attempts to update the contents of a read-only segment result
in a segmentation fault (the SIGSEGV signal). If SHM_RDONLY is not specified, the memory
can be both read and modified.

To attach a shared memory segment, a process requires read and write permis-
sions on the segment, unless SHM_RDONLY is specified, in which case only read permission
is required.

It is possible to attach the same shared memory segment multiple times within
a process, and even to make one attach read-only while another is read-write.
The contents of the memory at each attachment point are the same, since the
different entries of the process virtual memory page tables are referring to
the same physical pages of memory.

One final value that may be specified in shmflg is SHM_REMAP. In this case, shmaddr
must be non-NULL. This flag requests that the shmat() call replace any existing shared
memory attachment or memory mapping in the range starting at shmaddr and con-
tinuing for the length of the shared memory segment. Normally, if we try to attach
a shared memory segment at an address range that is already in use, the error
EINVAL results. SHM_REMAP is a nonstandard Linux extension.

Table 48-1 summarizes the constants that can be ORed in the shmflg argument
of shmat().

When a process no longer needs to access a shared memory segment, it can
call shmdt() to detach the segment from its virtual address space. The shmaddr argu-
ment identifies the segment to be detached. It should be a value returned by a pre-
vious call to shmat().
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Detaching a shared memory segment is not the same as deleting it. Deletion is per-
formed using the shmctl() IPC_RMID operation, as described in Section 48.7.

A child created by fork() inherits its parent’s attached shared memory segments.
Thus, shared memory provides an easy method of IPC between parent and child.

During an exec(), all attached shared memory segments are detached. Shared
memory segments are also automatically detached on process termination.

48.4 Example: Transferring Data via Shared Memory

We now look at an example application that uses System V shared memory and
semaphores. The application consists of two programs: the writer and the reader.
The writer reads blocks of data from standard input and copies (“writes”) them
into a shared memory segment. The reader copies (“reads”) blocks of data from
the shared memory segment to standard output. In effect, the programs treat the
shared memory somewhat like a pipe.

The two programs employ a pair of System V semaphores in a binary sema-
phore protocol (the initSemAvailable(), initSemInUse(), reserveSem(), and releaseSem()
functions defined in Section 47.9) to ensure that:

only one process accesses the shared memory segment at a time; and

the processes alternate in accessing the segment (i.e., the writer writes some
data, then the reader reads the data, then the writer writes again, and so on).

Figure 48-1 provides an overview of the use of these two semaphores. Note that the
writer initializes the two semaphores so that it is the first of the two programs to be
able to access the shared memory segment; that is, the writer’s semaphore is ini-
tially available, and the reader’s semaphore is initially in use.

The source code for the application consists of three files. The first of these,
Listing 48-1, is a header file shared by the reader and writer programs. This header
defines the shmseg structure that we use to declare pointers to the shared memory
segment. Doing this allows us to impose a structure on the bytes of the shared
memory segment.

#include <sys/types.h>        /* For portability */
#include <sys/shm.h>

int shmdt(const void *shmaddr);

Returns 0 on success, or –1 on error

Table 48-1: shmflg bit-mask values for shmat()

Value Description

SHM_RDONLY Attach segment read-only
SHM_REMAP Replace any existing mapping at shmaddr
SHM_RND Round shmaddr down to multiple of SHMLBA bytes
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Figure 48-1: Using semaphores to ensure exclusive, alternating access to shared memory

Listing 48-1: Header file for svshm_xfr_writer.c and svshm_xfr_reader.c

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– svshm/svshm_xfr.h

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/sem.h>
#include <sys/shm.h>
#include "binary_sems.h"        /* Declares our binary semaphore functions */
#include "tlpi_hdr.h"

#define SHM_KEY 0x1234          /* Key for shared memory segment */
#define SEM_KEY 0x5678          /* Key for semaphore set */

#define OBJ_PERMS (S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP)
                                /* Permissions for our IPC objects */

#define WRITE_SEM 0             /* Writer has access to shared memory */
#define READ_SEM 1              /* Reader has access to shared memory */

#ifndef BUF_SIZE                /* Allow "cc -D" to override definition */
#define BUF_SIZE 1024           /* Size of transfer buffer */
#endif

struct shmseg {                 /* Defines structure of shared memory segment */
    int cnt;                    /* Number of bytes used in 'buf' */
    char buf[BUF_SIZE];         /* Data being transferred */
};

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– svshm/svshm_xfr.h

Listing 48-2 is the writer program. This program performs the following steps:

Create a set containing the two semaphores that are used by the writer and
reader program to ensure that they alternate in accessing the shared memory
segment q. The semaphores are initialized so that the writer has first access to
the shared memory segment. Since the writer creates the semaphore set, it
must be started before the reader.

Writer process Reader process

Shared
memory

reserveSem(WRITE_SEM);

releaseSem(READ_SEM);

copy data block from
stdin to shared memory

reserveSem(READ_SEM);

releaseSem(WRITE_SEM);

copy data block from
shared memory to stdout
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Create the shared memory segment and attach it to the writer’s virtual address
space at an address chosen by the system w.

Enter a loop that transfers data from standard input to the shared memory seg-
ment e. The following steps are performed in each loop iteration:

– Reserve (decrement) the writer semaphore r.

– Read data from standard input into the shared memory segment t.

– Release (increment) the reader semaphore y.

The loop terminates when no further data is available from standard input u.
On the last pass through the loop, the writer indicates to the reader that there
is no more data by passing a block of data of length 0 (shmp–>cnt is 0).

Upon exiting the loop, the writer once more reserves its semaphore, so that it
knows that the reader has completed the final access to the shared memory i.
The writer then removes the shared memory segment and semaphore set o.

Listing 48-3 is the reader program. It transfers blocks of data from the shared mem-
ory segment to standard output. The reader performs the following steps:

Obtain the IDs of the semaphore set and shared memory segment that were
created by the writer program q.

Attach the shared memory segment for read-only access w.

Enter a loop that transfers data from the shared memory segment e. The fol-
lowing steps are performed in each loop iteration:

– Reserve (decrement) the reader semaphore r.

– Check whether shmp–>cnt is 0; if so, exit this loop t.

– Write the block of data in the shared memory segment to standard output y.

– Release (increment) the writer semaphore u.

After exiting the loop, detach the shared memory segment i and releases the
writer semaphore o, so that the writer program can remove the IPC objects.

Listing 48-2: Transfer blocks of data from stdin to a System V shared memory segment

–––––––––––––––––––––––––––––––––––––––––––––––––– svshm/svshm_xfr_writer.c

#include "semun.h"              /* Definition of semun union */
#include "svshm_xfr.h"

int
main(int argc, char *argv[])
{
    int semid, shmid, bytes, xfrs;
    struct shmseg *shmp;
    union semun dummy;

q     semid = semget(SEM_KEY, 2, IPC_CREAT | OBJ_PERMS);
    if (semid == -1)
        errExit("semget");
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    if (initSemAvailable(semid, WRITE_SEM) == -1)
        errExit("initSemAvailable");
    if (initSemInUse(semid, READ_SEM) == -1)
        errExit("initSemInUse");

w     shmid = shmget(SHM_KEY, sizeof(struct shmseg), IPC_CREAT | OBJ_PERMS);
    if (shmid == -1)
        errExit("shmget");

    shmp = shmat(shmid, NULL, 0);
    if (shmp == (void *) -1)
        errExit("shmat");

    /* Transfer blocks of data from stdin to shared memory */

e     for (xfrs = 0, bytes = 0; ; xfrs++, bytes += shmp->cnt) {
r         if (reserveSem(semid, WRITE_SEM) == -1)         /* Wait for our turn */

            errExit("reserveSem");

t         shmp->cnt = read(STDIN_FILENO, shmp->buf, BUF_SIZE);
        if (shmp->cnt == -1)
            errExit("read");

y         if (releaseSem(semid, READ_SEM) == -1)          /* Give reader a turn */
            errExit("releaseSem");

        /* Have we reached EOF? We test this after giving the reader
           a turn so that it can see the 0 value in shmp->cnt. */

u         if (shmp->cnt == 0)
            break;
    }

    /* Wait until reader has let us have one more turn. We then know
       reader has finished, and so we can delete the IPC objects. */

i     if (reserveSem(semid, WRITE_SEM) == -1)
        errExit("reserveSem");

o     if (semctl(semid, 0, IPC_RMID, dummy) == -1)
        errExit("semctl");
    if (shmdt(shmp) == -1)
        errExit("shmdt");
    if (shmctl(shmid, IPC_RMID, 0) == -1)
        errExit("shmctl");

    fprintf(stderr, "Sent %d bytes (%d xfrs)\n", bytes, xfrs);
    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––– svshm/svshm_xfr_writer.c
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Listing 48-3: Transfer blocks of data from a System V shared memory segment to stdout
–––––––––––––––––––––––––––––––––––––––––––––––––– svshm/svshm_xfr_reader.c

#include "svshm_xfr.h"

int
main(int argc, char *argv[])
{
    int semid, shmid, xfrs, bytes;
    struct shmseg *shmp;

    /* Get IDs for semaphore set and shared memory created by writer */

q     semid = semget(SEM_KEY, 0, 0);
    if (semid == -1)
        errExit("semget");

    shmid  = shmget(SHM_KEY, 0, 0);
    if (shmid == -1)
        errExit("shmget");

w     shmp = shmat(shmid, NULL, SHM_RDONLY);
    if (shmp == (void *) -1)
        errExit("shmat");

    /* Transfer blocks of data from shared memory to stdout */

e     for (xfrs = 0, bytes = 0; ; xfrs++) {
r         if (reserveSem(semid, READ_SEM) == -1)          /* Wait for our turn */

            errExit("reserveSem");

t         if (shmp->cnt == 0)                    /* Writer encountered EOF */
            break;
        bytes += shmp->cnt;

y         if (write(STDOUT_FILENO, shmp->buf, shmp->cnt) != shmp->cnt)
            fatal("partial/failed write");

u         if (releaseSem(semid, WRITE_SEM) == -1)         /* Give writer a turn */
            errExit("releaseSem");
    }

i     if (shmdt(shmp) == -1)
        errExit("shmdt");

    /* Give writer one more turn, so it can clean up */

o     if (releaseSem(semid, WRITE_SEM) == -1)
        errExit("releaseSem");

    fprintf(stderr, "Received %d bytes (%d xfrs)\n", bytes, xfrs);
    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––– svshm/svshm_xfr_reader.c
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The following shell session demonstrates the use of the programs in Listing 48-2
and Listing 46-9. We invoke the writer, using the file /etc/services as input, and
then invoke the reader, directing its output to another file:

$ wc -c /etc/services                               Display size of test file
764360 /etc/services
$ ./svshm_xfr_writer < /etc/services &
[1] 9403
$ ./svshm_xfr_reader > out.txt
Received 764360 bytes (747 xfrs)                    Message from reader
Sent 764360 bytes (747 xfrs)                        Message from writer
[1]+  Done              ./svshm_xfr_writer < /etc/services
$ diff /etc/services out.txt
$

The diff command produced no output, indicating that the output file produced by
the reader has the same content as the input file used by the writer.

48.5 Location of Shared Memory in Virtual Memory

In Section 6.3, we considered the layout of the various parts of a process in virtual
memory. It is useful to revisit this topic in the context of attaching System V
shared memory segments. If we follow the recommended approach of allowing the
kernel to choose where to attach a shared memory segment, then (on the x86-32
architecture) the memory layout appears as shown in Figure 48-2, with the segment
being attached in the unallocated space between the upwardly growing heap and
the downwardly growing stack. To allow space for heap and stack growth, shared
memory segments are attached starting at the virtual address 0x40000000. Mapped
mappings (Chapter 49) and shared libraries (Chapters 41 and 42) are also placed in
this area. (There is some variation in the default location at which shared memory
mappings and memory segments are placed, depending on the kernel versions and
the setting of the process’s RLIMIT_STACK resource limit.)

The address 0x40000000 is defined as the kernel constant TASK_UNMAPPED_BASE. It
is possible to change this address by defining this constant with a different
value and rebuilding the kernel.

A shared memory segment (or memory mapping) can be placed at an
address below TASK_UNMAPPED_BASE, if we employ the unrecommended approach
of explicitly specifying an address when calling shmat() (or mmap()).

Using the Linux-specific /proc/PID/maps file, we can see the location of the shared
memory segments and shared libraries mapped by a program, as we demonstrate
in the shell session below.

Starting with kernel 2.6.14, Linux also provides the /proc/PID/smaps file, which
exposes more information about the memory consumption of each of a pro-
cess’s mappings. For further details, see the proc(5) manual page.
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Figure 48-2: Locations of shared memory, memory mappings, and shared libraries (x86-32)

In the shell session below, we employ three programs that are not shown in this
chapter, but are provided in the svshm subdirectory in the source code distribution
for this book. These programs perform the following tasks:

The svshm_create.c program creates a shared memory segment. This program
takes the same command-line options as the corresponding programs that we
provide for message queues (Listing 46-1, on page 938) and semaphores, but
includes an additional argument that specifies the size of the segment.

The svshm_attach.c program attaches the shared memory segments identified by
its command-line arguments. Each of these arguments is a colon-separated pair
of numbers consisting of a shared memory identifier and an attach address.
Specifying 0 for the attach address means that the system should choose the
address. The program displays the address at which the memory is actually
attached. For informational purposes, the program also displays the value of
the SHMLBA constant and the process ID of the process running the program.

The svshm_rm.c program deletes the shared memory segments identified by its
command-line arguments.
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Initialized data

Text (program code)

0xC0000000

Stack

Heap
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0x40000000
TASK_UNMAPPED_BASE

Top of
stack

Program
break

0x00000000in
cr

ea
si

ng
 v

ir
tu
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 a
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es

se
s

Sys tem V Shared Memory 1007



We begin the shell session by creating two shared memory segments (100 kB and
3200 kB in size):

$ ./svshm_create -p 102400
9633796
$ ./svshm_create -p 3276800
9666565
$ ./svshm_create -p 102400
1015817
$ ./svshm_create -p 3276800
1048586

We then start a program that attaches these two segments at addresses chosen by
the kernel:

$ ./svshm_attach 9633796:0 9666565:0
SHMLBA = 4096 (0x1000), PID = 9903
1: 9633796:0 ==> 0xb7f0d000
2: 9666565:0 ==> 0xb7bed000
Sleeping 5 seconds

The output above shows the addresses at which the segments were attached.
Before the program completes sleeping, we suspend it, and then examine the
contents of the corresponding /proc/PID/maps file:

Type Control-Z to suspend program
[1]+  Stopped           ./svshm_attach 9633796:0 9666565:0
$ cat /proc/9903/maps

The output produced by the cat command is shown in Listing 48-4.

Listing 48-4: Example of contents of /proc/PID/maps

$ cat /proc/9903/maps
q 08048000-0804a000 r-xp 00000000 08:05 5526989  /home/mtk/svshm_attach

0804a000-0804b000 r--p 00001000 08:05 5526989  /home/mtk/svshm_attach
0804b000-0804c000 rw-p 00002000 08:05 5526989  /home/mtk/svshm_attach

w b7bed000-b7f0d000 rw-s 00000000 00:09 9666565  /SYSV00000000 (deleted)
b7f0d000-b7f26000 rw-s 00000000 00:09 9633796  /SYSV00000000 (deleted)
b7f26000-b7f27000 rw-p b7f26000 00:00 0

e b7f27000-b8064000 r-xp 00000000 08:06 122031   /lib/libc-2.8.so
b8064000-b8066000 r--p 0013d000 08:06 122031   /lib/libc-2.8.so
b8066000-b8067000 rw-p 0013f000 08:06 122031   /lib/libc-2.8.so
b8067000-b806b000 rw-p b8067000 00:00 0
b8082000-b8083000 rw-p b8082000 00:00 0

r b8083000-b809e000 r-xp 00000000 08:06 122125   /lib/ld-2.8.so
b809e000-b809f000 r--p 0001a000 08:06 122125   /lib/ld-2.8.so
b809f000-b80a0000 rw-p 0001b000 08:06 122125   /lib/ld-2.8.so

t bfd8a000-bfda0000 rw-p bffea000 00:00 0        [stack]
y ffffe000-fffff000 r-xp 00000000 00:00 0        [vdso]
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In the output from /proc/PID/maps shown in Listing 48-4, we can see the following:

Three lines for the main program, shm_attach. These correspond to the text
and data segments of the program q. The second of these lines is for a read-
only page holding the string constants used by the program.

Two lines for the attached System V shared memory segments w.

Lines corresponding to the segments for two shared libraries. One of these is
the standard C library (libc-version.so) e. The other is the dynamic linker
(ld-version.so), which we describe in Section 41.4.3 r.

A line labeled [stack]. This corresponds to the process stack t.

A line containing the tag [vdso] y. This is an entry for the linux-gate virtual
dynamic shared object (DSO). This entry appears only in kernels since 2.6.12.
See http://www.trilithium.com/johan/2005/08/linux-gate/ for further informa-
tion about this entry.

The following columns are shown in each line of /proc/PID/maps, in order from left
to right:

1. A pair of hyphen-separated numbers indicating the virtual address range (in
hexadecimal) at which the memory segment is mapped. The second of these
numbers is the address of the next byte after the end of the segment.

2. Protection and flags for this memory segment. The first three letters indicate
the protection of the segment: read (r), write (w), and execute (x). A hyphen (-)
in place of any of these letters indicates that the corresponding protection is
disabled. The final letter indicates the mapping flag for the memory segment;
it is either private (p) or shared (s). For an explanation of these flags, see the
description of the MAP_PRIVATE and MAP_SHARED flags in Section 49.2. (A System V
shared memory segment is always marked shared.)

3. The hexadecimal offset (in bytes) of the segment within the corresponding
mapped file. The meanings of this and the following two columns will become
clearer when we describe the mmap() system call in Chapter 49. For a System V
shared memory segment, the offset is always 0.

4. The device number (major and minor IDs) of the device on which the corre-
sponding mapped file is located.

5. The i-node number of the mapped file, or, for System V shared memory seg-
ments, the identifier for the segment.

6. The filename or other identifying tag associated with this memory segment. For a
System V shared memory segment, this consists of the string SYSV concatenated
with the shmget() key of the segment (expressed in hexadecimal). In this example,
SYSV is followed by zeros because we created the segments using the key
IPC_PRIVATE (which has the value 0). The string (deleted) that appears after the
SYSV field for a System V shared memory segment is an artifact of the implemen-
tation of shared memory segments. Such segments are created as mapped files in
an invisible tmpfs file system (Section 14.10), and then later unlinked. Shared
anonymous memory mappings are implemented in the same manner. (We
describe mapped files and shared anonymous memory mappings in Chapter 49.)
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48.6 Storing Pointers in Shared Memory

Each process may employ different shared libraries and memory mappings, and
may attach different sets of shared memory segments. Therefore, if we follow the
recommended practice of letting the kernel choose where to attach a shared mem-
ory segment, the segment may be attached at a different address in each process.
For this reason, when storing references inside a shared memory segment that
point to other addresses within the segment, we should use (relative) offsets, rather
than (absolute) pointers.

For example, suppose we have a shared memory segment whose starting
address is pointed to by baseaddr (i.e., baseaddr is the value returned by shmat()).
Furthermore, at the location pointed to by p, we want to store a pointer to the same
location as is pointed to by target, as shown in Figure 48-3. This sort of operation
would be typical if we were building a linked list or a binary tree within the seg-
ment. The usual C idiom for setting *p would be the following:

*p = target;                    /* Place pointer in *p (WRONG!) */

Figure 48-3: Using pointers in a shared memory segment

The problem with this code is that the location pointed to by target may reside at a
different virtual address when the shared memory segment is attached in another
process, which means that the value stored at *p is meaningless in that process. The
correct approach is to store an offset at *p, as in the following:

*p = (target - baseaddr);       /* Place offset in *p */

When dereferencing such pointers, we reverse the above step:

target = baseaddr + *p;         /* Interpret offset */

Here, we assume that in each process, baseaddr points to the start of the shared
memory segment (i.e., it is the value returned by shmat() in each process). Given
this assumption, an offset value is correctly interpreted, no matter where the
shared memory segment is attached in a process’s virtual address space.

Alternatively, if we are linking together a set of fixed-size structures, we can
cast the shared memory segment (or a part thereof) as an array, and then use index
numbers as the “pointers” referring from one structure to another.

Shared memory segment

baseaddr

p

target
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48.7 Shared Memory Control Operations

The shmctl() system call performs a range of control operations on the shared mem-
ory segment identified by shmid.

The cmd argument specifies the control operation to be performed. The buf argu-
ment is required by the IPC_STAT and IPC_SET operations (described below), and
should be specified as NULL for the remaining operations.

In the remainder of this section, we describe the various operations that can be
specified for cmd.

Generic control operations

The following operations are the same as for other types of System V IPC objects.
Further details about these operations, including the privileges and permissions
required by the calling process, are described in Section 45.3.

IPC_RMID

Mark the shared memory segment and its associated shmid_ds data structure
for deletion. If no processes currently have the segment attached, deletion
is immediate; otherwise, the segment is removed after all processes have
detached from it (i.e., when the value of the shm_nattch field in the shmid_ds
data structure falls to 0). In some applications, we can make sure that a
shared memory segment is tidily cleared away on application termination by
marking it for deletion immediately after all processes have attached it to
their virtual address space with shmat(). This is analogous to unlinking a
file once we’ve opened it.

On Linux, if a shared segment has been marked for deletion using IPC_RMID,
but has not yet been removed because some process still has it attached, then it
is possible for another process to attach that segment. However, this behavior is
not portable: most UNIX implementations prevent new attaches to a segment
marked for deletion. (SUSv3 is silent on what behavior should occur in this sce-
nario.) A few Linux applications have come to depend on this behavior, which is
why Linux has not been changed to match other UNIX implementations.

IPC_STAT

Place a copy of the shmid_ds data structure associated with this shared
memory segment in the buffer pointed to by buf. (We describe this data
structure in Section 48.8.)

IPC_SET

Update selected fields of the shmid_ds data structure associated with this
shared memory segment using values in the buffer pointed to by buf.

#include <sys/types.h>        /* For portability */
#include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

Returns 0 on success, or –1 on error
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Locking and unlocking shared memory

A shared memory segment can be locked into RAM, so that it is never swapped
out. This provides a performance benefit, since, once each page of the segment is
memory-resident, an application is guaranteed never to be delayed by a page fault
when it accesses the page. There are two shmctl() locking operations:

The SHM_LOCK operation locks a shared memory segment into memory.

The SHM_UNLOCK operation unlocks the shared memory segment, allowing it to
be swapped out.

These operations are not specified by SUSv3, and they are not provided on all
UNIX implementations.

In versions of Linux before 2.6.10, only privileged (CAP_IPC_LOCK) processes can
lock a shared memory segment into memory. Since Linux 2.6.10, an unprivileged
process can lock and unlock a shared memory segment if its effective user ID
matches either the owner or the creator user ID of the segment and (in the case of
SHM_LOCK) the process has a sufficiently high RLIMIT_MEMLOCK resource limit. See Sec-
tion 50.2 for details.

Locking a shared memory segment does not guarantee that all of the pages of
the segment are memory-resident at the completion of the shmctl() call. Rather,
nonresident pages are individually locked in only as they are faulted into memory
by subsequent references by processes that have attached the shared memory segment.
Once faulted in, the pages stay resident until subsequently unlocked, even if all pro-
cesses detach the segment. (In other words, the SHM_LOCK operation sets a property of
the shared memory segment, rather than a property of the calling process.)

By faulted into memory, we mean that when the process references the nonresi-
dent page, a page fault occurs. At this point, if the page is in the swap area,
then it is reloaded into memory. If the page is being referenced for the first
time, no corresponding page exists in the swap file. Therefore, the kernel allo-
cates a new page of physical memory and adjusts the process’s page tables and
the bookkeeping data structures for the shared memory segment.

An alternative method of locking memory, with slightly different semantics, is the
use of mlock(), which we describe in Section 50.2.

48.8 Shared Memory Associated Data Structure

Each shared memory segment has an associated shmid_ds data structure of the fol-
lowing form:

struct shmid_ds {
    struct ipc_perm shm_perm;   /* Ownership and permissions */
    size_t   shm_segsz;         /* Size of segment in bytes */
    time_t   shm_atime;         /* Time of last shmat() */
    time_t   shm_dtime;         /* Time of last shmdt() */
    time_t   shm_ctime;         /* Time of last change */
    pid_t    shm_cpid;          /* PID of creator */
    pid_t    shm_lpid;          /* PID of last shmat() / shmdt() */
    shmatt_t shm_nattch;        /* Number of currently attached processes */
};
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SUSv3 requires all of the fields shown here. Some other UNIX implementations
include additional nonstandard fields in the shmid_ds structure.

The fields of the shmid_ds structure are implicitly updated by various shared
memory system calls, and certain subfields of the shm_perm field can be explicitly
updated using the shmctl() IPC_SET operation. The details are as follows:

shm_perm
When the shared memory segment is created, the fields of this substruc-
ture are initialized as described in Section 45.3. The uid, gid, and (the lower
9 bits of the) mode subfields can be updated via IPC_SET. As well as the usual
permission bits, the shm_perm.mode field holds two read-only bit-mask flags.
The first of these, SHM_DEST (destroy), indicates whether the segment is
marked for deletion (via the shmctl() IPC_RMID operation) when all processes
have detached it from their address space. The other flag, SHM_LOCKED, indi-
cates whether the segment is locked into physical memory (via the shmctl()
SHM_LOCK operation). Neither of these flags is standardized in SUSv3, and
equivalents appear on only a few other UNIX implementations, in some
cases with different names.

shm_segsz
On creation of the shared memory segment, this field is set to the
requested size of the segment in bytes (i.e., to the value of the size argu-
ment specified in the call to shmget()). As noted in Section 48.2, shared
memory is allocated in units of pages, so the actual size of the segment may
be larger than this value.

shm_atime
This field is set to 0 when the shared memory segment is created, and set
to the current time whenever a process attaches the segment (shmat()).
This field and the other timestamp fields in the shmid_ds structure are
typed as time_t, and store time in seconds since the Epoch.

shm_dtime
This field is set to 0 when the shared memory segment is created, and set
to the current time whenever a process detaches the segment (shmdt()).

shm_ctime
This field is set to the current time when the segment is created, and on
each successful IPC_SET operation.

shm_cpid
This field is set to the process ID of the process that created the segment
using shmget().

shm_lpid
This field is set to 0 when the shared memory segment is created, and then
set to the process ID of the calling process on each successful shmat() or
shmdt().
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shm_nattch
This field counts the number of processes that currently have the segment
attached. It is initialized to 0 when the segment is created, and then incre-
mented by each successful shmat() and decremented by each successful
shmdt(). The shmatt_t data type used to define this field is an unsigned integer
type that SUSv3 requires to be at least the size of unsigned short. (On Linux,
this type is defined as unsigned long.)

48.9 Shared Memory Limits

Most UNIX implementations impose various limits on System V shared memory.
Below is a list of the Linux shared memory limits. The system call affected by the
limit and the error that results if the limit is reached are noted in parentheses.

SHMMNI

This is a system-wide limit on the number of shared memory identifiers (in
other words, shared memory segments) that can be created. (shmget(), ENOSPC)

SHMMIN

This is the minimum size (in bytes) of a shared memory segment. This limit
is defined with the value 1 (this can’t be changed). However, the effective
limit is the system page size. (shmget(), EINVAL)

SHMMAX

This is the maximum size (in bytes) of a shared memory segment. The
practical upper limit for SHMMAX depends on available RAM and swap space.
(shmget(), EINVAL)

SHMALL

This is a system-wide limit on the total number of pages of shared mem-
ory. Most other UNIX implementations don’t provide this limit. The
practical upper limit for SHMALL depends on available RAM and swap space.
(shmget(), ENOSPC)

Some other UNIX implementations also impose the following limit (which is not
implemented on Linux):

SHMSEG

This is a per-process limit on the number of attached shared memory
segments.

At system startup, the shared memory limits are set to default values. (These
defaults may vary across kernel versions, and some distributors’ kernels set differ-
ent defaults from those provided by vanilla kernels.) On Linux, some of the limits
can be viewed or changed via files in the /proc file system. Table 48-2 lists the /proc
file corresponding to each limit. As an example, here are the default limits that we
see for Linux 2.6.31 on one x86-32 system:

$ cd /proc/sys/kernel
$ cat shmmni
4096
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$ cat shmmax
33554432
$ cat shmall
2097152

The Linux-specific shmctl() IPC_INFO operation retrieves a structure of type shminfo,
which contains the values of the various shared memory limits:

struct shminfo buf;

shmctl(0, IPC_INFO, (struct shmid_ds *) &buf);

A related Linux-specific operation, SHM_INFO, retrieves a structure of type shm_info
that contains information about actual resources used for shared memory objects.
An example of the use of SHM_INFO is provided in the file svshm/svshm_info.c in the
source code distribution for this book.

Details about IPC_INFO, SHM_INFO, and the shminfo and shm_info structures can be
found in the shmctl(2) manual page.

48.10 Summary

Shared memory allows two or more processes to share the same pages of memory.
No kernel intervention is required to exchange data via shared memory. Once a
process has copied data into a shared memory segment, that data is immediately
visible to other processes. Shared memory provides fast IPC, although this speed
advantage is somewhat offset by the fact that normally we must use some type of
synchronization technique, such as a System V semaphore, to synchronize access to
the shared memory.

The recommended approach when attaching a shared memory segment is to
allow the kernel to choose the address at which the segment is attached in the pro-
cess’s virtual address space. This means that the segment may reside at different
virtual addresses in different processes. For this reason, any references to
addresses within the segment should be maintained as relative offsets, rather than
as absolute pointers.

Further information

The Linux memory-management scheme and some details of the implementation
of shared memory are described in [Bovet & Cesati, 2005].

Table 48-2: System V shared memory limits

Limit Ceiling value (x86-32) Corresponding file 
in /proc/sys/kernel

SHMMNI 32768 (IPCMNI) shmmni

SHMMAX Depends on available memory shmmax

SHMALL Depends on available memory shmall
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48.11 Exercises

48-1. Replace the use of binary semaphores in Listing 48-2 (svshm_xfr_writer.c) and
Listing 48-3 (svshm_xfr_reader.c) with the use of event flags (Exercise 47-5).

48-2. Explain why the program in Listing 48-3 incorrectly reports the number of bytes
transferred if the for loop is modified as follows:

for (xfrs = 0, bytes = 0; shmp->cnt != 0; xfrs++, bytes += shmp->cnt) {
    reserveSem(semid, READ_SEM);            /* Wait for our turn */

    if (write(STDOUT_FILENO, shmp->buf, shmp->cnt) != shmp->cnt)
        fatal("write");

    releaseSem(semid, WRITE_SEM);           /* Give writer a turn */
}

48-3. Try compiling the programs in Listing 48-2 (svshm_xfr_writer.c) and Listing 48-3
(svshm_xfr_reader.c) with a range of different sizes (defined by the constant BUF_SIZE)
for the buffer used to exchange data between the two programs. Time the
execution of svshm_xfr_reader.c for each buffer size.

48-4. Write a program that displays the contents of the shmid_ds data structure (Section 48.8)
associated with a shared memory segment. The identifier of the segment should
be specified as a command-line argument. (See the program in Listing 47-3, on
page 973, which performs the analogous task for System V semaphores.)

48-5. Write a directory service that uses a shared memory segment to publish name-value
pairs. You will need to provide an API that allows callers to create a new name,
modify an existing name, delete an existing name, and retrieve the value associated
with a name. Use semaphores to ensure that a process performing an update to the
shared memory segment has exclusive access to the segment.

48-6. Write a program (analogous to program in Listing 46-6, on page 953) that uses the
shmctl() SHM_INFO and SHM_STAT operations to obtain and display a list of all shared
memory segments on the system.
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M E M O R Y  M A P P I N G S

This chapter discusses the use of the mmap() system call to create memory mappings.
Memory mappings can be used for IPC, as well as a range of other purposes. We
begin with an overview of some fundamental concepts before considering mmap() in
depth.

49.1 Overview

The mmap() system call creates a new memory mapping in the calling process’s virtual
address space. A mapping can be of two types:

File mapping: A file mapping maps a region of a file directly into the calling
process’s virtual memory. Once a file is mapped, its contents can be accessed
by operations on the bytes in the corresponding memory region. The pages of
the mapping are (automatically) loaded from the file as required. This type of
mapping is also known as a file-based mapping or memory-mapped file.

Anonymous mapping: An anonymous mapping doesn’t have a corresponding
file. Instead, the pages of the mapping are initialized to 0.

Another way of thinking of an anonymous mapping (and one is that is close to
the truth) is that it is a mapping of a virtual file whose contents are always ini-
tialized with zeros.



The memory in one process’s mapping may be shared with mappings in other pro-
cesses (i.e., the page-table entries of each process point to the same pages of RAM).
This can occur in two ways:

When two processes map the same region of a file, they share the same pages
of physical memory.

A child process created by fork() inherits copies of its parent’s mappings, and
these mappings refer to the same pages of physical memory as the correspond-
ing mappings in the parent.

When two or more processes share the same pages, each process can potentially
see the changes to the page contents made by other processes, depending on
whether the mapping is private or shared:

Private mapping (MAP_PRIVATE): Modifications to the contents of the mapping are
not visible to other processes and, for a file mapping, are not carried through
to the underlying file. Although the pages of a private mapping are initially
shared in the circumstances described above, changes to the contents of the
mapping are nevertheless private to each process. The kernel accomplishes
this using the copy-on-write technique (Section 24.2.2). This means that when-
ever a process attempts to modify the contents of a page, the kernel first creates
a new, separate copy of that page for the process (and adjusts the process’s
page tables). For this reason, a MAP_PRIVATE mapping is sometimes referred to as
a private, copy-on-write mapping.

Shared mapping (MAP_SHARED): Modifications to the contents of the mapping are
visible to other processes that share the same mapping and, for a file mapping,
are carried through to the underlying file.

The two mapping attributes described above (file versus anonymous and private
versus shared) can be combined in four different ways, as summarized in Table 49-1.

The four different types of memory mappings are created and used as follows:

Private file mapping: The contents of the mapping are initialized from a file
region. Multiple processes mapping the same file initially share the same physical
pages of memory, but the copy-on-write technique is employed, so that
changes to the mapping by one process are invisible to other processes. The

Table 49-1: Purposes of various types of memory mappings

Visibility of 
modifications

Mapping type

File Anonymous

Private Initializing memory from contents of file Memory allocation

Shared Memory-mapped I/O; sharing memory 
between processes (IPC)

Sharing memory between 
processes (IPC)
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main use of this type of mapping is to initialize a region of memory from the
contents of a file. Some common examples are initializing a process’s text and
initialized data segments from the corresponding parts of a binary executable
file or a shared library file.

Private anonymous mapping: Each call to mmap() to create a private anonymous
mapping yields a new mapping that is distinct from (i.e., does not share physical
pages with) other anonymous mappings created by the same (or a different)
process. Although a child process inherits its parent’s mappings, copy-on-write
semantics ensure that, after the fork(), the parent and child don’t see changes
made to the mapping by the other process. The primary purpose of private
anonymous mappings is to allocate new (zero-filled) memory for a process
(e.g., malloc() employs mmap() for this purpose when allocating large blocks of
memory).

Shared file mapping: All processes mapping the same region of a file share the
same physical pages of memory, which are initialized from a file region. Modi-
fications to the contents of the mapping are carried through to the file. This
type of mapping serves two purposes. First, it permits memory-mapped I/O. By
this, we mean that a file is loaded into a region of the process’s virtual memory,
and modifications to that memory are automatically written to the file. Thus,
memory-mapped I/O provides an alternative to using read() and write() for per-
forming file I/O. A second purpose of this type of mapping is to allow unrelated
processes to share a region of memory in order to perform (fast) IPC in a man-
ner similar to System V shared memory segments (Chapter 48).

Shared anonymous mapping: As with a private anonymous mapping, each call to
mmap() to create a shared anonymous mapping creates a new, distinct map-
ping that doesn’t share pages with any other mapping. The difference is that
the pages of the mapping are not copied-on-write. This means that when a
child inherits the mapping after a fork(), the parent and child share the same
pages of RAM, and changes made to the contents of the mapping by one pro-
cess are visible to the other process. Shared anonymous mappings allow IPC in
a manner similar to System V shared memory segments, but only between
related processes.

We consider each of these types of mapping in more detail in the remainder of this
chapter.

Mappings are lost when a process performs an exec(), but are inherited by the
child of a fork(). The mapping type (MAP_PRIVATE or MAP_SHARED) is also inherited.

Information about all of a process’s mappings is visible in the Linux-specific /proc/
PID/maps file, which we described in Section 48.5.

One further use of mmap() is with POSIX shared memory objects, which allow
a region of memory to be shared between unrelated processes without having
to create an associated disk file (as is required for a shared file mapping). We
describe POSIX shared memory objects in Chapter 54.
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49.2 Creating a Mapping: mmap()

The mmap() system call creates a new mapping in the calling process’s virtual
address space.

The addr argument indicates the virtual address at which the mapping is to be
located. If we specify addr as NULL, the kernel chooses a suitable address for the
mapping. This is the preferred way of creating a mapping. Alternatively, we can
specify a non-NULL value in addr, which the kernel takes as a hint about the address
at which the mapping should be placed. In practice, the kernel will at the very
least round the address to a nearby page boundary. In either case, the kernel will
choose an address that doesn’t conflict with any existing mapping. (If the value
MAP_FIXED is included in flags, then addr must be page-aligned. We describe this
flag in Section 49.10.)

On success, mmap() returns the starting address of the new mapping. On error,
mmap() returns MAP_FAILED.

On Linux (and on most other UNIX implementations), the MAP_FAILED constant
equates to ((void *) –1). However, SUSv3 specifies this constant because the C
standards can’t guarantee that ((void *) –1) is distinct from a successful mmap()
return value.

The length argument specifies the size of the mapping in bytes. Although length
doesn’t need to be a multiple of the system page size (as returned by
sysconf(_SC_PAGESIZE)), the kernel creates mappings in units of this size, so that
length is, in effect, rounded up to the next multiple of the page size.

The prot argument is a bit mask specifying the protection to be placed on the
mapping. It can be either PROT_NONE or a combination (ORing) of any of the other
three flags listed in Table 49-2.

#include <sys/mman.h>

void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t offset);

Returns starting address of mapping on success, or MAP_FAILED on error

Table 49-2: Memory protection values

Value Description

PROT_NONE The region may not be accessed

PROT_READ The contents of the region can be read
PROT_WRITE The contents of the region can be modified
PROT_EXEC The contents of the region can be executed
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The flags argument is a bit mask of options controlling various aspects of the map-
ping operation. Exactly one of the following values must be included in this mask:

MAP_PRIVATE

Create a private mapping. Modifications to the contents of the region are
not visible to other processes employing the same mapping, and, in the
case of a file mapping, are not carried through to the underlying file.

MAP_SHARED

Create a shared mapping. Modifications to the contents of the region are
visible to other processes mapping the same region with the MAP_SHARED
attribute and, in the case of a file mapping, are carried through to the
underlying file. Updates to the file are not guaranteed to be immediate;
see the discussion of the msync() system call in Section 49.5.

Aside from MAP_PRIVATE and MAP_SHARED, other flag values can optionally be ORed in
flags. We discuss these flags in Sections 49.6 and 49.10.

The remaining arguments, fd and offset, are used with file mappings (they are
ignored for anonymous mappings). The fd argument is a file descriptor identifying
the file to be mapped. The offset argument specifies the starting point of the map-
ping in the file, and must be a multiple of the system page size. To map the entire
file, we would specify offset as 0 and length as the size of the file. We say more about
file mappings in Section 49.5.

Memory protection in more detail

As noted above, the mmap() prot argument specifies the protection on a new mem-
ory mapping. It can contain the value PROT_NONE, or a mask of one of more of the
flags PROT_READ, PROT_WRITE, and PROT_EXEC. If a process attempts to access a memory
region in a way that violates the protection on the region, then the kernel delivers
the SIGSEGV signal to a process.

Although SUSv3 specifies that SIGSEGV should be used to signal memory pro-
tection violations, on some implementations, SIGBUS is used instead.

One use of pages of memory marked PROT_NONE is as guard pages at the start or end
of a region of memory that a process has allocated. If the process accidentally steps
into one of the pages marked PROT_NONE, the kernel informs it of that fact by generat-
ing a SIGSEGV signal.

Memory protections reside in process-private virtual memory tables. Thus, dif-
ferent processes may map the same memory region with different protections.

Memory protection can be changed using the mprotect() system call (Section 50.1).
On some UNIX implementations, the actual protections placed on the pages

of a mapping may not be exactly those specified in prot. In particular, limitations of
the protection granularity of the underlying hardware (e.g., older x86-32 architec-
tures) mean that, on many UNIX implementations, PROT_READ implies PROT_EXEC and
vice versa, and on some implementations, specifying PROT_WRITE implies PROT_READ.
However, applications should not rely on such behavior; prot should always specify
exactly the memory protections that are required.
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Modern x86-32 architectures provide hardware support for marking pages
tables as NX (no execute), and, since kernel 2.6.8, Linux makes use of this feature
to properly separate PROT_READ and PROT_EXEC permissions on Linux/x86-32.

Alignment restrictions specified in standards for offset and addr

SUSv3 specifies that the offset argument of mmap() must be page-aligned, and that the
addr argument must also be page-aligned if MAP_FIXED is specified. Linux conforms to
these requirements. However, it was later noted that the SUSv3 requirements differed
from earlier standards, which imposed looser requirements on these arguments.
The consequence of the SUSv3 wording was to (unnecessarily) render some for-
merly standards-conformant implementations nonconforming. SUSv4 returns to
the looser requirement:

An implementation may require that offset be a multiple of the system page size.

If MAP_FIXED is specified, then an implementation may require that addr be
page-aligned.

If MAP_FIXED is specified, and addr is nonzero, then addr and offset shall have the
same remainder modulo the system page size.

A similar situation arose for the addr argument of mprotect(), msync(), and
munmap(). SUSv3 specified that this argument must be page-aligned. SUSv4
says that an implementation may require this argument to be page-aligned.

Example program

Listing 49-1 demonstrates the use of mmap() to create a private file mapping. This
program is a simple version of cat(1). It maps the (entire) file named in its command-
line argument, and then writes the contents of the mapping to standard output.

Listing 49-1: Using mmap() to create a private file mapping

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– mmap/mmcat.c

#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    char *addr;
    int fd;
    struct stat sb;

    if (argc != 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s file\n", argv[0]);

    fd = open(argv[1], O_RDONLY);
    if (fd == -1)
        errExit("open");
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    /* Obtain the size of the file and use it to specify the size of
       the mapping and the size of the buffer to be written */

    if (fstat(fd, &sb) == -1)
        errExit("fstat");

    addr = mmap(NULL, sb.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
    if (addr == MAP_FAILED)
        errExit("mmap");

    if (write(STDOUT_FILENO, addr, sb.st_size) != sb.st_size)
        fatal("partial/failed write");
    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– mmap/mmcat.c

49.3 Unmapping a Mapped Region: munmap()

The munmap() system call performs the converse of mmap(), removing a mapping
from the calling process’s virtual address space.

The addr argument is the starting address of the address range to be unmapped. It
must be aligned to a page boundary. (SUSv3 specified that addr must be page-aligned.
SUSv4 says that an implementation may require this argument to be page-aligned.)

The length argument is a nonnegative integer specifying the size (in bytes) of
the region to be unmapped. The address range up to the next multiple of the system
page size will be unmapped.

Commonly, we unmap an entire mapping. Thus, we specify addr as the address
returned by a previous call to mmap(), and specify the same length value as was used
in the mmap() call. Here’s an example:

addr = mmap(NULL, length, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
if (addr == MAP_FAILED)
    errExit("mmap");

/* Code for working with mapped region */

if (munmap(addr, length) == -1)
    errExit("munmap");

Alternatively, we can unmap part of a mapping, in which case the mapping either
shrinks or is cut in two, depending on where the unmapping occurs. It is also possible
to specify an address range spanning several mappings, in which case all of the
mappings are unmapped.

#include <sys/mman.h>

int munmap(void *addr, size_t length);

Returns 0 on success, or –1 on error
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If there are no mappings in the address range specified by addr and length, then
munmap() has no effect, and returns 0 (for success).

During unmapping, the kernel removes any memory locks that the process
holds for the specified address range. (Memory locks are established using mlock()
or mlockall(), as described in Section 50.2.)

All of a process’s mappings are automatically unmapped when it terminates or
performs an exec().

To ensure that the contents of a shared file mapping are written to the underlying
file, a call to msync() (Section 49.5) should be made before unmapping a mapping
with munmap().

49.4 File Mappings

To create a file mapping, we perform the following steps:

1. Obtain a descriptor for the file, typically via a call to open().

2. Pass that file descriptor as the fd argument in a call to mmap().

As a result of these steps, mmap() maps the contents of the open file into the address
space of the calling process. Once mmap() has been called, we can close the file
descriptor without affecting the mapping. However, in some cases it may be useful
to keep this file descriptor open—see, for example, Listing 49-1 and also Chapter 54.

As well as normal disk files, it is possible to use mmap() to map the contents of
various real and virtual devices, such as hard disks, optical disks, and /dev/mem.

The file referred to by the descriptor fd must have been opened with permissions
appropriate for the values specified in prot and flags. In particular, the file must
always be opened for reading, and, if PROT_WRITE and MAP_SHARED are specified in flags,
then the file must be opened for both reading and writing.

The offset argument specifies the starting byte of the region to be mapped from the
file, and must be a multiple of the system page size. Specifying offset as 0 causes the file
to be mapped from the beginning. The length argument specifies the number of
bytes to be mapped. Together, the offset and length arguments determine which
region of the file is to be mapped into memory, as shown in Figure 49-1.

On Linux, the pages of a file mapping are mapped in on the first access. This
means that if changes are made to a file region after the mmap() call, but
before the corresponding part (i.e., page) of the mapping is accessed, then the
changes may be visible to the process, if the page has not otherwise already been
loaded into memory. This behavior is implementation-dependent; portable appli-
cations should avoid relying on a particular kernel behavior in this scenario.

49.4.1 Private File Mappings
The two most common uses of private file mappings are the following:

To allow multiple processes executing the same program or using the same
shared library to share the same (read-only) text segment, which is mapped
from the corresponding part of the underlying executable or library file.
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Although the executable text segment is normally protected to allow only read
and execute access (PROT_READ | PROT_EXEC), it is mapped using MAP_PRIVATE
rather than MAP_SHARED, because a debugger or a self-modifying program can
modify the program text (after first changing the protection on the memory),
and such changes should not be carried through to the underlying file or affect
other processes.

To map the initialized data segment of an executable or shared library. Such
mappings are made private so that modifications to the contents of the
mapped data segment are not carried through to the underlying file.

Both of these uses of mmap() are normally invisible to a program, because these
mappings are created by the program loader and dynamic linker. Examples of both
kinds of mappings can be seen in the /proc/PID/maps output shown in Section 48.5.

One other, less frequent, use of a private file mapping is to simplify the file-
input logic of a program. This is similar to the use of shared file mappings for
memory-mapped I/O (described in the next section), but allows only for file input.

Figure 49-1: Overview of memory-mapped file

49.4.2 Shared File Mappings
When multiple processes create shared mappings of the same file region, they all
share the same physical pages of memory. In addition, modifications to the contents
of the mapping are carried through to the file. In effect, the file is being treated as
the paging store for this region of memory, as shown in Figure 49-2. (We simplify
things in this diagram by omitting to show that the mapped pages are typically not
contiguous in physical memory.)
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Figure 49-2: Two processes with a shared mapping of the same region of a file

Memory-mapped I/O

Since the contents of the shared file mapping are initialized from the file, and any
modifications to the contents of the mapping are automatically carried through to
the file, we can perform file I/O simply by accessing bytes of memory, relying on the
kernel to ensure that the changes to memory are propagated to the mapped file.
(Typically, a program would define a structured data type that corresponds to the
contents of the disk file, and then use that data type to cast the contents of the
mapping.) This technique is referred to as memory-mapped I/O, and is an alternative
to using read() and write() to access the contents of a file.

Memory-mapped I/O has two potential advantages:

By replacing read() and write() system calls with memory accesses, it can simplify
the logic of some applications.
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follows:
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corresponding file blocks into memory. For output, the user process merely
needs to modify the contents of the memory, and can then rely on the kernel
memory manager to automatically update the underlying file.

In addition to saving a transfer between kernel space and user space, mmap()
can also improve performance by lowering memory requirements. When using
read() or write(), the data is maintained in two buffers: one in user space and the
other in kernel space. When using mmap(), a single buffer is shared between
the kernel space and user space. Furthermore, if multiple processes are per-
forming I/O on the same file, then, using mmap(), they can all share the same
kernel buffer, resulting in an additional memory saving.

Performance benefits from memory-mapped I/O are most likely to be realized
when performing repeated random accesses in a large file. If we are performing
sequential access of a file, then mmap() will probably provide little or no gain over
read() and write(), assuming that we perform I/O using buffer sizes big enough to
avoid making a large number of I/O system calls. The reason that there is little perfor-
mance benefit is that, regardless of which technique we use, the entire contents of the
file will be transferred between disk and memory exactly once, and the efficiency gains
of eliminating a data transfer between user space and kernel space and reducing
memory usage are typically negligible compared to the time required for disk I/O.

Memory-mapped I/O can also have disadvantages. For small I/Os, the cost
of memory-mapped I/O (i.e., mapping, page faulting, unmapping, and updat-
ing the hardware memory management unit’s translation look-aside buffer) can
actually be higher than for a simple read() or write(). In addition, it can sometimes
be difficult for the kernel to efficiently handle write-back for writable mappings
(the use of msync() or sync_file_range() can help improve efficiency in this case).

IPC using a shared file mapping

Since all processes with a shared mapping of the same file region share the same
physical pages of memory, the second use of a shared file mapping is as a method
of (fast) IPC. The feature that distinguishes this type of shared memory region
from a System V shared memory object (Chapter 48) is that modifications to the
contents of the region are carried through to the underlying mapped file. This fea-
ture is useful in an application that requires the shared memory contents to persist
across application or system restarts.

Example program

Listing 49-2 provides a simple example of the use of mmap() to create a shared file
mapping. This program begins by mapping the file named in its first command-line
argument. It then prints the value of the string lying at the start of the mapped
region. Finally, if a second command-line argument is supplied, that string is copied
into the shared memory region.

The following shell session log demonstrates the use of this program. We begin
by creating a 1024-byte file that is populated with zeros:

$ dd if=/dev/zero of=s.txt bs=1 count=1024
1024+0 records in
1024+0 records out
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We then use our program to map the file and copy a string into the mapped
region:

$ ./t_mmap s.txt hello
Current string=
Copied "hello" to shared memory

The program displayed nothing for the current string because the initial value of
the mapped files began with a null byte (i.e., zero-length string).

Next, we use our program to again map the file and copy a new string into the
mapped region:

$ ./t_mmap s.txt goodbye
Current string=hello
Copied "goodbye" to shared memory

Finally, we dump the contents of the file, 8 characters per line, to verify its contents:

$ od -c -w8 s.txt
0000000   g   o   o   d   b   y   e nul
0000010 nul nul nul nul nul nul nul nul
*
0002000

Our trivial program doesn’t use any mechanism to synchronize access by multiple
processes to the mapped file. However, real-world applications typically need to
synchronize access to shared mappings. This can be done using a variety of tech-
niques, including semaphores (Chapters 47 and 53) and file locking (Chapter 55).

We explain the msync() system call used in Listing 49-2 in Section 49.5.

Listing 49-2: Using mmap() to create a shared file mapping

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– mmap/t_mmap.c

#include <sys/mman.h>
#include <fcntl.h>
#include "tlpi_hdr.h"

#define MEM_SIZE 10

int
main(int argc, char *argv[])
{
    char *addr;
    int fd;

    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s file [new-value]\n", argv[0]);

    fd = open(argv[1], O_RDWR);
    if (fd == -1)
        errExit("open");
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    addr = mmap(NULL, MEM_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
    if (addr == MAP_FAILED)
        errExit("mmap");

    if (close(fd) == -1)                /* No longer need 'fd' */
        errExit("close");

    printf("Current string=%.*s\n", MEM_SIZE, addr);
                /* Secure practice: output at most MEM_SIZE bytes */

    if (argc > 2) {                     /* Update contents of region */
        if (strlen(argv[2]) >= MEM_SIZE)
            cmdLineErr("'new-value' too large\n");

        memset(addr, 0, MEM_SIZE); /* Zero out region */
        strncpy(addr, argv[2], MEM_SIZE - 1);
        if (msync(addr, MEM_SIZE, MS_SYNC) == -1)
            errExit("msync");

        printf("Copied \"%s\" to shared memory\n", argv[2]);
    }

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– mmap/t_mmap.c

49.4.3 Boundary Cases
In many cases, the size of a mapping is a multiple of the system page size, and the
mapping falls entirely within the bounds of the mapped file. However, this is not
necessarily so, and we now look at what happens when these conditions don’t hold.

Figure 49-3 portrays the case where the mapping falls entirely within the
bounds of the mapped file, but the size of the region is not a multiple of the system
page size (which we assume is 4096 bytes for the purposes of this discussion).

Figure 49-3: Memory mapping whose length is not a multiple of the system page size
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Since the size of the mapping is not a multiple of the system page size, it is
rounded up to the next multiple of the system page size. Because the file is larger
than this rounded-up size, the corresponding bytes of the file are mapped as
shown in Figure 49-3.

Attempts to access bytes beyond the end of the mapping result in the genera-
tion of a SIGSEGV signal (assuming that there is no other mapping at that location).
The default action for this signal is to terminate the process with a core dump.

When the mapping extends beyond the end of the underlying file (see Fig-
ure 49-4), the situation is more complex. As before, because the size of the map-
ping is not a multiple of the system page size, it is rounded up. However, in this
case, while the bytes in the rounded-up region (i.e., bytes 2200 to 4095 in the dia-
gram) are accessible, they are not mapped to the underlying file (since no corre-
sponding bytes exist in the file). Instead, they are initialized to 0 (SUSv3 requires
this). These bytes will nevertheless be shared with other processes mapping the file,
if they specify a sufficiently large length argument. Changes to these bytes are not
written to the file.

If the mapping includes pages beyond the rounded-up region (i.e., bytes 4096
and beyond in Figure 49-4), then attempts to access addresses in these pages result
in the generation of a SIGBUS signal, which warns the process that there is no region
of the file corresponding to these addresses. As before, attempts to access
addresses beyond the end of the mapping result in the generation of a SIGSEGV signal.

From the above description, it may appear pointless to create a mapping whose
size exceeds that of the underlying file. However, by extending the size of the file
(e.g., using ftruncate() or write()), we can render previously inaccessible parts of such
a mapping usable.

Figure 49-4: Memory mapping extending beyond end of mapped file
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One point that we have not so far explained in detail is the interaction between the
memory protection specified in the mmap() prot argument and the mode in which the
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However, the situation is complicated by the limited granularity of memory
protections provided by some hardware architectures (Section 49.2). For such
architectures, we make the following observations:

All combinations of memory protection are compatible with opening the file
with the O_RDWR flag.

No combination of memory protections—not even just PROT_WRITE—is compatible
with a file opened O_WRONLY (the error EACCES results). This is consistent with the
fact that some hardware architectures don’t allow us write-only access to a
page. As noted in Section 49.2, PROT_WRITE implies PROT_READ on those architec-
tures, which means that if the page can be written, then it can also be read. A
read operation is incompatible with O_WRONLY, which must not reveal the origi-
nal contents of the file.

The results when a file is opened with the O_RDONLY flag depend on whether we
specify MAP_PRIVATE or MAP_SHARED when calling mmap(). For a MAP_PRIVATE mapping,
we can specify any combination of memory protection in mmap()—because
modifications to the contents of a MAP_PRIVATE page are never written to the file,
the inability to write to the file is not a problem. For a MAP_SHARED mapping, the
only memory protections that are compatible with O_RDONLY are PROT_READ and
(PROT_READ | PROT_EXEC). This is logical, since a PROT_WRITE, MAP_SHARED mapping
allows updates to the mapped file.

49.5 Synchronizing a Mapped Region: msync()

The kernel automatically carries modifications of the contents of a MAP_SHARED map-
ping through to the underlying file, but, by default, provides no guarantees about
when such synchronization will occur. (SUSv3 doesn’t require an implementation
to provide such guarantees.)

The msync() system call gives an application explicit control over when a shared
mapping is synchronized with the mapped file. Synchronizing a mapping with the
underlying file is useful in various scenarios. For example, to ensure data integrity,
a database application may call msync() to force data to be written to the disk. Call-
ing msync() also allows an application to ensure that updates to a writable mapping
are visible to some other process that performs a read() on the file.

The addr and length arguments to msync() specify the starting address and size of the
memory region to be synchronized. The address specified in addr must be page-
aligned, and len is rounded up to the next multiple of the system page size. (SUSv3
specified that addr must be page-aligned. SUSv4 says that an implementation may
require this argument to be page-aligned.)

#include <sys/mman.h>

int msync(void *addr, size_t length, int flags);

Returns 0 on success, or –1 on error
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Possible values for the flags argument include one of the following:

MS_SYNC

Perform a synchronous file write. The call blocks until all modified pages
of the memory region have been written to the disk.

MS_ASYNC

Perform an asynchronous file write. The modified pages of the memory
region are written to the disk at some later point and are immediately
made visible to other processes performing a read() on the corresponding
file region.

Another way of distinguishing these two values is to say that after an MS_SYNC operation,
the memory region is synchronized with the disk, while after an MS_ASYNC operation, the
memory region is merely synchronized with the kernel buffer cache.

If we take no further action after an MS_ASYNC operation, then the modified
pages in the memory region will eventually be flushed as part of the automatic
buffer flushing performed by the pdflush kernel thread (kupdated in Linux 2.4
and earlier). On Linux, there are two (nonstandard) methods of initiating the
output sooner. We can follow the call to msync() with a call to fsync() (or
fdatasync()) on the file descriptor corresponding to the mapping. This call will
block until the buffer cache is synchronized with the disk. Alternatively, we can
initiate asynchronous write out of the pages using the posix_fadvise()
POSIX_FADV_DONTNEED operation. (The Linux-specific details in these two cases
are not specified by SUSv3.)

One other value can additionally be specified for flags:

MS_INVALIDATE

Invalidate cached copies of mapped data. After any modified pages in the
memory region have been synchronized with the file, all pages of the mem-
ory region that are inconsistent with the underlying file data are marked as
invalid. When next referenced, the contents of the pages will be copied
from the corresponding locations in the file. As a consequence, any updates
that have been made to the file by another process are made visible in the
memory region.

Like many other modern UNIX implementations, Linux provides a so-called
unified virtual memory system. This means that, where possible, memory mappings
and blocks of the buffer cache share the same pages of physical memory. Thus, the
views of a file obtained via a mapping and via I/O system calls (read(), write(), and
so on) are always consistent, and the only use of msync() is to force the contents of a
mapped region to be flushed to disk.

However, a unified virtual memory system is not required by SUSv3 and is not
employed on all UNIX implementations. On such systems, a call to msync() is
required to make changes to the contents of a mapping visible to other processes
that read() the file, and the MS_INVALIDATE flag is required to perform the converse
action of making writes to the file by another process visible in the mapped region.
Multiprocess applications that employ both mmap() and I/O system calls to operate
on the same file should be designed to make appropriate use of msync() if they are
to be portable to systems that don’t have a unified virtual memory system.
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49.6 Additional mmap() Flags

In addition to MAP_PRIVATE and MAP_SHARED, Linux allows a number of other values to
be included (ORed) in the mmap() flags argument. Table 49-3 summarizes these values.
Other than MAP_PRIVATE and MAP_SHARED, only the MAP_FIXED flag is specified in SUSv3.

The following list provides further details on the flags values listed in Table 49-3
(other than MAP_PRIVATE and MAP_SHARED, which have already been discussed):

MAP_ANONYMOUS

Create an anonymous mapping—that is, a mapping that is not backed by a
file. We describe this flag further in Section 49.7.

MAP_FIXED

We describe this flag in Section 49.10.

MAP_HUGETLB (since Linux 2.6.32)
This flag serves the same purpose for mmap() as the SHM_HUGETLB flag serves
for System V shared memory segments. See Section 48.2.

MAP_LOCKED (since Linux 2.6)
Preload and lock the mapped pages into memory in the manner of mlock().
We describe the privileges required to use this flag and the limits govern-
ing its operation in Section 50.2.

MAP_NORESERVE

This flag is used to control whether reservation of swap space for the map-
ping is performed in advance. See Section 49.9 for details.

MAP_POPULATE (since Linux 2.6)
Populate the pages of a mapping. For a file mapping, this will perform
read-ahead on the file. This means that later accesses of the contents of the
mapping won’t be blocked by page faults (assuming that memory pressure
has not in the meantime caused the pages to be swapped out).

Table 49-3: Bit-mask values for the mmap() flags argument

Value Description SUSv3

MAP_ANONYMOUS Create an anonymous mapping
MAP_FIXED Interpret addr argument exactly (Section 49.10) •
MAP_LOCKED Lock mapped pages into memory (since Linux 2.6)
MAP_HUGETLB Create a mapping that uses huge pages (since Linux 2.6.32)
MAP_NORESERVE Control reservation of swap space (Section 49.9)
MAP_PRIVATE Modifications to mapped data are private •
MAP_POPULATE Populate the pages of a mapping (since Linux 2.6)
MAP_SHARED Modifications to mapped data are visible to other processes 

and propagated to underlying file (converse of MAP_PRIVATE)
•

MAP_UNINITIALIZED Don’t clear an anonymous mapping (since Linux 2.6.33)
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MAP_UNINITIALIZED (since Linux 2.6.33)
Specifying this flag prevents the pages of an anonymous mapping from
being zeroed. It provides a performance benefit, but carries a security risk,
because the allocated pages may contain sensitive information left by a pre-
vious process. This flag is thus only intended for use on embedded sys-
tems, where performance may be critical, and the entire system is under
the control of the embedded application(s). This flag is only honored if the
kernel was configured with the CONFIG_MMAP_ALLOW_UNINITIALIZED option.

49.7 Anonymous Mappings

An anonymous mapping is one that doesn’t have a corresponding file. In this section,
we show how to create anonymous mappings, and look at the purposes served by
private and shared anonymous mappings.

MAP_ANONYMOUS and /dev/zero

On Linux, there are two different, equivalent methods of creating an anonymous
mapping with mmap():

Specify MAP_ANONYMOUS in flags and specify fd as –1. (On Linux, the value of fd is
ignored when MAP_ANONYMOUS is specified. However, some UNIX implementations
require fd to be –1 when employing MAP_ANONYMOUS, and portable applications
should ensure that they do this.)

We must define either the _BSD_SOURCE or the _SVID_SOURCE feature test macros
to get the definition of MAP_ANONYMOUS from <sys/mman.h>. Linux provides the
constant MAP_ANON as a synonym for MAP_ANONYMOUS for compatibility with some
other UNIX implementations using this alternative name.

Open the /dev/zero device file and pass the resulting file descriptor to mmap().

/dev/zero is a virtual device that always returns zeros when we read from it.
Writes to this device are always discarded. A common use of /dev/zero is to
populate a file with zeros (e.g., using the dd(1) command).

With both the MAP_ANONYMOUS and the /dev/zero techniques, the bytes of the resulting
mapping are initialized to 0. For both techniques, the offset argument is ignored
(since there is no underlying file in which to specify an offset). We show examples
of each technique shortly.

The MAP_ANONYMOUS and /dev/zero techniques are not specified in SUSv3,
although most UNIX implementations support one or both of them. The reason
for the existence of two different techniques with the same semantics is that
one (MAP_ANONYMOUS) derives from BSD, while the other (/dev/zero) derives from
System V.
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MAP_PRIVATE anonymous mappings

MAP_PRIVATE anonymous mappings are used to allocate blocks of process-private
memory initialized to 0. We can use the /dev/zero technique to create a MAP_PRIVATE
anonymous mapping as follows:

fd = open("/dev/zero", O_RDWR);
if (fd == -1)
    errExit("open");
addr = mmap(NULL, length, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
if (addr == MAP_FAILED)
    errExit("mmap");

The glibc implementation of malloc() uses MAP_PRIVATE anonymous mappings to
allocate blocks of memory larger than MMAP_THRESHOLD bytes. This makes it possible
to efficiently deallocate such blocks (via munmap()) if they are later given to free().
(It also reduces the possibility of memory fragmentation when repeatedly allo-
cating and deallocating large blocks of memory.) MMAP_THRESHOLD is 128 kB by
default, but this parameter is adjustable via the mallopt() library function.

MAP_SHARED anonymous mappings

A MAP_SHARED anonymous mapping allows related processes (e.g., parent and child)
to share a region of memory without needing a corresponding mapped file.

MAP_SHARED anonymous mappings are available only with Linux 2.4 and later.

We can use the MAP_ANONYMOUS technique to create a MAP_SHARED anonymous mapping
as follows:

addr = mmap(NULL, length, PROT_READ | PROT_WRITE,
            MAP_SHARED | MAP_ANONYMOUS, -1, 0);
if (addr == MAP_FAILED)
    errExit("mmap");

If the above code is followed by a call to fork(), then, because the child produced by
fork() inherits the mapping, both processes share the memory region.

Example program

The program in Listing 49-3 demonstrates the use of either MAP_ANONYMOUS or /dev/zero
to share a mapped region between parent and child processes. The choice of tech-
nique is determined by whether USE_MAP_ANON is defined when compiling the pro-
gram. The parent initializes an integer in the shared region to 1 prior to calling
fork(). The child then increments the shared integer and exits, while the parent
waits for the child to exit and then prints the value of the integer. When we run this
program, we see the following:

$ ./anon_mmap
Child started, value = 1
In parent, value = 2
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Listing 49-3: Sharing an anonymous mapping between parent and child processes

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– mmap/anon_mmap.c

#ifdef USE_MAP_ANON
#define _BSD_SOURCE             /* Get MAP_ANONYMOUS definition */
#endif
#include <sys/wait.h>
#include <sys/mman.h>
#include <fcntl.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int *addr;                  /* Pointer to shared memory region */

#ifdef USE_MAP_ANON             /* Use MAP_ANONYMOUS */
    addr = mmap(NULL, sizeof(int), PROT_READ | PROT_WRITE,
                MAP_SHARED | MAP_ANONYMOUS, -1, 0);
    if (addr == MAP_FAILED)
        errExit("mmap");

#else                           /* Map /dev/zero */
    int fd;

    fd = open("/dev/zero", O_RDWR);
    if (fd == -1)
        errExit("open");

    addr = mmap(NULL, sizeof(int), PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
    if (addr == MAP_FAILED)
        errExit("mmap");

    if (close(fd) == -1)        /* No longer needed */
        errExit("close");
#endif

    *addr = 1;                  /* Initialize integer in mapped region */

    switch (fork()) {           /* Parent and child share mapping */
    case -1:
        errExit("fork");

    case 0:                     /* Child: increment shared integer and exit */
        printf("Child started, value = %d\n", *addr);
        (*addr)++;

        if (munmap(addr, sizeof(int)) == -1)
            errExit("munmap");
        exit(EXIT_SUCCESS);

    default:                    /* Parent: wait for child to terminate */
        if (wait(NULL) == -1)
            errExit("wait");
        printf("In parent, value = %d\n", *addr);
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        if (munmap(addr, sizeof(int)) == -1)
            errExit("munmap");
        exit(EXIT_SUCCESS);
    }
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– mmap/anon_mmap.c

49.8 Remapping a Mapped Region: mremap()

On most UNIX implementations, once a mapping has been created, its location
and size can’t be changed. However, Linux provides the (nonportable) mremap()
system call, which permits such changes.

The old_address and old_size arguments specify the location and size of an existing
mapping that we wish to expand or shrink. The address specified in old_address
must be page-aligned, and is normally a value returned by a previous call to mmap().
The desired new size of the mapping is specified in new_size. The values specified in
old_size and new_size are both rounded up to the next multiple of the system page size.

While carrying out the remapping, the kernel may relocate the mapping within
the process’s virtual address space. Whether or not this is permitted is controlled
by the flags argument, which is a bit mask that may either be 0 or include the follow-
ing values:

MREMAP_MAYMOVE

If this flag is specified, then, as space requirements dictate, the kernel may
relocate the mapping within the process’s virtual address space. If this flag
is not specified, and there is insufficient space to expand the mapping at
the current location, then the error ENOMEM results.

MREMAP_FIXED (since Linux 2.4)
This flag can be used only in conjunction with MREMAP_MAYMOVE. It serves a
purpose for mremap() that is analogous to that served by MAP_FIXED for mmap()
(Section 49.10). If this flag is specified, then mremap() takes an additional
argument, void *new_address, that specifies a page-aligned address to which
the mapping should be moved. Any previous mapping in the address
range specified by new_address and new_size is unmapped.

On success, mremap() returns the starting address of the mapping. Since (if the
MREMAP_MAYMOVE flag is specified) this address may be different from the previous
starting address, pointers into the region may cease to be valid. Therefore, applica-
tions that use mremap() should use only offsets (not absolute pointers) when refer-
ring to addresses in the mapped region (see Section 48.6).

#define _GNU_SOURCE
#include <sys/mman.h>

void *mremap(void *old_address, size_t old_size, size_t new_size, int flags, ...);

Returns starting address of remapped region on success,
or MAP_FAILED on error
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On Linux, the realloc() function uses mremap() to efficiently reallocate large
blocks of memory that malloc() previously allocated using mmap() MAP_ANONYMOUS.
(We mentioned this feature of the glibc malloc() implementation in Section 49.7.)
Using mremap() for this task makes it possible to avoid copying of bytes during
the reallocation.

49.9 MAP_NORESERVE and Swap Space Overcommitting

Some applications create large (usually private anonymous) mappings, but use only
a small part of the mapped region. For example, certain types of scientific applica-
tions allocate a very large array, but operate on only a few widely separated ele-
ments of the array (a so-called sparse array).

If the kernel always allocated (or reserved) enough swap space for the whole of
such mappings, then a lot of swap space would potentially be wasted. Instead, the
kernel can reserve swap space for the pages of a mapping only as they are actually
required (i.e., when the application accesses a page). This approach is called lazy
swap reservation, and has the advantage that the total virtual memory used by appli-
cations can exceed the total size of RAM plus swap space.

To put things another way, lazy swap reservation allows swap space to be over-
committed. This works fine, as long as all processes don’t attempt to access the
entire range of their mappings. However, if all applications do attempt to access
the full range of their mappings, RAM and swap space will be exhausted. In this
situation, the kernel reduces memory pressure by killing one or more of the processes
on the system. Ideally, the kernel attempts to select the process causing the mem-
ory problems (see the discussion of the OOM killer below), but this isn’t guaranteed.
For this reason, we may choose to prevent lazy swap reservation, instead forcing
the system to allocate all of the necessary swap space when the mapping is created.

How the kernel handles reservation of swap space is controlled by the use of
the MAP_NORESERVE flag when calling mmap(), and via /proc interfaces that affect the
system-wide operation of swap space overcommitting. These factors are summa-
rized in Table 49-4.

The Linux-specific /proc/sys/vm/overcommit_memory file contains an integer value that
controls the kernel’s handling of swap space overcommits. Linux versions before
2.6 differentiated only two values in this file: 0, meaning deny obvious over-
commits (subject to the use of the MAP_NORESERVE flag), and greater than 0, meaning
that overcommits should be permitted in all cases.

Table 49-4: Handling of swap space reservation during mmap()

overcommit_memory
value

MAP_NORESERVE specified in mmap() call?

No Yes

0 Deny obvious overcommits Allow overcommits

1 Allow overcommits Allow overcommits

2 (since Linux 2.6) Strict overcommitting
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Denying obvious overcommits means that new mappings whose size doesn’t
exceed the amount of currently available free memory are permitted. Existing allo-
cations may be overcommitted (since they may not be using all of the pages that
they mapped).

Since Linux 2.6, a value of 1 has the same meaning as a positive value in earlier
kernels, but the value 2 (or greater) causes strict overcommitting to be employed. In
this case, the kernel performs strict accounting on all mmap() allocations and limits
the system-wide total of all such allocations to be less than or equal to:

[swap size] + [RAM size] * overcommit_ratio / 100

The overcommit_ratio value is an integer—expressing a percentage—contained in the
Linux-specific /proc/sys/vm/overcommit_ratio file. The default value contained in this
file is 50, meaning that the kernel can overallocate up to 50% of the size of the sys-
tem’s RAM, and this will be successful, as long as not all processes try to use their
full allocation.

Note that overcommit monitoring comes into play only for the following types
of mappings:

private writable mappings (both file and anonymous mappings), for which the
swap “cost” of the mapping is equal to the size of the mapping for each process
that employs the mapping; and

shared anonymous mappings, for which the swap “cost” of the mapping is the
size of the mapping (since all processes share that mapping).

Reserving swap space for a read-only private mapping is unnecessary: since the con-
tents of the mapping can’t be modified, there is no need to employ swap space.
Swap space is also not required for shared file mappings, because the mapped file
itself acts as the swap space for the mapping.

When a child process inherits a mapping across a fork(), it inherits the
MAP_NORESERVE setting for the mapping. The MAP_NORESERVE flag is not specified in
SUSv3, but it is supported on a few other UNIX implementations.

In this section, we have discussed how a call to mmap() may fail to increase the
address space of a process because of the system limitations on RAM and swap
space. A call to mmap() can also fail because it encounters the per-process
RLIMIT_AS resource limit (described in Section 36.3), which places an upper
limit on the size of the address space of the calling process.

The OOM killer

Above, we noted that when we employ lazy swap reservation, memory may become
exhausted if applications attempt to employ the entire range of their mappings. In
this case, the kernel relieves memory exhaustion by killing processes.

The kernel code dedicated to selecting a process to kill when memory is
exhausted is commonly known as the out-of-memory (OOM) killer. The OOM
killer tries to choose the best process to kill in order to relieve the memory exhaus-
tion, where “best” is determined by a range of factors. For example, the more
memory a process is consuming, the more likely it will be a candidate for the OOM
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killer. Other factors that increase a process’s likelihood of selection are forking to
create many child processes and having a low nice value (i.e., one that is greater
than 0). The kernel disfavors killing the following:

processes that are privileged, since they are probably performing important tasks;

processes that are performing raw device access, since killing them may leave
the device in an unusable state; and

processes that have been running for a long time or have consumed a lot of
CPU, since killing them would result in a lot of lost “work.”

To kill the selected process, the OOM killer delivers a SIGKILL signal.
The Linux-specific /proc/PID/oom_score file, available since kernel 2.6.11, shows

the weighting that the kernel gives to a process if it is necessary to invoke the OOM
killer. The greater the value in this file, the more likely the process is to be selected,
if necessary, by the OOM killer. The Linux-specific /proc/PID/oom_adj file, also available
since kernel 2.6.11, can be used to influence the oom_score of a process. This file can
be set to any value in the range –16 to +15, where negative values decrease the
oom_score and positive values increase it. The special value –17 removes the process
altogether as a candidate for selection by the OOM killer. For further details, see
the proc(5) manual page.

49.10 The MAP_FIXED Flag

Specifying MAP_FIXED in the mmap() flags argument forces the kernel to interpret the
address in addr exactly, rather than take it as a hint. If we specify MAP_FIXED, addr
must be page-aligned.

Generally, a portable application should omit the use of MAP_FIXED, and specify
addr as NULL, which allows the system to choose the address at which to place the
mapping. The reasons for this are the same as those that we outlined in Section 48.3
when explaining why it usually preferable to specify shmaddr as NULL when attaching
a System V shared memory segment using shmat().

There is, however, one situation where a portable application might use MAP_FIXED.
If MAP_FIXED is specified when calling mmap(), and the memory region beginning at
addr and running for length bytes overlaps the pages of any previous mapping, then
the overlapped pages are replaced by the new mapping. We can use this feature to
portably map multiple parts of a file (or files) into a contiguous region of memory,
as follows:

1. Use mmap() to create an anonymous mapping (Section 49.7). In the mmap()
call, we specify addr as NULL and don’t specify the MAP_FIXED flag. This allows the
kernel to choose an address for the mapping.

2. Use a series of mmap() calls specifying MAP_FIXED to map (i.e., overlay) file regions
into different parts of the mapping created in the preceding step.

Although we could skip the first step, and use a series of mmap() MAP_FIXED opera-
tions to create a set of contiguous mappings at an address range selected by the
application, this approach is less portable than performing both steps. As noted
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above, a portable application should avoid trying to create a new mapping at a fixed
address. The first step avoids the portability problem, because we let the kernel
select a contiguous address range, and then create new mappings within that
address range.

From Linux 2.6 onward, the remap_file_pages() system call, which we describe
in the next section, can also be used to achieve the same effect. However, the use of
MAP_FIXED is more portable than remap_file_pages(), which is Linux-specific.

49.11 Nonlinear Mappings: remap_file_pages()

File mappings created with mmap() are linear: there is a sequential, one-to-one cor-
respondence between the pages of the mapped file and the pages of the memory
region. For most applications, a linear mapping suffices. However, some applica-
tions need to create large numbers of nonlinear mappings—mappings where the
pages of the file appear in a different order within contiguous memory. We show
an example of a nonlinear mapping in Figure 49-5.

We described one way of creating nonlinear mappings in the previous section:
using multiple calls to mmap() with the MAP_FIXED flag. However, this approach
doesn’t scale well. The problem is that each of these mmap() calls creates a separate
kernel virtual memory area (VMA) data structure. Each VMA takes time to set up
and consumes some nonswappable kernel memory. Furthermore, the presence of
a large number of VMAs can degrade the performance of the virtual memory
manager; in particular, the time taken to process each page fault can significantly
increase when there are tens of thousands of VMAs. (This was a problem for some
large database management systems that maintain multiple different views in a
database file.)

Each line in the /proc/PID/maps file (Section 48.5) represents one VMA.

From kernel 2.6 onward, Linux provides the remap_file_pages() system call to create
nonlinear mappings without creating multiple VMAs. We do this as follows:

1. Create a mapping with mmap().

2. Use one or more calls to remap_file_pages() to rearrange the correspondence
between the pages of memory and the pages of the file. (All that remap_file_pages()
is doing is manipulating process page tables.)

It is possible to use remap_file_pages() to map the same page of a file into multiple
locations within the mapped region.

#define _GNU_SOURCE
#include <sys/mman.h>

int remap_file_pages(void *addr, size_t size, int prot, size_t pgoff, int flags);

Returns 0 on success, or –1 on error
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The pgoff and size arguments identify a file region whose position in memory is to
be changed. The pgoff argument specifies the start of the file region in units of the
system page size (as returned by sysconf(_SC_PAGESIZE)). The size argument speci-
fies the length of the file region, in bytes. The addr argument serves two purposes:

It identifies the existing mapping whose pages we want to rearrange. In other
words, addr must be an address that falls somewhere within a region that was
previously mapped with mmap().

It specifies the memory address at which the file pages identified by pgoff and
size are to be located.

Both addr and size should be specified as multiples of the system page size. If they
are not, they are rounded down to the nearest multiple of the page size.

Suppose that we use the following call to mmap() to map three pages of the
open file referred to by the descriptor fd, and that the call assigns the returned
address 0x4001a000 to addr:

ps = sysconf(_SC_PAGESIZE);               /* Obtain system page size */
addr = mmap(0, 3 * ps, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

The following calls would then create the nonlinear mapping shown in Figure 49-5:

remap_file_pages(addr, ps, 0, 2, 0);
                            /* Maps page 0 of file into page 2 of region */
remap_file_pages(addr + 2 * ps, ps, 0, 0, 0);
                            /* Maps page 2 of file into page 0 of region */

Figure 49-5: A nonlinear file mapping

There are two other arguments to remap_file_pages() that we haven’t yet described:

The prot argument is ignored, and must be specified as 0. In the future, it may
be possible to use this argument to change the protection of the memory
region affected by remap_file_pages(). In the current implementation, the pro-
tection remains the same as that on the entire VMA.

Virtual machines and garbage collectors are other applications that employ
multiple VMAs. Some of these applications need to be able to write-protect

Mapped file
(12288 bytes)

page 0 of mapping
maps page 2 of file

Memory region
(12288 bytes)

page 1 of mapping
maps page 1 of file

page 2 of mapping
maps page 0 of file

0x4001c0000x4001b0000x4001a000

Increasing virtual addresses

page 0 of file page 1 of file page 2 of file
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individual pages. It was intended that remap_file_pages() would allow permis-
sions on individual pages within a VMA to be changed, but this facility has not
so far been implemented.

The flags argument is currently unused.

As currently implemented, remap_file_pages() can be applied only to shared
(MAP_SHARED) mappings.

The remap_file_pages() system call is Linux-specific; it is not specified in SUSv3
and is not available on other UNIX implementations.

49.12 Summary

The mmap() system call creates a new memory mapping in the calling process’s vir-
tual address space. The munmap() system call performs the converse operation,
removing a mapping from a process’s address space.

A mapping may be of two types: file-based or anonymous. A file mapping maps
the contents of a file region into the process’s virtual address space. An anonymous
mapping (created by using the MAP_ANONYMOUS flag or by mapping /dev/zero) doesn’t
have a corresponding file region; the bytes of the mapping are initialized to 0.

Mappings can be either private (MAP_PRIVATE) or shared (MAP_SHARED). This distinction
determines the visibility of changes made to the shared memory, and, in the case of
file mappings, determines whether the kernel propagates changes to the contents
of the mapping to the underlying file. When a process maps a file with the
MAP_PRIVATE flag, any changes it makes to the contents of the mapping are not visible
to other processes and are not carried through to the mapped file. A MAP_SHARED file
mapping is the converse—changes to the mapping are visible to other processes
and are carried through to the mapped file.

Although the kernel automatically propagates changes to the contents of a
MAP_SHARED mapping to the underlying file, it doesn’t provide any guarantees about
when this is done. An application can use the msync() system call to explicitly con-
trol when the contents of a mapping are synchronized with the mapped file.

Memory mappings serve a variety of uses, including:

allocating process-private memory (private anonymous mappings);

initializing the contents of the text and initialized data segments of a process
(private file mappings);

sharing memory between processes related via fork() (shared anonymous map-
pings); and

performing memory-mapped I/O, optionally combined with memory sharing
between unrelated processes (shared file mappings).

Two signals may come into play when accessing the contents of a mapping. SIGSEGV
is generated if we attempt access in a manner that violates the protections on the
mapping (or if we access any currently unmapped address). SIGBUS is generated for
file-based mappings if we access a part of the mapping for which no corresponding
region exists in the file (i.e., the mapping is larger than the underlying file).
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Swap space overcommitting allows the system to allocate more memory to
processes than is actually available in RAM and swap space. Overcommitting is possible
because, typically, each process does not make full use of its allocation. Overcommit-
ting can be controlled on a per-mmap() basis using the MAP_NORESERVE flag, and on a
system-wide basis using /proc files.

The mremap() system call allows an existing mapping to be resized. The
remap_file_pages() system call allows the creation of nonlinear file mappings.

Further information

Information about the implementation of mmap() on Linux can be found in [Bovet &
Cesati, 2005]. Information about the implementation of mmap() on other UNIX
systems can be found in [McKusick et al., 1996] (BSD), [Goodheart & Cox, 1994]
(System V Release 4), and [Vahalia, 1996] (System V Release 4).

49.13 Exercises

49-1. Write a program, analogous to cp(1), that uses mmap() and memcpy() calls (instead
of read() or write()) to copy a source file to a destination file. (Use fstat() to obtain
the size of the input file, which can then be used to size the required memory
mappings, and use ftruncate() to set the size of the output file.)

49-2. Rewrite the programs in Listing 48-2 (svshm_xfr_writer.c, page 1003) and Listing 48-3
(svshm_xfr_reader.c, page 1005) to use a shared memory mapping instead of System V
shared memory.

49-3. Write programs to verify that the SIGBUS and SIGSEGV signals are delivered in the
circumstances described in Section 49.4.3.

49-4. Write a program that uses the MAP_FIXED technique described in Section 49.10 to
create a nonlinear mapping similar to that shown in Figure 49-5.
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V I R T U A L  M E M O R Y  O P E R A T I O N S

This chapter looks at various system calls that perform operations on a process’s
virtual address space:

The mprotect() system call changes the protection on a region of virtual memory.

The mlock() and mlockall() system calls lock a region of virtual memory into
physical memory, thus preventing it from being swapped out.

The mincore() system call allows a process to determine whether the pages in a
region of virtual memory are resident in physical memory.

The madvise() system call allows a process to advise the kernel about its future
patterns of usage of a virtual memory region.

Some of these system calls find particular use in conjunction with shared memory
regions (Chapters 48, 49, and 54), but they can be applied to any region of a pro-
cess’s virtual memory.

The techniques described in this chapter are not in fact about IPC at all, but
we include them in this part of the book because they are sometimes used with
shared memory.

50.1 Changing Memory Protection: mprotect()

The mprotect() system call changes the protection on the virtual memory pages in
the range starting at addr and continuing for length bytes.



The value given in addr must be a multiple of the system page size (as returned by
sysconf(_SC_PAGESIZE)). (SUSv3 specified that addr must be page-aligned. SUSv4
says that an implementation may require this argument to be page-aligned.)
Because protections are set on whole pages, length is, in effect, rounded up to the
next multiple of the system page size.

The prot argument is a bit mask specifying the new protection for this region of
memory. It must be specified as either PROT_NONE or a combination created by
ORing together one or more of PROT_READ, PROT_WRITE, and PROT_EXEC. All of these val-
ues have the same meaning as for mmap() (Table 49-2, on page 1020).

If a process attempts to access a region of memory in a manner that violates the
memory protection, the kernel generates a SIGSEGV signal for the process.

One use of mprotect() is to change the protection of a region of mapped memory
originally set in a call to mmap(), as shown in Listing 50-1. This program creates an
anonymous mapping that initially has all access denied (PROT_NONE). The program
then changes the protection on the region to read plus write. Before and after mak-
ing the change, the program uses the system() function to execute a shell command
that displays the line from the /proc/PID/maps file corresponding to the mapped
region, so that we can see the change in memory protection. (We could have
obtained the mapping information by directly parsing /proc/self/maps, but we used
the call to system() because it results in a shorter program.) When we run this pro-
gram, we see the following:

$ ./t_mprotect
Before mprotect()
b7cde000-b7dde000 ---s 00000000 00:04 18258    /dev/zero (deleted)
After mprotect()
b7cde000-b7dde000 rw-s 00000000 00:04 18258    /dev/zero (deleted)

From the last line of output, we can see that mprotect() has changed the permissions
of the memory region to PROT_READ | PROT_WRITE. (For an explanation of the (deleted)
string that appears after /dev/zero in the shell output, refer to Section 48.5.)

Listing 50-1: Changing memory protection with mprotect()
–––––––––––––––––––––––––––––––––––––––––––––––––––––––– vmem/t_mprotect.c

#define _BSD_SOURCE         /* Get MAP_ANONYMOUS definition from <sys/mman.h> */
#include <sys/mman.h>
#include "tlpi_hdr.h"

#define LEN (1024 * 1024)

#define SHELL_FMT "cat /proc/%ld/maps | grep zero"
#define CMD_SIZE (sizeof(SHELL_FMT) + 20)
                            /* Allow extra space for integer string */

#include <sys/mman.h>

int mprotect(void *addr, size_t length, int prot);

Returns 0 on success, or –1 on error
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int
main(int argc, char *argv[])
{
    char cmd[CMD_SIZE];
    char *addr;

    /* Create an anonymous mapping with all access denied */

    addr = mmap(NULL, LEN, PROT_NONE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
    if (addr == MAP_FAILED)
        errExit("mmap");

    /* Display line from /proc/self/maps corresponding to mapping */

    printf("Before mprotect()\n");
    snprintf(cmd, CMD_SIZE, SHELL_FMT, (long) getpid());
    system(cmd);

    /* Change protection on memory to allow read and write access */

    if (mprotect(addr, LEN, PROT_READ | PROT_WRITE) == -1)
        errExit("mprotect");

    printf("After mprotect()\n");
    system(cmd);                /* Review protection via /proc/self/maps */

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– vmem/t_mprotect.c

50.2 Memory Locking: mlock() and mlockall()

In some applications, it is useful to lock part or all of a process’s virtual memory so
that it is guaranteed to always be in physical memory. One reason for doing this is
to improve performance. Accesses to locked pages are guaranteed never to be
delayed by a page fault. This is useful for applications that must ensure rapid
response times.

Another reason for locking memory is security. If a virtual memory page con-
taining sensitive data is never swapped out, then no copy of the page is ever written
to the disk. If the page was written to the disk, it could, in theory, be read directly
from the disk device at some later time. (An attacker could deliberately engineer
this situation by running a program that consumes a large amount of memory, thus
forcing the memory of other processes to be swapped out to disk.) Reading infor-
mation from the swap space could even be done after the process has terminated,
since the kernel makes no guarantees about zeroing out the data held in swap space.
(Normally, only privileged processes would be able to read from the swap device.)

The suspend mode on laptop computers, as well some desktop systems, saves a
copy of a system’s RAM to disk, regardless of memory locks.
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In this section, we look at the system calls used for locking and unlocking part or all
of a process’s virtual memory. However, before doing this, we first look at a resource
limit that governs memory locking.

The RLIMIT_MEMLOCK resource limit

In Section 36.3, we briefly described the RLIMIT_MEMLOCK limit, which defines a limit
on the number of bytes that a process can lock into memory. We now consider this
limit in more detail.

In Linux kernels before 2.6.9, only privileged processes (CAP_IPC_LOCK) can lock
memory, and the RLIMIT_MEMLOCK soft resource limit places an upper limit on the
number of bytes that a privileged process can lock.

Starting with Linux 2.6.9, changes to the memory locking model allow unprivi-
leged processes to lock small amounts of memory. This is useful for an application
that needs to place a small piece of sensitive information in locked memory in
order to ensure that it is never written to the swap space on disk; for example, gpg
does this with pass phrases. As a result of these changes:

no limits are placed on the amount of memory that a privileged process can
lock (i.e., RLIMIT_MEMLOCK is ignored); and

an unprivileged process is now able to lock memory up to the soft limit defined
by RLIMIT_MEMLOCK.

The default value for both the soft and hard RLIMIT_MEMLOCK limits is 8 pages (i.e.,
32,768 bytes on x86-32).

The RLIMIT_MEMLOCK limit affects:

mlock() and mlockall();

the mmap() MAP_LOCKED flag, which is used to lock a memory mapping when it is
created, as described in Section 49.6; and

the shmctl() SHM_LOCK operation, which is used to lock System V shared memory
segments, as described in Section 48.7.

Since virtual memory is managed in units of pages, memory locks apply to com-
plete pages. When performing limit checks, the RLIMIT_MEMLOCK limit is rounded
down to the nearest multiple of the system page size.

Although this resource limit has a single (soft) value, in effect, it defines two
separate limits:

For mlock(), mlockall(), and the mmap() MAP_LOCKED operation, RLIMIT_MEMLOCK
defines a per-process limit on the number of bytes of its virtual address space
that a process may lock.

For the shmctl() SHM_LOCK operation, RLIMIT_MEMLOCK defines a per-user limit on
the number of bytes in shared memory segments that may be locked by the real
user ID of this process. When a process performs a shmctl() SHM_LOCK operation,
the kernel checks the total number of bytes of System V shared memory that
are already recorded as being locked by the real user ID of the calling process.
If the size of the to-be-locked segment would not push that total over the pro-
cess’s RLIMIT_MEMLOCK limit, the operation succeeds.
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The reason RLIMIT_MEMLOCK has different semantics for System V shared memory is
that a shared memory segment can continue to exist even when it is not attached by
any process. (It is removed only after an explicit shmctl() IPC_RMID operation, and
then only after all processes have detached it from their address space.)

Locking and unlocking memory regions

A process can use mlock() and munlock() to lock and unlock regions of memory.

The mlock() system call locks all of the pages of the calling process’s virtual address
range starting at addr and continuing for length bytes. Unlike the corresponding
argument passed to several other memory-related system calls, addr does not need
to be page-aligned: the kernel locks pages starting at the next page boundary below
addr. However, SUSv3 optionally allows an implementation to require that addr be
a multiple of the system page size, and portable applications should ensure that this
is so when calling mlock() and munlock().

Because locking is done in units of whole pages, the end of the locked region is
the next page boundary greater than length plus addr. For example, on a system
where the page size is 4096 bytes, the call mlock(2000, 4000) will lock bytes 0
through to 8191.

We can find out how much memory a process currently has locked by inspect-
ing the VmLck entry of the Linux-specific /proc/PID/status file.

After a successful mlock() call, all of the pages in the specified range are guaranteed
to be locked and resident in physical memory. The mlock() system call fails if there
is insufficient physical memory to lock all of the requested pages or if the request
violates the RLIMIT_MEMLOCK soft resource limit.

We show an example of the use of mlock() in Listing 50-2.
The munlock() system call performs the converse of mlock(), removing a memory

lock previously established by the calling process. The addr and length arguments
are interpreted in the same way as for munlock(). Unlocking a set of pages doesn’t
guarantee that they cease to be memory-resident: pages are removed from RAM
only in response to memory demands by other processes.

Aside from the explicit use of munlock(), memory locks are automatically
removed in the following circumstances:

on process termination;

if the locked pages are unmapped via munmap(); or

if the locked pages are overlaid using the mmap() MAP_FIXED flag.

#include <sys/mman.h>

int mlock(void *addr, size_t length);
int munlock(void *addr, size_t length);

Both return 0 on success, or –1 on error
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Details of the semantics of memory locking

In the following paragraphs, we note some details of the semantics of memory locks.
Memory locks are not inherited by a child created via fork(), and are not pre-

served across an exec().
Where multiple processes share a set of pages (e.g., a MAP_SHARED mapping),

these pages remain locked in memory as long as at least one of the processes holds
a memory lock on the pages.

Memory locks don’t nest for a single process. If a process repeatedly calls
mlock() on a certain virtual address range, only one lock is established, and this lock
will be removed by a single call to munlock(). On the other hand, if we use mmap() to
map the same set of pages (i.e., the same file) at several different locations within a
single process, and then lock each of these mappings, the pages remain locked in
RAM until all of the mappings have been unlocked.

The fact that memory locks are performed in units of pages and can’t be
nested means that it isn’t logically correct to independently apply mlock() and
munlock() calls to different data structures on the same virtual page. For example,
suppose we have two data structures within the same virtual memory page pointed
to by pointers p1 and p2, and we make the following calls:

mlock(*p1, len1);
mlock(*p2, len2);               /* Actually has no effect */
munlock(*p1, len1);

All of the above calls will succeed, but at the end of this sequence, the entire page is
unlocked; that is, the data structure pointed to by p2 is not locked into memory.

Note that the semantics of the shmctl() SHM_LOCK operation (Section 48.7) differ
from those of mlock() and mlockall(), as follows:

After a SHM_LOCK operation, pages are locked into memory only as they are
faulted in by subsequent references. By contrast, mlock() and mlockall() fault all
of the locked pages into memory before the call returns.

The SHM_LOCK operation sets a property of the shared memory segment, rather
than the process. (For this reason, the value in the /proc/PID/status VmLck field
doesn’t include the size of any attached System V shared memory segments
that have been locked using SHM_LOCK.) This means that, once faulted into mem-
ory, the pages remain resident even if all processes detach the shared memory
segment. By contrast, a region locked into memory using mlock() (or mlockall())
remains locked only as long as at least one process holds a lock on the region.

Locking and unlocking all of a process’s memory

A process can use mlockall() and munlockall() to lock and unlock all of its memory.

#include <sys/mman.h>

int mlockall(int flags);
int munlockall(void);

Both return 0 on success, or –1 on error
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The mlockall() system call locks all of the currently mapped pages in a process’s vir-
tual address space, all of the pages mapped in the future, or both, according to the
flags bit mask, which is specified by ORing together one or both of the following
constants:

MCL_CURRENT

Lock all pages that are currently mapped into the calling process’s virtual
address space. This includes all pages currently allocated for the program
text, data segments, memory mappings, and the stack. After a successful
call specifying the MCL_CURRENT flag, all of the pages of the calling process are
guaranteed to be memory-resident. This flag doesn’t affect pages that are
subsequently allocated in the process’s virtual address space; for this, we
must use MCL_FUTURE.

MCL_FUTURE

Lock all pages subsequently mapped into the calling process’s virtual
address space. Such pages may, for example, be part of a shared memory
region mapped via mmap() or shmat(), or part of the upwardly growing
heap or downwardly growing stack. As a consequence of specifying the
MCL_FUTURE flag, a later memory allocation operation (e.g., mmap(), sbrk(), or
malloc()) may fail, or stack growth may yield a SIGSEGV signal, if the system
runs out of RAM to allocate to the process or the RLIMIT_MEMLOCK soft
resource limit is encountered.

The same rules regarding the constraints, lifetime, and inheritance of memory
locks created with mlock() also apply for memory locks created via mlockall().

The munlockall() system call unlocks all of the pages of the calling process and
undoes the effect of any previous mlockall(MCL_FUTURE) call. As with munlock(),
unlocked pages are not guaranteed to be removed from RAM by this call.

Before Linux 2.6.9, privilege (CAP_IPC_LOCK) was required to call munlockall()
(inconsistently, privilege was not required for munlock()). Since Linux 2.6.9,
privilege is no longer required.

50.3 Determining Memory Residence: mincore()

The mincore() system call is the complement of the memory locking system calls. It
reports which pages in a virtual address range are currently resident in RAM, and
thus won’t cause a page fault if accessed.

SUSv3 doesn’t specify mincore(). It is available on many, but not all, UNIX
implementations. On Linux, mincore() has been available since kernel 2.4.

#define _BSD_SOURCE           /* Or: #define _SVID_SOURCE */
#include <sys/mman.h>

int mincore(void *addr, size_t length, unsigned char *vec);

Returns 0 on success, or –1 on error
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The mincore() system call returns memory-residence information about pages in the
virtual address range starting at addr and running for length bytes. The address sup-
plied in addr must be page-aligned, and, since information is returned about whole
pages, length is effectively rounded up to the next multiple of the system page size.

Information about memory residency is returned in vec, which must be an
array of (length + PAGE_SIZE – 1) / PAGE_SIZE bytes. (On Linux, vec has the type
unsigned char *; on some other UNIX implementations, vec has the type char *.)
The least significant bit of each byte is set if the corresponding page is memory-res-
ident. The setting of the other bits is undefined on some UNIX implementations,
so portable applications should test only this bit.

The information returned by mincore() can change between the time the call is
made and the time the elements of vec are checked. The only pages guaranteed to
remain memory-resident are those locked with mlock() or mlockall().

Prior to Linux 2.6.21, various implementation problems meant that mincore()
did not correctly report memory-residence information for MAP_PRIVATE map-
pings or for nonlinear mappings (established using remap_file_pages()).

Listing 50-2 demonstrates the use of mlock() and mincore(). After allocating and
mapping a region of memory using mmap(), this program uses mlock() to lock
either the entire region or otherwise groups of pages at regular intervals. (Each
of the command-line arguments to the program is expressed in terms of pages;
the program converts these to bytes, as required for the calls to mmap(), mlock(),
and mincore().) Before and after the mlock() call, the program uses mincore() to
retrieve information about the memory residency of pages in the region and dis-
plays this information graphically.

Listing 50-2: Using mlock() and mincore()
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– vmem/memlock.c

#define _BSD_SOURCE     /* Get mincore() declaration and MAP_ANONYMOUS
                           definition from <sys/mman.h> */
#include <sys/mman.h>
#include "tlpi_hdr.h"

/* Display residency of pages in range [addr .. (addr + length - 1)] */

static void
displayMincore(char *addr, size_t length)
{
    unsigned char *vec;
    long pageSize, numPages, j;

    pageSize = sysconf(_SC_PAGESIZE);

    numPages = (length + pageSize - 1) / pageSize;
    vec = malloc(numPages);
    if (vec == NULL)
        errExit("malloc");
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    if (mincore(addr, length, vec) == -1)
        errExit("mincore");

    for (j = 0; j < numPages; j++) {
        if (j % 64 == 0)
            printf("%s%10p: ", (j == 0) ? "" : "\n", addr + (j * pageSize));
        printf("%c", (vec[j] & 1) ? '*' : '.');
    }
    printf("\n");

    free(vec);
}

int
main(int argc, char *argv[])
{
    char *addr;
    size_t len, lockLen;
    long pageSize, stepSize, j;

    if (argc != 4 || strcmp(argv[1], "--help") == 0)
        usageErr("%s num-pages lock-page-step lock-page-len\n", argv[0]);

    pageSize = sysconf(_SC_PAGESIZE);
    if (pageSize == -1)
        errExit("sysconf(_SC_PAGESIZE)");

    len =      getInt(argv[1], GN_GT_0, "num-pages") * pageSize;
    stepSize = getInt(argv[2], GN_GT_0, "lock-page-step") * pageSize;
    lockLen =  getInt(argv[3], GN_GT_0, "lock-page-len") * pageSize;

    addr = mmap(NULL, len, PROT_READ, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
    if (addr == MAP_FAILED)
        errExit("mmap");

    printf("Allocated %ld (%#lx) bytes starting at %p\n",
            (long) len, (unsigned long) len, addr);

    printf("Before mlock:\n");
    displayMincore(addr, len);

/* Lock pages specified by command line arguments into memory */

    for (j = 0; j + lockLen <= len; j += stepSize)
        if (mlock(addr + j, lockLen) == -1)
            errExit("mlock");

    printf("After mlock:\n");
    displayMincore(addr, len);

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– vmem/memlock.c
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The following shell session shows a sample run of the program in Listing 50-2. In
this example, we allocate 32 pages, and in each group of 8 pages, we lock 3 consec-
utive pages:

$ su                                        Assume privilege
Password:
# ./memlock 32 8 3
Allocated 131072 (0x20000) bytes starting at 0x4014a000
Before mlock:
0x4014a000: ................................
After mlock:
0x4014a000: ***.....***.....***.....***.....

In the program output, dots represent pages that are not resident in memory, and
asterisks represent pages that are resident in memory. As we can see from the final
line of output, 3 out of each group of 8 pages are memory-resident.

In this example, we assumed superuser privilege so that the program can use
mlock(). This is not necessary in Linux 2.6.9 and later if the amount of memory to
be locked falls within the RLIMIT_MEMLOCK soft resource limit.

50.4 Advising Future Memory Usage Patterns: madvise()

The madvise() system call is used is to improve the performance of an application
by informing the kernel about the calling process’s likely usage of the pages in the
range starting at addr and continuing for length bytes. The kernel may use this
information to improve the efficiency of I/O performed on the file mapping that
underlies the pages. (See Section 49.4 for a discussion of file mappings.) On Linux,
madvise() has been available since kernel 2.4.

The value specified in addr must be page-aligned, and length is effectively rounded
up to the next multiple of the system page size. The advice argument is one of the
following:

MADV_NORMAL

This is the default behavior. Pages are transferred in clusters (a small multiple
of the system page size). This results in some read-ahead and read-behind.

MADV_RANDOM

Pages in this region will be accessed randomly, so read-ahead will yield no
benefit. Thus, the kernel should fetch the minimum amount of data on
each read.

#define _BSD_SOURCE
#include <sys/mman.h>

int madvise(void *addr, size_t length, int advice);

Returns 0 on success, or –1 on error
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MADV_SEQUENTIAL

Pages in this range will be accessed once, sequentially. Thus, the kernel can
aggressively read ahead, and pages can be quickly freed after they have
been accessed.

MADV_WILLNEED

Read pages in this region ahead, in preparation for future access. The
MADV_WILLNEED operation has an effect similar to the Linux-specific readahead()
system call and the posix_fadvise() POSIX_FADV_WILLNEED operation.

MADV_DONTNEED

The calling process no longer requires the pages in this region to be memory-
resident. The precise effect of this flag varies across UNIX implementations.
We first note the behavior on Linux. For a MAP_PRIVATE region, the mapped
pages are explicitly discarded, which means that modifications to the pages
are lost. The virtual memory address range remains accessible, but the
next access of each page will result in a page fault reinitializing the page,
either with the contents of the file from which it is mapped or with zeros in
the case of an anonymous mapping. This can be used as a means of explic-
itly reinitializing the contents of a MAP_PRIVATE region. For a MAP_SHARED
region, the kernel may discard modified pages in some circumstances,
depending on the architecture (this behavior doesn’t occur on x86). Some
other UNIX implementations also behave in the same way as Linux. How-
ever, on some UNIX implementations, MADV_DONTNEED simply informs the
kernel that the specified pages can be swapped out if necessary. Portable
applications should not rely on the Linux’s destructive semantics for
MADV_DONTNEED.

Linux 2.6.16 added three new nonstandard advice values: MADV_DONTFORK,
MADV_DOFORK, and MADV_REMOVE. Linux 2.6.32 and 2.6.33 added another four
nonstandard advice values: MADV_HWPOISON, MADV_SOFT_OFFLINE, MADV_MERGEABLE,
and MADV_UNMERGEABLE. These values are used in special circumstances and are
described in the madvise(2) manual page.

Most UNIX implementations provide a version of madvise(), typically allowing at least
the advice constants described above. However, SUSv3 standardizes this API under a
different name, posix_madvise(), and prefixes the corresponding advice constants with
the string POSIX_. Thus, the constants are POSIX_MADV_NORMAL, POSIX_MADV_RANDOM,
POSIX_MADV_SEQUENTIAL, POSIX_MADV_WILLNEED, and POSIX_MADV_DONTNEED. This alternative
interface is implemented in glibc (version 2.2 and later) by calls to madvise(), but it is
not available on all UNIX implementations.

SUSv3 says that posix_madvise() should not affect the semantics of a program.
However, in glibc versions before 2.7, the POSIX_MADV_DONTNEED operation is
implemented using madvise() MADV_DONTNEED, which does affect the semantics of
a program, as described earlier. Since glibc 2.7, the posix_madvise() wrapper
implements POSIX_MADV_DONTNEED to do nothing, so that it does not affect the
semantics of a program.
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50.5 Summary

In this chapter, we considered various operations that can be performed on a pro-
cess’s virtual memory:

The mprotect() system call changes the protection on a region of virtual memory.

The mlock() and mlockall() system calls lock part or all of a process’s virtual
address space, respectively, into physical memory.

The mincore() system call reports which pages in a virtual memory region are
currently resident in physical memory.

The madvise() system call and the posix_madvise() function allow a process to
advise the kernel about the process’s expected patterns of memory use.

50.6 Exercises

50-1. Verify the effect of the RLIMIT_MEMLOCK resource limit by writing a program that sets a
value for this limit and then attempts to lock more memory than the limit.

50-2. Write a program to verify the operation of the madvise() MADV_DONTNEED operation for
a writable MAP_PRIVATE mapping.
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I N T R O D U C T I O N  T O  P O S I X  I P C

The POSIX.1b realtime extensions defined a set of IPC mechanisms that are analo-
gous to the System V IPC mechanisms described in Chapters 45 to 48. (One of the
POSIX.1b developers’ aims was to devise a set of IPC mechanisms that did not suffer
the deficiencies of the System V IPC facilities.) These IPC mechanisms are collec-
tively referred to as POSIX IPC. The three POSIX IPC mechanisms are the following:

Message queues can be used to pass messages between processes. As with System V
message queues, message boundaries are preserved, so that readers and writ-
ers communicate in units of messages (as opposed to the undelimited byte
stream provided by a pipe). POSIX message queues permit each message to be
assigned a priority, which allows high-priority messages to be queued ahead of
low-priority messages. This provides some of the same functionality that is
available via the type field of System V messages.

Semaphores permit multiple processes to synchronize their actions. As with
System V semaphores, a POSIX semaphore is a kernel-maintained integer
whose value is never permitted to go below 0. POSIX semaphores are simpler
to use than System V semaphores: they are allocated individually (as opposed to
System V semaphore sets), and they are operated on individually using two
operations that increase and decrease a semaphore’s value by one (as opposed
to the ability of the semop() system call to atomically add or subtract arbitrary
values from multiple semaphores in a System V semaphore set).



Shared memory enables multiple processes to share the same region of memory.
As with System V shared memory, POSIX shared memory provides fast IPC.
Once one process has updated the shared memory, the change is immediately
visible to other processes sharing the same region.

This chapter provides an overview of the POSIX IPC facilities, focusing on their
common features.

51.1 API Overview

The three POSIX IPC mechanisms have a number of common features. Table 51-1
summarizes their APIs, and we go into the details of their common features in the
next few pages.

Except for a mention in Table 51-1, in the remainder of this chapter, we’ll
overlook the fact that POSIX semaphores come in two flavors: named sema-
phores and unnamed semaphores. Named semaphores are like the other
POSIX IPC mechanisms that we describe in this chapter: they are identified by
a name, and are accessible by any process that has suitable permissions on the
object. An unnamed semaphore doesn’t have an associated identifier; instead,
it is placed in an area of memory that is shared by a group of processes or by
the threads of a single process. We go into the details of both types of sema-
phores in Chapter 53.

IPC object names

To access a POSIX IPC object, we must have some means of identifying it. The only
portable means that SUSv3 specifies to identify a POSIX IPC object is via a name
consisting of an initial slash, followed by one of more nonslash characters; for
example, /myobject. Linux and some other implementations (e.g., Solaris) permit
this type of portable naming for IPC objects.

Table 51-1: Summary of programming interfaces for POSIX IPC objects

Interface Message queues Semaphores Shared memory

Header file <mqueue.h> <semaphore.h> <sys/mman.h>

Object handle mqd_t sem_t * int (file descriptor)

Create/open mq_open() sem_open() shm_open() + mmap() 

Close mq_close() sem_close() munmap()
Unlink mq_unlink() sem_unlink() shm_unlink()
Perform IPC mq_send(), 

mq_receive() 
sem_post(), sem_wait(), 
sem_getvalue()

operate on locations 
in shared region

Miscellaneous 
operations

mq_setattr()—set 
attributes
mq_getattr()—get 
attributes
mq_notify()—request 
notification

sem_init()—initialize
unnamed semaphore
sem_destroy()—destroy
unnamed semaphore

(none)
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On Linux, names for POSIX shared memory and message queue objects are
limited to NAME_MAX (255) characters. For semaphores, the limit is 4 characters less,
since the implementation prepends the string sem. to the semaphore name.

SUSv3 doesn’t prohibit names of a form other than /myobject, but says that
the semantics of such names are implementation-defined. The rules for creating
IPC object names on some systems are different. For example, on Tru64 5.1, IPC
object names are created as names within the standard file system, and the name is
interpreted as an absolute or relative pathname. If the caller doesn’t have permission to
create a file in that directory, then the IPC open call fails. This means that unprivileged
programs can’t create names of the form /myobject on Tru64, since unprivileged users
normally can’t create files in the root directory (/). Some other implementations have
similar implementation-specific rules for the construction of the names given to
IPC open calls. Therefore, in portable applications, we should isolate the generation
of IPC object names into a separate function or header file that can be tailored to
the target implementation.

Creating or opening an IPC object

Each IPC mechanism has an associated open call (mq_open(), sem_open(), or shm_open()),
which is analogous to the traditional UNIX open() system call used for files. Given
an IPC object name, the IPC open call either:

creates a new object with the given name, opens that object, and returns a handle
for it; or

opens an existing object and returns a handle for that object.

The handle returned by the IPC open call is analogous to the file descriptor
returned by the traditional open() system call—it is used in subsequent calls to refer
to the object.

The type of handle returned by the IPC open call depends on the type of object.
For message queues, it is a message queue descriptor, a value of type mqd_t. For
semaphores, it is a pointer of type sem_t *. For shared memory, it is a file descriptor.

All of the IPC open calls permit at least three arguments—name, oflag, and
mode—as exemplified by the following shm_open() call:

fd = shm_open("/mymem", O_CREAT | O_RDWR, S_IRUSR | S_IWUSR);

These arguments are analogous to the arguments of the traditional UNIX open()
system call. The name argument identifies the object to be created or opened. The
oflag argument is a bit mask that can include at least the following flags:

O_CREAT

Create the object if it doesn’t already exist. If this flag is not specified and
the object doesn’t exist, an error results (ENOENT).

O_EXCL

If O_CREAT is also specified and the object already exists, an error results
(EEXIST). The two steps—check for existence and creation—are performed
atomically (Section 5.1). This flag has no effect if O_CREAT is not specified.
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Depending on the type of object, oflag may also include one of the values O_RDONLY,
O_WRONLY, or O_RDWR, with meanings similar to open(). Additional flags are allowed for
some IPC mechanisms.

The remaining argument, mode, is a bit mask specifying the permissions to be
placed on a new object, if one is created by the call (i.e., O_CREAT was specified and
the object did not already exist). The values that may be specified for mode are the
same as for files (Table 15-4, on page 295). As with the open() system call, the per-
missions mask in mode is masked against the process umask (Section 15.4.6). The
ownership and group ownership of a new IPC object are taken from the effective
user and group IDs of the process making the IPC open call. (To be strictly accurate,
on Linux, the ownership of a new POSIX IPC object is determined by the process’s
file-system IDs, which normally have the same value as the corresponding effective
IDs. Refer to Section 9.5.)

On systems where IPC objects appear in the standard file system, SUSv3 permits
an implementation to set the group ID of a new IPC object to the group ID of
the parent directory.

Closing an IPC object

For POSIX message queues and semaphores, there is an IPC close call that indicates
that the calling process has finished using the object and the system may deallocate
any resources that were associated with the object for this process. A POSIX shared
memory object is closed by unmapping it with munmap().

IPC objects are automatically closed if the process terminates or performs an exec().

IPC object permissions

IPC objects have a permissions mask that is the same as for files. Permissions for
accessing an IPC object are similar to those for accessing files (Section 15.4.3),
except that execute permission has no meaning for POSIX IPC objects.

Since kernel 2.6.19, Linux supports the use of access control lists (ACLs) for
setting the permissions on POSIX shared memory objects and named semaphores.
Currently, ACLs are not supported for POSIX message queues.

IPC object deletion and object persistence

As with open files, POSIX IPC objects are reference counted—the kernel maintains a
count of the number of open references to the object. By comparison with System V
IPC objects, this makes it easier for applications to determine when the object can
be safely deleted.

Each IPC object has a corresponding unlink call whose operation is analogous
to the traditional unlink() system call for files. The unlink call immediately removes
the object’s name, and then destroys the object once all processes cease using it
(i.e., when the reference count falls to zero). For message queues and semaphores,
this means that the object is destroyed after all processes have closed the object; for
shared memory, destruction occurs after all processes have unmapped the object
using munmap().

After an object is unlinked, IPC open calls specifying the same object name will
refer to a new object (or fail, if O_CREAT was not specified).
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As with System V IPC, POSIX IPC objects have kernel persistence. Once cre-
ated, an object continues to exist until it is unlinked or the system is shut down.
This allows a process to create an object, modify its state, and then exit, leaving the
object to be accessed by some process that is started at a later time.

Listing and removing POSIX IPC objects via the command line

System V IPC provides two commands, ipcs and ipcrm, for listing and deleting IPC
objects. No standard commands are provided to perform the analogous tasks for
POSIX IPC objects. However, on many systems, including Linux, IPC objects are
implemented within a real or virtual file system, mounted somewhere under the
root directory (/), and the standard ls and rm commands can be used to list and
remove IPC objects. (SUSv3 doesn’t specify the use of ls and rm for these tasks.)
The main problem with using these commands is the nonstandard nature of
POSIX IPC object names and their location in the file system.

On Linux, POSIX IPC objects are contained in virtual file systems mounted
under directories that have the sticky bit set. This bit is the restricted deletion flag
(Section 15.4.5); setting it means that an unprivileged process can unlink only the
POSIX IPC objects that it owns.

Compiling programs that use POSIX IPC on Linux

On Linux, programs employing the POSIX IPC mechanisms must be linked with
the realtime library, librt, by specifying the –lrt option to the cc command.

51.2 Comparison of System V IPC and POSIX IPC

As we look at the POSIX IPC mechanisms in the following chapters, we’ll compare
each mechanism against its System V counterpart. Here, we consider a few general
comparisons for these two types of IPC.

POSIX IPC has the following general advantages when compared to System V IPC:

The POSIX IPC interface is simpler than the System V IPC interface.

The POSIX IPC model—the use of names instead of keys, and the open, close,
and unlink functions—is more consistent with the traditional UNIX file model.

POSIX IPC objects are reference counted. This simplifies object deletion,
because we can unlink a POSIX IPC object, knowing that it will be destroyed
only when all processes have closed it.

However, there is one notable advantage in favor of System V IPC: portability.
POSIX IPC is less portable than System V IPC in the following respects:

System V IPC is specified in SUSv3 and supported on nearly every UNIX
implementation. By contrast, each of the POSIX IPC mechanisms is an
optional component in SUSv3. Some UNIX implementations don’t support
(all of) the POSIX IPC mechanisms. This situation is reflected in microcosm on
Linux: POSIX shared memory is supported only since kernel 2.4; a full imple-
mentation of POSIX semaphores is available only since kernel 2.6; and POSIX
message queues are supported only since kernel 2.6.6.
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Despite the SUSv3 specification for POSIX IPC object names, the various
implementations follow different conventions for naming IPC objects. These
differences require us to do (a little) extra work to write portable applications.

Various details of POSIX IPC are not specified in SUSv3. In particular, no com-
mands are specified for displaying and deleting the IPC objects that exist on a
system. (In many implementations, standard file-system commands are used,
but the details of the pathnames used to identify IPC objects vary.)

51.3 Summary

POSIX IPC is the general name given to three IPC mechanisms—message queues,
semaphores, and shared memory—that were devised by POSIX.1b as alternatives to
the analogous System V IPC mechanisms.

The POSIX IPC interface is more consistent with the traditional UNIX file
model. IPC objects are identified by names, and managed using open, close, and
unlink calls that operate in a manner similar to the analogous file-related system calls.

POSIX IPC provides an interface that is superior in many respects to the System V
IPC interface. However, POSIX IPC is somewhat less portable than System V IPC.
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P O S I X  M E S S A G E  Q U E U E S

This chapter describes POSIX message queues, which allow processes to exchange
data in the form of messages. POSIX message queues are similar to their System V
counterparts, in that data is exchanged in units of whole messages. However, there
are also some notable differences:

POSIX message queues are reference counted. A queue that is marked for
deletion is removed only after it is closed by all processes that are currently
using it.

Each System V message has an integer type, and messages can be selected in a
variety of ways using msgrcv(). By contrast, POSIX messages have an associated pri-
ority, and messages are always strictly queued (and thus received) in priority order.

POSIX message queues provide a feature that allows a process to be asynchro-
nously notified when a message is available on a queue.

POSIX message queues are a relatively recent addition to Linux. The required
implementation support was added in kernel 2.6.6 (in addition, glibc 2.3.4 or later
is required).

POSIX message queue support is an optional kernel component that is config-
ured via the CONFIG_POSIX_MQUEUE option.



52.1 Overview

The main functions in the POSIX message queue API are the following:

The mq_open() function creates a new message queue or opens an existing
queue, returning a message queue descriptor for use in later calls.

The mq_send() function writes a message to a queue.

The mq_receive() function reads a message from a queue.

The mq_close() function closes a message queue that the process previously
opened.

The mq_unlink() function removes a message queue name and marks the
queue for deletion when all processes have closed it.

The above functions all serve fairly obvious purposes. In addition, a couple of fea-
tures are peculiar to the POSIX message queue API:

Each message queue has an associated set of attributes. Some of these
attributes can be set when the queue is created or opened using mq_open(). Two
functions are provided to retrieve and change queue attributes: mq_getattr() and
mq_setattr().

The mq_notify() function allows a process to register for message notification
from a queue. After registering, the process is notified of the availability of a mes-
sage by delivery of a signal or by the invocation of a function in a separate thread.

52.2 Opening, Closing, and Unlinking a Message Queue

In this section, we look at the functions used to open, close, and remove message
queues.

Opening a message queue

The mq_open() function creates a new message queue or opens an existing queue.

The name argument identifies the message queue, and is specified according to the
rules given in Section 51.1.

The oflag argument is a bit mask that controls various aspects of the operation of
mq_open(). The values that can be included in this mask are summarized in Table 52-1.

#include <fcntl.h>            /* Defines O_* constants */
#include <sys/stat.h>         /* Defines mode constants */
#include <mqueue.h>

mqd_t mq_open(const char *name, int oflag, ...
              /* mode_t mode, struct mq_attr *attr */);

Returns a message queue descriptor on success, or (mqd_t) –1 on error
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One of the purposes of the oflag argument is to determine whether we are opening
an existing queue or creating and opening a new queue. If oflag doesn’t include
O_CREAT, we are opening an existing queue. If oflag includes O_CREAT, a new, empty
queue is created if one with the given name doesn’t already exist. If oflag specifies
both O_CREAT and O_EXCL, and a queue with the given name already exists, then
mq_open() fails.

The oflag argument also indicates the kind of access that the calling process will
make to the message queue, by specifying exactly one of the values O_RDONLY,
O_WRONLY, or O_RDWR.

The remaining flag value, O_NONBLOCK, causes the queue to be opened in non-
blocking mode. If a subsequent call to mq_receive() or mq_send() can’t be performed
without blocking, the call will fail immediately with the error EAGAIN.

If mq_open() is being used to open an existing message queue, the call requires
only two arguments. However, if O_CREAT is specified in flags, two further arguments
are required: mode and attr. (If the queue specified by name already exists, these two
arguments are ignored.) These arguments are used as follows:

The mode argument is a bit mask that specifies the permissions to be placed on
the new message queue. The bit values that may be specified are the same as
for files (Table 15-4, on page 295), and, as with open(), the value in mode is
masked against the process umask (Section 15.4.6). To read from a queue
(mq_receive()), read permission must be granted to the corresponding class of
user; to write to a queue (mq_send()), write permission is required.

The attr argument is an mq_attr structure that specifies attributes for the new
message queue. If attr is NULL, the queue is created with implementation-defined
default attributes. We describe the mq_attr structure in Section 52.4.

Upon successful completion, mq_open() returns a message queue descriptor, a value of
type mqd_t, which is used in subsequent calls to refer to this open message queue.
The only stipulation that SUSv3 makes about this data type is that it may not be an
array; that is, it is guaranteed to be a type that can be used in an assignment state-
ment or passed by value as a function argument. (On Linux, mqd_t is an int, but, for
example, on Solaris it is defined as void *.)

An example of the use of mq_open() is provided in Listing 52-2.

Effect of fork(), exec(), and process termination on message queue descriptors

During a fork(), the child process receives copies of its parent’s message queue
descriptors, and these descriptors refer to the same open message queue descriptions.

Table 52-1: Bit values for the mq_open() oflag argument

Flag Description

O_CREAT Create queue if it doesn’t already exist
O_EXCL With O_CREAT, create queue exclusively

O_RDONLY Open for reading only
O_WRONLY Open for writing only
O_RDWR Open for reading and writing 

O_NONBLOCK Open in nonblocking mode
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(We explain message queue descriptions in Section 52.3.) The child doesn’t inherit
any of its parent’s message notification registrations.

When a process performs an exec() or terminates, all of its open message queue
descriptors are closed. As a consequence of closing its message queue descriptors,
all of the process’s message notification registrations on the corresponding queues
are deregistered.

Closing a message queue

The mq_close() function closes the message queue descriptor mqdes.

If the calling process has registered via mqdes for message notification from the
queue (Section 52.6), then the notification registration is automatically removed, and
another process can subsequently register for message notification from the queue.

A message queue descriptor is automatically closed when a process terminates
or calls exec(). As with file descriptors, we should explicitly close message queue
descriptors that are no longer required, in order to prevent the process from run-
ning out of message queue descriptors.

As close() for files, closing a message queue doesn’t delete it. For that purpose,
we need mq_unlink(), which is the message queue analog of unlink().

Removing a message queue

The mq_unlink() function removes the message queue identified by name, and
marks the queue to be destroyed once all processes cease using it (this may mean
immediately, if all processes that had the queue open have already closed it).

Listing 52-1 demonstrates the use of mq_unlink().

Listing 52-1: Using mq_unlink() to unlink a POSIX message queue

––––––––––––––––––––––––––––––––––––––––––––––––––––––– pmsg/pmsg_unlink.c

#include <mqueue.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{

#include <mqueue.h>

int mq_close(mqd_t mqdes);

Returns 0 on success, or –1 on error

#include <mqueue.h>

int mq_unlink(const char *name);

Returns 0 on success, or –1 on error
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    if (argc != 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s mq-name\n", argv[0]);

    if (mq_unlink(argv[1]) == -1)
        errExit("mq_unlink");
    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––– pmsg/pmsg_unlink.c

52.3 Relationship Between Descriptors and Message Queues

The relationship between a message queue descriptor and an open message queue
is analogous to the relationship between a file descriptor and an open file (Figure 5-2,
on page 95). A message queue descriptor is a per-process handle that refers to an
entry in the system-wide table of open message queue descriptions, and this entry in
turn refers to a message queue object. This relationship is illustrated in Figure 52-1.

On Linux, POSIX message queues are implemented as i-nodes in a virtual file
system, and message queue descriptors and open message queue descriptions
are implemented as file descriptors and open file descriptions, respectively.
However, these are implementation details that are not required by SUSv3 and
don’t hold true on some other UNIX implementations. Nevertheless, we
return to this point in Section 52.7, because Linux provides some nonstandard
features that are made possible by this implementation.

Figure 52-1: Relationship between kernel data structures for POSIX message queues
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Figure 52-1 helps clarify a number of details of the use of message queue descrip-
tors (all of which are analogous to the use to file descriptors):

An open message queue description has an associated set of flags. SUSv3 speci-
fies only one such flag, O_NONBLOCK, which determines whether I/O is nonblocking.

Two processes can hold message queue descriptors (descriptor x in the diagram)
that refer to the same open message queue description. This can occur because
a process opens a message queue and then calls fork(). These descriptors share
the state of the O_NONBLOCK flag.

Two processes can hold open message queue descriptors that refer to different
message queue descriptions that refer to the same message queue (e.g.,
descriptor z in process A and descriptor y in process B both refer to /mq-r). This
occurs because the two processes each used mq_open() to open the same queue.

52.4 Message Queue Attributes

The mq_open(), mq_getattr(), and mq_setattr() functions all permit an argument that
is a pointer to an mq_attr structure. This structure is defined in <mqueue.h> as follows:

struct mq_attr {
    long mq_flags;        /* Message queue description flags: 0 or
                             O_NONBLOCK [mq_getattr(), mq_setattr()] */
    long mq_maxmsg;       /* Maximum number of messages on queue
                             [mq_open(), mq_getattr()] */
    long mq_msgsize;      /* Maximum message size (in bytes)
                             [mq_open(), mq_getattr()] */
    long mq_curmsgs;      /* Number of messages currently in queue
                             [mq_getattr()] */
};

Before we look at the mq_attr structure in detail, it is worth noting the following
points:

Only some of the fields are used by each of the three functions. The fields used
by each function are indicated in the comments accompanying the structure
definition above.

The structure contains information about the open message queue description
(mq_flags) associated with a message descriptor and information about the
queue referred to by that descriptor (mq_maxmsg, mq_msgsize, mq_curmsgs).

Some of the fields contain information that is fixed at the time the queue is created
with mq_open() (mq_maxmsg and mq_msgsize); the others return information
about the current state of the message queue description (mq_flags) or message
queue (mq_curmsgs).

Setting message queue attributes during queue creation

When we create a message queue with mq_open(), the following mq_attr fields deter-
mine the attributes of the queue:

The mq_maxmsg field defines the limit on the number of messages that can be
placed on the queue using mq_send(). This value must be greater than 0.
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The mq_msgsize field defines the upper limit on the size of each message that may
be placed on the queue. This value must be greater than 0.

Together, these two values allow the kernel to determine the maximum amount of
memory that this message queue may require.

The mq_maxmsg and mq_msgsize attributes are fixed when a message queue is
created; they can’t subsequently be changed. In Section 52.8, we describe two /proc files
that place system-wide limits on the values that can be specified for the mq_maxmsg
and mq_msgsize attributes.

The program in Listing 52-2 provides a command-line interface to the
mq_open() function and shows how the mq_attr structure is used with mq_open().

Two command-line options allow message queue attributes to be specified: –m
for mq_maxmsg and –s for mq_msgsize. If either of these options is supplied, a non-NULL
attrp argument is passed to mq_open(). Some default values are assigned to the fields
of the mq_attr structure to which attrp points, in case only one of the –m and –s
options is specified on the command line. If neither of these options is supplied,
attrp is specified as NULL when calling mq_open(), which causes the queue to be created
with the implementation-defined defaults for the queue attributes.

Listing 52-2: Creating a POSIX message queue

––––––––––––––––––––––––––––––––––––––––––––––––––––––– pmsg/pmsg_create.c

#include <mqueue.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "tlpi_hdr.h"

static void
usageError(const char *progName)
{
    fprintf(stderr, "Usage: %s [-cx] [-m maxmsg] [-s msgsize] mq-name "
            "[octal-perms]\n", progName);
    fprintf(stderr, "    -c          Create queue (O_CREAT)\n");
    fprintf(stderr, "    -m maxmsg   Set maximum # of messages\n");
    fprintf(stderr, "    -s msgsize  Set maximum message size\n");
    fprintf(stderr, "    -x          Create exclusively (O_EXCL)\n");
    exit(EXIT_FAILURE);
}

int
main(int argc, char *argv[])
{
    int flags, opt;
    mode_t perms;
    mqd_t mqd;
    struct mq_attr attr, *attrp;

    attrp = NULL;
    attr.mq_maxmsg = 50;
    attr.mq_msgsize = 2048;
    flags = O_RDWR;
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    /* Parse command-line options */

    while ((opt = getopt(argc, argv, "cm:s:x")) != -1) {
        switch (opt) {
        case 'c':
            flags |= O_CREAT;
            break;

        case 'm':
            attr.mq_maxmsg = atoi(optarg);
            attrp = &attr;
            break;

        case 's':
            attr.mq_msgsize = atoi(optarg);
            attrp = &attr;
            break;

        case 'x':
            flags |= O_EXCL;
            break;

        default:  
usageError(argv[0]);

        }
    }

    if (optind >= argc)
        usageError(argv[0]);

    perms = (argc <= optind + 1) ? (S_IRUSR | S_IWUSR) :
                getInt(argv[optind + 1], GN_BASE_8, "octal-perms");

    mqd = mq_open(argv[optind], flags, perms, attrp);
    if (mqd == (mqd_t) -1)
        errExit("mq_open");

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––– pmsg/pmsg_create.c

Retrieving message queue attributes

The mq_getattr() function returns an mq_attr structure containing information
about the message queue description and the message queue associated with the
descriptor mqdes.

#include <mqueue.h>

int mq_getattr(mqd_t mqdes, struct mq_attr *attr);

Returns 0 on success, or –1 on error
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In addition to the mq_maxmsg and mq_msgsize fields, which we have already
described, the following fields are returned in the structure pointed to by attr:

mq_flags
These are flags for the open message queue description associated with the
descriptor mqdes. Only one such flag is specified: O_NONBLOCK. This flag is ini-
tialized from the oflag argument of mq_open(), and can be changed using
mq_setattr().

mq_curmsgs
This is the number of messages that are currently in the queue. This infor-
mation may already have changed by the time mq_getattr() returns, if other
processes are reading messages from the queue or writing messages to it.

The program in Listing 52-3 employs mq_getattr() to retrieve the attributes for the
message queue specified in its command-line argument, and then displays those
attributes on standard output.

Listing 52-3: Retrieving POSIX message queue attributes

–––––––––––––––––––––––––––––––––––––––––––––––––––––– pmsg/pmsg_getattr.c

#include <mqueue.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    mqd_t mqd;
    struct mq_attr attr;

    if (argc != 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s mq-name\n", argv[0]);

    mqd = mq_open(argv[1], O_RDONLY);
    if (mqd == (mqd_t) -1)
        errExit("mq_open");

    if (mq_getattr(mqd, &attr) == -1)
        errExit("mq_getattr");

    printf("Maximum # of messages on queue:   %ld\n", attr.mq_maxmsg);
    printf("Maximum message size:             %ld\n", attr.mq_msgsize);
    printf("# of messages currently on queue: %ld\n", attr.mq_curmsgs);
    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– pmsg/pmsg_getattr.c

In the following shell session, we use the program in Listing 52-2 to create a mes-
sage queue with implementation-defined default attributes (i.e., the final argument
to mq_open() is NULL), and then use the program in Listing 52-3 to display the queue
attributes so that we can see the default settings on Linux.
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$ ./pmsg_create -cx /mq
$ ./pmsg_getattr /mq
Maximum # of messages on queue:   10
Maximum message size:             8192
# of messages currently on queue: 0
$ ./pmsg_unlink /mq                             Remove message queue

From the above output, we see that the Linux default values for mq_maxmsg and
mq_msgsize are 10 and 8192, respectively.

There is a wide variation in the implementation-defined defaults for mq_maxmsg
and mq_msgsize. Portable applications generally need to choose explicit values for
these attributes, rather than relying on the defaults.

Modifying message queue attributes

The mq_setattr() function sets attributes of the message queue description associ-
ated with the message queue descriptor mqdes, and optionally returns information
about the message queue.

The mq_setattr() function performs the following tasks:

It uses the mq_flags field in the mq_attr structure pointed to by newattr to
change the flags of the message queue description associated with the descrip-
tor mqdes.

If oldattr is non-NULL, it returns an mq_attr structure containing the previous
message queue description flags and message queue attributes (i.e., the same
task as is performed by mq_getattr()).

The only attribute that SUSv3 specifies that can be changed using mq_setattr() is the
state of the O_NONBLOCK flag.

Allowing for the possibility that a particular implementation may define other
modifiable flags, or that SUSv3 may add new flags in the future, a portable applica-
tion should change the state of the O_NONBLOCK flag by using mq_getattr() to retrieve
the mq_flags value, modifying the O_NONBLOCK bit, and calling mq_setattr() to change the
mq_flags settings. For example, to enable O_NONBLOCK, we would do the following:

if (mq_getattr(mqd, &attr) == -1)
    errExit("mq_getattr");
attr.mq_flags |= O_NONBLOCK;
if (mq_setattr(mqd, &attr, NULL) == -1)
    errExit("mq_getattr");

#include <mqueue.h>

int mq_setattr(mqd_t mqdes, const struct mq_attr *newattr,
               struct mq_attr *oldattr);

Returns 0 on success, or –1 on error
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52.5 Exchanging Messages

In this section, we look at the functions that are used to send messages to and receive
messages from a queue.

52.5.1 Sending Messages
The mq_send() function adds the message in the buffer pointed to by msg_ptr to the
message queue referred to by the descriptor mqdes.

The msg_len argument specifies the length of the message pointed to by msg_ptr.
This value must be less than or equal to the mq_msgsize attribute of the queue;
otherwise, mq_send() fails with the error EMSGSIZE. Zero-length messages are
permitted.

Each message has a nonnegative integer priority, specified by the msg_prio
argument. Messages are ordered within the queue in descending order of priority
(i.e., 0 is the lowest priority). When a new message is added to the queue, it is
placed after any other messages of the same priority. If an application doesn’t need
to use message priorities, it is sufficient to always specify msg_prio as 0.

As noted at the beginning of this chapter, the type attribute of System V messages
provides different functionality. System V messages are always queued in FIFO
order, but msgrcv() allows us to select messages in various ways: in FIFO order,
by exact type, or by highest type less than or equal to some value.

SUSv3 allows an implementation to advertise its upper limit for message priori-
ties, either by defining the constant MQ_PRIO_MAX or via the return from
sysconf(_SC_MQ_PRIO_MAX). SUSv3 requires this limit to be at least 32
(_POSIX_MQ_PRIO_MAX); that is, priorities at least in the range 0 to 31 are available.
However, the actual range on implementations is highly variable. For example,
on Linux, this constant has the value 32,768; on Solaris, it is 32; and on Tru64,
it is 256.

If the message queue is already full (i.e., the mq_maxmsg limit for the queue has
been reached), then a further mq_send() either blocks until space becomes available
in the queue, or, if the O_NONBLOCK flag is in effect, fails immediately with the error
EAGAIN.

The program in Listing 52-4 provides a command-line interface to the
mq_send() function. We demonstrate the use of this program in the next section.

#include <mqueue.h>

int mq_send(mqd_t mqdes, const char *msg_ptr, size_t msg_len,
            unsigned int msg_prio);

Returns 0 on success, or –1 on error
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Listing 52-4: Writing a message to a POSIX message queue

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– pmsg/pmsg_send.c

#include <mqueue.h>
#include <fcntl.h>              /* For definition of O_NONBLOCK */
#include "tlpi_hdr.h"

static void
usageError(const char *progName)
{
    fprintf(stderr, "Usage: %s [-n] name msg [prio]\n", progName);
    fprintf(stderr, "    -n           Use O_NONBLOCK flag\n");
    exit(EXIT_FAILURE);
}

int
main(int argc, char *argv[])
{
    int flags, opt;
    mqd_t mqd;
    unsigned int prio;

    flags = O_WRONLY;
    while ((opt = getopt(argc, argv, "n")) != -1) {
        switch (opt) {
        case 'n':   flags |= O_NONBLOCK;        break;
        default:    usageError(argv[0]);
        }
    }

    if (optind + 1 >= argc)
        usageError(argv[0]);

    mqd = mq_open(argv[optind], flags);
    if (mqd == (mqd_t) -1)
        errExit("mq_open");

    prio = (argc > optind + 2) ? atoi(argv[optind + 2]) : 0;

    if (mq_send(mqd, argv[optind + 1], strlen(argv[optind + 1]), prio) == -1)
        errExit("mq_send");
    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– pmsg/pmsg_send.c

52.5.2 Receiving Messages
The mq_receive() function removes the oldest message with the highest priority
from the message queue referred to by mqdes and returns that message in the
buffer pointed to by msg_ptr.
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The msg_len argument is used by the caller to specify the number of bytes of space
available in the buffer pointed to by msg_ptr.

Regardless of the actual size of the message, msg_len (and thus the size of the
buffer pointed to by msg_ptr) must be greater than or equal to the mq_msgsize
attribute of the queue; otherwise, mq_receive() fails with the error EMSGSIZE. If we
don’t know the value of the mq_msgsize attribute of a queue, we can obtain it using
mq_getattr(). (In an application consisting of cooperating processes, the use of
mq_getattr() can usually be dispensed with, because the application can typically
decide on a queue’s mq_msgsize setting in advance.)

If msg_prio is not NULL, then the priority of the received message is copied into
the location pointed to by msg_prio.

If the message queue is currently empty, then mq_receive() either blocks until a
message becomes available, or, if the O_NONBLOCK flag is in effect, fails immediately
with the error EAGAIN. (There is no equivalent of the pipe behavior where a reader
sees end-of-file if there are no writers.)

The program in Listing 52-5 provides a command-line interface to the mq_receive()
function. The command format for this program is shown in the usageError() function.

The following shell session demonstrates the use of the programs in Listing 52-4
and Listing 52-5. We begin by creating a message queue and sending a few messages
with different priorities:

$ ./pmsg_create -cx /mq
$ ./pmsg_send /mq msg-a 5
$ ./pmsg_send /mq msg-b 0
$ ./pmsg_send /mq msg-c 10

We then execute a series of commands to retrieve messages from the queue:

$ ./pmsg_receive /mq
Read 5 bytes; priority = 10
msg-c
$ ./pmsg_receive /mq
Read 5 bytes; priority = 5
msg-a
$ ./pmsg_receive /mq
Read 5 bytes; priority = 0
msg-b

As we can see from the above output, the messages were retrieved in order of priority.
At this point, the queue is now empty. When we perform another blocking

receive, the operation blocks:

$ ./pmsg_receive /mq
Blocks; we type Control-C to terminate the program

#include <mqueue.h>

ssize_t mq_receive(mqd_t mqdes, char *msg_ptr, size_t msg_len,
                   unsigned int *msg_prio);

Returns number of bytes in received message on success, or –1 on error
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On the other hand, if we perform a nonblocking receive, the call returns immedi-
ately with a failure status:

$ ./pmsg_receive -n /mq
ERROR [EAGAIN/EWOULDBLOCK Resource temporarily unavailable] mq_receive

Listing 52-5: Reading a message from a POSIX message queue

–––––––––––––––––––––––––––––––––––––––––––––––––––––– pmsg/pmsg_receive.c

#include <mqueue.h>
#include <fcntl.h>              /* For definition of O_NONBLOCK */
#include "tlpi_hdr.h"

static void
usageError(const char *progName)
{
    fprintf(stderr, "Usage: %s [-n] name\n", progName);
    fprintf(stderr, "    -n           Use O_NONBLOCK flag\n");
    exit(EXIT_FAILURE);
}

int
main(int argc, char *argv[])
{
    int flags, opt;
    mqd_t mqd;
    unsigned int prio;
    void *buffer;
    struct mq_attr attr;
    ssize_t numRead;

    flags = O_RDONLY;
    while ((opt = getopt(argc, argv, "n")) != -1) {
        switch (opt) {
        case 'n':   flags |= O_NONBLOCK;        break;
        default:    usageError(argv[0]);
        }
    }

    if (optind >= argc)
        usageError(argv[0]);

    mqd = mq_open(argv[optind], flags);
    if (mqd == (mqd_t) -1)
        errExit("mq_open");

    if (mq_getattr(mqd, &attr) == -1)
        errExit("mq_getattr");

    buffer = malloc(attr.mq_msgsize);
    if (buffer == NULL)
        errExit("malloc");
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    numRead = mq_receive(mqd, buffer, attr.mq_msgsize, &prio);
    if (numRead == -1)
        errExit("mq_receive");

    printf("Read %ld bytes; priority = %u\n", (long) numRead, prio);
    if (write(STDOUT_FILENO, buffer, numRead) == -1)
        errExit("write");
    write(STDOUT_FILENO, "\n", 1);

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– pmsg/pmsg_receive.c

52.5.3 Sending and Receiving Messages with a Timeout
The mq_timedsend() and mq_timedreceive() functions are exactly like mq_send() and
mq_receive(), except that if the operation can’t be performed immediately, and the
O_NONBLOCK flag is not in effect for the message queue description, then the
abs_timeout argument specifies a limit on the time for which the call will block.

The abs_timeout argument is a timespec structure (Section 23.4.2) that specifies the
timeout as an absolute value in seconds and nanoseconds since the Epoch. To per-
form a relative timeout, we can fetch the current value of the CLOCK_REALTIME clock
using clock_gettime() and add the required amount to that value to produce a suit-
ably initialized timespec structure.

If a call to mq_timedsend() or mq_timedreceive() times out without being able to
complete its operation, then the call fails with the error ETIMEDOUT.

On Linux, specifying abs_timeout as NULL means an infinite timeout. However,
this behavior is not specified in SUSv3, and portable applications can’t rely on it.

The mq_timedsend() and mq_timedreceive() functions originally derive from
POSIX.1d (1999) and are not available on all UNIX implementations.

52.6 Message Notification

A feature that distinguishes POSIX message queues from their System V counter-
parts is the ability to receive asynchronous notification of the availability of a message
on a previously empty queue (i.e., when the queue transitions from being empty to
nonempty). This feature means that instead of making a blocking mq_receive() call

#define _XOPEN_SOURCE 600
#include <mqueue.h>
#include <time.h>

int mq_timedsend(mqd_t mqdes, const char *msg_ptr, size_t msg_len,
                 unsigned int msg_prio, const struct timespec *abs_timeout);

Returns 0 on success, or –1 on error

ssize_t mq_timedreceive(mqd_t mqdes, char *msg_ptr, size_t msg_len,
                 unsigned int *msg_prio, const struct timespec *abs_timeout);

Returns number of bytes in received message on success, or –1 on error
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or marking the message queue descriptor nonblocking and performing periodic
mq_receive() calls (“polls”) on the queue, a process can request a notification of mes-
sage arrival and then perform other tasks until it is notified. A process can choose
to be notified either via a signal or via invocation of a function in a separate thread.

The notification feature of POSIX message queues is similar to the notification
facility that we described for POSIX timers in Section 23.6. (Both of these APIs
originated in POSIX.1b.)

The mq_notify() function registers the calling process to receive a notification when
a message arrives on the empty queue referred to by the descriptor mqdes.

The notification argument specifies the mechanism by which the process is to be
notified. Before going into the details of the notification argument, we note a few
points about message notification:

At any time, only one process (“the registered process”) can be registered to
receive a notification from a particular message queue. If there is already a pro-
cess registered for a message queue, further attempts to register for that queue
fail (mq_notify() fails with the error EBUSY).

The registered process is notified only when a new message arrives on a queue
that was previously empty. If a queue already contains messages at the time of
the registration, a notification will occur only after the queue is emptied and a
new message arrives.

After one notification is sent to the registered process, the registration is
removed, and any process can then register itself for notification. In other
words, as long as a process wishes to keep receiving notifications, it must rereg-
ister itself after each notification by once again calling mq_notify().

The registered process is notified only if some other process is not currently
blocked in a call to mq_receive() for the queue. If some other process is blocked
in mq_receive(), that process will read the message, and the registered process
will remain registered.

A process can explicitly deregister itself as the target for message notification
by calling mq_notify() with a notification argument of NULL.

We already showed the sigevent structure that is used to type the notification argu-
ment in Section 23.6.1. Here, we present the structure in simplified form, showing
just those fields relevant to the discussion of mq_notify():

union sigval {
    int    sival_int;             /* Integer value for accompanying data */
    void  *sival_ptr;             /* Pointer value for accompanying data */
};

#include <mqueue.h>

int mq_notify(mqd_t mqdes, const struct sigevent *notification);

Returns 0 on success, or –1 on error
1078 Chapter 52



struct sigevent {
    int    sigev_notify;          /* Notification method */
    int    sigev_signo;           /* Notification signal for SIGEV_SIGNAL */
    union sigval sigev_value;     /* Value passed to signal handler or
                                     thread function */
    void (*sigev_notify_function) (union sigval);
                                  /* Thread notification function */
    void  *sigev_notify_attributes;   /* Really 'pthread_attr_t' */
};

The sigev_notify field of this structure is set to one of the following values:

SIGEV_NONE

Register this process for notification, but when a message arrives on the
previously empty queue, don’t actually notify the process. As usual, the
registration is removed when a new messages arrives on an empty queue.

SIGEV_SIGNAL

Notify the process by generating the signal specified in the sigev_signo field.
If sigev_signo is a realtime signal, then the sigev_value field specifies data to
accompany the signal (Section 22.8.1). This data can be retrieved via the
si_value field of the siginfo_t structure that is passed to the signal handler or
returned by a call to sigwaitinfo() or sigtimedwait(). The following fields in
the siginfo_t structure are also filled in: si_code, with the value SI_MESGQ;
si_signo, with the signal number; si_pid, with the process ID of the process
that sent the message; and si_uid, with the real user ID of the process that
sent the message. (The si_pid and si_uid fields are not set on most other
implementations.)

SIGEV_THREAD

Notify the process by calling the function specified in sigev_notify_function
as if it were the start function in a new thread. The sigev_notify_attributes
field can be specified as NULL or as a pointer to a pthread_attr_t structure
that defines attributes for the thread (Section 29.8). The union sigval value
specified in sigev_value is passed as the argument of this function.

52.6.1 Receiving Notification via a Signal
Listing 52-6 provides an example of message notification using signals. This pro-
gram performs the following steps:

1. Open the message queue named on the command line in nonblocking mode q,
determine the mq_msgsize attribute for the queue w, and allocate a buffer of
that size for receiving messages e.

2. Block the notification signal (SIGUSR1) and establish a handler for it r.

3. Make an initial call to mq_notify() to register the process to receive message
notification t.

4. Execute an infinite loop that performs the following steps:

a) Call sigsuspend(), which unblocks the notification signal and waits until the
signal is caught y. Return from this system call indicates that a message
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notification has occurred. At this point, the process will have been deregis-
tered for message notification.

b) Call mq_notify() to reregister this process to receive message notification u.

c) Execute a while loop that drains the queue by reading as many messages as
possible i.

Listing 52-6: Receiving message notification via a signal

–––––––––––––––––––––––––––––––––––––––––––––––––––––– pmsg/mq_notify_sig.c

#include <signal.h>
#include <mqueue.h>
#include <fcntl.h>              /* For definition of O_NONBLOCK */
#include "tlpi_hdr.h"

#define NOTIFY_SIG SIGUSR1

static void
handler(int sig)
{
    /* Just interrupt sigsuspend() */
}

int
main(int argc, char *argv[])
{
    struct sigevent sev;
    mqd_t mqd;
    struct mq_attr attr;
    void *buffer;
    ssize_t numRead;
    sigset_t blockMask, emptyMask;
    struct sigaction sa;

    if (argc != 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s mq-name\n", argv[0]);

q     mqd = mq_open(argv[1], O_RDONLY | O_NONBLOCK);
    if (mqd == (mqd_t) -1)
        errExit("mq_open");

w     if (mq_getattr(mqd, &attr) == -1)
        errExit("mq_getattr");

e     buffer = malloc(attr.mq_msgsize);
    if (buffer == NULL)
        errExit("malloc");

r     sigemptyset(&blockMask);
    sigaddset(&blockMask, NOTIFY_SIG);
    if (sigprocmask(SIG_BLOCK, &blockMask, NULL) == -1)
        errExit("sigprocmask");
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    sigemptyset(&sa.sa_mask);
    sa.sa_flags = 0;
    sa.sa_handler = handler;
    if (sigaction(NOTIFY_SIG, &sa, NULL) == -1)
        errExit("sigaction");

t     sev.sigev_notify = SIGEV_SIGNAL;
    sev.sigev_signo = NOTIFY_SIG;
    if (mq_notify(mqd, &sev) == -1)
        errExit("mq_notify");

    sigemptyset(&emptyMask);

    for (;;) {
y         sigsuspend(&emptyMask);         /* Wait for notification signal */

u         if (mq_notify(mqd, &sev) == -1)
            errExit("mq_notify");

i         while ((numRead = mq_receive(mqd, buffer, attr.mq_msgsize, NULL)) >= 0)
            printf("Read %ld bytes\n", (long) numRead);

        if (errno != EAGAIN)            /* Unexpected error */
            errExit("mq_receive");
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– pmsg/mq_notify_sig.c

Various aspects of the program in Listing 52-6 merit further comment:

We block the notification signal and use sigsuspend() to wait for it, rather than
pause(), to prevent the possibility of missing a signal that is delivered while the
program is executing elsewhere (i.e., is not blocked waiting for signals) in the
for loop. If this occurred, and we were using pause() to wait for signals, then the
next call to pause() would block, even though a signal had already been delivered.

We open the queue in nonblocking mode, and, whenever a notification occurs,
we use a while loop to read all messages from the queue. Emptying the queue in
this way ensures that a further notification is generated when a new message
arrives. Employing nonblocking mode means that the while loop will terminate
(mq_receive() will fail with the error EAGAIN) when we have emptied the queue.
(This approach is analogous to the use of nonblocking I/O with edge-triggered
I/O notification, which we describe in Section 63.1.1, and is employed for sim-
ilar reasons.)

Within the for loop, it is important that we reregister for message notification
before reading all messages from the queue. If we reversed these steps, the fol-
lowing sequence could occur: all messages are read from the queue, and the
while loop terminates; another message is placed on the queue; mq_notify() is
called to reregister for message notification. At this point, no further notifica-
tion signal would be generated, because the queue is already nonempty. Conse-
quently, the program would remain permanently blocked in its next call to
sigsuspend().
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52.6.2 Receiving Notification via a Thread
Listing 52-7 provides an example of message notification using threads. This pro-
gram shares a number of design features with the program in Listing 52-6:

When message notification occurs, the program reenables notification before
draining the queue w.

Nonblocking mode is employed so that, after receiving a notification, we can
completely drain the queue without blocking t.

Listing 52-7: Receiving message notification via a thread

––––––––––––––––––––––––––––––––––––––––––––––––––– pmsg/mq_notify_thread.c

#include <pthread.h>
#include <mqueue.h>
#include <fcntl.h>              /* For definition of O_NONBLOCK */
#include "tlpi_hdr.h"

static void notifySetup(mqd_t *mqdp);

static void                     /* Thread notification function */
q threadFunc(union sigval sv)

{
    ssize_t numRead;
    mqd_t *mqdp;
    void *buffer;
    struct mq_attr attr;

    mqdp = sv.sival_ptr;

    if (mq_getattr(*mqdp, &attr) == -1)
        errExit("mq_getattr");

    buffer = malloc(attr.mq_msgsize);
    if (buffer == NULL)
        errExit("malloc");

w     notifySetup(mqdp);

    while ((numRead = mq_receive(*mqdp, buffer, attr.mq_msgsize, NULL)) >= 0)
        printf("Read %ld bytes\n", (long) numRead);

    if (errno != EAGAIN)                        /* Unexpected error */
        errExit("mq_receive");

    free(buffer);
    pthread_exit(NULL);
}

static void
notifySetup(mqd_t *mqdp)
{
    struct sigevent sev;
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e     sev.sigev_notify = SIGEV_THREAD;            /* Notify via thread */
    sev.sigev_notify_function = threadFunc;
    sev.sigev_notify_attributes = NULL;
            /* Could be pointer to pthread_attr_t structure */

r     sev.sigev_value.sival_ptr = mqdp;           /* Argument to threadFunc() */

    if (mq_notify(*mqdp, &sev) == -1)
        errExit("mq_notify");
}

int
main(int argc, char *argv[])
{
    mqd_t mqd;

    if (argc != 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s mq-name\n", argv[0]);

t     mqd = mq_open(argv[1], O_RDONLY | O_NONBLOCK);
    if (mqd == (mqd_t) -1)
        errExit("mq_open");

y     notifySetup(&mqd);
    pause();                    /* Wait for notifications via thread function */
}

––––––––––––––––––––––––––––––––––––––––––––––––––– pmsg/mq_notify_thread.c

Note the following further points regarding the design of the program in Listing 52-7:

The program requests notification via a thread, by specifying SIGEV_THREAD in
the sigev_notify field of the sigevent structure passed to mq_notify(). The thread’s
start function, threadFunc(), is specified in the sigev_notify_function field e.

After enabling message notification, the main program pauses indefinitely y;
timer notifications are delivered by invocations of threadFunc() in a separate
thread q.

We could have made the message queue descriptor, mqd, visible in threadFunc()
by making it a global variable. However, we adopted a different approach to
illustrate the alternative: we place the address of the message queue descriptor
in the sigev_value.sival_ptr field that is passed to mq_notify() r. When threadFunc()
is later invoked, this address is passed as its argument.

We must assign a pointer to the message queue descriptor to sigev_value.sival_ptr,
rather than (some cast version of) the descriptor itself because, other than the stip-
ulation that it is not an array type, SUSv3 makes no guarantee about the nature or
size of the type used to represent the mqd_t data type.

52.7 Linux-Specific Features

The Linux implementation of POSIX message queues provides a number of features
that are unstandardized but nevertheless useful.
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Displaying and deleting message queue objects via the command line

In Chapter 51, we mentioned that POSIX IPC objects are implemented as files in
virtual file systems, and that these files can be listed and removed with ls and rm. In
order to do this with POSIX message queues, we must mount the message queue
file system using a command of the following form:

# mount -t mqueue source target

The source can be any name at all (specifying the string none is typical). Its only sig-
nificance is that it appears in /proc/mounts and is displayed by the mount and df com-
mands. The target is the mount point for the message queue file system.

The following shell session shows how to mount the message queue file system
and display its contents. We begin by creating a mount point for the file system and
mounting it:

$ su                                  Privilege is required for mount
Password:
# mkdir /dev/mqueue
# mount -t mqueue none /dev/mqueue
$ exit                                Terminate root shell session

Next, we display the record in /proc/mounts for the new mount, and then display the
permissions for the mount directory:

$ cat /proc/mounts | grep mqueue
none /dev/mqueue mqueue rw 0 0
$ ls -ld /dev/mqueue
drwxrwxrwt  2 root root 40 Jul 26 12:09 /dev/mqueue

One point to note from the output of the ls command is that the message queue
file system is automatically mounted with the sticky bit set for the mount directory.
(We see this from the fact that there is a t in the other-execute permission field dis-
played by ls.) This means that an unprivileged process can unlink only message
queues that it owns.

Next, we create a message queue, use ls to show that it is visible in the file system,
and then delete the message queue:

$ ./pmsg_create -c /newq
$ ls /dev/mqueue
newq
$ rm /dev/mqueue/newq

Obtaining information about a message queue

We can display the contents of the files in the message queue file system. Each of
these virtual files contains information about the associated message queue:

$ ./pmsg_create -c /mq                Create a queue
$ ./pmsg_send /mq abcdefg             Write 7 bytes to the queue
$ cat /dev/mqueue/mq
QSIZE:7       NOTIFY:0    SIGNO:0    NOTIFY_PID:0
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The QSIZE field is a count of the total number of bytes of data in the queue. The
remaining fields relate to message notification. If NOTIFY_PID is nonzero, then the
process with the specified process ID has registered for message notification from this
queue, and the remaining fields provide information about the kind of notification:

NOTIFY is a value corresponding to one of the sigev_notify constants: 0 for
SIGEV_SIGNAL, 1 for SIGEV_NONE, or 2 for SIGEV_THREAD.

If the notification method is SIGEV_SIGNAL, the SIGNO field indicates which signal
is delivered for message notification.

The following shell session illustrates the information that appears in these fields:

$ ./mq_notify_sig /mq &               Notify using SIGUSR1 (signal 10 on x86)
[1] 18158
$ cat /dev/mqueue/mq
QSIZE:7       NOTIFY:0    SIGNO:10   NOTIFY_PID:18158
$ kill %1
[1]   Terminated    ./mq_notify_sig /mq
$ ./mq_notify_thread /mq &            Notify using a thread
[2] 18160
$ cat /dev/mqueue/mq
QSIZE:7       NOTIFY:2    SIGNO:0    NOTIFY_PID:18160

Using message queues with alternative I/O models

In the Linux implementation, a message queue descriptor is really a file descriptor.
We can monitor this file descriptor using I/O multiplexing system calls (select() and
poll()) or the epoll API. (See Chapter 63 for further details of these APIs.) This
allows us to avoid the difficulty that we encounter with System V messages queues
when trying to wait for input on both a message queue and a file descriptor (refer
to Section 46.9). However, this feature is nonstandard; SUSv3 doesn’t require that
message queue descriptors are implemented as file descriptors.

52.8 Message Queue Limits

SUSv3 defines two limits for POSIX message queues:

MQ_PRIO_MAX

We described this limit, which defines the maximum priority for a message,
in Section 52.5.1.

MQ_OPEN_MAX

An implementation can define this limit to indicate the maximum number
of message queues that a process can hold open. SUSv3 requires this limit
to be at least _POSIX_MQ_OPEN_MAX (8). Linux doesn’t define this limit. Instead,
because Linux implements message queue descriptors as file descriptors
(Section 52.7), the applicable limits are those that apply to file descriptors.
(In other words, on Linux, the per-process and system-wide limits on the
number of file descriptors actually apply to the sum of file descriptors and
message queue descriptors.) For further details on the applicable limits,
see the discussion of the RLIMIT_NOFILE resource limit in Section 36.3.
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As well as the above SUSv3-specified limits, Linux provides a number of /proc files
for viewing and (with privilege) changing limits that control the use of POSIX mes-
sage queues. The following three files reside in the directory /proc/sys/fs/mqueue:

msg_max

This limit specifies a ceiling for the mq_maxmsg attribute of new message
queues (i.e., a ceiling for attr.mq_maxmsg when creating a queue with
mq_open()). The default value for this limit is 10. The minimum value is 1
(10 in kernels before Linux 2.6.28). The maximum value is defined by the
kernel constant HARD_MSGMAX. The value for this constant is calculated as
(131,072 / sizeof(void *)), which evaluates to 32,768 on Linux/x86-32.
When a privileged process (CAP_SYS_RESOURCE) calls mq_open(), the msg_max
limit is ignored, but HARD_MSGMAX still acts as a ceiling for attr.mq_maxmsg.

msgsize_max

This limit specifies a ceiling for the mq_msgsize attribute of new message
queues created by unprivileged processes (i.e., a ceiling for attr.mq_msgsize
when creating a queue with mq_open()). The default value for this limit is 8192.
The minimum value is 128 (8192 in kernels before Linux 2.6.28). The max-
imum value is 1,048,576 (INT_MAX in kernels before 2.6.28). This limit is
ignored when a privileged process (CAP_SYS_RESOURCE) calls mq_open().

queues_max

This is a system-wide limit on the number of message queues that may be
created. Once this limit is reached, only a privileged process (CAP_SYS_RESOURCE)
can create new queues. The default value for this limit is 256. It can be
changed to any value in the range 0 to INT_MAX.

Linux also provides the RLIMIT_MSGQUEUE resource limit, which can be used to place a
ceiling on the amount of space that can be consumed by all of the message queues
belonging to the real user ID of the calling process. See Section 36.3 for details.

52.9 Comparison of POSIX and System V Message Queues

Section 51.2 listed various advantages of the POSIX IPC interface over the System V
IPC interface: the POSIX IPC interface is simpler and more consistent with the tradi-
tional UNIX file model, and POSIX IPC objects are reference counted, which sim-
plifies the task of determining when to delete an object. These general advantages
also apply to POSIX message queues.

POSIX message queues also have the following specific advantages over System V
message queues:

The message notification feature allows a (single) process to be asynchronously
notified via a signal or the instantiation of a thread when a message arrives on a
previously empty queue.

On Linux (but not other UNIX implementations), POSIX message queues can
be monitored using poll(), select(), and epoll. System V message queues don’t pro-
vide this feature.
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However, POSIX message queues also have some disadvantages compared to Sys-
tem V message queues:

POSIX message queues are less portable. This problem applies even across Linux
systems, since message queue support is available only since kernel 2.6.6.

The facility to select System V messages by type provides slightly greater flexi-
bility than the strict priority ordering of POSIX messages.

There is a wide variation in the manner in which POSIX message queues are
implemented on UNIX systems. Some systems provide implementations in
user space, and on at least one such implementation (Solaris 10), the mq_open()
manual page explicitly notes that the implementation can’t be considered
secure. On Linux, one of the motives for selecting a kernel implementation of
message queues was that it was not deemed possible to provide a secure user-
space implementation.

52.10 Summary

POSIX message queues allow processes to exchange data in the form of messages.
Each message has an associated integer priority, and messages are queued (and
thus received) in order of priority.

POSIX message queues have some advantages over System V message queues,
notably that they are reference counted and that a process can be asynchronously
notified of the arrival of a message on an empty queue. However, POSIX message
queues are less portable than System V message queues.

Further information

[Stevens, 1999] provides an alternative presentation of POSIX message queues and
shows a user-space implementation using memory-mapped files. POSIX message
queues are also described in some detail in [Gallmeister, 1995].

52.11 Exercises

52-1. Modify the program in Listing 52-5 (pmsg_receive.c) to accept a timeout (a relative
number of seconds) on the command line, and use mq_timedreceive() instead of
mq_receive().

52-2. Recode the sequence-number client-server application of Section 44.8 to use POSIX
message queues.

52-3. Rewrite the file-server application of Section 46.8 to use POSIX message queues
instead of System V message queues.

52-4. Write a simple chat program (similar to talk(1), but without the curses interface)
using POSIX messages queues.

52-5. Modify the program in Listing 52-6 (mq_notify_sig.c) to demonstrate that message
notification established by mq_notify() occurs just once. This can be done by
removing the mq_notify() call inside the for loop.
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52-6. Replace the use of a signal handler in Listing 52-6 (mq_notify_sig.c) with the use of
sigwaitinfo(). Upon return from sigwaitinfo(), display the values in the returned
siginfo_t structure. How could the program obtain the message queue descriptor in
the siginfo_t structure returned by sigwaitinfo()?

52-7. In Listing 52-7, could buffer be made a global variable and its memory allocated just
once (in the main program)? Explain your answer.
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P O S I X  S E M A P H O R E S

This chapter describes POSIX semaphores, which allow processes and threads to
synchronize access to shared resources. In Chapter 47, we described System V
semaphores, and we’ll assume that the reader is familiar with the general sema-
phore concepts and rationale for using semaphores that were presented at the start
of that chapter. During the course of this chapter, we’ll make comparisons between
POSIX semaphores and System V semaphores to clarify the ways in which these
two semaphore APIs are the same and the ways in which they differ.

53.1 Overview

SUSv3 specifies two types of POSIX semaphores:

Named semaphores: This type of semaphore has a name. By calling sem_open()
with the same name, unrelated processes can access the same semaphore.

Unnamed semaphores: This type of semaphore doesn’t have a name; instead, it
resides at an agreed-upon location in memory. Unnamed semaphores can be
shared between processes or between a group of threads. When shared
between processes, the semaphore must reside in a region of (System V,
POSIX, or mmap()) shared memory. When shared between threads, the sema-
phore may reside in an area of memory shared by the threads (e.g., on the heap
or in a global variable).



POSIX semaphores operate in a manner similar to System V semaphores; that is,
a POSIX semaphore is an integer whose value is not permitted to fall below 0. If a
process attempts to decrease the value of a semaphore below 0, then, depending
on the function used, the call either blocks or fails with an error indicating that the
operation was not currently possible.

Some systems don’t provide a full implementation of POSIX semaphores. A
typical restriction is that only unnamed thread-shared semaphores are supported.
That was the situation on Linux 2.4; with Linux 2.6 and a glibc that provides NPTL,
a full implementation of POSIX semaphores is available.

On Linux 2.6 with NPTL, semaphore operations (increment and decrement)
are implemented using the futex(2) system call.

53.2 Named Semaphores

To work with a named semaphore, we employ the following functions:

The sem_open() function opens or creates a semaphore, initializes the sema-
phore if it is created by the call, and returns a handle for use in later calls.

The sem_post(sem) and sem_wait(sem) functions respectively increment and dec-
rement a semaphore’s value.

The sem_getvalue() function retrieves a semaphore’s current value.

The sem_close() function removes the calling process’s association with a sema-
phore that it previously opened.

The sem_unlink() function removes a semaphore name and marks the sema-
phore for deletion when all processes have closed it.

SUSv3 doesn’t specify how named semaphores are to be implemented. Some
UNIX implementations create them as files in a special location in the standard file
system. On Linux, they are created as small POSIX shared memory objects with
names of the form sem.name, in a dedicated tmpfs file system (Section 14.10)
mounted under the directory /dev/shm. This file system has kernel persistence—the
semaphore objects that it contains will persist, even if no process currently has
them open, but they will be lost if the system is shut down.

Named semaphores are supported on Linux since kernel 2.6.

53.2.1 Opening a Named Semaphore
The sem_open() function creates and opens a new named semaphore or opens an
existing semaphore.

#include <fcntl.h>            /* Defines O_* constants */
#include <sys/stat.h>         /* Defines mode constants */
#include <semaphore.h>

sem_t *sem_open(const char *name, int oflag, ...
                /* mode_t mode, unsigned int value */ );

Returns pointer to semaphore on success, or SEM_FAILED on error
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The name argument identifies the semaphore. It is specified according to the rules
given in Section 51.1.

The oflag argument is a bit mask that determines whether we are opening an exist-
ing semaphore or creating and opening a new semaphore. If oflag is 0, we are accessing
an existing semaphore. If O_CREAT is specified in oflag, then a new semaphore is created
if one with the given name doesn’t already exist. If oflag specifies both O_CREAT and
O_EXCL, and a semaphore with the given name already exists, then sem_open() fails.

If sem_open() is being used to open an existing semaphore, the call requires
only two arguments. However, if O_CREAT is specified in flags, then two further argu-
ments are required: mode and value. (If the semaphore specified by name already
exists, then these two arguments are ignored.) These arguments are as follows:

The mode argument is a bit mask that specifies the permissions to be placed on
the new semaphore. The bit values are the same as for files (Table 15-4, on
page 295), and, as with open(), the value in mode is masked against the process
umask (Section 15.4.6). SUSv3 doesn’t specify any access mode flags (O_RDONLY,
O_WRONLY, and O_RDWR) for oflag. Many implementations, including Linux, assume
an access mode of O_RDWR when opening a semaphore, since most applications
using semaphores must employ both sem_post() and sem_wait(), which involve
reading and modifying a semaphore’s value. This means that we should ensure
that both read and write permissions are granted to each category of user—
owner, group, and other—that needs to access the semaphore.

The value argument is an unsigned integer that specifies the initial value to be
assigned to the new semaphore. The creation and initialization of the sema-
phore are performed atomically. This avoids the complexities required for the
initialization of System V semaphores (Section 47.5).

Regardless of whether we are creating a new semaphore or opening an existing
semaphore, sem_open() returns a pointer to a sem_t value, and we employ this
pointer in subsequent calls to functions that operate on the semaphore. On error,
sem_open() returns the value SEM_FAILED. (On most implementations, SEM_FAILED is
defined as either ((sem_t *) 0) or ((sem_t *) –1); Linux defines it as the former.)

SUSv3 states that the results are undefined if we attempt to perform operations
(sem_post(), sem_wait(), and so on) on a copy of the sem_t variable pointed to by the
return value of sem_open(). In other words, the following use of sem2 is not permissible:

sem_t *sp, sem2
sp = sem_open(...);
sem2 = *sp;
sem_wait(&sem2);

When a child is created via fork(), it inherits references to all of the named sema-
phores that are open in its parent. After the fork(), the parent and child can use
these semaphores to synchronize their actions.

Example program

The program in Listing 53-1 provides a simple command-line interface to the
sem_open() function. The command format for this program is shown in the
usageError() function.
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The following shell session log demonstrates the use of this program. We first
use the umask command to deny all permissions to users in the class other. We then
exclusively create a semaphore and examine the contents of the Linux-specific virtual
directory that contains named semaphores.

$ umask 007
$ ./psem_create -cx /demo 666             666 means read+write for all users
$ ls -l /dev/shm/sem.*
-rw-rw----  1 mtk users 16 Jul  6 12:09 /dev/shm/sem.demo

The output of the ls command shows that the process umask overrode the specified
permissions of read plus write for the user class other.

If we try once more to exclusively create a semaphore with the same name, the
operation fails, because the name already exists.

$ ./psem_create -cx /demo 666
ERROR [EEXIST File exists] sem_open       Failed because of O_EXCL

Listing 53-1: Using sem_open() to open or create a POSIX named semaphore

––––––––––––––––––––––––––––––––––––––––––––––––––––––– psem/psem_create.c

#include <semaphore.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "tlpi_hdr.h"

static void
usageError(const char *progName)
{
    fprintf(stderr, "Usage: %s [-cx] name [octal-perms [value]]\n", progName);
    fprintf(stderr, "    -c   Create semaphore (O_CREAT)\n");
    fprintf(stderr, "    -x   Create exclusively (O_EXCL)\n");
    exit(EXIT_FAILURE);
}

int
main(int argc, char *argv[])
{
    int flags, opt;
    mode_t perms;
    unsigned int value;
    sem_t *sem;

    flags = 0;
    while ((opt = getopt(argc, argv, "cx")) != -1) {
        switch (opt) {
        case 'c':   flags |= O_CREAT;           break;
        case 'x':   flags |= O_EXCL;            break;
        default:    usageError(argv[0]);
        }
    }
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    if (optind >= argc)
        usageError(argv[0]);

    /* Default permissions are rw-------; default semaphore initialization
       value is 0 */

    perms = (argc <= optind + 1) ? (S_IRUSR | S_IWUSR) :
                getInt(argv[optind + 1], GN_BASE_8, "octal-perms");
    value = (argc <= optind + 2) ? 0 : getInt(argv[optind + 2], 0, "value");

    sem = sem_open(argv[optind], flags, perms, value);
    if (sem == SEM_FAILED)
        errExit("sem_open");

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––– psem/psem_create.c

53.2.2 Closing a Semaphore
When a process opens a named semaphore, the system records the association
between the process and the semaphore. The sem_close() function terminates this
association (i.e., closes the semaphore), releases any resources that the system has
associated with the semaphore for this process, and decreases the count of pro-
cesses referencing the semaphore.

Open named semaphores are also automatically closed on process termination or
if the process performs an exec().

Closing a semaphore does not delete it. For that purpose, we need to use
sem_unlink().

53.2.3 Removing a Named Semaphore
The sem_unlink() function removes the semaphore identified by name and marks
the semaphore to be destroyed once all processes cease using it (this may mean
immediately, if all processes that had the semaphore open have already closed it).

Listing 53-2 demonstrates the use of sem_unlink().

#include <semaphore.h>

int sem_close(sem_t *sem);

Returns 0 on success, or –1 on error

#include <semaphore.h>

int sem_unlink(const char *name);

Returns 0 on success, or –1 on error
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Listing 53-2: Using sem_unlink() to unlink a POSIX named semaphore

––––––––––––––––––––––––––––––––––––––––––––––––––––––– psem/psem_unlink.c

#include <semaphore.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    if (argc != 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s sem-name\n", argv[0]);

    if (sem_unlink(argv[1]) == -1)
        errExit("sem_unlink");

exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––– psem/psem_unlink.c

53.3 Semaphore Operations

As with a System V semaphore, a POSIX semaphore is an integer that the system
never allows to go below 0. However, POSIX semaphore operations differ from
their System V counterparts in the following respects:

The functions for changing a semaphore’s value—sem_post() and sem_wait()—
operate on just one semaphore at a time. By contrast, the System V semop() system
call can operate on multiple semaphores in a set.

The sem_post() and sem_wait() functions increment and decrement a semaphore’s
value by exactly one. By contrast, semop() can add and subtract arbitrary values.

There is no equivalent of the wait-for-zero operation provided by System V
semaphores (a semop() call where the sops.sem_op field is specified as 0).

From this list, it may seem that POSIX semaphores are less powerful than System V
semaphores. However, this is not the case—anything that we can do with System V
semaphores can also be done with POSIX semaphores. In a few cases, a bit more
programming effort may be required, but, for typical scenarios, using POSIX sema-
phores actually requires less programming effort. (The System V semaphore API is
rather more complicated than is required for most applications.)

53.3.1 Waiting on a Semaphore
The sem_wait() function decrements (decreases by 1) the value of the semaphore
referred to by sem.

#include <semaphore.h>

int sem_wait(sem_t *sem);

Returns 0 on success, or –1 on error
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If the semaphore currently has a value greater than 0, sem_wait() returns immedi-
ately. If the value of the semaphore is currently 0, sem_wait() blocks until the
semaphore value rises above 0; at that time, the semaphore is then decremented
and sem_wait() returns.

If a blocked sem_wait() call is interrupted by a signal handler, then it fails with
the error EINTR, regardless of whether the SA_RESTART flag was used when establish-
ing the signal handler with sigaction(). (On some other UNIX implementations,
SA_RESTART does cause sem_wait() to automatically restart.)

The program in Listing 53-3 provides a command-line interface to the
sem_wait() function. We demonstrate the use of this program shortly.

Listing 53-3: Using sem_wait() to decrement a POSIX semaphore

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– psem/psem_wait.c

#include <semaphore.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    sem_t *sem;

    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s sem-name\n", argv[0]);

    sem = sem_open(argv[1], 0);
    if (sem == SEM_FAILED)
        errExit("sem_open");

    if (sem_wait(sem) == -1)
        errExit("sem_wait");

    printf("%ld sem_wait() succeeded\n", (long) getpid());
    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– psem/psem_wait.c

The sem_trywait() function is a nonblocking version of sem_wait().

If the decrement operation can’t be performed immediately, sem_trywait() fails with
the error EAGAIN.

The sem_timedwait() function is another variation on sem_wait(). It allows the
caller to specify a limit on the time for which the call will block.

#include <semaphore.h>

int sem_trywait(sem_t *sem);

Returns 0 on success, or –1 on error
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If a sem_timedwait() call times out without being able to decrement the semaphore,
then the call fails with the error ETIMEDOUT.

The abs_timeout argument is a timespec structure (Section 23.4.2) that specifies
the timeout as an absolute value in seconds and nanoseconds since the Epoch. If
we want to perform a relative timeout, then we must fetch the current value of the
CLOCK_REALTIME clock using clock_gettime() and add the required amount to that value
to produce a timespec structure suitable for use with sem_timedwait().

The sem_timedwait() function was originally specified in POSIX.1d (1999) and is
not available on all UNIX implementations.

53.3.2 Posting a Semaphore

The sem_post() function increments (increases by 1) the value of the semaphore
referred to by sem.

If the value of the semaphore was 0 before the sem_post() call, and some other pro-
cess (or thread) is blocked waiting to decrement the semaphore, then that process
is awoken, and its sem_wait() call proceeds to decrement the semaphore. If multiple
processes (or threads) are blocked in sem_wait(), then, if the processes are being
scheduled under the default round-robin time-sharing policy, it is indeterminate
which one will be awoken and allowed to decrement the semaphore. (Like their
System V counterparts, POSIX semaphores are only a synchronization mechanism,
not a queuing mechanism.)

SUSv3 specifies that if processes or threads are being executed under a real-
time scheduling policy, then the process or thread that will be awoken is the
one with the highest priority that has been waiting the longest.

As with System V semaphores, incrementing a POSIX semaphore corresponds to
releasing some shared resource for use by another process or thread.

The program in Listing 53-4 provides a command-line interface to the sem_post()
function. We demonstrate the use of this program shortly.

#define _XOPEN_SOURCE 600
#include <semaphore.h>

int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);

Returns 0 on success, or –1 on error

#include <semaphore.h>

int sem_post(sem_t *sem);

Returns 0 on success, or –1 on error
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Listing 53-4: Using sem_post() to increment a POSIX semaphore

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– psem/psem_post.c

#include <semaphore.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    sem_t *sem;

    if (argc != 2)
        usageErr("%s sem-name\n", argv[0]);

    sem = sem_open(argv[1], 0);
    if (sem == SEM_FAILED)
        errExit("sem_open");

    if (sem_post(sem) == -1)
        errExit("sem_post");
    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– psem/psem_post.c

53.3.3 Retrieving the Current Value of a Semaphore
The sem_getvalue() function returns the current value of the semaphore referred to
by sem in the int pointed to by sval.

If one or more processes (or threads) are currently blocked waiting to decrement
the semaphore’s value, then the value returned in sval depends on the implementation.
SUSv3 permits two possibilities: 0 or a negative number whose absolute value is the
number of waiters blocked in sem_wait(). Linux and several other implementations
adopt the former behavior; a few other implementations adopt the latter behavior.

Although returning a negative sval if there are blocked waiters can be useful,
especially for debugging purposes, SUSv3 doesn’t require this behavior
because the techniques that some systems use to efficiently implement POSIX
semaphores don’t (in fact, can’t) record counts of blocked waiters.

Note that by the time sem_getvalue() returns, the value returned in sval may already
be out of date. A program that depends on the information returned by sem_getvalue()
being unchanged by the time of a subsequent operation will be subject to time-of-
check, time-of-use race conditions (Section 38.6).

#include <semaphore.h>

int sem_getvalue(sem_t *sem, int *sval);

Returns 0 on success, or –1 on error
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The program in Listing 53-5 uses sem_getvalue() to retrieve the value of the
semaphore named in its command-line argument, and then displays that value on
standard output.

Listing 53-5: Using sem_getvalue() to retrieve the value of a POSIX semaphore

–––––––––––––––––––––––––––––––––––––––––––––––––––––– psem/psem_getvalue.c

#include <semaphore.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int value;
    sem_t *sem;

    if (argc != 2)
        usageErr("%s sem-name\n", argv[0]);

    sem = sem_open(argv[1], 0);
    if (sem == SEM_FAILED)
        errExit("sem_open");

    if (sem_getvalue(sem, &value) == -1)
        errExit("sem_getvalue");

    printf("%d\n", value);
    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– psem/psem_getvalue.c

Example

The following shell session log demonstrates the use of the programs we have
shown so far in this chapter. We begin by creating a semaphore whose initial value
is zero, and then start a program in the background that attempts to decrement the
semaphore:

$ ./psem_create -c /demo 600 0
$ ./psem_wait /demo &
[1] 31208

The background command blocks, because the semaphore value is currently 0 and
therefore can’t be decreased.

We then retrieve the semaphore value:

$ ./psem_getvalue /demo
0

We see the value 0 above. On some other implementations, we might see the value –1,
indicating that one process is waiting on the semaphore.
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We then execute a command that increments the semaphore. This causes the
blocked sem_wait() in the background program to complete:

$ ./psem_post /demo
$ 31208 sem_wait() succeeded

(The last line of output above shows the shell prompt mixed with the output of the
background job.)

We press Enter to see the next shell prompt, which also causes the shell to
report on the terminated background job, and then perform further operations on
the semaphore:

Press Enter
[1]-  Done          ./psem_wait /demo
$ ./psem_post /demo                         Increment semaphore
$ ./psem_getvalue /demo                     Retrieve semaphore value
1
$ ./psem_unlink /demo                       We’re done with this semaphore

53.4 Unnamed Semaphores

Unnamed semaphores (also known as memory-based semaphores) are variables of type
sem_t that are stored in memory allocated by the application. The semaphore is
made available to the processes or threads that use it by placing it in an area of
memory that they share.

Operations on unnamed semaphores use the same functions (sem_wait(),
sem_post(), sem_getvalue(), and so on) that are used to operate on named sema-
phores. In addition, two further functions are required:

The sem_init() function initializes a semaphore and informs the system of
whether the semaphore will be shared between processes or between the threads
of a single process.

The sem_destroy(sem) function destroys a semaphore.

These functions should not be used with named semaphores.

Unnamed versus named semaphores

Using an unnamed semaphore allows us to avoid the work of creating a name for a
semaphore. This can be useful in the following cases:

A semaphore that is shared between threads doesn’t need a name. Making an
unnamed semaphore a shared (global or heap) variable automatically makes it
accessible to all threads.

A semaphore that is being shared between related processes doesn’t need a
name. If a parent process allocates an unnamed semaphore in a region of
shared memory (e.g., a shared anonymous mapping), then a child automatically
inherits the mapping and thus the semaphore as part of the operation of fork().
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If we are building a dynamic data structure (e.g., a binary tree), each of whose
items requires an associated semaphore, then the simplest approach is to allo-
cate an unnamed semaphore within each item. Opening a named semaphore
for each item would require us to design a convention for generating a
(unique) semaphore name for each item and to manage those names (e.g.,
unlinking them when they are no longer required).

53.4.1 Initializing an Unnamed Semaphore
The sem_init() function initializes the unnamed semaphore pointed to by sem to the
value specified by value.

The pshared argument indicates whether the semaphore is to be shared between
threads or between processes.

If pshared is 0, then the semaphore is to be shared between the threads of the
calling process. In this case, sem is typically specified as the address of either a
global variable or a variable allocated on the heap. A thread-shared semaphore
has process persistence; it is destroyed when the process terminates.

If pshared is nonzero, then the semaphore is to be shared between processes. In
this case, sem must be the address of a location in a region of shared memory (a
POSIX shared memory object, a shared mapping created using mmap(), or a
System V shared memory segment). The semaphore persists as long as the
shared memory in which it resides. (The shared memory regions created by
most of these techniques have kernel persistence. The exception is shared
anonymous mappings, which persist only as long as at least one process maintains
the mapping.) Since a child produced via fork() inherits its parent’s memory
mappings, process-shared semaphores are inherited by the child of a fork(), and
the parent and child can use these semaphores to synchronize their actions.

The pshared argument is necessary for the following reasons:

Some implementations don’t support process-shared semaphores. On these
systems, specifying a nonzero value for pshared causes sem_init() to return an
error. Linux did not support unnamed process-shared semaphores until kernel 2.6
and the advent of the NPTL threading implementation. (The older LinuxThreads
implementation of sem_init() fails with the error ENOSYS if a nonzero value is
specified for pshared.)

On implementations that support both process-shared and thread-shared
semaphores, specifying which kind of sharing is required may be necessary
because the system must take special actions to support the requested sharing.
Providing this information may also permit the system to perform optimiza-
tions depending on the type of sharing.

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int value);

Returns 0 on success, or –1 on error
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The NPTL sem_init() implementation ignores pshared, since no special action is
required for either type of sharing. Nevertheless, portable and future-proof appli-
cations should specify an appropriate value for pshared.

The SUSv3 specification for sem_init() defines a failure return of –1, but makes
no statement about the return value on success. Nevertheless, the manual
pages on most modern UNIX implementations document a 0 return on success.
(One notable exception is Solaris, where the description of the return value is
similar to the SUSv3 specification. However, inspecting the OpenSolaris source
code shows that, on that implementation, sem_init() does return 0 on success.)
SUSv4 rectifies the situation, specifying that sem_init() shall return 0 on success.

There are no permission settings associated with an unnamed semaphore (i.e.,
sem_init() has no analog of the mode argument of sem_open()). Access to an
unnamed semaphore is governed by the permissions that are granted to the pro-
cess for the underlying shared memory region.

SUSv3 specifies that initializing an already initialized unnamed semaphore
results in undefined behavior. In other words, we must design our applications so
that just one process or thread calls sem_init() to initialize a semaphore.

As with named semaphores, SUSv3 says that the results are undefined if we
attempt to perform operations on a copy of the sem_t variable whose address is
passed as the sem argument of sem_init(). Operations should always be performed
only on the “original” semaphore.

Example program

In Section 30.1.2, we presented a program (Listing 30-2) that used mutexes to pro-
tect a critical section in which two threads accessed the same global variable. The
program in Listing 53-6 solves the same problem using an unnamed thread-shared
semaphore.

Listing 53-6: Using a POSIX unnamed semaphore to protect access to a global variable

––––––––––––––––––––––––––––––––––––––––––––––––––– psem/thread_incr_psem.c

#include <semaphore.h>
#include <pthread.h>
#include "tlpi_hdr.h"

static int glob = 0;
static sem_t sem;

static void *                   /* Loop 'arg' times incrementing 'glob' */
threadFunc(void *arg)
{
    int loops = *((int *) arg);
    int loc, j;

    for (j = 0; j < loops; j++) {
        if (sem_wait(&sem) == -1)
            errExit("sem_wait");
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        loc = glob;
        loc++;
        glob = loc;

        if (sem_post(&sem) == -1)
            errExit("sem_post");
    }

    return NULL;
}

int
main(int argc, char *argv[])
{
    pthread_t t1, t2;
    int loops, s;

    loops = (argc > 1) ? getInt(argv[1], GN_GT_0, "num-loops") : 10000000;

    /* Initialize a thread-shared mutex with the value 1 */

    if (sem_init(&sem, 0, 1) == -1)
        errExit("sem_init");

/* Create two threads that increment 'glob' */

    s = pthread_create(&t1, NULL, threadFunc, &loops);
    if (s != 0)
        errExitEN(s, "pthread_create");
    s = pthread_create(&t2, NULL, threadFunc, &loops);
    if (s != 0)
        errExitEN(s, "pthread_create");

/* Wait for threads to terminate */

    s = pthread_join(t1, NULL);
    if (s != 0)
        errExitEN(s, "pthread_join");
    s = pthread_join(t2, NULL);
    if (s != 0)
        errExitEN(s, "pthread_join");

    printf("glob = %d\n", glob);
    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––– psem/thread_incr_psem.c

53.4.2 Destroying an Unnamed Semaphore
The sem_destroy() function destroys the semaphore sem, which must be an unnamed
semaphore that was previously initialized using sem_init(). It is safe to destroy a sema-
phore only if no processes or threads are waiting on it.
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After an unnamed semaphore segment has been destroyed with sem_destroy(), it can
be reinitialized with sem_init().

An unnamed semaphore should be destroyed before its underlying memory is
deallocated. For example, if the semaphore is an automatically allocated variable, it
should be destroyed before its host function returns. If the semaphore resides in a
POSIX shared memory region, then it should be destroyed after all processes have
ceased using the semaphore and before the shared memory object is unlinked with
shm_unlink().

On some implementations, omitting calls to sem_destroy() doesn’t cause prob-
lems. However, on other implementations, failing to call sem_destroy() can result in
resource leaks. Portable applications should call sem_destroy() to avoid such problems.

53.5 Comparisons with Other Synchronization Techniques

In this section, we compare POSIX semaphores with two other synchronization
techniques: System V semaphores and mutexes.

POSIX semaphores versus System V semaphores

POSIX semaphores and System V semaphores can both be used to synchronize the
actions of processes. Section 51.2 listed various advantages of POSIX IPC over
System V IPC: the POSIX IPC interface is simpler and more consistent with the tradi-
tional UNIX file model, and POSIX IPC objects are reference counted, which
simplifies the task of determining when to delete an IPC object. These general
advantages also apply to the specific case of POSIX (named) semaphores versus
System V semaphores.

POSIX semaphores have the following further advantages over System V
semaphores:

The POSIX semaphore interface is much simpler than the System V sema-
phore interface. This simplicity is achieved without loss of functional power.

POSIX named semaphores eliminate the initialization problem associated with
System V semaphores (Section 47.5).

It is easier to associate a POSIX unnamed semaphore with a dynamically allo-
cated memory object: the semaphore can simply be embedded inside the object.

In scenarios where there is a high degree of contention for a semaphore (i.e.,
operations on the semaphore are frequently blocked because another process
has set the semaphore to a value that prevents the operation proceeding imme-
diately), then the performance of POSIX semaphores and System V sema-
phores is similar. However, in cases where there is low contention for a
semaphore (i.e., the semaphore’s value is such that operations can normally

#include <semaphore.h>

int sem_destroy(sem_t *sem);

Returns 0 on success, or –1 on error
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proceed without blocking), then POSIX semaphores perform considerably bet-
ter than System V semaphores. (On the systems tested by the author, the differ-
ence in performance is more than an order of magnitude; see Exercise 53-4.)
POSIX semaphores perform so much better in this case because the way in
which they are implemented only requires a system call when contention
occurs, whereas System V semaphore operations always require a system call,
regardless of contention.

However, POSIX semaphores also have the following disadvantages compared to
System V semaphores:

POSIX semaphores are somewhat less portable. (On Linux, named sema-
phores have been supported only since kernel 2.6.)

POSIX semaphores don’t provide an equivalent of the System V semaphore
undo feature. (However, as we noted in Section 47.8, this feature may not be
useful in some circumstances.)

POSIX semaphores versus Pthreads mutexes

POSIX semaphores and Pthreads mutexes can both be used to synchronize the
actions of threads within the same process, and their performance is similar. How-
ever, mutexes are usually preferable, because the ownership property of mutexes
enforces good structuring of code (only the thread that locks a mutex can unlock
it). By contrast, one thread can increment a semaphore that was decremented by
another thread. This flexibility can lead to poorly structured synchronization designs.
(For this reason, semaphores are sometimes referred to as the “gotos” of concurrent
programming.)

There is one circumstance in which mutexes can’t be used in a multithreaded
application and semaphores may therefore be preferable. Because it is async-signal-
safe (see Table 21-1, on page 426), the sem_post() function can be used from within
a signal handler to synchronize with another thread. This is not possible with
mutexes, because the Pthreads functions for operating on mutexes are not async-
signal-safe. However, because it is usually preferable to deal with asynchronous sig-
nals by accepting them using sigwaitinfo() (or similar), rather than using signal han-
dlers (see Section 33.2.4), this advantage of semaphores over mutexes is seldom
required.

53.6 Semaphore Limits

SUSv3 defines two limits applying to semaphores:

SEM_NSEMS_MAX

This is the maximum number of POSIX semaphores that a process may
have. SUSv3 requires that this limit be at least 256. On Linux, the number
of POSIX semaphores is effectively limited only by available memory.
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SEM_VALUE_MAX

This is the maximum value that a POSIX semaphore may reach. Sema-
phores may assume any value from 0 up to this limit. SUSv3 requires this
limit to be at least 32,767; the Linux implementation allows values up to
INT_MAX (2,147,483,647 on Linux/x86-32).

53.7 Summary

POSIX semaphores allow processes or threads to synchronize their actions. POSIX
semaphores come in two types: named and unnamed. A named semaphore is iden-
tified by a name, and can be shared by any processes that have permission to open
the semaphore. An unnamed semaphore has no name, but processes or threads
can share the same semaphore by placing it in a region of memory that they share
(e.g., in a POSIX shared memory object for process sharing, or in a global variable
for thread sharing).

The POSIX semaphore interface is simpler than the System V semaphore inter-
face. Semaphores are allocated and operated on individually, and the wait and post
operations adjust a semaphore’s value by one.

POSIX semaphores have a number of advantages over System V semaphores,
but they are somewhat less portable. For synchronization within multithreaded
applications, mutexes are generally preferred over semaphores.

Further information

[Stevens, 1999] provides an alternative presentation of POSIX semaphores and
shows user-space implementations using various other IPC mechanisms (FIFOs,
memory-mapped files, and System V semaphores). [Butenhof, 1996] describes the
use of POSIX semaphores in multithreaded applications.

53.8 Exercises

53-1. Rewrite the programs in Listing 48-2 and Listing 48-3 (Section 48.4) as a threaded
application, with the two threads passing data to each other via a global buffer, and
using POSIX semaphores for synchronization.

53-2. Modify the program in Listing 53-3 (psem_wait.c) to use sem_timedwait() instead of
sem_wait(). The program should take an additional command-line argument that
specifies a (relative) number of seconds to be used as the timeout for the
sem_timedwait() call.

53-3. Devise an implementation of POSIX semaphores using System V semaphores. 

53-4. In Section 53.5, we noted that POSIX semaphores perform much better than
System V semaphores in the case where the semaphore is uncontended. Write two
programs (one for each semaphore type) to verify this. Each program should
simply increment and decrement a semaphore a specified number of times.
Compare the times required for the two programs.
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P O S I X  S H A R E D  M E M O R Y

In previous chapters, we looked at two techniques that allow unrelated processes
to share memory regions in order to perform IPC: System V shared memory
(Chapter 48) and shared file mappings (Section 49.4.2). Both of these techniques
have potential drawbacks:

The System V shared memory model, which uses keys and identifiers, is not
consistent with the standard UNIX I/O model, which uses filenames and
descriptors. This difference means that we require an entirely new set of system
calls and commands for working with System V shared memory segments.

Using a shared file mapping for IPC requires the creation of a disk file, even if
we are not interested in having a persistent backing store for the shared region.
Aside from the inconvenience of needing to create the file, this technique
incurs some file I/O overhead.

Because of these drawbacks, POSIX.1b defined a new shared memory API: POSIX
shared memory, which is the subject of this chapter.

POSIX talks about shared memory objects, while System V talks about shared
memory segments. These differences in terminology are historical—both terms
are used for referring to regions of memory shared between processes.



54.1 Overview

POSIX shared memory allows to us to share a mapped region between unrelated
processes without needing to create a corresponding mapped file. POSIX shared
memory is supported on Linux since kernel 2.4.

SUSv3 doesn’t specify any of the details of how POSIX shared memory is to be
implemented. In particular, there is no requirement for the use of a (real or virtual)
file system to identify shared memory objects, although many UNIX implementa-
tions do employ a file system for this purpose. Some UNIX implementations create
the names for shared memory objects as files in a special location in the standard
file system. Linux uses a dedicated tmpfs file system (Section 14.10) mounted under
the directory /dev/shm. This file system has kernel persistence—the shared memory
objects that it contains will persist even if no process currently has them open, but
they will be lost if the system is shut down.

The total amount of memory in all POSIX shared memory regions on the sys-
tem is limited by the size of the underlying tmpfs file system. This file system is
typically mounted at boot time with some default size (e.g., 256 MB). If neces-
sary, the superuser can change the size of the file system by remounting it
using the command mount –o remount,size=<num-bytes>.

To use a POSIX shared memory object, we perform two steps:

1. Use the shm_open() function to open an object with a specified name. (We
described the rules governing the naming of POSIX shared memory objects in
Section 51.1.) The shm_open() function is analogous to the open() system call. It
either creates a new shared memory object or opens an existing object. As its
function result, shm_open() returns a file descriptor referring to the object.

2. Pass the file descriptor obtained in the previous step in a call to mmap() that
specifies MAP_SHARED in the flags argument. This maps the shared memory object
into the process’s virtual address space. As with other uses of mmap(), once we
have mapped the object, we can close the file descriptor without affecting the
mapping. However, we may need to keep the file descriptor open for subse-
quent use in calls to fstat() and ftruncate() (see Section 54.2).

The relationship between shm_open() and mmap() for POSIX shared memory is
analogous to that between shmget() and shmat() for System V shared memory.
The origin of the two-step process (shm_open() plus mmap()) for using POSIX
shared memory objects instead of the use of a single function that performs
both tasks is historical. When the POSIX committee added this feature, the
mmap() call already existed ([Stevens, 1999]). In effect, all that we are doing is
replacing calls to open() with calls to shm_open(), with the difference that using
shm_open() doesn’t require the creation of a file in a disk-based file system.

Since a shared memory object is referred to using a file descriptor, we can usefully
employ various file descriptor system calls already defined in the UNIX system
(e.g., ftruncate()), rather than needing new special-purpose system calls (as is
required for System V shared memory).
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54.2 Creating Shared Memory Objects

The shm_open() function creates and opens a new shared memory object or opens
an existing object. The arguments to shm_open() are analogous to those for open().

The name argument identifies the shared memory object to be created or opened. The
oflag argument is a mask of bits that modify the behavior of the call. The values that
can be included in this mask are summarized in Table 54-1.

One of the purposes of the oflag argument is to determine whether we are opening
an existing shared memory object or creating and opening a new object. If oflag
doesn’t include O_CREAT, we are opening an existing object. If O_CREAT is specified,
then the object is created if it doesn’t already exist. Specifying O_EXCL in conjunction
with O_CREAT is a request to ensure that the caller is the creator of the object; if the
object already exists, an error results (EEXIST).

The oflag argument also indicates the kind of access that the calling process will
make to the shared memory object, by specifying exactly one of the values O_RDONLY
or O_RDWR.

The remaining flag value, O_TRUNC, causes a successful open of an existing
shared memory object to truncate the object to a length of zero. 

On Linux, truncation occurs even on a read-only open. However, SUSv3 says
that results of using O_TRUNC with a read-only open is undefined, so we can’t
portably rely on a specific behavior in this case.

When a new shared memory object is created, its ownership and group ownership
are taken from the effective user and group IDs of the process calling shm_open(),
and the object permissions are set according to the value supplied in the mode bit-
mask argument. The bit values for mode are the same as for files (Table 15-4, on
page 295). As with the open() system call, the permissions mask in mode is masked

#include <fcntl.h>            /* Defines O_* constants */
#include <sys/stat.h>         /* Defines mode constants */
#include <sys/mman.h>

int shm_open(const char *name, int oflag, mode_t mode);

Returns file descriptor on success, or –1 on error

Table 54-1: Bit values for the shm_open() oflag argument

Flag Description

O_CREAT Create object if it doesn’t already exist
O_EXCL With O_CREAT, create object exclusively

O_RDONLY Open for read-only access
O_RDWR Open for read-write access

O_TRUNC Truncate object to zero length
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against the process umask (Section 15.4.6). Unlike open(), the mode argument is
always required for a call to shm_open(); if we are not creating a new object, this
argument should be specified as 0.

The close-on-exec flag (FD_CLOEXEC, Section 27.4) is set on the file descriptor
returned by shm_open(), so that the file descriptor is automatically closed if the pro-
cess performs an exec(). (This is consistent with the fact that mappings are
unmapped when an exec() is performed.)

When a new shared memory object is created, it initially has zero length. This
means that, after creating a new shared memory object, we normally call ftruncate()
(Section 5.8) to set the size of the object before calling mmap(). Following the
mmap() call, we may also use ftruncate() to expand or shrink the shared memory
object as desired, bearing in mind the points discussed in Section 49.4.3.

When a shared memory object is extended, the newly added bytes are automat-
ically initialized to 0.

At any point, we can apply fstat() (Section 15.1) to the file descriptor returned
by shm_open() in order to obtain a stat structure whose fields contain information about
the shared memory object, including its size (st_size), permissions (st_mode), owner
(st_uid), and group (st_gid). (These are the only fields that SUSv3 requires fstat() to set in
the stat structure, although Linux also returns meaningful information in the time
fields, as well as various other less useful information in the remaining fields.)

The permissions and ownership of a shared memory object can be changed
using fchmod() and fchown(), respectively.

Example program

Listing 54-1 provides a simple example of the use of shm_open(), ftruncate(), and
mmap(). This program creates a shared memory object whose size is specified by a
command-line argument, and maps the object into the process’s virtual address
space. (The mapping step is redundant, since we don’t actually do anything with
the shared memory, but it serves to demonstrate the use of mmap().) The program
permits the use of command-line options to select flags (O_CREAT and O_EXCL) for the
shm_open() call.

In the following example, we use this program to create a 10,000-byte shared
memory object, and then use ls to show this object in /dev/shm:

$ ./pshm_create -c /demo_shm 10000
$ ls -l /dev/shm
total 0
-rw-------    1 mtk      users       10000 Jun 20 11:31 demo_shm

Listing 54-1: Creating a POSIX shared memory object

––––––––––––––––––––––––––––––––––––––––––––––––––––––– pshm/pshm_create.c

#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>
#include "tlpi_hdr.h"
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static void
usageError(const char *progName)
{
    fprintf(stderr, "Usage: %s [-cx] name size [octal-perms]\n", progName);
    fprintf(stderr, "    -c   Create shared memory (O_CREAT)\n");
    fprintf(stderr, "    -x   Create exclusively (O_EXCL)\n");
    exit(EXIT_FAILURE);
}

int
main(int argc, char *argv[])
{
    int flags, opt, fd;
    mode_t perms;
    size_t size;
    void *addr;

    flags = O_RDWR;
    while ((opt = getopt(argc, argv, "cx")) != -1) {
        switch (opt) {
        case 'c':   flags |= O_CREAT;           break;
        case 'x':   flags |= O_EXCL;            break;
        default:    usageError(argv[0]);
        }
    }

    if (optind + 1 >= argc)
        usageError(argv[0]);

    size = getLong(argv[optind + 1], GN_ANY_BASE, "size");
    perms = (argc <= optind + 2) ? (S_IRUSR | S_IWUSR) :
                getLong(argv[optind + 2], GN_BASE_8, "octal-perms");

    /* Create shared memory object and set its size */

    fd = shm_open(argv[optind], flags, perms);
    if (fd == -1)
        errExit("shm_open");

    if (ftruncate(fd, size) == -1)
        errExit("ftruncate");

    /* Map shared memory object */

    addr = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
    if (addr == MAP_FAILED)
        errExit("mmap");

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––– pshm/pshm_create.c
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54.3 Using Shared Memory Objects

Listing 54-2 and Listing 54-3 demonstrate the use of a shared memory object to
transfer data from one process to another. The program in Listing 54-2 copies the
string contained in its second command-line argument into the existing shared
memory object named in its first command-line argument. Before mapping the
object and performing the copy, the program uses ftruncate() to resize the shared
memory object to be the same length as the string that is to be copied.

Listing 54-2: Copying data into a POSIX shared memory object

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– pshm/pshm_write.c

#include <fcntl.h>
#include <sys/mman.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int fd;
    size_t len;                 /* Size of shared memory object */
    char *addr;

    if (argc != 3 || strcmp(argv[1], "--help") == 0)
        usageErr("%s shm-name string\n", argv[0]);

    fd = shm_open(argv[1], O_RDWR, 0);      /* Open existing object */
    if (fd == -1)
        errExit("shm_open");

    len = strlen(argv[2]);
    if (ftruncate(fd, len) == -1)           /* Resize object to hold string */
        errExit("ftruncate");
    printf("Resized to %ld bytes\n", (long) len);

    addr = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
    if (addr == MAP_FAILED)
        errExit("mmap");

    if (close(fd) == -1)
        errExit("close");                   /* 'fd' is no longer needed */

    printf("copying %ld bytes\n", (long) len);
    memcpy(addr, argv[2], len);             /* Copy string to shared memory */

exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– pshm/pshm_write.c

The program in Listing 54-3 displays the string in the existing shared memory
object named in its command-line argument on standard output. After calling
shm_open(), the program uses fstat() to determine the size of the shared memory
and uses that size in the call to mmap() that maps the object and in the write() call
that prints the string.
1112 Chapter 54



Listing 54-3: Copying data from a POSIX shared memory object
––––––––––––––––––––––––––––––––––––––––––––––––––––––––– pshm/pshm_read.c

#include <fcntl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int fd;
    char *addr;
    struct stat sb;

    if (argc != 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s shm-name\n", argv[0]);

    fd = shm_open(argv[1], O_RDONLY, 0);    /* Open existing object */
    if (fd == -1)
        errExit("shm_open");

    /* Use shared memory object size as length argument for mmap()
       and as number of bytes to write() */

    if (fstat(fd, &sb) == -1)
        errExit("fstat");

    addr = mmap(NULL, sb.st_size, PROT_READ, MAP_SHARED, fd, 0);
    if (addr == MAP_FAILED)
        errExit("mmap");

    if (close(fd) == -1);  /* 'fd' is no longer needed */
        errExit("close");

    write(STDOUT_FILENO, addr, sb.st_size);
    printf("\n");

exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– pshm/pshm_read.c

The following shell session demonstrates the use of the programs in Listing 54-2
and Listing 54-3. We first create a zero-length shared memory object using the pro-
gram in Listing 54-1.

$ ./pshm_create -c /demo_shm 0
$ ls -l /dev/shm                        Check the size of object
total 4
-rw-------    1 mtk    users    0 Jun 21 13:33 demo_shm

We then use the program in Listing 54-2 to copy a string into the shared memory object:

$ ./pshm_write /demo_shm 'hello'
$ ls -l /dev/shm                        Check that object has changed in size
total 4
-rw-------    1 mtk    users    5 Jun 21 13:33 demo_shm
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From the output, we can see that the program resized the shared memory object so
that it is large enough to hold the specified string.

Finally, we use the program in Listing 54-3 to display the string in the shared
memory object:

$ ./pshm_read /demo_shm
hello

Applications must typically use some synchronization technique to allow processes
to coordinate their access to shared memory. In the example shell session shown
here, the coordination was provided by the user running the programs one after
the other. Typically, applications would instead use a synchronization primitive
(e.g., semaphores) to coordinate access to a shared memory object.

54.4 Removing Shared Memory Objects

SUSv3 requires that POSIX shared memory objects have at least kernel persistence;
that is, they continue to exist until they are explicitly removed or the system is
rebooted. When a shared memory object is no longer required, it should be
removed using shm_unlink().

The shm_unlink() function removes the shared memory object specified by name.
Removing a shared memory object doesn’t affect existing mappings of the object
(which will remain in effect until the corresponding processes call munmap() or ter-
minate), but prevents further shm_open() calls from opening the object. Once all pro-
cesses have unmapped the object, the object is removed, and its contents are lost.

The program in Listing 54-4 uses shm_unlink() to remove the shared memory
object specified in the program’s command-line argument.

Listing 54-4: Using shm_unlink() to unlink a POSIX shared memory object

––––––––––––––––––––––––––––––––––––––––––––––––––––––– pshm/pshm_unlink.c

#include <fcntl.h>
#include <sys/mman.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    if (argc != 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s shm-name\n", argv[0]);

if (shm_unlink(argv[1]) == -1)
        errExit("shm_unlink");

exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––– pshm/pshm_unlink.c

#include <sys/mman.h>

int shm_unlink(const char *name);

Returns 0 on success, or –1 on error
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54.5 Comparisons Between Shared Memory APIs

By now, we have considered a number of different techniques for sharing memory
regions between unrelated processes:

System V shared memory (Chapter 48);

shared file mappings (Section 49.4.2); and

POSIX shared memory objects (the subject of this chapter).

Many of the points that we make in this section are also relevant for shared
anonymous mappings (Section 49.7), which are used for sharing memory
between processes that are related via fork().

A number of points apply to all of these techniques:

They provide fast IPC, and applications typically must use a semaphore (or
other synchronization primitive) to synchronize access to the shared region.

Once the shared memory region has been mapped into the process’s virtual
address space, it looks just like any other part of the process’s memory space.

The system places the shared memory regions within the process virtual address
space in a similar manner. We outlined this placement while describing System V
shared memory in Section 48.5. The Linux-specific /proc/PID/maps file lists infor-
mation about all types of shared memory regions.

Assuming that we don’t attempt to map a shared memory region at a fixed
address, we should ensure that all references to locations in the region are cal-
culated as offsets (rather than pointers), since the region may be located at dif-
ferent virtual addresses within different processes (Section 48.6).

The functions described in Chapter 50 that operate on regions of virtual memory
can be applied to shared memory regions created using any of these techniques.

There are also a few notable differences between the techniques for shared memory:

The fact that the contents of a shared file mapping are synchronized with the
underlying mapped file means that the data stored in a shared memory region
can persist across system restarts.

System V and POSIX shared memory use different mechanisms to identify and
refer to a shared memory object. System V uses its own scheme of keys and
identifiers, which doesn’t fit with the standard UNIX I/O model and requires
separate system calls (e.g., shmctl()) and commands (ipcs and ipcrm). By con-
trast, POSIX shared memory employs names and file descriptors, and conse-
quently shared memory objects can be examined and manipulated using a
variety of existing UNIX system calls (e.g., fstat() and fchmod()).

The size of a System V shared memory segment is fixed at the time of creation
(via shmget()). By contrast, for a mapping backed by a file or by a POSIX shared
memory object, we can use ftruncate() to adjust the size of the underlying
object, and then re-create the mapping using munmap() and mmap() (or the
Linux-specific mremap()).
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Historically, System V shared memory was more widely available than mmap()
and POSIX shared memory, although most UNIX implementations now pro-
vide all of these techniques.

With the exception of the final point regarding portability, the differences listed
above are advantages in favor of shared file mappings and POSIX shared memory
objects. Thus, in new applications, one of these interfaces may be preferable to
System V shared memory. Which one we choose depends on whether or not we
require a persistent backing store. Shared file mappings provide such a store;
POSIX shared memory objects allow us to avoid the overhead of using a disk file
when a backing store is not required.

54.6 Summary

A POSIX shared memory object is used to share a region of memory between unre-
lated processes without creating an underlying disk file. To do this, we replace the
call to open() that normally precedes mmap() with a call to shm_open(). The
shm_open() call creates a file in a memory-based file system, and we can employ tra-
ditional file descriptor system calls to perform various operations on this virtual
file. In particular, ftruncate() must be used to set the size of the shared memory
object, since initially it has a length of zero.

We have now described three techniques for sharing memory regions between
unrelated processes: System V shared memory, shared file mappings, and POSIX
shared memory objects. There are several similarities between the three techniques.
There are also some important differences, and, except for the issue of portability,
these differences favor shared file mappings and POSIX shared memory objects.

54.7 Exercise

54-1. Rewrite the programs in Listing 48-2 (svshm_xfr_writer.c) and Listing 48-3
(svshm_xfr_reader.c) to use POSIX shared memory objects instead of System V
shared memory.
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F I L E  L O C K I N G

Previous chapters have covered various techniques that processes can use to syn-
chronize their actions, including signals (Chapters 20 to 22) and semaphores
(Chapters 47 and 53). In this chapter, we look at further synchronization tech-
niques designed specifically for use with files.

55.1 Overview

A frequent application requirement is to read data from a file, make some change
to that data, and then write it back to the file. As long as just one process at a time
ever uses a file in this way, then there are no problems. However, problems can
arise if multiple processes are simultaneously updating a file. Suppose, for example,
that each process performs the following steps to update a file containing a
sequence number:

1. Read the sequence number from the file.

2. Use the sequence number for some application-defined purpose.

3. Increment the sequence number and write it back to the file.

The problem here is that, in the absence of any synchronization technique, two
processes could perform the above steps at the same time with (for example) the
consequences shown in Figure 55-1 (here, we assume that the initial value of the
sequence number is 1000).



Figure 55-1: Two processes updating a file at the same time without synchronization

The problem is clear: at the end of these steps, the file contains the value 1001,
when it should contain the value 1002. (This is an example of a race condition.) To
prevent such possibilities, we need some form of interprocess synchronization.

Although we could use (say) semaphores to perform the required synchronization,
using file locks is usually preferable, because the kernel automatically associates
locks with files.

[Stevens & Rago, 2005] dates the first UNIX file locking implementation to
1980, and notes that fcntl() locking, upon which we primarily focus in this
chapter, appeared in System V Release 2 in 1984.

In this chapter, we describe two different APIs for placing file locks:

flock(), which places locks on entire files; and

fcntl(), which places locks on regions of a file.

The flock() system call originated on BSD; fcntl() originated on System V.
The general method of using flock() and fcntl() is as follows:

1. Place a lock on the file.

2. Perform file I/O.

3. Unlock the file so that another process can lock it.

Read seq. # (obtains 1000)

Process BProcess A
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expires

time slice
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Although file locking is normally used in conjunction with file I/O, we can also use
it as a more general synchronization technique. Cooperating processes can follow a
convention that locking all or part of a file indicates access by a process to some
shared resource other than the file itself (e.g., a shared memory region).

Mixing locking and stdio functions

Because of the user-space buffering performed by the stdio library, we should be
cautious when using stdio functions with the locking techniques described in this
chapter. The problem is that an input buffer might be filled before a lock is placed,
or an output buffer may be flushed after a lock is removed. There are a few ways to
avoid these problems:

Perform file I/O using read() and write() (and related system calls) instead of
the stdio library.

Flush the stdio stream immediately after placing a lock on the file, and flush it
once more immediately before releasing the lock.

Perhaps at the cost of some efficiency, disable stdio buffering altogether using
setbuf() (or similar).

Advisory and mandatory locking

In the remainder of this chapter, we’ll distinguish locks as being either advisory or
mandatory. By default, file locks are advisory. This means that a process can simply
ignore a lock placed by another process. In order for an advisory locking scheme to
be workable, each process accessing the file must cooperate, by placing a lock
before performing file I/O. By contrast, a mandatory locking system forces a pro-
cess performing I/O to abide by the locks held by other processes. We say more
about this distinction in Section 55.4.

55.2 File Locking with flock()

Although fcntl() provides a superset of the functionality provided by flock(), we never-
theless describe flock() because it is still used in some applications, and because it
differs from fcntl() in some of the semantics of inheritance and release of locks.

The flock() system call places a single lock on an entire file. The file to be locked is
specified via an open file descriptor passed in fd. The operation argument specifies
one of the values LOCK_SH, LOCK_EX, or LOCK_UN, which are described in Table 55-1.

By default, flock() blocks if another process already holds an incompatible lock
on a file. If we want to prevent this, we can OR (|) the value into operation. In this
case, if another process already holds an incompatible lock on the file, flock()
doesn’t block, but instead returns –1, with errno set to EWOULDBLOCK.

#include <sys/file.h>

int flock(int fd, int operation);

Returns 0 on success, or –1 on error
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Any number of processes may simultaneously hold a shared lock on a file. How-
ever, only one process at a time can hold an exclusive lock on a file. (In other
words, exclusive locks deny both exclusive and shared locks by other processes.)
Table 55-2 summarizes the compatibility rules for flock() locks. Here, we assume
that process A is the first to place the lock, and the table indicates whether process B
can then place a lock.

A process can place a shared or exclusive lock regardless of the access mode (read,
write, or read-write) of the file.

An existing shared lock can be converted to an exclusive lock (and vice versa)
by making another call to flock() specifying the appropriate value for operation. Con-
verting a shared lock to an exclusive lock will block if another process holds a
shared lock on the file, unless LOCK_NB was also specified.

A lock conversion is not guaranteed to be atomic. During conversion, the exist-
ing lock is first removed, and then a new lock is established. Between these two steps,
another process’s pending request for an incompatible lock may be granted. If this
occurs, then the conversion will block, or, if LOCK_NB was specified, the conversion will
fail and the process will lose its original lock. (This behavior occurred in the original
BSD flock() implementation and also occurs on many other UNIX implementations.)

Although it is not part of SUSv3, flock() appears on most UNIX implementa-
tions. Some implementations require the inclusion of either <fcntl.h> or
<sys/fcntl.h> instead of <sys/file.h>. Because flock() originates on BSD, the
locks that it places are sometimes known as BSD file locks.

Listing 55-1 demonstrates the use of flock(). This program locks a file, sleeps for a
specified number of seconds, and then unlocks the file. The program takes up to
three command-line arguments. The first of these is the file to lock. The second
specifies the lock type (shared or exclusive) and whether or not to include the
LOCK_NB (nonblocking) flag. The third argument specifies the number of seconds to
sleep between acquiring and releasing the lock; this argument is optional and
defaults to 10 seconds.

Table 55-1: Values for the operation argument of flock()

Value Description

LOCK_SH Place a shared lock on the file referred to by fd
LOCK_EX Place an exclusive lock on the file referred to by fd

LOCK_UN Unlock the file referred to by fd
LOCK_NB Make a nonblocking lock request

Table 55-2: Compatibility of flock() locking types

Process A Process B

LOCK_SH LOCK_EX

LOCK_SH Yes No
LOCK_EX No No
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Listing 55-1: Using flock()
––––––––––––––––––––––––––––––––––––––––––––––––––––––– filelock/t_flock.c

#include <sys/file.h>
#include <fcntl.h>
#include "curr_time.h"                  /* Declaration of currTime() */
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int fd, lock;
    const char *lname;

    if (argc < 3 || strcmp(argv[1], "--help") == 0 ||
            strchr("sx", argv[2][0]) == NULL)
        usageErr("%s file lock [sleep-time]\n"
                 "    'lock' is 's' (shared) or 'x' (exclusive)\n"
                 "        optionally followed by 'n' (nonblocking)\n"
                 "    'secs' specifies time to hold lock\n", argv[0]);

    lock = (argv[2][0] == 's') ? LOCK_SH : LOCK_EX;
    if (argv[2][1] == 'n')
        lock |= LOCK_NB;

    fd = open(argv[1], O_RDONLY);               /* Open file to be locked */
    if (fd == -1)
        errExit("open");

    lname = (lock & LOCK_SH) ? "LOCK_SH" : "LOCK_EX";

    printf("PID %ld: requesting %s at %s\n", (long) getpid(), lname,
            currTime("%T"));

    if (flock(fd, lock) == -1) {
        if (errno == EWOULDBLOCK)
            fatal("PID %ld: already locked - bye!", (long) getpid());
        else
            errExit("flock (PID=%ld)", (long) getpid());
    }

    printf("PID %ld: granted    %s at %s\n", (long) getpid(), lname,
            currTime("%T"));

    sleep((argc > 3) ? getInt(argv[3], GN_NONNEG, "sleep-time") : 10);

    printf("PID %ld: releasing  %s at %s\n", (long) getpid(), lname,
            currTime("%T"));
    if (flock(fd, LOCK_UN) == -1)
        errExit("flock");

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––– filelock/t_flock.c
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Using the program in Listing 55-1, we can conduct a number of experiments to
explore the behavior of flock(). Some examples are shown in the following shell session.
We begin by creating a file, and then start an instance of our program that sits in
the background and holds a shared lock for 60 seconds:

$ touch tfile
$ ./t_flock tfile s 60 &
[1] 9777
PID 9777: requesting LOCK_SH at 21:19:37
PID 9777: granted    LOCK_SH at 21:19:37

Next, we start another instance of the program that successfully requests a shared
lock and then releases it:

$ ./t_flock tfile s 2
PID 9778: requesting LOCK_SH at 21:19:49
PID 9778: granted    LOCK_SH at 21:19:49
PID 9778: releasing  LOCK_SH at 21:19:51

However, when we start another instance of the program that makes a nonblocking
requests for an exclusive lock, the request immediately fails:

$ ./t_flock tfile xn
PID 9779: requesting LOCK_EX at 21:20:03
PID 9779: already locked - bye!

When we start another instance of the program that makes a blocking request for
an exclusive lock, the program blocks. When the background process that was
holding a shared lock for 60 seconds releases its lock, the blocked request is granted:

$ ./t_flock tfile x
PID 9780: requesting LOCK_EX at 21:20:21
PID 9777: releasing  LOCK_SH at 21:20:37
PID 9780: granted    LOCK_EX at 21:20:37
PID 9780: releasing  LOCK_EX at 21:20:47

55.2.1 Semantics of Lock Inheritance and Release
As shown in Table 55-1, we can release a file lock via an flock() call that specifies
operation as LOCK_UN. In addition, locks are automatically released when the correspond-
ing file descriptor is closed. However, the story is more complicated than this. A file
lock obtained via flock() is associated with the open file description (Section 5.4), rather
than the file descriptor or the file (i-node) itself. This means that when a file
descriptor is duplicated (via dup(), dup2(), or an fcntl() F_DUPFD operation), the new
file descriptor refers to the same file lock. For example, if we have obtained a lock
on the file referred to by fd, then the following code (which omits error checking)
releases that lock:

flock(fd, LOCK_EX);               /* Gain lock via 'fd' */
newfd = dup(fd);                  /* 'newfd' refers to same lock as 'fd' */
flock(newfd, LOCK_UN);            /* Frees lock acquired via 'fd' */

If we have acquired a lock via a particular file descriptor, and we create one or more
duplicates of that descriptor, then—if we don’t explicitly perform an unlock operation—
the lock is released only when all of the duplicate descriptors have been closed.
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However, if we use open() to obtain a second file descriptor (and associated
open file description) referring to the same file, this second descriptor is treated
independently by flock(). For example, a process executing the following code will
block on the second flock() call:

fd1 = open("a.txt", O_RDWR);
fd2 = open("a.txt", O_RDWR);
flock(fd1, LOCK_EX);
flock(fd2, LOCK_EX);              /* Locked out by lock on 'fd1' */

Thus, a process can lock itself out of a file using flock(). As we’ll see later, this can’t
happen with record locks obtained by fcntl().

When we create a child process using fork(), that child obtains duplicates of its
parent’s file descriptors, and, as with descriptors duplicated via dup() and so on,
these descriptors refer to the same open file descriptions and thus to the same
locks. For example, the following code causes a child to remove a parent’s lock:

flock(fd, LOCK_EX);               /* Parent obtains lock */
if (fork() == 0)                  /* If child... */
    flock(fd, LOCK_UN);           /* Release lock shared with parent */

These semantics can sometimes be usefully exploited to (atomically) transfer a file
lock from a parent process to a child process: after the fork(), the parent closes its
file descriptor, and the lock is under sole control of the child process. As we’ll see
later, this isn’t possible using record locks obtained by fcntl().

Locks created by flock() are preserved across an exec() (unless the close-on-exec
flag was set for the file descriptor and that file descriptor was the last one referenc-
ing the underlying open file description).

The Linux semantics described above conform to the classical BSD implemen-
tation of flock(). On some UNIX implementations, flock() is implemented using
fcntl(), and we’ll see later that the inheritance and release semantics of fcntl() locks
differ from those of flock() locks. Because the interactions between locks created by
flock() and fcntl() are undefined, an application should use only one of these locking
methods on a file.

55.2.2 Limitations of flock()
Placing locks with flock() suffers from a number of limitations:

Only whole files can be locked. Such coarse locking limits the potential for con-
currency among cooperating processes. If, for example, we have multiple
processes, each of which would like to simultaneously access different parts of
the same file, then locking via flock() would needlessly prevent these processes
from operating concurrently.

We can place only advisory locks with flock().

Many NFS implementations don’t recognize locks granted by flock().

All of these limitations are addressed by the locking scheme implemented by fcntl(),
which we describe in the next section.
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Historically, the Linux NFS server did not support flock() locks. Since kernel
2.6.12, the Linux NFS server supports flock() locks by implementing them as an
fcntl() lock on the entire file. This can cause some strange effects when mixing
BSD locks on the server and BSD locks on the client: the clients usually won’t
see the server’s locks, and vice versa.

55.3 Record Locking with fcntl()

Using fcntl() (Section 5.2), we can place a lock on any part of a file, ranging from a
single byte to the entire file. This form of file locking is usually called record locking.
However, this term is a misnomer, because files on the UNIX system are byte
sequences, with no concept of record boundaries. Any notion of records within a
file is defined purely within an application.

Typically, fcntl() is used to lock byte ranges corresponding to the application-
defined record boundaries within the file; hence the origin of the term record
locking. The terms byte range, file region, and file segment are less commonly used, but
more accurate, descriptions of this type of lock. (Because this is the only kind of
locking specified in the original POSIX.1 standard and in SUSv3, it is sometimes
also called POSIX file locking.)

SUSv3 requires record locking to be supported for regular files, and permits it
to be supported for other file types. Although it generally makes sense to apply
record locks only to regular files (since, for most other file types, it isn’t mean-
ingful to talk about byte ranges for the data contained in the file), on Linux, it
is possible to apply a record lock to any type of file descriptor.

Figure 55-2 shows how record locking might be used to synchronize access by two
processes to the same region of a file. (In this diagram, we assume that all lock
requests are blocking, so that they will wait if a lock is held by another process.)

The general form of the fcntl() call used to create or remove a file lock is as
follows:

struct flock flockstr;

/* Set fields of 'flockstr' to describe lock to be placed or removed */

fcntl(fd, cmd, &flockstr);          /* Place lock defined by 'fl' */

The fd argument is an open file descriptor referring to the file on which we wish to
place a lock.

Before discussing the cmd argument, we first describe the flock structure.

The flock structure

The flock structure defines the lock that we wish to acquire or remove. It is defined
as follows:

struct flock {
    short l_type;       /* Lock type: F_RDLCK, F_WRLCK, F_UNLCK */
    short l_whence;     /* How to interpret 'l_start': SEEK_SET,
                           SEEK_CUR, SEEK_END */
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    off_t l_start;      /* Offset where the lock begins */
    off_t l_len;        /* Number of bytes to lock; 0 means "until EOF" */
    pid_t l_pid;        /* Process preventing our lock (F_GETLK only) */
};

The l_type field indicates the type of lock we want to place. It is specified as one of
the values in Table 55-3.

Semantically, read (F_RDLCK) and write (F_WRLCK) locks correspond to the shared
and exclusive locks applied by flock(), and they follow the same compatibility rules
(Table 55-2): any number of processes can hold read locks on a file region, but only
one process can hold a write lock, and that lock excludes read and write locks by
other processes. Specifying l_type as F_UNLCK is analogous to the flock() LOCK_UN operation.

Figure 55-2: Using record locks to synchronize access to the same region of a file

Table 55-3: Lock types for fcntl() locking

Lock type Description

F_RDLCK Place a read lock
F_WRLCK Place a write lock
F_UNLCK Remove an existing lock

Process A

Request write lock on
bytes 0 to 99

Update bytes 0 to 99

Process B

Convert lock on bytes
0 to 99 to read lock

Request read lock on
bytes 0 to 99

blocks

unblocks

Read bytes 0 to 99 Read bytes 0 to 99

Convert lock on bytes
0 to 99 to write lock

blocks

Unlock bytes 0 to 99unblocks

Update bytes 0 to 99

Unlock bytes 0 to 99
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In order to place a read lock on a file, the file must be open for reading. Similarly,
to place a write lock, the file must be open for writing. To place both types of locks,
we open the file read-write (O_RDWR). Attempting to place a lock that is incompatible
with the file access mode results in the error EBADF.

The l_whence, l_start, and l_len fields together specify the range of bytes to be
locked. The first two of these fields are analogous to the whence and offset argu-
ments to lseek() (Section 4.7). The l_start field specifies an offset within the file that
is interpreted with respect to one of the following:

the start of the file, if l_whence is SEEK_SET;

the current file offset, if l_whence is SEEK_CUR; or

the end of the file, if l_whence is SEEK_END.

In the last two cases, l_start can be a negative number, as long as the resulting file
position doesn’t lie before the start of the file (byte 0).

The l_len field contains an integer specifying the number of bytes to lock, starting
from the position defined by l_whence and l_start. It is possible to lock nonexistent
bytes past the end of the file, but it is not possible to lock bytes before the start of
the file.

Since kernel 2.4.21, Linux allows a negative value to be supplied in l_len. This is
a request to lock the l_len bytes preceding the position specified by l_whence and
l_start (i.e., bytes in the range (l_start – abs(l_len)) through to (l_start – 1)). SUSv3
permits, but doesn’t require, this feature. Several other UNIX implementations
also provide it.

In general, applications should lock the minimum range of bytes necessary.
This allows greater concurrency for other processes simultaneously trying to lock
different regions of the same file.

The term minimum range needs qualification in some circumstances. Mixing
record locks and calls to mmap() can have unpleasant consequences on net-
work file systems such as NFS and CIFS. The problem occurs because mmap()
maps files in units of the system page size. If a file lock is page-aligned, then all
is well, since the lock will cover the entire region corresponding to a dirty
page. However, if the lock is not page-aligned, then there is a race condition—
the kernel may write into the area that is not covered by the lock if any part
of the mapped page has been modified.

Specifying 0 in l_len has the special meaning “lock all bytes from the point specified
by l_start and l_whence through to the end of the file, no matter how large the file
grows.” This is convenient if we don’t know in advance how many bytes we are
going to add to a file. To lock the entire file, we can specify l_whence as SEEK_SET and
both l_start and l_len as 0.

The cmd argument

When working with file locks, three possible values may be specified for the cmd
argument of fcntl(). The first two are used for acquiring and releasing locks:

F_SETLK

Acquire (l_type is F_RDLCK or F_WRLCK) or release (l_type is F_UNLCK) a lock on
the bytes specified by flockstr. If an incompatible lock is held by another
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process on any part of the region to be locked, fcntl() fails with the error
EAGAIN. On some UNIX implementations, fcntl() fails with the error EACCES
in this case. SUSv3 permits either possibility, and a portable application
should test for both values.

F_SETLKW

This is the same as F_SETLK, except that if another process holds an incom-
patible lock on any part of the region to be locked, then the call blocks
until the lock can be granted. If we are handling signals and have not spec-
ified SA_RESTART (Section 21.5), then an F_SETLKW operation may be inter-
rupted (i.e., fail with the error EINTR). We can take advantage of this
behavior to use alarm() or setitimer() to set a timeout on the lock request.

Note that fcntl() locks either the entire region specified or nothing at all. There is
no notion of locking just those bytes of the requested region that are currently
unlocked.

The remaining fcntl() operation is used to determine whether we can place a
lock on a given region:

F_GETLK

Check if it would be possible to acquire the lock specified in flockstr, but
don’t actually acquire it. The l_type field must be F_RDLCK or F_WRLCK. The
flockstr structure is treated as a value-result argument; on return, it contains
information informing us whether or not the specified lock could be
placed. If the lock would be permitted (i.e., no incompatible locks exist on
the specified file region), then F_UNLCK is returned in the l_type field, and the
remaining fields are left unchanged. If one or more incompatible locks
exist on the region, then flockstr returns information about one of those
locks (it is indeterminate which), including its type (l_type), range of bytes
(l_start and l_len; l_whence is always returned as SEEK_SET), and the process
ID of the process holding the lock (l_pid).

Note that there are potential race conditions when combining the use of F_GETLK
with a subsequent F_SETLK or F_SETLKW. By the time we perform the latter operation,
the information returned by F_GETLK may already be out of date. Thus, F_GETLK is less
useful than it first appears. Even if F_GETLK says that it is possible to place a lock, we
must still be prepared for an error return from F_SETLK or for F_SETLKW to block.

The GNU C library also implements the function lockf(), which is just a simpli-
fied interface layered on top of fcntl(). (SUSv3 specifies lockf(), but doesn’t spec-
ify the relationship between lockf() and fcntl(). However, most UNIX systems
implement lockf() on top of fcntl().) A call of the form lockf(fd, operation, size) is
equivalent to a call to fcntl() with l_whence set to SEEK_CUR, l_start set to 0, and
l_len set to size; that is, lockf() locks a sequence of bytes starting at the current
file offset. The operation argument to lockf() is analogous to the cmd argument
to fcntl(), but different constants are used for acquiring, releasing, and testing
for the presence of locks. The lockf() function places only exclusive (i.e., write)
locks. See the lockf(3) manual page for further details.
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Details of lock acquisition and release

Note the following points regarding the acquisition and release of locks created
with fcntl():

Unlocking a file region always immediately succeeds. It is not an error to unlock
a region on which we don’t currently hold a lock.

At any time, a process can hold just one type of lock on a particular region of a
file. Placing a new lock on a region we have already locked either results in no
change (if the lock type is the same as the existing lock) or atomically converts
the existing lock to the new mode. In the latter case, when converting a read
lock to a write lock, we need to be prepared for the possibility that the call will
yield an error (F_SETLK) or block (F_SETLKW). (This differs from flock(), whose lock
conversions are not atomic.)

A process can never lock itself out of a file region, even when placing locks via
multiple file descriptors referring to the same file. (This contrasts with flock(),
and we say more on this point in Section 55.3.5.)

Placing a lock of a different mode in the middle of a lock we already hold
results in three locks: two smaller locks in the previous mode are created on
either side of the new lock (see Figure 55-3). Conversely, acquiring a second
lock adjacent to or overlapping an existing lock in the same mode results in a
single coalesced lock covering the combined area of the two locks. Other per-
mutations are possible. For example, unlocking a region in the middle of a
larger existing lock leaves two smaller locked regions on either side of the
unlocked region. If a new lock overlaps an existing lock with a different mode,
then the existing lock is shrunk, because the overlapping bytes are incorpo-
rated into the new lock.

Closing a file descriptor has some unusual semantics with respect to file region
locks. We describe these semantics in Section 55.3.5.

Figure 55-3: Splitting of an existing read lock by a write lock by the same process

55.3.1 Deadlock
When using F_SETLKW, we need to be aware of the type of scenario illustrated in
Figure 55-4. In this scenario, each process’s second lock request is blocked by a
lock held by the other process. Such a scenario is referred to as a deadlock. If
unchecked by the kernel, this would leave both processes blocked forever. To pre-
vent this possibility, the kernel checks each new lock request made via F_SETLKW to
see if it would result in a deadlock situation. If it would, then the kernel selects one
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read lock

1. After placing read lock (l_start = 10, l_len = 30)

2. After placing write lock (l_start = 20, l_len = 10)
1128 Chapter 55



of the blocked processes and causes its fcntl() call to unblock and fail with the error
EDEADLK. (On Linux, the process making the most recent fcntl() call is selected, but
this is not required by SUSv3, and may not hold true on future versions of Linux or
on other UNIX implementations. Any process using F_SETLKW must be prepared to
handle an EDEADLK error.)

Figure 55-4: Deadlock when two processes deny each other’s lock requests

Deadlock situations are detected even when placing locks on multiple different
files, as are circular deadlocks involving multiple processes. (By circular deadlock, we
mean, for example, process A waiting to acquire a lock on a region locked by pro-
cess B, process B waiting on a lock held by process C, and process C waiting on a
lock held by process A.)

55.3.2 Example: An Interactive Locking Program
The program shown in Listing 55-2 allows us to interactively experiment with
record locking. This program takes a single command-line argument: the name of a
file on which we wish to place locks. Using this program, we can verify many of our
previous statements regarding the operation of record locking. The program is
designed to be used interactively and accepts commands of this form:

cmd lock start length [ whence ]

For cmd, we can specify g to perform an F_GETLK, s to perform an F_SETLK, or w to per-
form an F_SETLKW. The remaining arguments are used to initialize the flock structure
passed to fcntl(). The lock argument specifies the value for the l_type field and is r for
F_RDLCK, w for F_WRLCK, or u for F_UNLCK. The start and length arguments are integers
specifying the values for the l_start and l_len fields. Finally, the optional whence argu-
ment specifies the value for the l_whence field, and may be s for SEEK_SET (the default),
c for SEEK_CUR, or e for SEEK_END. (For an explanation of why we cast the l_start and
l_len fields to long long in the printf() call in Listing 55-2, see Section 5.10.)
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Listing 55-2: Experimenting with record locking

–––––––––––––––––––––––––––––––––––––––––––– filelock/i_fcntl_locking.c

#include <sys/stat.h>
#include <fcntl.h>
#include "tlpi_hdr.h"

#define MAX_LINE 100

static void
displayCmdFmt(void)
{
    printf("\n    Format: cmd lock start length [whence]\n\n");
    printf("    'cmd' is 'g' (GETLK), 's' (SETLK), or 'w' (SETLKW)\n");
    printf("    'lock' is 'r' (READ), 'w' (WRITE), or 'u' (UNLOCK)\n");
    printf("    'start' and 'length' specify byte range to lock\n");
    printf("    'whence' is 's' (SEEK_SET, default), 'c' (SEEK_CUR), "
           "or 'e' (SEEK_END)\n\n");
}

int
main(int argc, char *argv[])
{
    int fd, numRead, cmd, status;
    char lock, cmdCh, whence, line[MAX_LINE];
    struct flock fl;
    long long len, st;

    if (argc != 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s file\n", argv[0]);

    fd = open(argv[1], O_RDWR);
    if (fd == -1)
        errExit("open (%s)", argv[1]);

    printf("Enter ? for help\n");

    for (;;) {          /* Prompt for locking command and carry it out */
        printf("PID=%ld> ", (long) getpid());
        fflush(stdout);

        if (fgets(line, MAX_LINE, stdin) == NULL)       /* EOF */
            exit(EXIT_SUCCESS);
        line[strlen(line) - 1] = '\0';          /* Remove trailing '\n' */

        if (*line == '\0')
            continue;                           /* Skip blank lines */

        if (line[0] == '?') {
            displayCmdFmt();
            continue;
        }

        whence = 's';                   /* In case not otherwise filled in */
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        numRead = sscanf(line, "%c %c %lld %lld %c", &cmdCh, &lock,
                        &st, &len, &whence);
        fl.l_start = st;
        fl.l_len = len;

        if (numRead < 4 || strchr("gsw", cmdCh) == NULL ||
                strchr("rwu", lock) == NULL || strchr("sce", whence) == NULL) {

printf("Invalid command!\n");
            continue;
        }

        cmd = (cmdCh == 'g') ? F_GETLK : (cmdCh == 's') ? F_SETLK : F_SETLKW;
        fl.l_type = (lock == 'r') ? F_RDLCK : (lock == 'w') ? F_WRLCK : F_UNLCK;
        fl.l_whence = (whence == 'c') ? SEEK_CUR :
                      (whence == 'e') ? SEEK_END : SEEK_SET;

        status = fcntl(fd, cmd, &fl);           /* Perform request... */

        if (cmd == F_GETLK) {                   /* ... and see what happened */
            if (status == -1) {
                errMsg("fcntl - F_GETLK");
            } else {
                if (fl.l_type == F_UNLCK)
                    printf("[PID=%ld] Lock can be placed\n", (long) getpid());
                else                            /* Locked out by someone else */
                    printf("[PID=%ld] Denied by %s lock on %lld:%lld "
                            "(held by PID %ld)\n", (long) getpid(),
                            (fl.l_type == F_RDLCK) ? "READ" : "WRITE",
                            (long long) fl.l_start,
                            (long long) fl.l_len, (long) fl.l_pid);
            }
        } else {                /* F_SETLK, F_SETLKW */
            if (status == 0)
                printf("[PID=%ld] %s\n", (long) getpid(),
                        (lock == 'u') ? "unlocked" : "got lock");
            else if (errno == EAGAIN || errno == EACCES)        /* F_SETLK */
                printf("[PID=%ld] failed (incompatible lock)\n",
                        (long) getpid());
            else if (errno == EDEADLK)                          /* F_SETLKW */
                printf("[PID=%ld] failed (deadlock)\n", (long) getpid());
            else
                errMsg("fcntl - F_SETLK(W)");
        }
    }
}

–––––––––––––––––––––––––––––––––––––––––––– filelock/i_fcntl_locking.c

In the following shell session logs, we demonstrate the use of the program in List-
ing 55-2 by running two instances to place locks on the same 100-byte file (tfile).
Figure 55-5 shows the state of granted and queued lock requests at various points
during this shell session log, as noted in the commentary below.
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We start a first instance (process A) of the program in Listing 55-2, placing a
read lock on bytes 0 to 39 of the file:

Terminal window 1
$ ls -l tfile
-rw-r--r--    1 mtk      users         100 Apr 18 12:19 tfile
$ ./i_fcntl_locking tfile
Enter ? for help
PID=790> s r 0 40
[PID=790] got lock

Then we start a second instance of the program (process B), placing a read lock on
a bytes 70 through to the end of the file:

                                    Terminal window 2
                                    $ ./i_fcntl_locking tfile
                                    Enter ? for help
                                    PID=800> s r -30 0 e
                                    [PID=800] got lock

At this point, things appear as shown in part a of Figure 55-5, where process A (pro-
cess ID 790) and process B (process ID 800) hold locks on different parts of the file.

Now we return to process A, where we try to place a write lock on the entire
file. We first employ F_GETLK to test whether the lock can be placed and are
informed that there is a conflicting lock. Then we try placing the lock with F_SETLK,
which also fails. Finally, we try placing the lock with F_SETLKW, which blocks.

PID=790> g w 0 0
[PID=790] Denied by READ lock on 70:0 (held by PID 800)
PID=790> s w 0 0
[PID=790] failed (incompatible lock)
PID=790> w w 0 0

At this point, things appear as shown in part b of Figure 55-5, where process A and
process B each hold a lock on different parts of the file, and process A has a
queued lock request on the whole file.

We continue in process B, by trying to place a write lock on the entire file. We
first test whether the lock can be placed using F_GETLK, which informs us that there
is a conflicting lock. We then try placing the lock using F_SETLKW.

                                    PID=800> g w 0 0
                                    [PID=800] Denied by READ lock on 0:40
                                    (held by PID 790)
                                    PID=800> w w 0 0
                                    [PID=800] failed (deadlock)

Part c of Figure 55-5 shows what happened when process B made a blocking
request to place a write lock on the entire file: a deadlock. At this point, the kernel
selected one of the lock requests to fail—in this case, the request by process B,
which then receives the EDEADLK error from its fcntl() call.

We continue in process B, by removing all of its locks on the file:

                                    PID=800> s u 0 0
                                    [PID=800] unlocked
[PID=790] got lock
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As we see from the last line of output, this allowed process A’s blocked lock request
to be granted.

It is important to realize that even though process B’s deadlocked request was
canceled, it still held its other lock, and so process A’s queued lock request
remained blocked. Process A’s lock request is granted only when process B removes
its other lock, bringing about the situation shown in part d of Figure 55-5.

Figure 55-5: State of granted and queued lock requests while running i_fcntl_locking.c

55.3.3 Example: A Library of Locking Functions
Listing 55-3 provides a set of locking functions that we can use in other programs.
These functions are as follows:

The lockRegion() function uses F_SETLK to place a lock on the open file referred
to by the file descriptor fd. The type argument specifies the lock type (F_RDLCK or
F_WRLCK). The whence, start, and len arguments specify the range of bytes to lock.
These arguments provide the values for the similarly named fields of the
flockstr structure that is used to place the lock.

The lockRegionWait() function is like lockRegion(), but makes a blocking lock
request; that is, it uses F_SETLKW, rather than F_SETLK.

Granted lock Queued lock

PID=790, type=READ
390

PID=800, type=READ
9970

File Offset 990

PID=790, type=READ
390

PID=800, type=READ
9970

PID=790, type=WRITE
0 99

a)

b)

PID=790, type=READ
390

PID=800, type=READ
9970

PID=790, type=WRITE
0 99

c)

PID=800, type=WRITE (canceled because of deadlock)
0 99

PID=790, type=WRITE
0 99

d)
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The regionIsLocked() function tests whether a lock can be placed on a file. The
arguments of this function are as for lockRegion(). This function returns 0
(false) if no process holds a lock that conflicts with the lock specified in the call.
If one of more processes hold conflicting locks, then this function returns a
nonzero value (i.e., true)—the process ID of one the processes holding a con-
flicting lock.

Listing 55-3: File region locking functions

––––––––––––––––––––––––––––––––––––––––––––– filelock/region_locking.c

#include <fcntl.h>
#include "region_locking.h"             /* Declares functions defined here */

/* Lock a file region (private; public interfaces below) */

static int
lockReg(int fd, int cmd, int type, int whence, int start, off_t len)
{
    struct flock fl;

    fl.l_type = type;
    fl.l_whence = whence;
    fl.l_start = start;
    fl.l_len = len;

    return fcntl(fd, cmd, &fl);
}

int                     /* Lock a file region using nonblocking F_SETLK */
lockRegion(int fd, int type, int whence, int start, int len)
{
    return lockReg(fd, F_SETLK, type, whence, start, len);
}

int                     /* Lock a file region using blocking F_SETLKW */
lockRegionWait(int fd, int type, int whence, int start, int len)
{
    return lockReg(fd, F_SETLKW, type, whence, start, len);
}

/* Test if a file region is lockable. Return 0 if lockable, or
   PID of process holding incompatible lock, or -1 on error. */

pid_t
regionIsLocked(int fd, int type, int whence, int start, int len)
{
    struct flock fl;

    fl.l_type = type;
    fl.l_whence = whence;
    fl.l_start = start;
    fl.l_len = len;
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    if (fcntl(fd, F_GETLK, &fl) == -1)
        return -1;

    return (fl.l_type == F_UNLCK) ? 0 : fl.l_pid;
}

––––––––––––––––––––––––––––––––––––––––––––– filelock/region_locking.c

55.3.4 Lock Limits and Performance
SUSv3 allows an implementation to place fixed, system-wide upper limits on the
number of record locks that can be acquired. When this limit is reached, fcntl() fails
with the error ENOLCK. Linux doesn’t set a fixed upper limit on the number of record
locks that may be acquired; we are merely limited by availability of memory. (Many
other UNIX implementations are similar.)

How quickly can record locks be acquired and released? There is no fixed
answer to this question, since the speed of these operations is a function of the kernel
data structure used to maintain record locks and the location of a particular lock
within that data structure. We look at this structure in a moment, but first we con-
sider some requirements that influence its design:

The kernel needs to be able to merge a new lock with any existing locks (held
by the same process) of the same mode that may lie on either side of the new lock.

A new lock may completely replace one or more existing locks held by the call-
ing process. The kernel needs to be able to easily locate all of these locks.

When creating a new lock with a different mode in the middle of an existing
lock, the job of splitting the existing lock (Figure 55-3) should be simple.

The kernel data structure used to maintain information about locks is designed to
satisfy these requirements. Each open file has an associated linked list of locks held
against that file. Locks within the list are ordered, first by process ID, and then by
starting offset. An example of such a list is shown in Figure 55-6.

The kernel also maintains flock() locks and file leases in the linked list of locks
associated with an open file. (We briefly describe file leases when discussing
the /proc/locks file in Section 55.5.) However, these types of locks are typically
far fewer in number and therefore less likely to impact performance, so we
ignore them in our discussion.

Figure 55-6: Example of a record lock list for a single file
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Whenever a new lock is added to this data structure, the kernel must check for con-
flicts with any existing lock on the file. This search is carried out sequentially, start-
ing at the head of the list.

Assuming a large number of locks distributed randomly among many pro-
cesses, we can say that the time required to add or remove a lock increases roughly
linearly with the number of locks already held on the file.

55.3.5 Semantics of Lock Inheritance and Release
The semantics of fcntl() record lock inheritance and release differ substantially
from those for locks created using flock(). Note the following points:

Record locks are not inherited across a fork() by a child process. This contrasts
with flock(), where the child inherits a reference to the same lock and can
release this lock, with the consequence that the parent also loses the lock.

Record locks are preserved across an exec(). (However, note the effect of the
close-on-exec flag, described below.)

All of the threads in a process share the same set of record locks.

Record locks are associated with both a process and an i-node (refer to Sec-
tion 5.4). An unsurprising consequence of this association is that when a pro-
cess terminates, all of its record locks are released. Less expected is that
whenever a process closes a file descriptor, all locks held by the process on the
corresponding file are released, regardless of the file descriptor(s) through
which the locks were obtained. For example, in the following code, the
close(fd2) call releases the lock held by the calling process on testfile, even
though the lock was obtained via the file descriptor fd1:

struct flock fl;

fl.l_type = F_WRLCK;
fl.l_whence = SEEK_SET;
fl.l_start = 0;
fl.l_len = 0;

fd1 = open("testfile", O_RDWR);
fd2 = open("testfile", O_RDWR);

if (fcntl(fd1, cmd, &fl) == -1)
    errExit("fcntl");

close(fd2);

The semantics described in the last point apply no matter how the various descrip-
tors referring to the same file were obtained and no matter how the descriptor is
closed. For example, dup(), dup2(), and fcntl() can all be used to obtain duplicates of
an open file descriptor. And, as well as performing an explicit close(), a descriptor
can be closed by an exec() call if the close-on-exec flag was set, or via a dup2() call,
which closes its second file descriptor argument if that descriptor is already open.
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The semantics of fcntl() lock inheritance and release are an architectural blem-
ish. For example, they make the use of record locks from library packages problem-
atic, since a library function can’t prevent the possibility that its caller will close a
file descriptor referring to a locked file and thus remove a lock obtained by the
library code. An alternative implementation scheme would have been to associate a
lock with a file descriptor rather than with an i-node. However, the current seman-
tics are the historical and now standardized behavior of record locks. Unfortu-
nately, these semantics greatly limit the utility of fcntl() locking.

With flock(), a lock is associated only with an open file description, and remains in
effect until either any process holding a reference to the lock explicitly releases the
lock or all file descriptors referring to the open file description are closed.

55.3.6 Lock Starvation and Priority of Queued Lock Requests
When multiple processes must wait in order to place a lock on a currently locked
region, a couple of questions arise.

Can a process waiting to place a write lock be starved by a series of processes
placing read locks on the same region? On Linux (as on many other UNIX imple-
mentations), a series of read locks can indeed starve a blocked write lock, possibly
indefinitely.

When two or more processes are waiting to place a lock, are there any rules
that determine which process obtains the lock when it becomes available? For
example, are lock requests satisfied in FIFO order? And do the rules depend on the
types of locks being requested by each process (i.e., does a process requesting a
read lock have priority over one requesting a write lock or vice versa, or neither)?
On Linux, the rules are as follows:

The order in which queued lock requests are granted is indeterminate. If mul-
tiple processes are waiting to place locks, then the order in which they are satis-
fied depends on how the processes are scheduled.

Writers don’t have priority over readers, and vice versa.

Such statements don’t necessarily hold true on other systems. On some UNIX
implementations, lock requests are served in FIFO order, and readers have priority
over writers.

55.4 Mandatory Locking

The kinds of locks we have described so far are advisory. This means that a process
is free to ignore the use of fcntl() (or flock()) and simply perform I/O on the file.
The kernel doesn’t prevent this. When using advisory locking, it is up to the appli-
cation designer to:

set appropriate ownership (or group ownership) and permissions for the file,
so as to prevent noncooperating process from performing file I/O; and

ensure that the processes composing the application cooperate by obtaining
the appropriate lock on the file before performing I/O.
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Linux, like many other UNIX implementations, also allows fcntl() record locks to be
mandatory. This means that every file I/O operation is checked to see whether it is
compatible with any locks held by other processes on the region of the file on
which I/O is being performed.

Advisory mode locking is sometimes referred to as discretionary locking, while
mandatory locking is sometimes referred to as enforcement-mode locking. SUSv3
doesn’t specify mandatory locking, but it is available (with some variation in
the details) on most modern UNIX implementations.

In order to use mandatory locking on Linux, we must enable it on the file system
containing the files we wish to lock and on each file to be locked. We enable manda-
tory locking on a file system by mounting it with the (Linux-specific) –o mand option:

# mount -o mand /dev/sda10 /testfs

From a program, we can achieve the same result by specifying the MS_MANDLOCK flag
when calling mount(2) (Section 14.8.1).

We can check whether a mounted file system has mandatory locking enabled
by looking at the output of the mount(8) command with no options:

# mount | grep sda10
/dev/sda10 on /testfs type ext3 (rw,mand)

Mandatory locking is enabled on a file by the combination of having the set-group-
ID permission bit turned on and the group-execute permission turned off. This
combination of permission bits was otherwise meaningless and unused in earlier
UNIX implementations. In this way, later UNIX systems added mandatory locking
without needing to change existing programs or add new system calls. From the
shell, we can enable mandatory locking on a file as follows:

$ chmod g+s,g-x /testfs/file

From a program, we can enable mandatory locking for a file by setting permissions
appropriately using chmod() or fchmod() (Section 15.4.7).

When displaying permissions for a file whose permission bits are set for man-
datory locking, ls(1) displays an S in the group-execute permission column:

$ ls -l /testfs/file
-rw-r-Sr--    1 mtk      users       0 Apr 22 14:11 /testfs/file

Mandatory locking is supported for all native Linux and UNIX file systems, but
may not be supported on some network file systems or on non-UNIX file systems.
For example, Microsoft’s VFAT file system has no set-group-ID permission bit, so
mandatory locking can’t be used on VFAT file systems.

Effect of mandatory locking on file I/O operations

If mandatory locking is enabled for a file, what happens when a system call that per-
forms data transfer (e.g., read() or write()) encounters a lock conflict (i.e., an
attempt is made to write to a region that is currently read or write locked, or to
read from a region that is currently write locked)? The answer depends on whether
the file has been opened in blocking or nonblocking mode. If the file was opened
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in blocking mode, the system call blocks. If the file was opened with the O_NONBLOCK
flag, the system call immediately fails with the error EAGAIN. Similar rules apply for
truncate() and ftruncate(), if the bytes they are attempting to add or remove from the
file overlap a region currently locked (for reading or writing) by another process.

If we have opened a file in blocking mode (i.e., O_NONBLOCK is not specified in the
open() call), then I/O system calls can be involved in deadlock situations. Consider
the example shown in Figure 55-7, involving two processes that open the same file for
blocking I/O, obtain write locks on different parts of the file, and then each attempt
to write to the region locked by the other process. The kernel resolves this situation
in the same way that deadlock between two fcntl() calls is resolved (Section 55.3.1):
it selects one of the processes involved in the deadlock and causes its write() system
call to fail with the error EDEADLK.

Figure 55-7: Deadlock when mandatory locking is in force

Attempts to open() a file with the O_TRUNC flag always fail immediately (with the error
EAGAIN) if any other process holds a read or write lock on any part of the file.

It is not possible to create a shared memory mapping (i.e., mmap() with the
MAP_SHARED flag) on a file if any other process holds a mandatory read or write lock
on any part of the file. Conversely, it is not possible to place a mandatory lock on
any part of a file that is currently involved in a shared memory mapping. In both
cases, the relevant system call fails immediately with the error EAGAIN. The reason
for these restrictions becomes clear when we consider the implementation of memory
mappings. In Section 49.4.2, we saw that a shared file mapping both reads from
and writes to a file (and the latter operation, in particular, conflicts with any type of
lock on the file). Furthermore, this file I/O is performed by the memory-manage-
ment subsystem, which has no knowledge of the location of any file locks in the system.
Thus, to prevent a mapping from updating a file on which a mandatory lock is held, the
kernel performs a simple check—testing at the time of the mmap() call whether there
are locks anywhere in the file to be mapped (and vice versa for fcntl()).
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Mandatory locking caveats

Mandatory locks do less for us than we might at first expect, and have some poten-
tial shortcomings and problems:

Holding a mandatory lock on a file doesn’t prevent another process from
deleting it, since all that is required to unlink a file is suitable permissions on
the parent directory.

Careful consideration should be applied before enabling mandatory locks on a
publicly accessible file, since not even privileged processes can override a man-
datory lock. A malicious user could continuously hold a lock on the file in
order to create a denial-of-service attack. (While in most cases, we could make
the file accessible once more by turning off the set-group-ID bit, this may not
be possible if, for example, the mandatory file lock is causing the system to hang.)

There is a performance cost associated with the use of mandatory locking. For
each I/O system call made on a file with mandatory locking enabled, the kernel
must check for lock conflicts on the file. If the file has a large number of locks,
this check can slow I/O system calls significantly.

Mandatory locking also incurs a cost in application design. We need to handle
the possibility that each I/O system call can return EAGAIN (for nonblocking I/O)
or EDEADLK (for blocking I/O).

As a consequence of some kernel race conditions in the current Linux imple-
mentation, there are circumstances in which system calls that perform I/O
operations can succeed despite the presence of mandatory locks that should
deny those operations.

In summary, the use of mandatory locks is best avoided.

55.5 The /proc/locks File

We can view the set of locks currently held in the system by examining the contents
of the Linux-specific /proc/locks file. Here is an example of the information we can
see in this file (in this case, for four locks):

$ cat /proc/locks
1: POSIX  ADVISORY  WRITE 458 03:07:133880 0 EOF
2: FLOCK  ADVISORY  WRITE 404 03:07:133875 0 EOF
3: POSIX  ADVISORY  WRITE 312 03:07:133853 0 EOF
4: FLOCK  ADVISORY  WRITE 274 03:07:81908 0 EOF

The /proc/locks file displays information about locks created by both flock() and
fcntl(). The eight fields shown for each lock are as follows (from left to right):

1. The ordinal number of the lock within the set of all locks held for this file.
(Refer to Section 55.3.4.)

2. The type of lock. Here, FLOCK indicates a lock created by flock(), and POSIX indi-
cates a lock created by fcntl().

3. The mode of the lock, either ADVISORY or MANDATORY.
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4. The type of lock, either READ or WRITE (corresponding to shared and exclusive
locks for fcntl()).

5. The process ID of the process holding the lock.

6. Three colon-separated numbers that identify the file on which the lock is held.
These numbers are the major and minor device numbers of the file system on
which the file resides, followed by the i-node number of the file.

7. The starting byte of the lock. This is always 0 for flock() locks.

8. The ending byte of the lock. Here, EOF indicates that the lock runs to the end of
the file (i.e., l_len was specified as 0 for a lock created by fcntl()). For flock()
locks, this column is always EOF.

In Linux 2.4 and earlier, each line of /proc/locks includes five additional hexa-
decimal values. These are pointer addresses used by the kernel to record locks
in various lists. These values are not useful in application programs.

Using the information in /proc/locks, we can find out which process is holding a lock,
and on what file. The following shell session shows how to do this for lock number 3 in
the list above. This lock is held by process ID 312, on the i-node 133853 on the
device with major ID 3 and minor ID 7. We begin by using ps(1) to list information
about the process with process ID 312:

$ ps -p 312
  PID TTY          TIME CMD
  312 ?        00:00:00 atd

The above output shows that the program holding the lock is atd, the daemon that
executes scheduled batch jobs.

In order to find the locked file, we first search the files in the /dev directory,
and thus determine that the device with ID 3:7 is /dev/sda7:

$ ls -li /dev/sda7 | awk '$6 == "3," && $7 == 10'
  1311 brw-rw----    1 root   disk    3,  7 May 12  2006 /dev/sda7

We then determine the mount point for the device /dev/sda7 and search that part of
the file system for the file whose i-node number is 133853:

$ mount | grep sda7
/dev/sda7 on / type reiserfs (rw)             Device is mounted on /
$ su                                          So we can search all directories
Password:
# find / -mount -inum 133853                  Search for i-node 133853
/var/run/atd.pid

The find –mount option prevents find from descending into subdirectories under /
that are mount points for other file systems.

Finally, we display the contents of the locked file:

# cat /var/run/atd.pid
312

Thus, we see that the atd daemon is holding a lock on the file /var/run/atd.pid, and
that the content of this file is the process ID of the process running atd. This daemon
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is employing a technique to ensure that only one instance of the daemon is run-
ning at a time. We describe this technique in Section 55.6.

We can also use /proc/locks to obtain information about blocked lock requests,
as demonstrated in the following output:

$ cat /proc/locks
1: POSIX  ADVISORY  WRITE 11073 03:07:436283 100 109
1: -> POSIX  ADVISORY  WRITE 11152 03:07:436283 100 109
2: POSIX  MANDATORY WRITE 11014 03:07:436283 0 9
2: -> POSIX  MANDATORY WRITE 11024 03:07:436283 0 9
2: -> POSIX  MANDATORY READ  11122 03:07:436283 0 19
3: FLOCK  ADVISORY  WRITE 10802 03:07:134447 0 EOF
3: -> FLOCK  ADVISORY  WRITE 10840 03:07:134447 0 EOF

Lines shown with the characters -> immediately after a lock number represent lock
requests blocked by the corresponding lock number. Thus, we see one request
blocked on lock 1 (an advisory lock created with fcntl()), two requests blocked on
lock 2 (a mandatory lock created with fcntl()), and one request blocked on lock 3 (a lock
created with flock()).

The /proc/locks file also displays information about any file leases that are held
by processes on the system. File leases are a Linux-specific mechanism available
in Linux 2.4 and later. If a process takes out a lease on a file, then it is notified
(by delivery of a signal) if another process tries to open() or truncate() that file.
(The inclusion of truncate() is necessary because it is the only system call that
can be used to change the contents of a file without first opening it.) File leases
are provided in order to allow Samba to support the opportunistic locks (oplocks)
functionality of the Microsoft SMB protocol and to allow NFS version 4 to sup-
port delegations (which are similar to SMB oplocks). Further details about file
leases can be found under the description of the F_SETLEASE operation in the
fcntl(2) manual page.

55.6 Running Just One Instance of a Program

Some programs—in particular, many daemons—need to ensure that only one
instance of the program is running on the system at a time. A common method of
doing this is to have the daemon create a file in a standard directory and place a
write lock on it. The daemon holds the file lock for the duration of its execution
and deletes the file just before terminating. If another instance of the daemon is
started, it will fail to obtain a write lock on the file. Consequently, it will realize that
another instance of the daemon must already be running, and terminate.

Many network servers use an alternative convention of assuming that a server
instance is already running if the well-known socket port to which the server
binds is already in use (Section 61.10).

The /var/run directory is the usual location for such lock files. Alternatively, the
location of the file may be specified by a line in the daemon’s configuration file.

Conventionally, a daemon writes its own process ID into the lock file, and
hence the file is often named with an extension .pid (for example, syslogd creates
the file /var/run/syslogd.pid). This is useful if some application needs to find the
1142 Chapter 55



process ID of the daemon. It also allows an extra sanity check—we can verify
whether that process ID exists using kill(pid, 0), as described in Section 20.5. (In
older UNIX implementations that did not provide file locking, this was used as an
imperfect, but usually practicable, way of assessing whether an instance of the dae-
mon really was still running, or whether an earlier instance had simply failed to
delete the file before terminating.)

There are many minor variations in the code used to create and lock a process
ID lock file. Listing 55-4 is based on ideas presented in [Stevens, 1999] and pro-
vides a function, createPidFile(), that encapsulates the steps described above. We
would typically call this function with a line such as the following:

if (createPidFile("mydaemon", "/var/run/mydaemon.pid", 0) == -1)
    errExit("createPidFile");

One subtlety in the createPidFile() function is the use of ftruncate() to erase any pre-
vious string in the lock file. This is done because the last instance of the daemon
may have failed to delete the file, perhaps because of a system crash. In this case, if
the process ID of the new daemon instance is small, we might otherwise not completely
overwrite the previous contents of the file. For example, if our process ID is 789, then
we would write just 789\n to the file, but a previous daemon instance might have
written 12345\n. If we did not truncate the file, then the resulting content would be
789\n5\n. Erasing any existing string may not be strictly necessary, but it is tidier and
removes any potential for confusion.

The flags argument can specify the constant CPF_CLOEXEC, which causes
createPidFile() to set the close-on-exec flag (Section 27.4) for the file descriptor. This
is useful for servers that restart themselves by calling exec(). If the file descriptor was
not closed during the exec(), then the restarted server would think that a duplicate
instance of the server is already running.

Listing 55-4: Creating a PID lock file to ensure just one instance of a program is started

–––––––––––––––––––––––––––––––––––––––––––– filelock/create_pid_file.c

#include <sys/stat.h>
#include <fcntl.h>
#include "region_locking.h"             /* For lockRegion() */
#include "create_pid_file.h"            /* Declares createPidFile() and
                                           defines CPF_CLOEXEC */
#include "tlpi_hdr.h"

#define BUF_SIZE 100            /* Large enough to hold maximum PID as string */

/* Open/create the file named in 'pidFile', lock it, optionally set the
   close-on-exec flag for the file descriptor, write our PID into the file,
   and (in case the caller is interested) return the file descriptor
   referring to the locked file. The caller is responsible for deleting
   'pidFile' file (just) before process termination. 'progName' should be the
   name of the calling program (i.e., argv[0] or similar), and is used only for
   diagnostic messages. If we can't open 'pidFile', or we encounter some other
   error, then we print an appropriate diagnostic and terminate. */
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int
createPidFile(const char *progName, const char *pidFile, int flags)
{
    int fd;
    char buf[BUF_SIZE];

    fd = open(pidFile, O_RDWR | O_CREAT, S_IRUSR | S_IWUSR);
    if (fd == -1)
        errExit("Could not open PID file %s", pidFile);

    if (flags & CPF_CLOEXEC) {

        /* Set the close-on-exec file descriptor flag */

        flags = fcntl(fd, F_GETFD);                     /* Fetch flags */
        if (flags == -1)
            errExit("Could not get flags for PID file %s", pidFile);

        flags |= FD_CLOEXEC;                            /* Turn on FD_CLOEXEC */

        if (fcntl(fd, F_SETFD, flags) == -1)            /* Update flags */
            errExit("Could not set flags for PID file %s", pidFile);
    }

    if (lockRegion(fd, F_WRLCK, SEEK_SET, 0, 0) == -1) {
        if (errno  == EAGAIN || errno == EACCES)
            fatal("PID file '%s' is locked; probably "
                     "'%s' is already running", pidFile, progName);
        else
            errExit("Unable to lock PID file '%s'", pidFile);
    }

    if (ftruncate(fd, 0) == -1)
        errExit("Could not truncate PID file '%s'", pidFile);

    snprintf(buf, BUF_SIZE, "%ld\n", (long) getpid());
    if (write(fd, buf, strlen(buf)) != strlen(buf))
        fatal("Writing to PID file '%s'", pidFile);

    return fd;
}

–––––––––––––––––––––––––––––––––––––––––––– filelock/create_pid_file.c

55.7 Older Locking Techniques

In older UNIX implementations that lacked file locking, a number of ad hoc locking
techniques were employed. Although all of these have been superseded by fcntl()
record locking, we describe them here since they still appear in some older pro-
grams. All of these techniques are advisory in nature.
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open(file, O_CREAT | O_EXCL,...) plus unlink(file)

SUSv3 requires that an open() call with the flags O_CREAT and O_EXCL perform the
steps of checking for the existence of a file and creating it atomically (Section 5.1).
This means that if two processes attempt to create a file specifying these flags, it is
guaranteed that only one of them will succeed. (The other process will receive the
error EEXIST from open().) Used in conjunction with the unlink() system call, this
provides the basis for a locking mechanism. Acquiring the lock is performed by
successfully opening the file with the O_CREAT and O_EXCL flags, followed by an imme-
diate close(). Releasing the lock is performed using unlink(). Although workable,
this technique has several limitations:

If the open() fails, indicating that some other process has the lock, then we must
retry the open() in some kind of loop, either polling continuously (which wastes
CPU time) or with a delay between each attempt (which means that there may
be some delay between the time the lock becomes available and when we actually
acquire it). With fcntl(), we can use F_SETLKW to block until the lock becomes free.

Acquiring and releasing locks using open() and unlink() involves file-system
operations that are rather slower than the use of record locks. (On one of the
author’s x86-32 systems running Linux 2.6.31, acquiring and releasing 1 million
locks on an ext3 file using the technique described here required 44 seconds.
Acquiring and releasing 1 million record locks on the same byte of a file
required 2.5 seconds.)

If a process accidentally exits without deleting the lock file, the lock is not
released. There are ad hoc techniques for handling this problem, including
checking the last modification time of the file and having the lock holder write
its process ID to the file so that we can check if the process still exists, but none
of these techniques is foolproof. By comparison, record locks are released
automatically when a process terminates.

If we are placing multiple locks (i.e., using multiple lock files), deadlocks are
not detected. If a deadlock arises, the processes involved in the deadlock will
remain blocked indefinitely. (Each process will be spinning, checking to see if
it can obtain the lock it requires.) By contrast, the kernel provides deadlock
detection for fcntl() record locks.

NFS version 2 doesn’t support O_EXCL semantics. Linux 2.4 NFS clients also fail
to implement O_EXCL correctly, even for NFS version 3 and later.

link(file, lockfile) plus unlink(lockfile)

The fact that the link() system call fails if the new link already exists has also been
used as a locking mechanism, again employing unlink() to perform the unlock func-
tion. The usual approach is to have each process that needs to acquire the lock create
a unique temporary filename, typically one including the process ID (and possibly
the hostname, if the lock file is created on a network file system). To acquire the
lock, this temporary file is linked to some agreed-upon standard pathname. (The
semantics of hard links require that the two pathnames reside in the same file system.)
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If the link() call succeeds, we have obtained the lock. If it fails (EEXIST), then
another process has the lock and we must try again later. This technique suffers the
same limitations as the open(file, O_CREAT | O_EXCL,...) technique described above.

open(file, O_CREAT | O_TRUNC | O_WRONLY, 0) plus unlink(file)

The fact that calling open() on an existing file fails if O_TRUNC is specified and write
permission is denied on the file can be used as the basis of a locking technique. To
obtain a lock, we use the following code (which omits error checking) to create a
new file:

fd = open(file, O_CREAT | O_TRUNC | O_WRONLY, (mode_t) 0);
close(fd);

For an explanation of why we use the (mode_t) cast in the open() call above, see
Appendix C.

If the open() call succeeds (i.e., the file didn’t previously exist), we have the lock. If it
fails with EACCES (i.e., the file exists and has no permissions for anyone), then
another process has the lock, and we must try again later. This technique suffers
the same limitations as the previous techniques, with the added caveat that we can’t
employ it in a program with superuser privileges, since the open() call will always
succeed, regardless of the permissions that are set on the file.

55.8 Summary

File locks allow processes to synchronize access to a file. Linux provides two file
locking system calls: the BSD-derived flock() and the System V–derived fcntl().
Although both system calls are available on most UNIX implementations, only
fcntl() locking is standardized in SUSv3.

The flock() system call locks an entire file. Two types of locks may be placed:
shared locks, which are compatible with shared locks held by other processes, and
exclusive locks, which prevent other processes from placing any type of lock.

The fcntl() system call places locks (“record locks”) on any region of a file, rang-
ing from a single byte to the entire file. Two types of locks may be placed: read
locks and write locks, which have similar compatibility semantics to the shared and
exclusive locks placed via flock(). If a blocking (F_SETLKW) lock request would bring
about a deadlock situation, then the kernel causes fcntl() to fail (with the error
EDEADLK) in one of the affected processes.

Locks placed using flock() and fcntl() are invisible to one another (except on sys-
tems that implement flock() using fcntl()). The locks placed via flock() and fcntl() have
different semantics with respect to inheritance across fork() and release when file
descriptors are closed.

The Linux-specific /proc/locks file displays the file locks currently held by all
processes on the system.

Further information

An extensive discussion of fcntl() record locking can be found in [Stevens & Rago,
2005] and [Stevens, 1999]. Some details of the implementation of flock() and fcntl()
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locking on Linux are provided in [Bovet & Cesati, 2005]. [Tanenbaum, 2007] and
[Deitel et al., 2004] describe deadlocking concepts in general, including coverage
of deadlock detection, avoidance, and prevention.

55.9 Exercises

55-1. Experiment by running multiple instances of the program in Listing 55-1
(t_flock.c) to determine the following points about the operation of flock():

a) Can a series of processes acquiring shared locks on a file starve a process
attempting to place an exclusive lock on the file?

b) Suppose that a file is locked exclusively, and other processes are waiting to
place both shared and exclusive locks on the file. When the first lock is
released, are there any rules determining which process is next granted a
lock? For example, do shared locks have priority over exclusive locks or
vice versa? Are locks granted in FIFO order?

c) If you have access to some other UNIX implementation that provides
flock(), try to determine the rules on that implementation.

55-2. Write a program to determine whether flock() detects deadlock situations when
being used to lock two different files in two processes.

55-3. Write a program to verify the statements made in Section 55.2.1 regarding the
semantics of inheritance and release of flock() locks.

55-4. Experiment by running the programs in Listing 55-1 (t_flock.c) and Listing 55-2
(i_fcntl_locking.c) to see whether locks granted by flock() and fcntl() have any effect
on one another. If you have access to other UNIX implementations, try the same
experiment on those implementations.

55-5. In Section 55.3.4, we noted that, on Linux, the time required to add or check for
the existence of a lock is a function of the position of the lock in the list of all locks
on the file. Write two programs to verify this:

a) The first program should acquire (say) 40,001 write locks on a file. These
locks are placed on alternating bytes of the file; that is, locks are placed on
bytes 0, 2, 4, 6, and so on through to (say) byte 80,000. Having acquired
these locks, the process then goes to sleep.

b) While the first program is sleeping, the second program loops (say)
10,000 times, using F_SETLK to try to lock one of the bytes locked by the
previous program (these lock attempts always fail). In any particular execu-
tion, the program always tries to lock byte N * 2 of the file.

Using the shell built-in time command, measure the time required by the second
program for N equals 0, 10,000, 20,000, 30,000, and 40,000. Do the results match
the expected linear behavior?

55-6. Experiment with the program in Listing 55-2 (i_fcntl_locking.c) to verify the
statements made in Section 55.3.6 regarding lock starvation and priority for fcntl()
record locks.
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55-7. If you have access to other UNIX implementations, use the program in Listing 55-2
(i_fcntl_locking.c) to see if you can establish any rules for fcntl() record locking
regarding starvation of writers and regarding the order in which multiple queued
lock requests are granted.

55-8. Use the program in Listing 55-2 (i_fcntl_locking.c) to demonstrate that the kernel
detects circular deadlocks involving three (or more) processes locking the same file.

55-9. Write a pair of programs (or a single program that uses a child process) to bring
about the deadlock situation with mandatory locks described in Section 55.4.

55-10. Read the manual page of the lockfile(1) utility that is supplied with procmail. Write a
simple version of this program.
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S O C K E T S :  I N T R O D U C T I O N

Sockets are a method of IPC that allow data to be exchanged between applications,
either on the same host (computer) or on different hosts connected by a network. The
first widespread implementation of the sockets API appeared with 4.2BSD in 1983,
and this API has been ported to virtually every UNIX implementation, as well as
most other operating systems.

The sockets API is formally specified in POSIX.1g, which was ratified in 2000
after spending about a decade as a draft standard. This standard has been
superseded by SUSv3.

This chapter and the following chapters describe the use of sockets, as follows:

This chapter provides a general introduction to the sockets API. The following
chapters assume an understanding of the general concepts presented here. We
don’t present any example code in this chapter. Code examples in the UNIX
and Internet domains are presented in the following chapters.

Chapter 57 describes UNIX domain sockets, which allow communication
between applications on the same host system.

Chapter 58 introduces various computer networking concepts and describes
key features of the TCP/IP networking protocols. It provides background
needed for the next chapters.

Chapter 59 describes Internet domain sockets, which allow applications on dif-
ferent hosts to communicate via a TCP/IP network.



Chapter 60 discusses the design of servers that use sockets.

Chapter 61 covers a range of advanced topics, including additional features for
socket I/O, a more detailed look at the TCP protocol, and the use of socket
options to retrieve and modify various attributes of sockets.

These chapters merely aim to give the reader a good grounding in the use of sockets.
Sockets programming, especially for network communication, is an enormous
topic in its own right, and forms the subject of entire books. Sources of further
information are listed in Section 59.15.

56.1 Overview

In a typical client-server scenario, applications communicate using sockets as follows:

Each application creates a socket. A socket is the “apparatus” that allows com-
munication, and both applications require one.

The server binds its socket to a well-known address (name) so that clients can
locate it.

A socket is created using the socket() system call, which returns a file descriptor used
to refer to the socket in subsequent system calls:

fd = socket(domain, type, protocol);

We describe socket domains and types in the following paragraphs. For all applica-
tions described in this book, protocol is always specified as 0.

Communication domains

Sockets exist in a communication domain, which determines:

the method of identifying a socket (i.e., the format of a socket “address”); and

the range of communication (i.e., either between applications on the same host
or between applications on different hosts connected via a network).

Modern operating systems support at least the following domains:

The UNIX (AF_UNIX) domain allows communication between applications on
the same host. (POSIX.1g used the name AF_LOCAL as a synonym for AF_UNIX, but
this name is not used in SUSv3.)

The IPv4 (AF_INET) domain allows communication between applications run-
ning on hosts connected via an Internet Protocol version 4 (IPv4) network.

The IPv6 (AF_INET6) domain allows communication between applications running
on hosts connected via an Internet Protocol version 6 (IPv6) network.
Although IPv6 is designed as the successor to IPv4, the latter protocol is cur-
rently still the most widely used.

Table 56-1 summarizes the characteristics of these socket domains.
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In some code, we may see constants with names such as PF_UNIX instead of
AF_UNIX. In this context, AF stands for “address family” and PF stands for “protocol
family.” Initially, it was conceived that a single protocol family might support
multiple address families. In practice, no protocol family supporting multiple
address families has ever been defined, and all existing implementations
define the PF_ constants to be synonymous with the corresponding AF_ constants.
(SUSv3 specifies the AF_ constants, but not the PF_ constants.) In this book, we
always use the AF_ constants. Further information about the history of these
constants can be found in Section 4.2 of [Stevens et al., 2004].

Socket types

Every sockets implementation provides at least two types of sockets: stream and
datagram. These socket types are supported in both the UNIX and the Internet
domains. Table 56-2 summarizes the properties of these socket types.

Stream sockets (SOCK_STREAM) provide a reliable, bidirectional, byte-stream communi-
cation channel. By the terms in this description, we mean the following:

Reliable means that we are guaranteed that either the transmitted data will
arrive intact at the receiving application, exactly as it was transmitted by the
sender (assuming that neither the network link nor the receiver crashes), or
that we’ll receive notification of a probable failure in transmission.

Bidirectional means that data may be transmitted in either direction between
two sockets.

Byte-stream means that, as with pipes, there is no concept of message bound-
aries (refer to Section 44.1).

Table 56-1: Socket domains

Domain Communication
performed 

Communication
between applications

Address format Address 
structure

AF_UNIX within kernel on same host pathname sockaddr_un
AF_INET via IPv4 on hosts connected 

via an IPv4 network
32-bit IPv4 address + 
16-bit port number

sockaddr_in

AF_INET6 via IPv6 on hosts connected 
via an IPv6 network

128-bit IPv6 address + 
16-bit port number

sockaddr_in6

Table 56-2: Socket types and their properties

Property
Socket type

Stream Datagram

Reliable delivery? Y N
Message boundaries preserved? N Y
Connection-oriented? Y N
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A stream socket is similar to using a pair of pipes to allow bidirectional communica-
tion between two applications, with the difference that (Internet domain) sockets
permit communication over a network.

Stream sockets operate in connected pairs. For this reason, stream sockets are
described as connection-oriented. The term peer socket refers to the socket at the other
end of a connection; peer address denotes the address of that socket; and peer
application denotes the application utilizing the peer socket. Sometimes, the term
remote (or foreign) is used synonymously with peer. Analogously, sometimes the term
local is used to refer to the application, socket, or address for this end of the con-
nection. A stream socket can be connected to only one peer.

Datagram sockets (SOCK_DGRAM) allow data to be exchanged in the form of mes-
sages called datagrams. With datagram sockets, message boundaries are preserved,
but data transmission is not reliable. Messages may arrive out of order, be dupli-
cated, or not arrive at all.

Datagram sockets are an example of the more generic concept of a
connectionless socket. Unlike a stream socket, a datagram socket doesn’t need to be
connected to another socket in order to be used. (In Section 56.6.2, we’ll see that
datagram sockets may be connected with one another, but this has somewhat dif-
ferent semantics from connected stream sockets.)

In the Internet domain, datagram sockets employ the User Datagram Protocol
(UDP), and stream sockets (usually) employ the Transmission Control Protocol (TCP).
Instead of using the terms Internet domain datagram socket and Internet domain stream
socket, we’ll often just use the terms UDP socket and TCP socket, respectively.

Socket system calls

The key socket system calls are the following:

The socket() system call creates a new socket.

The bind() system call binds a socket to an address. Usually, a server employs
this call to bind its socket to a well-known address so that clients can locate
the socket.

The listen() system call allows a stream socket to accept incoming connections
from other sockets.

The accept() system call accepts a connection from a peer application on a listen-
ing stream socket, and optionally returns the address of the peer socket.

The connect() system call establishes a connection with another socket.

On most Linux architectures (the exceptions include Alpha and IA-64), all of
the sockets system calls are actually implemented as library functions multi-
plexed through a single system call, socketcall(). (This is an artifact of the original
development of the Linux sockets implementation as a separate project.)
Nevertheless, we refer to all of these functions as system calls in this book,
since this is what they were in the original BSD implementation, as well as in
many other contemporary UNIX implementations.
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Socket I/O can be performed using the conventional read() and write() system calls,
or using a range of socket-specific system calls (e.g., send(), recv(), sendto(), and
recvfrom()). By default, these system calls block if the I/O operation can’t be com-
pleted immediately. Nonblocking I/O is also possible, by using the fcntl() F_SETFL
operation (Section 5.3) to enable the O_NONBLOCK open file status flag.

On Linux, we can call ioctl(fd, FIONREAD, &cnt) to obtain the number of
unread bytes available on the stream socket referred to by the file descriptor
fd. For a datagram socket, this operation returns the number of bytes in the
next unread datagram (which may be zero if the next datagram is of zero
length), or zero if there are no pending datagrams. This feature is not speci-
fied in SUSv3.

56.2 Creating a Socket: socket()

The socket() system call creates a new socket.

The domain argument specifies the communication domain for the socket. The type
argument specifies the socket type. This argument is usually specified as either
SOCK_STREAM, to create a stream socket, or SOCK_DGRAM, to create a datagram socket.

The protocol argument is always specified as 0 for the socket types we describe in
this book. Nonzero protocol values are used with some socket types that we don’t
describe. For example, protocol is specified as IPPROTO_RAW for raw sockets (SOCK_RAW).

On success, socket() returns a file descriptor used to refer to the newly created
socket in later system calls.

Starting with kernel 2.6.27, Linux provides a second use for the type argument,
by allowing two nonstandard flags to be ORed with the socket type. The
SOCK_CLOEXEC flag causes the kernel to enable the close-on-exec flag (FD_CLOEXEC)
for the new file descriptor. This flag is useful for the same reasons as the open()
O_CLOEXEC flag described in Section 4.3.1. The SOCK_NONBLOCK flag causes the kernel
to set the O_NONBLOCK flag on the underlying open file description, so that future
I/O operations on the socket will be nonblocking. This saves additional calls
to fcntl() to achieve the same result.

56.3 Binding a Socket to an Address: bind()

The bind() system call binds a socket to an address.

#include <sys/socket.h>

int socket(int domain, int type, int protocol);

Returns file descriptor on success, or –1 on error

#include <sys/socket.h>

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

Returns 0 on success, or –1 on error
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The sockfd argument is a file descriptor obtained from a previous call to socket(). The
addr argument is a pointer to a structure specifying the address to which this socket
is to be bound. The type of structure passed in this argument depends on the
socket domain. The addrlen argument specifies the size of the address structure.
The socklen_t data type used for the addrlen argument is an integer type specified
by SUSv3.

Typically, we bind a server’s socket to a well-known address—that is, a fixed
address that is known in advance to client applications that need to communicate
with that server.

There are other possibilities than binding a server’s socket to a well-known
address. For example, for an Internet domain socket, the server could omit the
call to bind() and simply call listen(), which causes the kernel to choose an ephem-
eral port for that socket. (We describe ephemeral ports in Section 58.6.1.)
Afterward, the server can use getsockname() (Section 61.5) to retrieve the
address of its socket. In this scenario, the server must then publish that address
so that clients know how to locate the server’s socket. Such publication could
be done by registering the server’s address with a centralized directory service
application that clients then contact in order to obtain the address. (For example,
Sun RPC solves this problem using its portmapper server.) Of course, the
directory service application’s socket must reside at a well-known address.

56.4 Generic Socket Address Structures: struct sockaddr

The addr and addrlen arguments to bind() require some further explanation. Look-
ing at Table 56-1, we see that each socket domain uses a different address format.
For example, UNIX domain sockets use pathnames, while Internet domain sockets
use the combination of an IP address plus a port number. For each socket domain, a
different structure type is defined to store a socket address. However, because system
calls such as bind() are generic to all socket domains, they must be able to accept
address structures of any type. In order to permit this, the sockets API defines a
generic address structure, struct sockaddr. The only purpose for this type is to cast the
various domain-specific address structures to a single type for use as arguments in
the socket system calls. The sockaddr structure is typically defined as follows:

struct sockaddr {
    sa_family_t sa_family;          /* Address family (AF_* constant) */
    char        sa_data[14];        /* Socket address (size varies
                                       according to socket domain) */
};

This structure serves as a template for all of the domain-specific address structures.
Each of these address structures begins with a family field corresponding to the
sa_family field of the sockaddr structure. (The sa_family_t data type is an integer type
specified in SUSv3.) The value in the family field is sufficient to determine the size
and format of the address stored in the remainder of the structure.

Some UNIX implementations also define an additional field in the sockaddr
structure, sa_len, that specifies the total size of the structure. SUSv3 doesn’t
require this field, and it is not present in the Linux implementation of the
sockets API.
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If we define the _GNU_SOURCE feature test macro, then glibc prototypes the
various socket system calls in <sys/socket.h> using a gcc extension that elimi-
nates the need for the (struct sockaddr *) cast. However, reliance on this feature
is nonportable (it will result in compilation warnings on other systems).

56.5 Stream Sockets

The operation of stream sockets can be explained by analogy with the telephone
system:

1. The socket() system call, which creates a socket, is the equivalent of installing a
telephone. In order for two applications to communicate, each of them must
create a socket.

2. Communication via a stream socket is analogous to a telephone call. One applica-
tion must connect its socket to another application’s socket before communication
can take place. Two sockets are connected as follows:

a) One application calls bind() in order to bind the socket to a well-known
address, and then calls listen() to notify the kernel of its willingness to
accept incoming connections. This step is analogous to having a known
telephone number and ensuring that our telephone is turned on so that
people can call us.

b) The other application establishes the connection by calling connect(), speci-
fying the address of the socket to which the connection is to be made. This
is analogous to dialing someone’s telephone number.

c) The application that called listen() then accepts the connection using accept().
This is analogous to picking up the telephone when it rings. If the accept() is
performed before the peer application calls connect(), then the accept() blocks
(“waiting by the telephone”).

3. Once a connection has been established, data can be transmitted in both direc-
tions between the applications (analogous to a two-way telephone conversation)
until one of them closes the connection using close(). Communication is performed
using the conventional read() and write() system calls or via a number of socket-
specific system calls (such as send() and recv()) that provide additional functionality.

Figure 56-1 illustrates the use of the system calls used with stream sockets.

Active and passive sockets

Stream sockets are often distinguished as being either active or passive:

By default, a socket that has been created using socket() is active. An active socket
can be used in a connect() call to establish a connection to a passive socket. This is
referred to as performing an active open.

A passive socket (also called a listening socket) is one that has been marked to
allow incoming connections by calling listen(). Accepting an incoming connec-
tion is referred to as performing a passive open.
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In most applications that employ stream sockets, the server performs the passive
open, and the client performs the active open. We presume this scenario in subse-
quent sections, so that instead of saying “the application that performs the active
socket open,” we’ll often just say “the client.” Similarly, we’ll equate “the server”
with “the application that performs the passive socket open.”

Figure 56-1: Overview of system calls used with stream sockets

56.5.1 Listening for Incoming Connections: listen()
The listen() system call marks the stream socket referred to by the file descriptor
sockfd as passive. The socket will subsequently be used to accept connections from
other (active) sockets.

We can’t apply listen() to a connected socket—that is, a socket on which a connect()
has been successfully performed or a socket returned by a call to accept().

To understand the purpose of the backlog argument, we first observe that the
client may call connect() before the server calls accept(). This could happen, for
example, because the server is busy handling some other client(s). This results in a
pending connection, as illustrated in Figure 56-2.
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close()
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#include <sys/socket.h>

int listen(int sockfd, int backlog);

Returns 0 on success, or –1 on error
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Figure 56-2: A pending socket connection

The kernel must record some information about each pending connection request
so that a subsequent accept() can be processed. The backlog argument allows us to
limit the number of such pending connections. Connection requests up to this limit
succeed immediately. (For TCP sockets, the story is a little more complicated, as we’ll
see in Section 61.6.4.) Further connection requests block until a pending connection
is accepted (via accept()), and thus removed from the queue of pending connections.

SUSv3 allows an implementation to place an upper limit on the value that can
be specified for backlog, and permits an implementation to silently round backlog
values down to this limit. SUSv3 specifies that the implementation should advertise
this limit by defining the constant SOMAXCONN in <sys/socket.h>. On Linux, this con-
stant is defined with the value 128. However, since kernel 2.4.25, Linux allows this
limit to be adjusted at run time via the Linux-specific /proc/sys/net/core/somaxconn
file. (In earlier kernel versions, the SOMAXCONN limit is immutable.)

In the original BSD sockets implementation, the upper limit for backlog was 5,
and we may see this number specified in older code. All modern implementa-
tions allow higher values of backlog, which are necessary for network servers
employing TCP sockets to serve large numbers of clients.

56.5.2 Accepting a Connection: accept()
The accept() system call accepts an incoming connection on the listening stream
socket referred to by the file descriptor sockfd. If there are no pending connections
when accept() is called, the call blocks until a connection request arrives.
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Active socket
(client)

may block, depending on
number of backlogged
connection requests

socket()

bind()

listen()

accept()

socket()

connect()

#include <sys/socket.h>

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

Returns file descriptor on success, or –1 on error
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The key point to understand about accept() is that it creates a new socket, and it is
this new socket that is connected to the peer socket that performed the connect(). A
file descriptor for the connected socket is returned as the function result of the
accept() call. The listening socket (sockfd) remains open, and can be used to accept
further connections. A typical server application creates one listening socket, binds
it to a well-known address, and then handles all client requests by accepting con-
nections via that socket.

The remaining arguments to accept() return the address of the peer socket. The
addr argument points to a structure that is used to return the socket address. The type
of this argument depends on the socket domain (as for bind()).

The addrlen argument is a value-result argument. It points to an integer that,
prior to the call, must be initialized to the size of the buffer pointed to by addr, so
that the kernel knows how much space is available to return the socket address.
Upon return from accept(), this integer is set to indicate the number of bytes of data
actually copied into the buffer.

If we are not interested in the address of the peer socket, then addr and addrlen
should be specified as NULL and 0, respectively. (If desired, we can retrieve the peer’s
address later using the getpeername() system call, as described in Section 61.5.)

Starting with kernel 2.6.28, Linux supports a new, nonstandard system call,
accept4(). This system call performs the same task as accept(), but supports an
additional argument, flags, that can be used to modify the behavior of the system
call. Two flags are supported: SOCK_CLOEXEC and SOCK_NONBLOCK. The SOCK_CLOEXEC
flag causes the kernel to enable the close-on-exec flag (FD_CLOEXEC) for the new
file descriptor returned by the call. This flag is useful for the same reasons as
the open() O_CLOEXEC flag described in Section 4.3.1. The SOCK_NONBLOCK flag
causes the kernel to enable the O_NONBLOCK flag on the underlying open file
description, so that future I/O operations on the socket will be nonblocking.
This saves additional calls to fcntl() to achieve the same result.

56.5.3 Connecting to a Peer Socket: connect()
The connect() system call connects the active socket referred to by the file descriptor
sockfd to the listening socket whose address is specified by addr and addrlen.

The addr and addrlen arguments are specified in the same way as the corresponding
arguments to bind().

If connect() fails and we wish to reattempt the connection, then SUSv3 specifies
that the portable method of doing so is to close the socket, create a new socket, and
reattempt the connection with the new socket.

#include <sys/socket.h>

int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

Returns 0 on success, or –1 on error
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56.5.4 I/O on Stream Sockets
A pair of connected stream sockets provides a bidirectional communication chan-
nel between the two endpoints. Figure 56-3 shows what this looks like in the UNIX
domain.

Figure 56-3: UNIX domain stream sockets provide a bidirectional communication channel

The semantics of I/O on connected stream sockets are similar to those for pipes:

To perform I/O, we use the read() and write() system calls (or the socket-specific
send() and recv(), which we describe in Section 61.3). Since sockets are bidirec-
tional, both calls may be used on each end of the connection.

A socket may be closed using the close() system call or as a consequence of the
application terminating. Afterward, when the peer application attempts to
read from the other end of the connection, it receives end-of-file (once all buff-
ered data has been read). If the peer application attempts to write to its socket,
it receives a SIGPIPE signal, and the system call fails with the error EPIPE. As we
noted in Section 44.2, the usual way of dealing with this possibility is to ignore
the SIGPIPE signal and find out about the closed connection via the EPIPE error.

56.5.5 Connection Termination: close()
The usual way of terminating a stream socket connection is to call close(). If multiple
file descriptors refer to the same socket, then the connection is terminated when all
of the descriptors are closed.

Suppose that, after we close a connection, the peer application crashes or other-
wise fails to read or correctly process the data that we previously sent to it. In this
case, we have no way of knowing that an error occurred. If we need to ensure that
the data was successfully read and processed, then we must build some type of
acknowledgement protocol into our application. This normally consists of an
explicit acknowledgement message passed back to us from the peer.

In Section 61.2, we describe the shutdown() system call, which provides finer
control of how a stream socket connection is closed.

56.6 Datagram Sockets

The operation of datagram sockets can be explained by analogy with the postal system:

1. The socket() system call is the equivalent of setting up a mailbox. (Here, we
assume a system like the rural postal service in some countries, which both
picks up letters from and delivers letters to the mailbox.) Each application that
wants to send or receive datagrams creates a datagram socket using socket().
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Application B
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buffer
Sockets :  In t roduct ion 1159



2. In order to allow another application to send it datagrams (letters), an applica-
tion uses bind() to bind its socket to a well-known address. Typically, a server
binds its socket to a well-known address, and a client initiates communication
by sending a datagram to that address. (In some domains—notably the UNIX
domain—the client may also need to use bind() to assign an address to its socket
if it wants to receive datagrams sent by the server.)

3. To send a datagram, an application calls sendto(), which takes as one of its argu-
ments the address of the socket to which the datagram is to be sent. This is
analogous to putting the recipient’s address on a letter and posting it.

4. In order to receive a datagram, an application calls recvfrom(), which may block
if no datagram has yet arrived. Because recvfrom() allows us to obtain the
address of the sender, we can send a reply if desired. (This is useful if the
sender’s socket is bound to an address that is not well known, which is typical
of a client.) Here, we stretch the analogy a little, since there is no requirement
that a posted letter is marked with the sender’s address.

5. When the socket is no longer needed, the application closes it using close().

Just as with the postal system, when multiple datagrams (letters) are sent from one
address to another, there is no guarantee that they will arrive in the order they
were sent, or even arrive at all. Datagrams add one further possibility not present
in the postal system: since the underlying networking protocols may sometimes
retransmit a data packet, the same datagram could arrive more than once.

Figure 56-4 illustrates the use of the system calls employed with datagram sockets.

Figure 56-4: Overview of system calls used with datagram sockets

56.6.1 Exchanging Datagrams: recvfrom() and sendto()
The recvfrom() and sendto() system calls receive and send datagrams on a datagram
socket.
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The return value and the first three arguments to these system calls are the same as
for read() and write().

The fourth argument, flags, is a bit mask controlling socket-specific I/O fea-
tures. We cover these features when we describe the recv() and send() system calls in
Section 61.3. If we don’t require any of these features, we can specify flags as 0.

The src_addr and addrlen arguments are used to obtain or specify the address of
the peer socket with which we are communicating.

For recvfrom(), the src_addr and addrlen arguments return the address of the
remote socket used to send the datagram. (These arguments are analogous to the addr
and addrlen arguments of accept(), which return the address of a connecting peer
socket.) The src_addr argument is a pointer to an address structure appropriate to
the communication domain. As with accept(), addrlen is a value-result argument.
Prior to the call, addrlen should be initialized to the size of the structure pointed to by
src_addr; upon return, it contains the number of bytes actually written to this structure.

If we are not interested in the address of the sender, then we specify both
src_addr and addrlen as NULL. In this case, recvfrom() is equivalent to using recv() to
receive a datagram. We can also use read() to read a datagram, which is equivalent
to using recv() with a flags argument of 0.

Regardless of the value specified for length, recvfrom() retrieves exactly one mes-
sage from a datagram socket. If the size of that message exceeds length bytes, the
message is silently truncated to length bytes.

If we employ the recvmsg() system call (Section 61.13.2), then it is possible to
find out about a truncated datagram via the MSG_TRUNC flag returned in the
msg_flags field of the returned msghdr structure. See the recvmsg(2) manual
page for details.

For sendto(), the dest_addr and addrlen arguments specify the socket to which the
datagram is to be sent. These arguments are employed in the same manner as the
corresponding arguments to connect(). The dest_addr argument is an address struc-
ture suitable for this communication domain. It is initialized with the address of the
destination socket. The addrlen argument specifies the size of addr.

On Linux, it is possible to use sendto() to send datagrams of length 0. However,
not all UNIX implementations permit this.

#include <sys/socket.h>

ssize_t recvfrom(int sockfd, void *buffer, size_t length, int flags,
                 struct sockaddr *src_addr, socklen_t *addrlen);

Returns number of bytes received, 0 on EOF, or –1 on error

ssize_t sendto(int sockfd, const void *buffer, size_t length, int flags,
               const struct sockaddr *dest_addr, socklen_t addrlen);

Returns number of bytes sent, or –1 on error
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56.6.2 Using connect() with Datagram Sockets
Even though datagram sockets are connectionless, the connect() system call serves a
purpose when applied to datagram sockets. Calling connect() on a datagram socket
causes the kernel to record a particular address as this socket’s peer. The term
connected datagram socket is applied to such a socket. The term unconnected datagram
socket is applied to a datagram socket on which connect() has not been called (i.e.,
the default for a new datagram socket).

After a datagram socket has been connected:

Datagrams can be sent through the socket using write() (or send()) and are auto-
matically sent to the same peer socket. As with sendto(), each write() call results
in a separate datagram.

Only datagrams sent by the peer socket may be read on the socket.

Note that the effect of connect() is asymmetric for datagram sockets. The above
statements apply only to the socket on which connect() has been called, not to the
remote socket to which it is connected (unless the peer application also calls
connect() on its socket).

We can change the peer of a connected datagram socket by issuing a further
connect() call. It is also possible to dissolve the peer association altogether by speci-
fying an address structure in which the address family (e.g., the sun_family field in
the UNIX domain) is specified as AF_UNSPEC. Note, however, that many other UNIX
implementations don’t support the use of AF_UNSPEC for this purpose.

SUSv3 was somewhat vague about dissolving peer associations, stating that a
connection can be reset by making a connect() call that specifies a “null address,”
without defining that term. SUSv4 explicitly specifies the use of AF_UNSPEC.

The obvious advantage of setting the peer for a datagram socket is that we can use
simpler I/O system calls when transmitting data on the socket. We no longer need
to use sendto() with dest_addr and addrlen arguments, but can instead use write(). Setting
the peer is useful primarily in an application that needs to send multiple datagrams
to a single peer (which is typical of some datagram clients).

On some TCP/IP implementations, connecting a datagram socket to a peer
yields a performance improvement ([Stevens et al., 2004]). On Linux, connect-
ing a datagram socket makes little difference to performance.

56.7 Summary

Sockets allow communication between applications on the same host or on different
hosts connected via a network.

A socket exists within a communication domain, which determines the range
of communication and the address format used to identify the socket. SUSv3 specifies
the UNIX (AF_UNIX), IPv4 (AF_INET), and IPv6 (AF_INET6) communication domains.

Most applications use one of two socket types: stream or datagram. Stream
sockets (SOCK_STREAM) provide a reliable, bidirectional, byte-stream communication
channel between two endpoints. Datagram sockets (SOCK_DGRAM) provide unreliable,
connectionless, message-oriented communication.
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A typical stream socket server creates its socket using socket(), and then binds
the socket to a well-known address using bind(). The server then calls listen() to
allow connections to be received on the socket. Each client connection is then
accepted on the listening socket using accept(), which returns a file descriptor for a
new socket that is connected to the client’s socket. A typical stream socket client
creates a socket using socket(), and then establishes a connection by calling connect(),
specifying the server’s well-known address. After two stream sockets are connected,
data can be transferred in either direction using read() and write(). Once all pro-
cesses with a file descriptor referring to a stream socket endpoint have performed
an implicit or explicit close(), the connection is terminated.

A typical datagram socket server creates a socket using socket(), and then binds
it to a well-known address using bind(). Because datagram sockets are connectionless,
the server’s socket can be used to receive datagrams from any client. Datagrams can
be received using read() or using the socket-specific recvfrom() system call, which
returns the address of the sending socket. A datagram socket client creates a socket
using socket(), and then uses sendto() to send a datagram to a specified (i.e., the
server’s) address. The connect() system call can be used with a datagram socket to set a
peer address for the socket. After doing this, it is no longer necessary to specify the des-
tination address for outgoing datagrams; a write() call can be used to send a datagram.

Further information

Refer to the sources of further information listed in Section 59.15.
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S O C K E T S :  U N I X  D O M A I N

This chapter looks at the use of UNIX domain sockets, which allow communication
between processes on the same host system. We discuss the use of both stream and
datagram sockets in the UNIX domain. We also describe the use of file permissions
to control access to UNIX domain sockets, the use of socketpair() to create a pair of
connected UNIX domain sockets, and the Linux abstract socket namespace.

57.1 UNIX Domain Socket Addresses: struct sockaddr_un

In the UNIX domain, a socket address takes the form of a pathname, and the
domain-specific socket address structure is defined as follows:

struct sockaddr_un {
    sa_family_t sun_family;         /* Always AF_UNIX */
    char sun_path[108];             /* Null-terminated socket pathname */
};

The prefix sun_ in the fields of the sockaddr_un structure has nothing to do
with Sun Microsystems; rather, it derives from socket unix.

SUSv3 doesn’t specify the size of the sun_path field. Early BSD implementations
used 108 and 104 bytes, and one contemporary implementation (HP-UX 11) uses
92 bytes. Portable applications should code to this lower value, and use snprintf() or
strncpy() to avoid buffer overruns when writing into this field.



In order to bind a UNIX domain socket to an address, we initialize a
sockaddr_un structure, and then pass a (cast) pointer to this structure as the addr
argument to bind(), and specify addrlen as the size of the structure, as shown in
Listing 57-1.

Listing 57-1: Binding a UNIX domain socket

    const char *SOCKNAME = "/tmp/mysock";
    int sfd;
    struct sockaddr_un addr;

    sfd = socket(AF_UNIX, SOCK_STREAM, 0);            /* Create socket */
    if (sfd == -1)
        errExit("socket");

    memset(&addr, 0, sizeof(struct sockaddr_un));     /* Clear structure */
    addr.sun_family = AF_UNIX;                        /* UNIX domain address */
    strncpy(addr.sun_path, SOCKNAME, sizeof(addr.sun_path) - 1);

    if (bind(sfd, (struct sockaddr *) &addr, sizeof(struct sockaddr_un)) == -1)
        errExit("bind");

The use of the memset() call in Listing 57-1 ensures that all of the structure fields
have the value 0. (The subsequent strncpy() call takes advantage of this by specifying
its final argument as one less than the size of the sun_path field, to ensure that this
field always has a terminating null byte.) Using memset() to zero out the entire struc-
ture, rather than initializing individual fields, ensures that any nonstandard fields
that are provided by some implementations are also initialized to 0.

The BSD-derived function bzero() is an alternative to memset() for zeroing the
contents of a structure. SUSv3 specifies bzero() and the related bcopy() (which is sim-
ilar to memmove()), but marks both functions LEGACY, noting that memset() and
memmove() are preferred. SUSv4 removes the specifications of bzero() and bcopy().

When used to bind a UNIX domain socket, bind() creates an entry in the file system.
(Thus, a directory specified as part of the socket pathname needs to be accessible
and writable.) The ownership of the file is determined according to the usual rules
for file creation (Section 15.3.1). The file is marked as a socket. When stat() is
applied to this pathname, it returns the value S_IFSOCK in the file-type component of
the st_mode field of the stat structure (Section 15.1). When listed with ls –l, a UNIX
domain socket is shown with the type s in the first column, and ls –F appends an
equal sign (=) to the socket pathname.

Although UNIX domain sockets are identified by pathnames, I/O on these
sockets doesn’t involve operations on the underlying device.

The following points are worth noting about binding a UNIX domain socket:

We can’t bind a socket to an existing pathname (bind() fails with the error
EADDRINUSE).
1166 Chapter 57



It is usual to bind a socket to an absolute pathname, so that the socket resides
at a fixed address in the file system. Using a relative pathname is possible, but
unusual, because it requires an application that wants to connect() to this socket to
know the current working directory of the application that performs the bind().

A socket may be bound to only one pathname; conversely, a pathname can be
bound to only one socket.

We can’t use open() to open a socket.

When the socket is no longer required, its pathname entry can (and generally
should) be removed using unlink() (or remove()).

In most of our example programs, we bind UNIX domain sockets to pathnames in
the /tmp directory, because this directory is normally present and writable on every
system. This makes it easy for the reader to run these programs without needing to
first edit the socket pathnames. Be aware, however, that this is generally not a good
design technique. As pointed out in Section 38.7, creating files in publicly writable
directories such as /tmp can lead to various security vulnerabilities. For example, by
creating a pathname in /tmp with the same name as that used by the application
socket, we can create a simple denial-of-service attack. Real-world applications
should bind() UNIX domain sockets to absolute pathnames in suitably secured
directories.

57.2 Stream Sockets in the UNIX Domain

We now present a simple client-server application that uses stream sockets in the
UNIX domain. The client program (Listing 57-4) connects to the server, and uses
the connection to transfer data from its standard input to the server. The server
program (Listing 57-3) accepts client connections, and transfers all data sent on the
connection by the client to standard output. The server is a simple example of an
iterative server—a server that handles one client at a time before proceeding to the
next client. (We consider server design in more detail in Chapter 60.)

Listing 57-2 is the header file used by both of these programs.

Listing 57-2: Header file for us_xfr_sv.c and us_xfr_cl.c

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/us_xfr.h

#include <sys/un.h>
#include <sys/socket.h>
#include "tlpi_hdr.h"

#define SV_SOCK_PATH "/tmp/us_xfr"

#define BUF_SIZE 100

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/us_xfr.h

In the following pages, we first present the source code of the server and client,
and then discuss the details of these programs and show an example of their use.
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Listing 57-3: A simple UNIX domain stream socket server

–––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/us_xfr_sv.c

#include "us_xfr.h"

#define BACKLOG 5

int
main(int argc, char *argv[])
{
    struct sockaddr_un addr;
    int sfd, cfd;
    ssize_t numRead;
    char buf[BUF_SIZE];

    sfd = socket(AF_UNIX, SOCK_STREAM, 0);
    if (sfd == -1)
        errExit("socket");

    /* Construct server socket address, bind socket to it,
       and make this a listening socket */

    if (remove(SV_SOCK_PATH) == -1 && errno != ENOENT)
        errExit("remove-%s", SV_SOCK_PATH);

    memset(&addr, 0, sizeof(struct sockaddr_un));
    addr.sun_family = AF_UNIX;
    strncpy(addr.sun_path, SV_SOCK_PATH, sizeof(addr.sun_path) - 1);

    if (bind(sfd, (struct sockaddr *) &addr, sizeof(struct sockaddr_un)) == -1)
        errExit("bind");

    if (listen(sfd, BACKLOG) == -1)
        errExit("listen");

    for (;;) {          /* Handle client connections iteratively */

        /* Accept a connection. The connection is returned on a new
           socket, 'cfd'; the listening socket ('sfd') remains open
           and can be used to accept further connections. */

        cfd = accept(sfd, NULL, NULL);
        if (cfd == -1)
            errExit("accept");

        /* Transfer data from connected socket to stdout until EOF */

        while ((numRead = read(cfd, buf, BUF_SIZE)) > 0)
            if (write(STDOUT_FILENO, buf, numRead) != numRead)
                fatal("partial/failed write");

        if (numRead == -1)
            errExit("read");
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        if (close(cfd) == -1)
            errMsg("close");
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/us_xfr_sv.c

Listing 57-4: A simple UNIX domain stream socket client

–––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/us_xfr_cl.c

#include "us_xfr.h"

int
main(int argc, char *argv[])
{
    struct sockaddr_un addr;
    int sfd;
    ssize_t numRead;
    char buf[BUF_SIZE];

    sfd = socket(AF_UNIX, SOCK_STREAM, 0);       /* Create client socket */
    if (sfd == -1)
        errExit("socket");

    /* Construct server address, and make the connection */

    memset(&addr, 0, sizeof(struct sockaddr_un));
    addr.sun_family = AF_UNIX;
    strncpy(addr.sun_path, SV_SOCK_PATH, sizeof(addr.sun_path) - 1);

    if (connect(sfd, (struct sockaddr *) &addr,
                sizeof(struct sockaddr_un)) == -1)
        errExit("connect");

    /* Copy stdin to socket */

    while ((numRead = read(STDIN_FILENO, buf, BUF_SIZE)) > 0)
        if (write(sfd, buf, numRead) != numRead)
            fatal("partial/failed write");

    if (numRead == -1)
        errExit("read");

    exit(EXIT_SUCCESS);         /* Closes our socket; server sees EOF */
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/us_xfr_cl.c

The server program is shown in Listing 57-3. The server performs the following
steps:

Create a socket.

Remove any existing file with the same pathname as that to which we want to
bind the socket.
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Construct an address structure for the server’s socket, bind the socket to that
address, and mark the socket as a listening socket.

Execute an infinite loop to handle incoming client requests. Each loop itera-
tion performs the following steps:

– Accept a connection, obtaining a new socket, cfd, for the connection.

– Read all of the data from the connected socket and write it to standard output.

– Close the connected socket cfd.

The server must be terminated manually (e.g., by sending it a signal).
The client program (Listing 57-4) performs the following steps:

Create a socket.

Construct the address structure for the server’s socket and connect to the
socket at that address.

Execute a loop that copies its standard input to the socket connection. Upon
encountering end-of-file in its standard input, the client terminates, with the
result that its socket is closed and the server sees end-of-file when reading from
the socket on the other end of the connection.

The following shell session log demonstrates the use of these programs. We begin
by running the server in the background:

$ ./us_xfr_sv > b &
[1] 9866
$ ls -lF /tmp/us_xfr                        Examine socket file with ls
srwxr-xr-x    1 mtk      users         0 Jul 18 10:48 /tmp/us_xfr=

We then create a test file to be used as input for the client, and run the client:

$ cat *.c > a
$ ./us_xfr_cl < a                           Client takes input from test file

At this point, the child has completed. Now we terminate the server as well, and
check that the server’s output matches the client’s input:

$ kill %1                                   Terminate server
 [1]+  Terminated   ./us_xfr_sv >b          Shell sees server’s termination
$ diff a b
$

The diff command produces no output, indicating that the input and output files
are identical.

Note that after the server terminates, the socket pathname continues to exist.
This is why the server uses remove() to remove any existing instance of the socket
pathname before calling bind(). (Assuming we have appropriate permissions, this
remove() call would remove any type of file with this pathname, even if it wasn’t a
socket.) If we did not do this, then the bind() call would fail if a previous invocation
of the server had already created this socket pathname.
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57.3 Datagram Sockets in the UNIX Domain

In the generic description of datagram sockets that we provided in Section 56.6, we
stated that communication using datagram sockets is unreliable. This is the case for
datagrams transferred over a network. However, for UNIX domain sockets, data-
gram transmission is carried out within the kernel, and is reliable. All messages are
delivered in order and unduplicated.

Maximum datagram size for UNIX domain datagram sockets

SUSv3 doesn’t specify a maximum size for datagrams sent via a UNIX domain
socket. On Linux, we can send quite large datagrams. The limits are controlled via
the SO_SNDBUF socket option and various /proc files, as described in the socket(7) manual
page. However, some other UNIX implementations impose lower limits, such as
2048 bytes. Portable applications employing UNIX domain datagram sockets
should consider imposing a low upper limit on the size of datagrams used.

Example program

Listing 57-6 and Listing 57-7 show a simple client-server application using UNIX
domain datagram sockets. Both of these programs make use of the header file
shown in Listing 57-5.

Listing 57-5: Header file used by ud_ucase_sv.c and ud_ucase_cl.c

––––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/ud_ucase.h

#include <sys/un.h>
#include <sys/socket.h>
#include <ctype.h>
#include "tlpi_hdr.h"

#define BUF_SIZE 10             /* Maximum size of messages exchanged
                                   between client to server */

#define SV_SOCK_PATH "/tmp/ud_ucase"

––––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/ud_ucase.h

The server program (Listing 57-6) first creates a socket and binds it to a well-known
address. (Beforehand, the server unlinks the pathname matching that address, in
case the pathname already exists.) The server then enters an infinite loop, using
recvfrom() to receive datagrams from clients, converting the received text to upper-
case, and returning the converted text to the client using the address obtained via
recvfrom().

The client program (Listing 57-7) creates a socket and binds the socket to an
address, so that the server can send its reply. The client address is made unique by
including the client’s process ID in the pathname. The client then loops, sending
each of its command-line arguments as a separate message to the server. After
sending each message, the client reads the server response and displays it on stan-
dard output.
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Listing 57-6: A simple UNIX domain datagram server

––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/ud_ucase_sv.c

#include "ud_ucase.h"

int
main(int argc, char *argv[])
{
    struct sockaddr_un svaddr, claddr;
    int sfd, j;
    ssize_t numBytes;
    socklen_t len;
    char buf[BUF_SIZE];

    sfd = socket(AF_UNIX, SOCK_DGRAM, 0);       /* Create server socket */
    if (sfd == -1)
        errExit("socket");

    /* Construct well-known address and bind server socket to it */

    if (remove(SV_SOCK_PATH) == -1 && errno != ENOENT)
        errExit("remove-%s", SV_SOCK_PATH);

    memset(&svaddr, 0, sizeof(struct sockaddr_un));
    svaddr.sun_family = AF_UNIX;
    strncpy(svaddr.sun_path, SV_SOCK_PATH, sizeof(svaddr.sun_path) - 1);

    if (bind(sfd, (struct sockaddr *) &svaddr, sizeof(struct sockaddr_un)) == -1)
        errExit("bind");

    /* Receive messages, convert to uppercase, and return to client */

    for (;;) {
        len = sizeof(struct sockaddr_un);
        numBytes = recvfrom(sfd, buf, BUF_SIZE, 0,
                            (struct sockaddr *) &claddr, &len);
        if (numBytes == -1)
            errExit("recvfrom");

        printf("Server received %ld bytes from %s\n", (long) numBytes,
                claddr.sun_path);

        for (j = 0; j < numBytes; j++)
            buf[j] = toupper((unsigned char) buf[j]);

        if (sendto(sfd, buf, numBytes, 0, (struct sockaddr *) &claddr, len) !=
                numBytes)
            fatal("sendto");
    }
}

––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/ud_ucase_sv.c
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Listing 57-7: A simple UNIX domain datagram client

––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/ud_ucase_cl.c

#include "ud_ucase.h"

int
main(int argc, char *argv[])
{
    struct sockaddr_un svaddr, claddr;
    int sfd, j;
    size_t msgLen;
    ssize_t numBytes;
    char resp[BUF_SIZE];

    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s msg...\n", argv[0]);

    /* Create client socket; bind to unique pathname (based on PID) */

    sfd = socket(AF_UNIX, SOCK_DGRAM, 0);
    if (sfd == -1)
        errExit("socket");

    memset(&claddr, 0, sizeof(struct sockaddr_un));
    claddr.sun_family = AF_UNIX;
    snprintf(claddr.sun_path, sizeof(claddr.sun_path),
            "/tmp/ud_ucase_cl.%ld", (long) getpid());

    if (bind(sfd, (struct sockaddr *) &claddr, sizeof(struct sockaddr_un)) == -1)
        errExit("bind");

    /* Construct address of server */

    memset(&svaddr, 0, sizeof(struct sockaddr_un));
    svaddr.sun_family = AF_UNIX;
    strncpy(svaddr.sun_path, SV_SOCK_PATH, sizeof(svaddr.sun_path) - 1);

    /* Send messages to server; echo responses on stdout */

    for (j = 1; j < argc; j++) {
        msgLen = strlen(argv[j]);       /* May be longer than BUF_SIZE */
        if (sendto(sfd, argv[j], msgLen, 0, (struct sockaddr *) &svaddr,
                sizeof(struct sockaddr_un)) != msgLen)
            fatal("sendto");

        numBytes = recvfrom(sfd, resp, BUF_SIZE, 0, NULL, NULL);
        if (numBytes == -1)
            errExit("recvfrom");
        printf("Response %d: %.*s\n", j, (int) numBytes, resp);
    }

    remove(claddr.sun_path);            /* Remove client socket pathname */
    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/ud_ucase_cl.c
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The following shell session log demonstrates the use of the server and client
programs:

$ ./ud_ucase_sv &
[1] 20113
$ ./ud_ucase_cl hello world                 Send 2 messages to server
Server received 5 bytes from /tmp/ud_ucase_cl.20150
Response 1: HELLO
Server received 5 bytes from /tmp/ud_ucase_cl.20150
Response 2: WORLD
$ ./ud_ucase_cl 'long message'              Send 1 longer message to server
Server received 10 bytes from /tmp/ud_ucase_cl.20151
Response 1: LONG MESSA
$ kill %1                                   Terminate server

The second invocation of the client program was designed to show that when a
recvfrom() call specifies a length (BUF_SIZE, defined in Listing 57-5 with the value 10)
that is shorter than the message size, the message is silently truncated. We can see that
this truncation occurred, because the server prints a message saying it received just
10 bytes, while the message sent by the client consisted of 12 bytes.

57.4 UNIX Domain Socket Permissions

The ownership and permissions of the socket file determine which processes are
able to communicate with that socket:

To connect to a UNIX domain stream socket, write permission is required on
the socket file.

To send a datagram to a UNIX domain datagram socket, write permission is
required on the socket file.

In addition, execute (search) permission is required on each of the directories in
the socket pathname.

By default, a socket is created (by bind()) with all permissions granted to owner
(user), group, and other. To change this, we can precede the call to bind() with a
call to umask() to disable the permissions that we do not wish to grant.

Some systems ignore the permissions on the socket file (SUSv3 allows this).
Thus, we can’t portably use socket file permissions to control access to the socket,
although we can portably use permissions on the hosting directory for this purpose.

57.5 Creating a Connected Socket Pair: socketpair()

Sometimes, it is useful for a single process to create a pair of sockets and connect
them together. This could be done using two calls to socket(), a call to bind(), and
then either calls to listen(), connect(), and accept() (for stream sockets), or a call to
connect() (for datagram sockets). The socketpair() system call provides a shorthand
for this operation.
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This socketpair() system call can be used only in the UNIX domain; that is, domain must
be specified as AF_UNIX. (This restriction applies on most implementations, and is logi-
cal, since the socket pair is created on a single host system.) The socket type may be
specified as either SOCK_DGRAM or SOCK_STREAM. The protocol argument must be specified
as 0. The sockfd array returns the file descriptors referring to the two connected sockets.

Specifying type as SOCK_STREAM creates the equivalent of a bidirectional pipe (also
known as a stream pipe). Each socket can be used for both reading and writing, and
separate data channels flow in each direction between the two sockets. (On BSD-
derived implementations, pipe() is implemented as a call to socketpair().)

Typically, a socket pair is used in a similar fashion to a pipe. After the
socketpair() call, the process then creates a child via fork(). The child inherits copies
of the parent’s file descriptors, including the descriptors referring to the socket
pair. Thus, the parent and child can use the socket pair for IPC.

One way in which the use of socketpair() differs from creating a pair of con-
nected sockets manually is that the sockets are not bound to any address. This can
help us avoid a whole class of security vulnerabilities, since the sockets are not
visible to any other process.

Starting with kernel 2.6.27, Linux provides a second use for the type argument,
by allowing two nonstandard flags to be ORed with the socket type. The
SOCK_CLOEXEC flag causes the kernel to enable the close-on-exec flag (FD_CLOEXEC)
for the two new file descriptors. This flag is useful for the same reasons as the
open() O_CLOEXEC flag described in Section 4.3.1. The SOCK_NONBLOCK flag causes
the kernel to set the O_NONBLOCK flag on both underlying open file descriptions,
so that future I/O operations on the socket will be nonblocking. This saves
additional calls to fcntl() to achieve the same result.

57.6 The Linux Abstract Socket Namespace

The so-called abstract namespace is a Linux-specific feature that allows us to bind a
UNIX domain socket to a name without that name being created in the file system.
This provides a few potential advantages:

We don’t need to worry about possible collisions with existing names in the
file system.

It is not necessary to unlink the socket pathname when we have finished using
the socket. The abstract name is automatically removed when the socket is closed.

We don’t need to create a file-system pathname for the socket. This may be
useful in a chroot environment, or if we don’t have write access to a file system.

#include <sys/socket.h>

int socketpair(int domain, int type, int protocol, int sockfd[2]);

Returns 0 on success, or –1 on error
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To create an abstract binding, we specify the first byte of the sun_path field as a null
byte (\0). This distinguishes abstract socket names from conventional UNIX
domain socket pathnames, which consist of a string of one or more nonnull bytes
terminated by a null byte. The remaining bytes of the sun_path field then define the
abstract name for the socket. These bytes are interpreted in their entirety, rather
than as a null-terminated string.

Listing 57-8 demonstrates the creation of an abstract socket binding.

Listing 57-8: Creating an abstract socket binding

––––––––––––––––––––––––––––––––––––––––––––– from sockets/us_abstract_bind.c
    struct sockaddr_un addr;

    memset(&addr, 0, sizeof(struct sockaddr_un));  /* Clear address structure */
    addr.sun_family = AF_UNIX;                     /* UNIX domain address */

    /* addr.sun_path[0] has already been set to 0 by memset() */

    strncpy(&addr.sun_path[1], "xyz", sizeof(addr.sun_path) - 2);
                /* Abstract name is "xyz" followed by null bytes */

    sockfd = socket(AF_UNIX, SOCK_STREAM, 0);
    if (sockfd == -1)
        errExit("socket");

    if (bind(sockfd, (struct sockaddr *) &addr,
            sizeof(struct sockaddr_un)) == -1)
        errExit("bind");

––––––––––––––––––––––––––––––––––––––––––––– from sockets/us_abstract_bind.c

The fact that an initial null byte is used to distinguish an abstract socket name from
a conventional socket name can have an unusual consequence. Suppose that the
variable name happens to point to a zero-length string and that we attempt to bind a
UNIX domain socket to a sun_path initialized as follows:

strncpy(addr.sun_path, name, sizeof(addr.sun_path) - 1);

On Linux, we’ll inadvertently create an abstract socket binding. However, such a
code sequence is probably unintentional (i.e., a bug). On other UNIX implementa-
tions, the subsequent bind() would fail.

57.7 Summary

UNIX domain sockets allow communication between applications on the same
host. The UNIX domain supports both stream and datagram sockets.

A UNIX domain socket is identified by a pathname in the file system. File per-
missions can be used to control access to a UNIX domain socket.

The socketpair() system call creates a pair of connected UNIX domain sockets. This
avoids the need for multiple system calls to create, bind, and connect the sockets.
A socket pair is normally used in a similar fashion to a pipe: one process creates
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the socket pair and then forks to create a child that inherits descriptors referring
to the sockets. The two processes can then communicate via the socket pair.

The Linux-specific abstract socket namespace allows us to bind a UNIX domain
socket to a name that doesn’t appear in the file system.

Further information

Refer to the sources of further information listed in Section 59.15.

57.8 Exercises

57-1. In Section 57.3, we noted that UNIX domain datagram sockets are reliable. Write
programs to show that if a sender transmits datagrams to a UNIX domain
datagram socket faster than the receiver reads them, then the sender is eventually
blocked, and remains blocked until the receiver reads some of the pending
datagrams.

57-2. Rewrite the programs in Listing 57-3 (us_xfr_sv.c) and Listing 57-4 (us_xfr_cl.c) to
use the Linux-specific abstract socket namespace (Section 57.6).

57-3. Reimplement the sequence-number server and client of Section 44.8 using UNIX
domain stream sockets.

57-4. Suppose that we create two UNIX domain datagram sockets bound to the paths
/somepath/a and /somepath/b, and that we connect the socket /somepath/a to /somepath/b.
What happens if we create a third datagram socket and try to send (sendto()) a
datagram via that socket to /somepath/a? Write a program to determine the answer.
If you have access to other UNIX systems, test the program on those systems to see
if the answer differs.
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S O C K E T S :  F U N D A M E N T A L S  O F  
T C P / I P  N E T W O R K S

This chapter provides an introduction to computer networking concepts and the
TCP/IP networking protocols. An understanding of these topics is necessary to make
effective use of Internet domain sockets, which are described in the next chapter.

Starting in this chapter, we begin mentioning various Request for Comments
(RFC) documents. Each of the networking protocols discussed in this book is formally
described in an RFC. We provide further information about RFCs, as well as a list of
RFCs of particular relevance to the material covered in this book, in Section 58.7.

58.1 Internets

An internetwork or, more commonly, internet (with a lowercase i), connects different
computer networks, allowing hosts on all of the networks to communicate with one
another. In other words, an internet is a network of computer networks. The term
subnetwork, or subnet, is used to refer to one of the networks composing an internet.
An internet aims to hide the details of different physical networks in order to
present a unified network architecture to all hosts on the connected networks. This
means, for example, that a single address format is used to identify all hosts in the
internet.

Although various internetworking protocols have been devised, TCP/IP has
become the dominant protocol suite, supplanting even the proprietary networking



protocols that were formerly common on local and wide area networks. The term
Internet (with an uppercase I) is used to refer to the TCP/IP internet that connects
millions of computers globally.

The first widespread implementation of TCP/IP appeared with 4.2BSD in 1983.
Several implementations of TCP/IP are derived directly from the BSD code; other
implementations, including the Linux implementation, are written from scratch,
taking the operation of the BSD code as a reference standard defining the opera-
tion of TCP/IP.

TCP/IP grew out of a project sponsored by the US Department of Defense
Advanced Research Projects Agency (ARPA, later DARPA, with the D for
Defense) to devise a computer networking architecture to be used in the
ARPANET, an early wide area network. During the 1970s, a new family of pro-
tocols was designed for the ARPANET. Accurately, these protocols are known
as the DARPA Internet protocol suite, but more usually they are known as the
TCP/IP protocol suite, or simply TCP/IP.

The web page http://www.isoc.org/internet/history/brief.shtml provides a brief
history of the Internet and TCP/IP.

Figure 58-1 shows a simple internet. In this diagram, the machine tekapo is an example
of a router, a computer whose function is to connect one subnetwork to another,
transferring data between them. As well as understanding the internet protocol
being used, a router must also understand the (possibly) different data-link-layer
protocols used on each of the subnets that it connects.

A router has multiple network interfaces, one for each of the subnets to which
it is connected. The more general term multihomed host is used for any host—not
necessarily a router—with multiple network interfaces. (Another way of describing
a router is to say that it is a multihomed host that forwards packets from one sub-
net to another.) A multihomed host has a different network address for each of its
interfaces (i.e., a different address on each of the subnets to which it is connected).

Figure 58-1: An internet using a router to connect two networks

58.2 Networking Protocols and Layers

A networking protocol is a set of rules defining how information is to be transmitted
across a network. Networking protocols are generally organized as a series of layers,
with each layer building on the layer below it to add features that are made avail-
able to higher layers.
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The TCP/IP protocol suite is a layered networking protocol (Figure 58-2). It
includes the Internet Protocol (IP) and various protocols layered above it. (The code
that implements these various layers is commonly referred to as a protocol stack.)
The name TCP/IP derives from the fact that the Transmission Control Protocol
(TCP) is the most heavily used transport-layer protocol.

We have omitted a range of other TCP/IP protocols from Figure 58-2 because
they are not relevant to this chapter. The Address Resolution Protocol (ARP) is
concerned with mapping Internet addresses to hardware (e.g., Ethernet)
addresses. The Internet Control Message Protocol (ICMP) is used to convey error
and control information across the network. (ICMP is used by the ping pro-
gram, which is frequently employed to check whether a particular host is alive
and visible on a TCP/IP network, and by traceroute, which traces the path of an
IP packet through the network.) The Internet Group Management Protocol
(IGMP) is used by hosts and routers that support multicasting of IP datagrams.

Figure 58-2: Protocols in the TCP/IP suite

One of the notions that lends great power and flexibility to protocol layering is
transparency—each protocol layer shields higher layers from the operation and complex-
ity of lower layers. Thus, for example, an application making use of TCP only needs
to use the standard sockets API and to know that it is employing a reliable, byte-
stream transport service. It doesn’t need to understand the details of the operation of
TCP. (When we look at socket options in Section 61.9, we’ll see that this doesn’t

SOCK_RAW

SOCK_DGRAM

SOCK_STREAM
Application
layer

Transport
layer

Network
layer

Data-link
layer

U
ser space

K
ernel space

H
ardw

are

Network medium

UDP TCP

IP

Network interface hardware

Application Application Application
Sockets:  Fundamentals of  TCP/IP Networks 1181



always strictly hold true; occasionally, an application does need to know some of
the details of the operation of the underlying transport protocol.) Nor does the
application need to know the details of the operation of IP or of the data-link layer.
From the point of view of the applications, it is as though they are communicat-
ing directly with each other via the sockets API, as shown in Figure 58-3, where the
dashed horizontal lines represent the virtual communication paths between corre-
sponding application, TCP, and IP entities on the two hosts.

Encapsulation

Encapsulation is an important principle of a layered networking protocol. Figure 58-4
shows an example of encapsulation in the TCP/IP protocol layers. The key idea of
encapsulation is that the information (e.g., application data, a TCP segment, or an
IP datagram) passed from a higher layer to a lower layer is treated as opaque data
by the lower layer. In other words, the lower layer makes no attempt to interpret
information sent from the upper layer, but merely places that information inside
whatever type of packet is used in the lower layer and adds its own layer-specific
header before passing the packet down to the next lower layer. When data is passed
up from a lower layer to a higher layer, a converse unpacking process takes place.

We don’t show it in Figure 58-4, but the concept of encapsulation also extends
down into the data-link layer, where IP datagrams are encapsulated inside net-
work frames. Encapsulation may also extend up into the application layer,
where the application may perform its own packaging of data.

58.3 The Data-Link Layer

The lowest layer in Figure 58-2 is the data-link layer, which consists of the device
driver and the hardware interface (network card) to the underlying physical
medium (e.g., a telephone line, a coaxial cable, or a fiber-optic cable). The data-link
layer is concerned with transferring data across a physical link in a network.

To transfer data, the data-link layer encapsulates datagrams from the network
layer into units called frames. In addition to the data to be transmitted, each frame
includes a header containing, for example, the destination address and frame size.
The data-link layer transmits the frames across the physical link and handles
acknowledgements from the receiver. (Not all data-link layers use acknowledgements.)
This layer may perform error detection, retransmission, and flow control. Some data-
link layers also split large network packets into multiple frames and reassemble
them at the receiver.

From an application-programming point of view, we can generally ignore the data-
link layer, since all communication details are handled in the driver and hardware.

One characteristic of the data-link layer that is important for our discussion of
IP is the maximum transmission unit (MTU). A data-link layer’s MTU is the upper
limit that the layer places on the size of a frame. Different data-link layers have dif-
ferent MTUs.

The command netstat –i displays a list of the system’s network interfaces, along
with their MTUs.
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Figure 58-3: Layered communication via the TCP/IP protocols

Figure 58-4: Encapsulation within the TCP/IP protocol layers

TCP protocol
(transfers TCP segments)

Data link protocol
(transfers data frames)

IP protocol
(transfers IP datagrams)

Application

TCP

IP

Data link

Application

TCP

IP

Data link

Application-defined protocol
(transfers application data)

 
Network medium

TCP
segment

IP
datagram

Application
data

Source + destination
port #, sequence #,
acknowledgement #,
flags, checksum, etc.

TCP header TCP data

Source +
destination IP
address, header
checksum, etc.

IP header IP data

Application-defined
content
Sockets:  Fundamentals of  TCP/IP Networks 1183



58.4 The Network Layer: IP

Above the data-link layer is the network layer, which is concerned with delivering
packets (data) from the source host to the destination host. This layer performs a
variety of tasks, including:

breaking data into fragments small enough for transmission via the data-link
layer (if necessary);

routing data across the internet; and

providing services to the transport layer.

In the TCP/IP protocol suite, the principal protocol in the network layer is IP. The
version of IP that appeared in the 4.2BSD implementation was IP version 4 (IPv4).
In the early 1990s, a revised version of IP was devised: IP version 6 (IPv6). The most
notable difference between the two versions is that IPv4 identifies subnets and
hosts using 32-bit addresses, while IPv6 uses 128-bit addresses, thus providing a
much larger range of addresses to be assigned to hosts. Although IPv4 is still the
predominant version of IP in use on the Internet, in coming years, it should be sup-
planted by IPv6. Both IPv4 and IPv6 support the higher UDP and TCP transport-
layer protocols (as well as many other protocols).

Although a 32-bit address space theoretically permits billions of IPv4 network
addresses to be assigned, the manner in which addresses were structured and
allocated meant that the practical number of available addresses was far lower.
The possible exhaustion of the IPv4 address space was one of the primary
motivations for the creation of IPv6.

A short history of IPv6 can be found at http://www.laynetworks.com/
IPv6.htm.

The existence of IPv4 and IPv6 begs the question, “What about IPv5?”
There never was an IPv5 as such. Each IP datagram header includes a 4-bit ver-
sion number field (thus, IPv4 datagrams always have the number 4 in this
field), and the version number 5 was assigned to an experimental protocol,
Internet Stream Protocol. (Version 2 of this protocol, abbreviated as ST-II, is
described in RFC 1819.) Initially conceived in the 1970s, this connection-oriented
protocol was designed to support voice and video transmission, and distributed
simulation. Since the IP datagram version number 5 was already assigned, the
successor to IPv4 was assigned the version number 6.

Figure 58-2 shows a raw socket type (SOCK_RAW), which allows an application to com-
municate directly with the IP layer. We don’t describe the use of raw sockets, since
most applications employ sockets over one of the transport-layer protocols (TCP or
UDP). Raw sockets are described in Chapter 28 of [Stevens et al., 2004]. One
instructive example of the use of raw sockets is the sendip program (http://
www.earth.li/projectpurple/progs/sendip.html), which is a command-line-driven tool
that allows the construction and transmission of IP datagrams with arbitrary contents
(including options to construct UDP datagrams and TCP segments).

IP transmits datagrams

IP transmits data in the form of datagrams (packets). Each datagram sent between
two hosts travels independently across the network, possibly taking a different
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route. An IP datagram includes a header, which ranges in size from 20 to 60 bytes.
The header contains the address of the target host, so that the datagram can be
routed through the network to its destination, and also includes the originating
address of the packet, so that the receiving host knows the origin of the datagram.

It is possible for a sending host to spoof the originating address of a packet,
and this forms the basis of a TCP denial-of-service attack known as SYN-flood-
ing. [Lemon, 2002] describes the details of this attack and the measures used
by modern TCP implementations to deal with it.

An IP implementation may place an upper limit on the size of datagrams that it
supports. All IP implementations must permit datagrams at least as large as the
limit specified by IP’s minimum reassembly buffer size. In IPv4, this limit is 576 bytes;
in IPv6, it is 1500 bytes.

IP is connectionless and unreliable

IP is described as a connectionless protocol, since it doesn’t provide the notion of a
virtual circuit connecting two hosts. IP is also an unreliable protocol: it makes a
“best effort” to transmit datagrams from the sender to the receiver, but doesn’t
guarantee that packets will arrive in the order they were transmitted, that they
won’t be duplicated, or even that they will arrive at all. Nor does IP provide error
recovery (packets with header errors are silently discarded). Reliability must be
provided either by using a reliable transport-layer protocol (e.g., TCP) or within
the application itself.

IPv4 provides a checksum for the IP header, which allows the detection of
errors in the header, but doesn’t provide any error detection for the data
transmitted within the packet. IPv6 doesn’t provide a checksum in the IP
header, relying on higher-layer protocols to provide error checking and reli-
ability as required. (UDP checksums are optional with IPv4, but generally enabled;
UDP checksums are mandatory with IPv6. TCP checksums are mandatory with
both IPv4 and IPv6.)

Duplication of IP datagrams may occur because of techniques employed
by some data-link layers to ensure reliability or when IP datagrams are tunneled
through some non-TCP/IP network that employs retransmission.

IP may fragment datagrams

IPv4 datagrams can be up to 65,535 bytes. By default, IPv6 allows datagrams of up
to 65,575 bytes (40 bytes for the header, 65,535 bytes for data), and provides an
option for larger datagrams (so-called jumbograms).

We noted earlier that most data-link layers impose an upper limit (the MTU)
on the size of data frames. For example, this upper limit is 1500 bytes on the commonly
used Ethernet network architecture (i.e., much smaller than the maximum size of an IP
datagram). IP also defines the notion of the path MTU. This is the minimum MTU on
all of the data-link layers traversed on the route from the source to the destination.
(In practice, the Ethernet MTU is often the minimum MTU in a path.)

When an IP datagram is larger than the MTU, IP fragments (breaks up) the data-
gram into suitably sized units for transmission across the network. These fragments
are then reassembled at the final destination to re-create the original datagram.
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(Each IP fragment is itself an IP datagram that contains an offset field giving the
location of that fragment within the original datagram.)

IP fragmentation occurs transparently to higher protocol layers, but nevertheless
is generally considered undesirable ([Kent & Mogul, 1987]). The problem is that,
because IP doesn’t perform retransmission, and a datagram can be reassembled at
the destination only if all fragments arrive, the entire datagram is unusable if any
fragment is lost or contains transmission errors. In some cases, this can lead to signif-
icant rates of data loss (for higher protocol layers that don’t perform retransmission,
such as UDP) or degraded transfer rates (for higher protocol layers that do perform
retransmission, such as TCP). Modern TCP implementations employ algorithms
(path MTU discovery) to determine the MTU of a path between hosts, and accord-
ingly break up the data they pass to IP, so that IP is not asked to transmit datagrams
that exceed this size. UDP provides no such mechanism, and we consider how UDP-
based applications can deal with the possibility of IP fragmentation in Section 58.6.2.

58.5 IP Addresses

An IP address consists of two parts: a network ID, which specifies the network on
which a host resides, and a host ID, which identifies the host within that network.

IPv4 addresses

An IPv4 address consists of 32 bits (Figure 58-5). When expressed in human-readable
form, these addresses are normally written in dotted-decimal notation, with the 4 bytes of
the address being written as decimal numbers separated by dots, as in 204.152.189.116.

Figure 58-5: An IPv4 network address and corresponding network mask

When an organization applies for a range of IPv4 addresses for its hosts, it receives
a 32-bit network address and a corresponding 32-bit network mask. In binary form,
this mask consists of a sequence of 1s in the leftmost bits, followed by a sequence of
0s to fill out the remainder of the mask. The 1s indicate which part of the address
contains the assigned network ID, while the 0s indicate which part of the address is
available to the organization to assign as unique host IDs on its network. The size
of the network ID part of the mask is determined when the address is assigned.
Since the network ID component always occupies the leftmost part of the mask, the
following notation is sufficient to specify the range of assigned addresses:

204.152.189.0/24

The /24 indicates that the network ID part of the assigned address consists of the
leftmost 24 bits, with the remaining 8 bits specifying the host ID. Alternatively, we
could say that the network mask in this case is 255.255.255.0 in dotted-decimal notation.

Network ID

all 1s

Host ID

all 0s

32 bits
Network address

Network mask
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An organization holding this address can assign 254 unique Internet addresses
to its computers—204.152.189.1 through 204.152.189.254. Two addresses can’t be
assigned. One of these is the address whose host ID is all 0 bits, which is used to
identify the network itself. The other is the address whose host ID is all 1 bits—
204.152.189.255 in this example—which is the subnet broadcast address.

Certain IPv4 addresses have special meanings. The special address 127.0.0.1 is
normally defined as the loopback address, and is conventionally assigned the host-
name localhost. (Any address on the network 127.0.0.0/8 can be designated as the
IPv4 loopback address, but 127.0.0.1 is the usual choice.) A datagram sent to this
address never actually reaches the network, but instead automatically loops back to
become input to the sending host. Using this address is convenient for testing client
and server programs on the same host. For use in a C program, the integer con-
stant INADDR_LOOPBACK is defined for this address.

The constant INADDR_ANY is the so-called IPv4 wildcard address. The wildcard IP
address is useful for applications that bind Internet domain sockets on multi-
homed hosts. If an application on a multihomed host binds a socket to just one of
its host’s IP addresses, then that socket can receive only UDP datagrams or TCP
connection requests sent to that IP address. However, we normally want an applica-
tion on a multihomed host to be able to receive datagrams or connection requests
that specify any of the host’s IP addresses, and binding the socket to the wildcard IP
address makes this possible. SUSv3 doesn’t specify any particular value for
INADDR_ANY, but most implementations define it as 0.0.0.0 (all zeros).

Typically, IPv4 addresses are subnetted. Subnetting divides the host ID part of
an IPv4 address into two parts: a subnet ID and a host ID (Figure 58-6). (The choice
of how the bits of the host ID are divided is made by the local network administra-
tor.) The rationale for subnetting is that an organization often doesn’t attach all of
its hosts to a single network. Instead, the organization may operate a set of sub-
networks (an “internal internetwork”), with each subnetwork being identified by
the combination of the network ID plus the subnet ID. This combination is usually
referred to as the extended network ID. Within a subnet, the subnet mask serves the same
role as described earlier for the network mask, and we can use a similar notation to
indicate the range of addresses assigned to a particular subnet.

For example, suppose that our assigned network ID is 204.152.189.0/24, and we
choose to subnet this address range by splitting the 8 bits of the host ID into a 4-bit
subnet ID and a 4-bit host ID. Under this scheme, the subnet mask would consist of
28 leading ones, followed by 4 zeros, and the subnet with the ID of 1 would be des-
ignated as 204.152.189.16/28.

Figure 58-6: IPv4 subnetting

Network ID

all 1s

Host ID
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IPv6 addresses

The principles of IPv6 addresses are similar to IPv4 addresses. The key difference is
that IPv6 addresses consist of 128 bits, and the first few bits of the address are a
format prefix, indicating the address type. (We won’t go into the details of these
address types; see Appendix A of [Stevens et al., 2004] and RFC 3513 for details.)

IPv6 addresses are typically written as a series of 16-bit hexadecimal numbers
separated by colons, as in the following:

F000:0:0:0:0:0:A:1

IPv6 addresses often include a sequence of zeros and, as a notational convenience,
two colons (::) can be employed to indicate such a sequence. Thus, the above
address can be rewritten as:

F000::A:1

Only one instance of the double-colon notation can appear in an IPv6 address;
more than one instance would be ambiguous.

IPv6 also provides equivalents of the IPv4’s loopback address (127 zeros, fol-
lowed by a one, thus ::1) and wildcard address (all zeros, written as either 0::0 or ::).

In order to allow IPv6 applications to communicate with hosts supporting only
IPv4, IPv6 provides so-called IPv4-mapped IPv6 addresses. The format of these
addresses is shown in Figure 58-7.

Figure 58-7: Format of an IPv4-mapped IPv6 address

When writing an IPv4-mapped IPv6 address, the IPv4 part of the address (i.e., the
last 4 bytes) is written in IPv4 dotted-decimal notation. Thus, the IPv4-mapped IPv6
address equivalent to 204.152.189.116 is ::FFFF:204.152.189.116.

58.6 The Transport Layer

There are two widely used transport-layer protocols in the TCP/IP suite:

User Datagram Protocol (UDP) is the protocol used for datagram sockets.

Transmission Control Protocol (TCP) is the protocol used for stream sockets.

Before considering these protocols, we first need to describe port numbers, a con-
cept used by both protocols.

58.6.1 Port Numbers
The task of the transport protocol is to provide an end-to-end communication ser-
vice to applications residing on different hosts (or sometimes on the same host). In
order to do this, the transport layer requires a method of differentiating the appli-
cations on a host. In TCP and UDP, this differentiation is provided by a 16-bit port
number.

all zeros

80 bits

IPv4 addressFFFF

16 bits 32 bits
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Well-known, registered, and privileged ports

Some well-known port numbers are permanently assigned to specific applications
(also known as services). For example, the ssh (secure shell) daemon uses the well-
known port 22, and HTTP (the protocol used for communication between web
servers and browsers) uses the well-known port 80. Well-known ports are assigned
numbers in the range 0 to 1023 by a central authority, the Internet Assigned Numbers
Authority (IANA, http://www.iana.org/). Assignment of a well-known port number
is contingent on an approved network specification (typically in the form of an RFC).

IANA also records registered ports, which are allocated to application developers on
a less stringent basis (which also means that an implementation doesn’t need to guaran-
tee the availability of these ports for their registered purpose). The range of IANA
registered ports is 1024 to 41951. (Not all port numbers in this range are registered.)

The up-to-date list of IANA well-known and registered port assignments can be
obtained online at http://www.iana.org/assignments/port-numbers.

In most TCP/IP implementations (including Linux), the port numbers in the
range 0 to 1023 are also privileged, meaning that only privileged (CAP_NET_BIND_SERVICE)
processes may bind to these ports. This prevents a normal user from implementing
a malicious application that, for example, spoofs as ssh in order to obtain pass-
words. (Sometimes, privileged ports are referred to as reserved ports.)

Although TCP and UDP ports with the same number are distinct entities, the
same well-known port number is usually assigned to a service under both TCP and
UDP, even if, as is often the case, that service is available under only one of these pro-
tocols. This convention avoids confusion of port numbers across the two protocols.

Ephemeral ports

If an application doesn’t select a particular port (i.e., in sockets terminology, it
doesn’t bind() its socket to a particular port), then TCP and UDP assign a unique
ephemeral port (i.e., short-lived) number to the socket. In this case, the application—
typically a client—doesn’t care which port number it uses, but assigning a port is
necessary so that the transport-layer protocols can identify the communication
endpoints. It also has the result that the peer application at the other end of the
communication channel knows how to communicate with this application. TCP
and UDP also assign an ephemeral port number if we bind a socket to port 0.

IANA specifies the ports in the range 49152 to 65535 as dynamic or private, with
the intention that these ports can be used by local applications and assigned as
ephemeral ports. However, various implementations allocate ephemeral ports
from different ranges. On Linux, the range is defined by (and can be modified via)
two numbers contained in the file /proc/sys/net/ipv4/ip_local_port_range.

58.6.2 User Datagram Protocol (UDP)
UDP adds just two features to IP: port numbers and a data checksum to allow the
detection of errors in the transmitted data.

Like IP, UDP is connectionless. Since it adds no reliability to IP, UDP is likewise
unreliable. If an application layered on top of UDP requires reliability, then this must
be implemented within the application. Despite this unreliability, we may sometimes
prefer to use UDP instead of TCP, for the reasons detailed in Section 61.12.
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The checksums used by both UDP and TCP are just 16 bits long, and are simple
“add-up” checksums that can fail to detect certain classes of errors. Conse-
quently, they do not provide extremely strong error detection. Busy Internet
servers typically see an average of one undetected transmission error every few
days ([Stone & Partridge, 2000]). Applications that need stronger assurances of
data integrity can use the Secure Sockets Layer (SSL) protocol, which provides not
only secure communication, but also much more rigorous detection of errors.
Alternatively, an application could implement its own error-control scheme.

Selecting a UDP datagram size to avoid IP fragmentation

In Section 58.4, we described the IP fragmentation mechanism, and noted that it is
usually best to avoid IP fragmentation. While TCP contains mechanisms for avoiding
IP fragmentation, UDP does not. With UDP, we can easily cause IP fragmentation
by transmitting a datagram that exceeds the MTU of the local data link.

A UDP-based application generally doesn’t know the MTU of the path between
the source and destination hosts. UDP-based applications that aim to avoid IP frag-
mentation typically adopt a conservative approach, which is to ensure that the
transmitted IP datagram is less than the IPv4 minimum reassembly buffer size of
576 bytes. (This value is likely to be lower than the path MTU.) From these 576 bytes,
8 bytes are required by UDP’s own header, and an additional minimum of 20 bytes
are required for the IP header, leaving 548 bytes for the UDP datagram itself. In
practice, many UDP-based applications opt for a still lower limit of 512 bytes for
their datagrams ([Stevens, 1994]).

58.6.3 Transmission Control Protocol (TCP)
TCP provides a reliable, connection-oriented, bidirectional, byte-stream communica-
tion channel between two endpoints (i.e., applications), as shown in Figure 58-8. In
order to provide these features, TCP must perform the tasks described in this section.
(A detailed description of all of these features can be found in [Stevens, 1994].)

Figure 58-8: Connected TCP sockets

We use the term TCP endpoint to denote the information maintained by the kernel
for one end of a TCP connection. (Often, we abbreviate this term further, for
example, writing just “a TCP,” to mean “a TCP endpoint,” or “the client TCP” to
mean “the TCP endpoint maintained for the client application.”) This information
includes the send and receive buffers for this end of the connection, as well as state
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information that is maintained in order to synchronize the operation of the two
connected endpoints. (We describe this state information in further detail when we
consider the TCP state transition diagram in Section 61.6.3.) In the remainder of this
book, we use the terms receiving TCP and sending TCP to denote the TCP endpoints
maintained for the receiving and sending applications on either end of a stream
socket connection that is being used to transmit data in a particular direction.

Connection establishment

Before communication can commence, TCP establishes a communication channel
between the two endpoints. During connection establishment, the sender and receiver
can exchange options to advertise parameters for the connection.

Packaging of data in segments

Data is broken into segments, each of which contains a checksum to allow the
detection of end-to-end transmission errors. Each segment is transmitted in a single
IP datagram.

Acknowledgements, retransmissions, and timeouts

When a TCP segment arrives at its destination without errors, the receiving TCP sends
a positive acknowledgement to the sender, informing it of the successfully delivered
data. If a segment arrives with errors, then it is discarded, and no acknowledgement is
sent. To handle the possibility of segments that never arrive or are discarded, the
sender starts a timer when each segment is transmitted. If an acknowledgement is
not received before the timer expires, the segment is retransmitted.

Since the time taken to transmit a segment and receive its acknowledgement
varies according to the range of the network and the current traffic loading,
TCP employs an algorithm to dynamically adjust the size of the retransmission
timeout (RTO).

The receiving TCP may not send acknowledgements immediately, but
instead wait for a fraction of a second to see if the acknowledgement can be
piggybacked inside any response that the receiver may send straight back to
the sender. (Every TCP segment includes an acknowledgement field, allowing
for such piggybacking.) The aim of this technique, called delayed ACK, is to
save sending a TCP segment, thus decreasing the number of packets in the net-
work and decreasing the load on the sending and receiving hosts.

Sequencing

Each byte that is transmitted over a TCP connection is assigned a logical sequence
number. This number indicates the position of that byte in the data stream for the
connection. (Each of the two streams in the connection has its own sequence
numbering.) When a TCP segment is transmitted, it includes a field containing the
sequence number of the first byte in the segment.

Attaching sequence numbers to each segment serves a variety of purposes:

The sequence number allows TCP segments to be assembled in the correct
order at the destination, and then passed as a byte stream to the application
layer. (At any moment, multiple TCP segments may be in transit between
sender and receiver, and these segments may arrive out of order.)
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The acknowledgement message passed from the receiver back to the sender
can use the sequence number to identify which TCP segment was received.

The receiver can use the sequence number to eliminate duplicate segments.
Such duplicates may occur either because of the duplication of IP datagrams or
because of TCP’s own retransmission algorithm, which could retransmit a suc-
cessfully delivered segment if the acknowledgement for that segment was lost
or was not received in a timely fashion.

The initial sequence number (ISN) for a stream doesn’t start at 0. Instead, it is gen-
erated via an algorithm that increases the ISN assigned to successive TCP connec-
tions (to prevent the possibility of old segments from a previous incarnation of the
connection being confused with segments for this connection). This algorithm is
also designed to make guessing the ISN difficult. The sequence number is a 32-bit
value that is wrapped around to 0 when the maximum value is reached.

Flow control

Flow control prevents a fast sender from overwhelming a slow receiver. To implement
flow control, the receiving TCP maintains a buffer for incoming data. (Each TCP
advertises the size of this buffer during connection establishment.) Data accumulates
in this buffer as it is received from the sending TCP, and is removed as the applica-
tion reads data. With each acknowledgement, the receiver advises the sender of
how much space is available in its incoming data buffer (i.e., how many bytes the
sender can transmit). The TCP flow-control algorithm employs a so-called sliding
window algorithm, which allows unacknowledged segments containing a total of up
N (the offered window size) bytes to be in transit between the sender and receiver.
If a receiving TCP’s incoming data buffer fills completely, then the window is said
to be closed, and the sending TCP stops transmitting.

The receiver can override the default size for the incoming data buffer using
the SO_RCVBUF socket option (see the socket(7) manual page).

Congestion control: slow-start and congestion-avoidance algorithms

TCP’s congestion-control algorithms are designed to prevent a fast sender from
overwhelming a network. If a sending TCP transmits packets faster than they can
be relayed by an intervening router, that router will start dropping packets. This
could lead to high rates of packet loss and, consequently, serious performance
degradation, if the sending TCP kept retransmitting these dropped segments at the
same rate. TCP’s congestion-control algorithms are important in two circumstances:

After connection establishment: At this time (or when transmission resumes on a
connection that has been idle for some time), the sender could start by imme-
diately injecting as many segments into the network as would be permitted by
the window size advertised by the receiver. (In fact, this is what was done in
early TCP implementations.) The problem here is that if the network can’t handle
this flood of segments, the sender risks overwhelming the network immediately.
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When congestion is detected: If the sending TCP detects that congestion is occur-
ring, then it must reduce its transmission rate. TCP detects that congestion is
occurring based on the assumption that segment loss because of transmission
errors is very low; thus, if a packet is lost, the cause is assumed to be congestion.

TCP’s congestion-control strategy employs two algorithms in combination: slow
start and congestion avoidance.

The slow-start algorithm causes the sending TCP to initially transmit segments
at a slow rate, but allows it to exponentially increase the rate as these segments are
acknowledged by the receiving TCP. Slow start attempts to prevent a fast TCP
sender from overwhelming a network. However, if unrestrained, slow start’s expo-
nential increase in the transmission rate could mean that the sender would soon
overwhelm the network. TCP’s congestion-avoidance algorithm prevents this, by placing
a governor on the rate increase.

With congestion avoidance, at the beginning of a connection, the sending TCP
starts with a small congestion window, which limits the amount of unacknowledged
data that it can transmit. As the sender receives acknowledgements from the peer
TCP, the congestion window initially grows exponentially. However, once the con-
gestion window reaches a certain threshold believed to be close to the transmission
capacity of the network, its growth becomes linear, rather than exponential. (An
estimate of the capacity of the network is derived from a calculation based on the
transmission rate that was in operation when congestion was detected, or is set at a
fixed value after initial establishment of the connection.) At all times, the quantity
of data that the sending TCP will transmit remains additionally constrained by the
receiving TCP’s advertised window and the local TCP’s send buffer.

In combination, the slow-start and congestion-avoidance algorithms allow the
sender to rapidly raise its transmission speed up to the available capacity of the net-
work, without overshooting that capacity. The effect of these algorithms is to allow
data transmission to quickly reach a state of equilibrium, where the sender trans-
mits packets at the same rate as it receives acknowledgements from the receiver.

58.7 Requests for Comments (RFCs)

Each of the Internet protocols that we discuss in this book is defined in an RFC docu-
ment—a formal protocol specification. RFCs are published by the RFC Editor (http://
www.rfc-editor.org/), which is funded by the Internet Society (http://www.isoc.org/). RFCs
that describe Internet standards are developed under the auspices of the Internet
Engineering Task Force (IETF, http://www.ietf.org/), a community of network designers,
operators, vendors, and researchers concerned with the evolution and smooth opera-
tion of the Internet. Membership of the IETF is open to any interested individual.

The following RFCs are of particular relevance to the material covered in this
book:

RFC 791, Internet Protocol. J. Postel (ed.), 1981.

RFC 950, Internet Standard Subnetting Procedure. J. Mogul and J. Postel, 1985.
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RFC 793, Transmission Control Protocol. J. Postel (ed.), 1981.

RFC 768, User Datagram Protocol. J. Postel (ed.), 1980.

RFC 1122, Requirements for Internet Hosts—Communication Layers. R. Braden 
(ed.), 1989.

RFC 1122 extends (and corrects) various earlier RFCs describing the TCP/IP
protocols. It is one of a pair of RFCs that are often simply known as the Host
Requirements RFCs. The other member of the pair is RFC 1123, which covers
application-layer protocols such as telnet, FTP, and SMTP.

Among the RFCs that describe IPv6 are the following:

RFC 2460, Internet Protocol, Version 6. S. Deering and R. Hinden, 1998.

RFC 4291, IP Version 6 Addressing Architecture. R. Hinden and S. Deering, 2006.

RFC 3493, Basic Socket Interface Extensions for IPv6. R. Gilligan, S. Thomson, 
J. Bound, J. McCann, and W. Stevens, 2003.

RFC 3542, Advanced Sockets API for IPv6. W. Stevens, M. Thomas, E. Nordmark, 
and T. Jinmei, 2003.

A number of RFCs and papers provide improvements and extensions to the origi-
nal TCP specification, including the following:

Congestion Avoidance and Control. V. Jacobsen, 1988. This was the initial paper 
describing the congestion-control and slow-start algorithms for TCP. Originally 
published in Proceedings of SIGCOMM ’88, a slightly revised version is available at 
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z. This paper is largely superseded by some 
of the following RFCs.

RFC 1323, TCP Extensions for High Performance. V. Jacobson, R. Braden, and D. 
Borman, 1992.

RFC 2018, TCP Selective Acknowledgment Options. M. Mathis, J. Mahdavi, S. Floyd, 
and A. Romanow, 1996.

RFC 2581, TCP Congestion Control. M. Allman, V. Paxson, and W. Stevens, 
1999.

RFC 2861, TCP Congestion Window Validation. M. Handley, J. Padhye, and 
S. Floyd, 2000.

RFC 2883, An Extension to the Selective Acknowledgement (SACK) Option for TCP. 
S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, 2000.

RFC 2988, Computing TCP’s Retransmission Timer. V. Paxson and M. Allman, 
2000.

RFC 3168, The Addition of Explicit Congestion Notification (ECN) to IP. 
K. Ramakrishnan, S. Floyd, and D. Black, 2001.

RFC 3390, Increasing TCP’s Initial Window. M. Allman, S. Floyd, and C. Partridge, 
2002.
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58.8 Summary

TCP/IP is a layered networking protocol suite. At the bottom layer of the TCP/IP
protocol stack is the IP network-layer protocol. IP transmits data in the form of data-
grams. IP is connectionless, meaning that datagrams transmitted between source
and destination hosts may take different routes across the network. IP is unreliable,
in that it provides no guarantee that datagrams will arrive in order or unduplicated,
or even arrive at all. If reliability is required, then it must be provided via the use of
a reliable higher-layer protocol (e.g., TCP), or within an application.

The original version of IP is IPv4. In the early 1990s, a new version of IP, IPv6,
was devised. The most notable difference between IPv4 and IPv6 is that IPv4 uses
32 bits to represent a host address, while IPv6 uses 128 bits, thus allowing for a
much larger number of hosts on the world-wide Internet. Currently, IPv4 remains
the most widely used version of IP, although in coming years, it is likely to be sup-
planted by IPv6.

Various transport-layer protocols are layered on top of IP, of which the most
widely used are UDP and TCP. UDP is an unreliable datagram protocol. TCP is a
reliable, connection-oriented, byte-stream protocol. TCP handles all of the details
of connection establishment and termination. TCP also packages data into seg-
ments for transmission by IP, and provides sequence numbering for these seg-
ments so that they can be acknowledged and assembled in the correct order by the
receiver. In addition, TCP provides flow control, to prevent a fast sender from
overwhelming a slow receiver, and congestion control, to prevent a fast sender
from overwhelming the network.

Further information

Refer to the sources of further information listed in Section 59.15.
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S O C K E T S :  I N T E R N E T  D O M A I N S

Having looked at generic sockets concepts and the TCP/IP protocol suite in previous
chapters, we are now ready in this chapter to look at programming with sockets in
the IPv4 (AF_INET) and IPv6 (AF_INET6) domains.

As noted in Chapter 58, Internet domain socket addresses consist of an IP address
and a port number. Although computers use binary representations of IP
addresses and port numbers, humans are much better at dealing with names than with
numbers. Therefore, we describe the techniques used to identify host computers
and ports using names. We also examine the use of library functions to obtain the
IP address(es) for a particular hostname and the port number that corresponds to
a particular service name. Our discussion of hostnames includes a description of
the Domain Name System (DNS), which implements a distributed database that
maps hostnames to IP addresses and vice versa.

59.1 Internet Domain Sockets

Internet domain stream sockets are implemented on top of TCP. They provide a
reliable, bidirectional, byte-stream communication channel.



Internet domain datagram sockets are implemented on top of UDP. UDP sockets
are similar to their UNIX domain counterparts, but note the following differences:

UNIX domain datagram sockets are reliable, but UDP sockets are not—data-
grams may be lost, duplicated, or arrive in a different order from that in which
they were sent.

Sending on a UNIX domain datagram socket will block if the queue of data for
the receiving socket is full. By contrast, with UDP, if the incoming datagram
would overflow the receiver’s queue, then the datagram is silently dropped.

59.2 Network Byte Order

IP addresses and port numbers are integer values. One problem we encounter
when passing these values across a network is that different hardware architectures
store the bytes of a multibyte integer in different orders. As shown in Figure 59-1,
architectures that store integers with the most significant byte first (i.e., at the lowest
memory address) are termed big endian; those that store the least significant byte
first are termed little endian. (The terms derive from Jonathan Swift’s 1726 satirical
novel Gulliver’s Travels, in which the terms refer to opposing political factions who
open their boiled eggs at opposite ends.) The most notable example of a little-
endian architecture is x86. (Digital’s VAX architecture was another historically
important example, since BSD was widely used on that machine.) Most other archi-
tectures are big endian. A few hardware architectures are switchable between the
two formats. The byte ordering used on a particular machine is called the host byte order.

Figure 59-1: Big-endian and little-endian byte order for 2-byte and 4-byte integers

Since port numbers and IP addresses must be transmitted between, and under-
stood by, all hosts on a network, a standard ordering must be used. This ordering is
called network byte order, and happens to be big endian.

Later in this chapter, we look at various functions that convert hostnames (e.g.,
www.kernel.org) and service names (e.g., http) into the corresponding numeric
forms. These functions generally return integers in network byte order, and these
integers can be copied directly into the relevant fields of a socket address structure.
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However, we sometimes make direct use of integer constants for IP addresses
and port numbers. For example, we may choose to hard-code a port number into
our program, specify a port number as a command-line argument to a program, or
use constants such as INADDR_ANY and INADDR_LOOPBACK when specifying an IPv4
address. These values are represented in C according to the conventions of the
host machine, so they are in host byte order. We must convert these values to net-
work byte order before storing them in socket address structures.

The htons(), htonl(), ntohs(), and ntohl() functions are defined (typically as macros)
for converting integers in either direction between host and network byte order.

In earlier times, these functions had prototypes such as the following:

unsigned long htonl(unsigned long hostlong);

This reveals the origin of the function names—in this case, host to network long. On
most early systems on which sockets were implemented, short integers were 16 bits,
and long integers were 32 bits. This no longer holds true on modern systems (at
least for long integers), so the prototypes given above provide a more exact definition
of the types dealt with by these functions, although the names remain unchanged.
The uint16_t and uint32_t data types are 16-bit and 32-bit unsigned integers.

Strictly speaking, the use of these four functions is necessary only on systems
where the host byte order differs from network byte order. However, these func-
tions should always be used, so that programs are portable to different hardware
architectures. On systems where the host byte order is the same as network byte
order, these functions simply return their arguments unchanged.

59.3 Data Representation

When writing network programs, we need to be aware of the fact that different
computer architectures use different conventions for representing various data
types. We have already noted that integer types can be stored in big-endian or little-
endian form. There are also other possible differences. For example, the C long
data type may be 32 bits on some systems and 64 bits on others. When we consider
structures, the issue is further complicated by the fact that different implementations

#include <arpa/inet.h>

uint16_t htons(uint16_t host_uint16);

Returns host_uint16 converted to network byte order

uint32_t htonl(uint32_t host_uint32);

Returns host_uint32 converted to network byte order

uint16_t ntohs(uint16_t net_uint16);

Returns net_uint16 converted to host byte order

uint32_t ntohl(uint32_t net_uint32);

Returns net_uint32 converted to host byte order
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employ different rules for aligning the fields of a structure to address boundaries on
the host system, leaving different numbers of padding bytes between the fields.

Because of these differences in data representation, applications that exchange
data between heterogeneous systems over a network must adopt some common
convention for encoding that data. The sender must encode data according to this
convention, while the receiver decodes following the same convention. The pro-
cess of putting data into a standard format for transmission across a network is
referred to as marshalling. Various marshalling standards exist, such as XDR (Exter-
nal Data Representation, described in RFC 1014), ASN.1-BER (Abstract Syntax
Notation 1, http://www.asn1.org/), CORBA, and XML. Typically, these standards
define a fixed format for each data type (defining, for example, byte order and
number of bits used). As well as being encoded in the required format, each data
item is tagged with extra field(s) identifying its type (and, possibly, length).

However, a simpler approach than marshalling is often employed: encode all
transmitted data in text form, with separate data items delimited by a designated
character, typically a newline character. One advantage of this approach is that we
can use telnet to debug an application. To do this, we use the following command:

$ telnet host port

We can then type lines of text to be transmitted to the application, and view the
responses sent by the application. We demonstrate this technique in Section 59.11.

The problems associated with differences in representation across heteroge-
neous systems apply not only to data transfer across a network, but also to any
mechanism of data exchange between such systems. For example, we face the
same problems when transferring files on disk or tape between heterogeneous
systems. Network programming is simply the most common programming
context in which we are nowadays likely to encounter this issue.

If we encode data transmitted on a stream socket as newline-delimited text, then it
is convenient to define a function such as readLine(), shown in Listing 59-1.

The readLine() function reads bytes from the file referred to by the file descriptor
argument fd until a newline is encountered. The input byte sequence is returned in
the location pointed to by buffer, which must point to a region of at least n bytes of
memory. The returned string is always null-terminated; thus, at most (n – 1) bytes
of actual data will be returned. On success, readLine() returns the number of bytes of
data placed in buffer; the terminating null byte is not included in this count.

#include "read_line.h"

ssize_t readLine(int fd, void *buffer, size_t n);

Returns number of bytes copied into buffer (excluding
terminating null byte), or 0 on end-of-file, or –1 on error
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Listing 59-1: Reading data a line at a time

–––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/read_line.c

#include <unistd.h>
#include <errno.h>
#include "read_line.h"                  /* Declaration of readLine() */

ssize_t
readLine(int fd, void *buffer, size_t n)
{
    ssize_t numRead;                    /* # of bytes fetched by last read() */
    size_t totRead;                     /* Total bytes read so far */
    char *buf;
    char ch;

    if (n <= 0 || buffer == NULL) {
        errno = EINVAL;
        return -1;
    }

    buf = buffer;                       /* No pointer arithmetic on "void *" */

    totRead = 0;
    for (;;) {
        numRead = read(fd, &ch, 1);

        if (numRead == -1) {
            if (errno == EINTR)        /* Interrupted --> restart read() */
                continue;
            else
                return -1;              /* Some other error */

        } else if (numRead == 0) {      /* EOF */
            if (totRead == 0)           /* No bytes read; return 0 */
                return 0;
            else                        /* Some bytes read; add '\0' */
                break;

        } else {                        /* 'numRead' must be 1 if we get here */
            if (totRead < n - 1) {      /* Discard > (n - 1) bytes */
                totRead++;
                *buf++ = ch;
            }

            if (ch == '\n')
                break;
        }
    }

    *buf = '\0';
    return totRead;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/read_line.c
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If the number of bytes read before a newline is encountered is greater than or
equal to (n – 1), then the readLine() function discards the excess bytes (including
the newline). If a newline was read within the first (n – 1) bytes, then it is included
in the returned string. (Thus, we can determine if bytes were discarded by checking
if a newline precedes the terminating null byte in the returned buffer.) We take this
approach so that application protocols that rely on handling input in units of lines
don’t end up processing a long line as though it were multiple lines. This would
likely break the protocol, as the applications on either end would become desyn-
chronized. An alternative approach would be to have readLine() read only sufficient
bytes to fill the supplied buffer, leaving any remaining bytes up to the next newline
for the next call to readLine(). In this case, the caller of readLine() would need to
handle the possibility of a partial line being read.

We employ the readLine() function in the example programs presented in
Section 59.11.

59.4 Internet Socket Addresses

There are two types of Internet domain socket addresses: IPv4 and IPv6.

IPv4 socket addresses: struct sockaddr_in

An IPv4 socket address is stored in a sockaddr_in structure, defined in <netinet/in.h>
as follows:

struct in_addr {                    /* IPv4 4-byte address */
    in_addr_t s_addr;               /* Unsigned 32-bit integer */
};

struct sockaddr_in {                /* IPv4 socket address */
    sa_family_t    sin_family;      /* Address family (AF_INET) */
    in_port_t      sin_port;        /* Port number */
    struct in_addr sin_addr;        /* IPv4 address */
    unsigned char  __pad[X];        /* Pad to size of 'sockaddr'
                                       structure (16 bytes) */
};

In Section 56.4, we saw that the generic sockaddr structure commences with a field
identifying the socket domain. This corresponds to the sin_family field in the
sockaddr_in structure, which is always set to AF_INET. The sin_port and sin_addr fields
are the port number and the IP address, both in network byte order. The in_port_t
and in_addr_t data types are unsigned integer types, 16 and 32 bits in length,
respectively.

IPv6 socket addresses: struct sockaddr_in6

Like an IPv4 address, an IPv6 socket address includes an IP address plus a port
number. The difference is that an IPv6 address is 128 bits instead of 32 bits. An
IPv6 socket address is stored in a sockaddr_in6 structure, defined in <netinet/in.h>
as follows:

struct in6_addr {                   /* IPv6 address structure */
    uint8_t s6_addr[16];            /* 16 bytes == 128 bits */
};
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struct sockaddr_in6 {               /* IPv6 socket address */
    sa_family_t sin6_family;        /* Address family (AF_INET6) */
    in_port_t   sin6_port;          /* Port number */
    uint32_t    sin6_flowinfo;      /* IPv6 flow information */
    struct in6_addr sin6_addr;      /* IPv6 address */
    uint32_t    sin6_scope_id;      /* Scope ID (new in kernel 2.4) */
};

The sin_family field is set to AF_INET6. The sin6_port and sin6_addr fields are the port
number and the IP address. (The uint8_t data type, used to type the bytes of the
in6_addr structure, is an 8-bit unsigned integer.) The remaining fields, sin6_flowinfo
and sin6_scope_id, are beyond the scope of this book; for our purposes, they are always
set to 0. All of the fields in the sockaddr_in6 structure are in network byte order.

IPv6 addresses are described in RFC 4291. Information about IPv6 flow control
(sin6_flowinfo) can be found in Appendix A of [Stevens et al., 2004] and in RFCs
2460 and 3697. RFCs 3493 and 4007 provide information about sin6_scope_id.

IPv6 has equivalents of the IPv4 wildcard and loopback addresses. However, their
use is complicated by the fact that an IPv6 address is stored in an array (rather than
using a scalar type). We use the IPv6 wildcard address (0::0) to illustrate this point.
The constant IN6ADDR_ANY_INIT is defined for this address as follows:

#define IN6ADDR_ANY_INIT { { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } }

On Linux, some details in the header files differ from our description in this
section. In particular, the in6_addr structure contains a union definition that
divides the 128-bit IPv6 address into 16 bytes, eight 2-byte integers, or four 32-byte
integers. Because of the presence of this definition, the glibc definition of the
IN6ADDR_ANY_INIT constant actually includes one more set of nested braces than
is shown in the main text.

We can use the IN6ADDR_ANY_INIT constant in the initializer that accompanies a variable
declaration, but can’t use it on the right-hand side of an assignment statement,
since C syntax doesn’t permit structured constants to be used in assignments.
Instead, we must use a predefined variable, in6addr_any, which is initialized as fol-
lows by the C library:

const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;

Thus, we can initialize an IPv6 socket address structure using the wildcard address
as follows:

struct sockaddr_in6 addr;

memset(&addr, 0, sizeof(struct sockaddr_in6));
addr.sin6_family = AF_INET6;
addr.sin6_addr = in6addr_any;
addr.sin6_port = htons(SOME_PORT_NUM);

The corresponding constant and variable for the IPv6 loopback address (::1) are
IN6ADDR_LOOPBACK_INIT and in6addr_loopback.
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Unlike their IPv4 counterparts, the IPv6 constant and variable initializers are in
network byte order. But, as shown in the above code, we still must ensure that the
port number is in network byte order.

If IPv4 and IPv6 coexist on a host, they share the same port-number space. This
means that if, for example, an application binds an IPv6 socket to TCP port 2000
(using the IPv6 wildcard address), then an IPv4 TCP socket can’t be bound to the
same port. (The TCP/IP implementation ensures that sockets on other hosts are
able to communicate with this socket, regardless of whether those hosts are run-
ning IPv4 or IPv6.)

The sockaddr_storage structure

With the IPv6 sockets API, the new generic sockaddr_storage structure was intro-
duced. This structure is defined to be large enough to hold any type of socket
address (i.e., any type of socket address structure can be cast and stored in it). In
particular, this structure allows us to transparently store either an IPv4 or an IPv6
socket address, thus removing IP version dependencies from our code. The
sockaddr_storage structure is defined on Linux as follows:

#define __ss_aligntype uint32_t         /* On 32-bit architectures */
struct sockaddr_storage {
    sa_family_t ss_family;
    __ss_aligntype __ss_align;          /* Force alignment */
    char __ss_padding[SS_PADSIZE];      /* Pad to 128 bytes */
};

59.5 Overview of Host and Service Conversion Functions

Computers represent IP addresses and port numbers in binary. However, humans
find names easier to remember than numbers. Employing symbolic names also
provides a useful level of indirection; users and programs can continue to use the
same name even if the underlying numeric value changes.

A hostname is the symbolic identifier for a system that is connected to a network
(possibly with multiple IP addresses). A service name is the symbolic representation
of a port number.

The following methods are available for representing host addresses and ports:

A host address can be represented as a binary value, as a symbolic hostname,
or in presentation format (dotted-decimal for IPv4 or hex-string for IPv6).

A port can be represented as a binary value or as a symbolic service name.

Various library functions are provided for converting between these formats. This
section briefly summarizes these functions. The following sections describe the
modern APIs (inet_ntop(), inet_pton(), getaddrinfo(), getnameinfo(), and so on) in
detail. In Section 59.13, we briefly discuss the obsolete APIs (inet_aton(), inet_ntoa(),
gethostbyname(), getservbyname(), and so on).

Converting IPv4 addresses between binary and human-readable forms

The inet_aton() and inet_ntoa() functions convert an IPv4 address in dotted-decimal
notation to binary and vice versa. We describe these functions primarily because
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they appear in historical code. Nowadays, they are obsolete. Modern programs that
need to do such conversions should use the functions that we describe next.

Converting IPv4 and IPv6 addresses between binary and human-readable forms

The inet_pton() and inet_ntop() functions are like inet_aton() and inet_ntoa(), but dif-
fer in that they also handle IPv6 addresses. They convert binary IPv4 and IPv6
addresses to and from presentation format—that is, either dotted-decimal or hex-
string notation.

Since humans deal better with names than with numbers, we normally use
these functions only occasionally in programs. One use of inet_ntop() is to produce
a printable representation of an IP address for logging purposes. Sometimes, it is
preferable to use this function instead of converting (“resolving”) an IP address to
a hostname, for the following reasons:

Resolving an IP address to a hostname involves a possibly time-consuming
request to a DNS server.

In some circumstances, there may not be a DNS (PTR) record that maps the IP
address to a corresponding hostname.

We describe these functions (in Section 59.6) before getaddrinfo() and getnameinfo(),
which perform conversions between binary representations and the corresponding
symbolic names, principally because they present a much simpler API. This allows
us to quickly show some working examples of the use of Internet domain sockets.

Converting host and service names to and from binary form (obsolete)

The gethostbyname() function returns the binary IP address(es) corresponding to a
hostname and the getservbyname() function returns the port number corresponding
to a service name. The reverse conversions are performed by gethostbyaddr() and
getservbyport(). We describe these functions because they are widely used in existing
code. However, they are now obsolete. (SUSv3 marks these functions obsolete, and
SUSv4 removes their specifications.) New code should use the getaddrinfo() and
getnameinfo() functions (described next) for such conversions.

Converting host and service names to and from binary form (modern)

The getaddrinfo() function is the modern successor to both gethostbyname() and
getservbyname(). Given a hostname and a service name, getaddrinfo() returns a set of
structures containing the corresponding binary IP address(es) and port number.
Unlike gethostbyname(), getaddrinfo() transparently handles both IPv4 and IPv6
addresses. Thus, we can use it to write programs that don’t contain dependencies
on the IP version being employed. All new code should use getaddrinfo() for con-
verting hostnames and service names to binary representation.

The getnameinfo() function performs the reverse translation, converting an IP
address and port number into the corresponding hostname and service name.

We can also use getaddrinfo() and getnameinfo() to convert binary IP addresses
to and from presentation format.

The discussion of getaddrinfo() and getnameinfo(), in Section 59.10, requires
an accompanying description of DNS (Section 59.8) and the /etc/services file
(Section 59.9). DNS allows cooperating servers to maintain a distributed database
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that maps binary IP addresses to hostnames and vice versa. The existence of a system
such as DNS is essential to the operation of the Internet, since centralized management
of the enormous set of Internet hostnames would be impossible. The /etc/services
file maps port numbers to symbolic service names.

59.6 The inet_pton() and inet_ntop() Functions

The inet_pton() and inet_ntop() functions allow conversion of both IPv4 and IPv6
addresses between binary form and dotted-decimal or hex-string notation.

The p in the names of these functions stands for “presentation,” and the n stands for
“network.” The presentation form is a human-readable string, such as the following:

204.152.189.116 (IPv4 dotted-decimal address);

::1 (an IPv6 colon-separated hexadecimal address); or

::FFFF:204.152.189.116 (an IPv4-mapped IPv6 address).

The inet_pton() function converts the presentation string contained in src_str into a
binary IP address in network byte order. The domain argument should be specified
as either AF_INET or AF_INET6. The converted address is placed in the structure pointed
to by addrptr, which should point to either an in_addr or an in6_addr structure,
according to the value specified in domain.

The inet_ntop() function performs the reverse conversion. Again, domain
should be specified as either AF_INET or AF_INET6, and addrptr should point to an in_addr
or in6_addr structure that we wish to convert. The resulting null-terminated string
is placed in the buffer pointed to by dst_str. The len argument must specify the size
of this buffer. On success, inet_ntop() returns dst_str. If len is too small, then inet_ntop()
returns NULL, with errno set to ENOSPC.

To correctly size the buffer pointed to by dst_str, we can employ two constants
defined in <netinet/in.h>. These constants indicate the maximum lengths (including
the terminating null byte) of the presentation strings for IPv4 and IPv6 addresses:

#define INET_ADDRSTRLEN  16     /* Maximum IPv4 dotted-decimal string */
#define INET6_ADDRSTRLEN 46     /* Maximum IPv6 hexadecimal string */

We provide examples of the use of inet_pton() and inet_ntop() in the next section.

#include <arpa/inet.h>

int inet_pton(int domain, const char *src_str, void *addrptr);

Returns 1 on successful conversion, 0 if src_str is not in
presentation format, or –1 on error

const char *inet_ntop(int domain, const void *addrptr, char *dst_str, size_t len);

Returns pointer to dst_str on success, or NULL on error
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59.7 Client-Server Example (Datagram Sockets)

In this section, we take the case-conversion server and client programs shown in
Section 57.3 and modify them to use datagram sockets in the AF_INET6 domain. We
present these programs with a minimum of commentary, since their structure is
similar to the earlier programs. The main differences in the new programs lie in
the declaration and initialization of the IPv6 socket address structure, which we
described in Section 59.4.

The client and server both employ the header file shown in Listing 59-2. This
header file defines the server’s port number and the maximum size of messages
that the client and server can exchange.

Listing 59-2: Header file used by i6d_ucase_sv.c and i6d_ucase_cl.c

–––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/i6d_ucase.h

#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <ctype.h>
#include "tlpi_hdr.h"

#define BUF_SIZE 10                     /* Maximum size of messages exchanged
                                           between client and server */

#define PORT_NUM 50002                  /* Server port number */

–––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/i6d_ucase.h

Listing 59-3 shows the server program. The server uses the inet_ntop() function to
convert the host address of the client (obtained via the recvfrom() call) to printable
form.

The client program shown in Listing 59-4 contains two notable modifications
from the earlier UNIX domain version (Listing 57-7, on page 1173). The first differ-
ence is that the client interprets its initial command-line argument as the IPv6
address of the server. (The remaining command-line arguments are passed as separate
datagrams to the server.) The client converts the server address to binary form using
inet_pton(). The other difference is that the client doesn’t bind its socket to an address.
As noted in Section 58.6.1, if an Internet domain socket is not bound to an address,
the kernel binds the socket to an ephemeral port on the host system. We can
observe this in the following shell session log, where we run the server and the cli-
ent on the same host:

$ ./i6d_ucase_sv &
[1] 31047
$ ./i6d_ucase_cl ::1 ciao                     Send to server on local host
Server received 4 bytes from (::1, 32770)
Response 1: CIAO

From the above output, we see that the server’s recvfrom() call was able to obtain the
address of the client’s socket, including the ephemeral port number, despite the
fact that the client did not do a bind().
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Listing 59-3: IPv6 case-conversion server using datagram sockets

–––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/i6d_ucase_sv.c

#include "i6d_ucase.h"

int
main(int argc, char *argv[])
{
    struct sockaddr_in6 svaddr, claddr;
    int sfd, j;
    ssize_t numBytes;
    socklen_t len;
    char buf[BUF_SIZE];
    char claddrStr[INET6_ADDRSTRLEN];

    sfd = socket(AF_INET6, SOCK_DGRAM, 0);
    if (sfd == -1)
        errExit("socket");

    memset(&svaddr, 0, sizeof(struct sockaddr_in6));
    svaddr.sin6_family = AF_INET6;
    svaddr.sin6_addr = in6addr_any;                    /* Wildcard address */
    svaddr.sin6_port = htons(PORT_NUM);

    if (bind(sfd, (struct sockaddr *) &svaddr,
                sizeof(struct sockaddr_in6)) == -1)
        errExit("bind");

    /* Receive messages, convert to uppercase, and return to client */

    for (;;) {
        len = sizeof(struct sockaddr_in6);
        numBytes = recvfrom(sfd, buf, BUF_SIZE, 0,
                            (struct sockaddr *) &claddr, &len);
        if (numBytes == -1)
            errExit("recvfrom");

        if (inet_ntop(AF_INET6, &claddr.sin6_addr, claddrStr,
                    INET6_ADDRSTRLEN) == NULL)
            printf("Couldn't convert client address to string\n");
        else
            printf("Server received %ld bytes from (%s, %u)\n",
                    (long) numBytes, claddrStr, ntohs(claddr.sin6_port));

        for (j = 0; j < numBytes; j++)
            buf[j] = toupper((unsigned char) buf[j]);

        if (sendto(sfd, buf, numBytes, 0, (struct sockaddr *) &claddr, len) !=
                numBytes)
            fatal("sendto");
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/i6d_ucase_sv.c
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Listing 59-4: IPv6 case-conversion client using datagram sockets

–––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/i6d_ucase_cl.c

#include "i6d_ucase.h"

int
main(int argc, char *argv[])
{
    struct sockaddr_in6 svaddr;
    int sfd, j;
    size_t msgLen;
    ssize_t numBytes;
    char resp[BUF_SIZE];

    if (argc < 3 || strcmp(argv[1], "--help") == 0)
        usageErr("%s host-address msg...\n", argv[0]);

    sfd = socket(AF_INET6, SOCK_DGRAM, 0);      /* Create client socket */
    if (sfd == -1)
        errExit("socket");

    memset(&svaddr, 0, sizeof(struct sockaddr_in6));
    svaddr.sin6_family = AF_INET6;
    svaddr.sin6_port = htons(PORT_NUM);
    if (inet_pton(AF_INET6, argv[1], &svaddr.sin6_addr) <= 0)
        fatal("inet_pton failed for address '%s'", argv[1]);

    /* Send messages to server; echo responses on stdout */

    for (j = 2; j < argc; j++) {
        msgLen = strlen(argv[j]);
        if (sendto(sfd, argv[j], msgLen, 0, (struct sockaddr *) &svaddr,
                    sizeof(struct sockaddr_in6)) != msgLen)
            fatal("sendto");

        numBytes = recvfrom(sfd, resp, BUF_SIZE, 0, NULL, NULL);
        if (numBytes == -1)
            errExit("recvfrom");

        printf("Response %d: %.*s\n", j - 1, (int) numBytes, resp);
    }

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/i6d_ucase_cl.c

59.8 Domain Name System (DNS)

In Section 59.10, we describe getaddrinfo(), which obtains the IP address(es) corre-
sponding to a hostname, and getnameinfo(), which performs the converse task.
However, before looking at these functions, we explain how DNS is used to maintain
the mappings between hostnames and IP addresses.
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Before the advent of DNS, mappings between hostnames and IP addresses
were defined in a manually maintained local file, /etc/hosts, containing records of
the following form:

# IP-address    canonical hostname      [aliases]
127.0.0.1       localhost

The gethostbyname() function (the predecessor to getaddrinfo()) obtained an IP address
by searching this file, looking for a match on either the canonical hostname (i.e., the
official or primary name of the host) or one of the (optional, space-delimited) aliases.

However, the /etc/hosts scheme scales poorly, and then becomes impossible, as
the number of hosts in the network increases (e.g., the Internet, with millions of hosts).

DNS was devised to address this problem. The key ideas of DNS are the following:

Hostnames are organized into a hierarchical namespace (Figure 59-2). Each
node in the DNS hierarchy has a label (name), which may be up to 63 characters.
At the root of the hierarchy is an unnamed node, the “anonymous root.”

A node’s domain name consists of all of the names from that node up to the
root concatenated together, with each name separated by a period (.). For
example, google.com is the domain name for the node google.

A fully qualified domain name (FQDN), such as www.kernel.org., identifies a host
within the hierarchy. A fully qualified domain name is distinguished by being
terminated by a period, although in many contexts the period may be omitted.

No single organization or system manages the entire hierarchy. Instead, there
is a hierarchy of DNS servers, each of which manages a branch (a zone) of the
tree. Normally, each zone has a primary master name server, and one or more
slave name servers (sometimes also known as secondary master name servers), which
provide backup in the event that the primary master name server crashes.
Zones may themselves be divided into separately managed smaller zones. When a
host is added within a zone, or the mapping of a hostname to an IP address is
changed, the administrator responsible for the corresponding local name
server updates the name database on that server. (No manual changes are
required on any other name-server databases in the hierarchy.)

The DNS server implementation employed on Linux is the widely used Berkeley
Internet Name Domain (BIND) implementation, named(8), maintained by the
Internet Systems Consortium (http://www.isc.org/). The operation of this daemon
is controlled by the file /etc/named.conf (see the named.conf(5) manual page).
The key reference on DNS and BIND is [Albitz & Liu, 2006]. Information
about DNS can also be found in Chapter 14 of [Stevens, 1994], Chapter 11 of
[Stevens et al., 2004], and Chapter 24 of [Comer, 2000].

When a program calls getaddrinfo() to resolve (i.e., obtain the IP address for) a
domain name, getaddrinfo() employs a suite of library functions (the resolver
library) that communicate with the local DNS server. If this server can’t supply
the required information, then it communicates with other DNS servers
within the hierarchy in order to obtain the information. Occasionally, this reso-
lution process may take a noticeable amount of time, and DNS servers employ
caching techniques to avoid unnecessary communication for frequently que-
ried domain names.
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Using the above approach allows DNS to cope with large namespaces, and does not
require centralized management of names.

Figure 59-2: A subset of the DNS hierarchy

Recursive and iterative resolution requests

DNS resolution requests fall into two categories: recursive and iterative. In a recur-
sive request, the requester asks the server to handle the entire task of resolution,
including the task of communicating with any other DNS servers, if necessary.
When an application on the local host calls getaddrinfo(), that function makes a
recursive request to the local DNS server. If the local DNS server does not itself have
the information to perform the resolution, it resolves the domain name iteratively.

We explain iterative resolution via an example. Suppose that the local DNS
server is asked to resolve the name www.otago.ac.nz. To do this, it first communicates
with one of a small set of root name servers that every DNS server is required to know
about. (We can obtain a list of these servers using the command dig . NS or from
the web page at http://www.root-servers.org/.) Given the name www.otago.ac.nz, the
root name server refers the local DNS server to one of the nz DNS servers. The local
DNS server then queries the nz server with the name www.otago.ac.nz, and receives a
response referring it to the ac.nz server. The local DNS server then queries the ac.nz
server with the name www.otago.ac.nz, and is referred to the otago.ac.nz server. Finally,
the local DNS server queries the otago.ac.nz server with the name www.otago.ac.nz,
and obtains the required IP address.

If we supply an incomplete domain name to gethostbyname(), the resolver will
attempt to complete it before resolving it. The rules on how a domain name is com-
pleted are defined in /etc/resolv.conf (see the resolv.conf(5) manual page). By default,
the resolver will at least try completion using the domain name of the local host. For
example, if we are logged in on the machine oghma.otago.ac.nz and we type the com-
mand ssh octavo, the resulting DNS query will be for the name octavo.otago.ac.nz.

com edu net org de nz us

kernelgoogle

Generic
domains

eu

Country
domains

gnu

ftp www

Top-level
domains

Anonymous root

ac

canterbury

www

Second-
level

domains

www.kernel.org.
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Top-level domains

The nodes immediately below the anonymous root form the so-called top-level
domains (TLDs). (Below these are the second-level domains, and so on.) TLDs fall into
two categories: generic and country.

Historically, there were seven generic TLDs, most of which can be considered
international. We have shown four of the original generic TLDs in Figure 59-2. The
other three are int, mil, and gov; the latter two are reserved for the United States. In
more recent times, a number of new generic TLDs have been added (e.g., info,
name, and museum).

Each nation has a corresponding country (or geographical) TLD (standardized as
ISO 3166-1), with a 2-character name. In Figure 59-2, we have shown a few of these:
de (Germany, Deutschland), eu (a supra-national geographical TLD for the European
Union), nz (New Zealand), and us (United States of America). Several countries
divide their TLD into a set of second-level domains in a manner similar to the
generic domains. For example, New Zealand has ac.nz (academic institutions),
co.nz (commercial), and govt.nz (government).

59.9 The /etc/services File

As noted in Section 58.6.1, well-known port numbers are centrally registered by
IANA. Each of these ports has a corresponding service name. Because service num-
bers are centrally managed and are less volatile than IP addresses, an equivalent of
the DNS server is usually not necessary. Instead, the port numbers and service
names are recorded in the file /etc/services. The getaddrinfo() and getnameinfo()
functions use the information in this file to convert service names to port numbers
and vice versa.

The /etc/services file consists of lines containing three columns, as shown in
the following examples:

# Service name  port/protocol  [aliases]
echo            7/tcp          Echo     # echo service
echo            7/udp          Echo
ssh             22/tcp                  # Secure Shell
ssh             22/udp
telnet          23/tcp                  # Telnet
telnet          23/udp
smtp            25/tcp                  # Simple Mail Transfer Protocol
smtp            25/udp
domain          53/tcp                  # Domain Name Server
domain          53/udp
http            80/tcp                  # Hypertext Transfer Protocol
http            80/udp
ntp             123/tcp                 # Network Time Protocol
ntp             123/udp
login           513/tcp                 # rlogin(1)
who             513/udp                 # rwho(1)
shell           514/tcp                 # rsh(1)
syslog          514/udp                 # syslog
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The protocol is typically either tcp or udp. The optional (space-delimited) aliases specify
alternative names for the service. In addition to the above, lines may include com-
ments starting with the # character.

As noted previously, a given port number refers to distinct entities for UDP
and TCP, but IANA policy assigns both port numbers to a service, even if that service
uses only one protocol. For example, telnet, ssh, HTTP, and SMTP all use TCP, but
the corresponding UDP port is also assigned to these services. Conversely, NTP
uses only UDP, but the TCP port 123 is also assigned to this service. In some cases,
a service uses both UDP and TCP; DNS and echo are examples of such services.
Finally, there are a very few cases where the UDP and TCP ports with the same
number are assigned to different services; for example, rsh uses TCP port 514,
while the syslog daemon (Section 37.5) uses UDP port 514. This is because these
port numbers were assigned before the adoption of the present IANA policy.

The /etc/services file is merely a record of name-to-number mappings. It is not
a reservation mechanism: the appearance of a port number in /etc/services
doesn’t guarantee that it will actually be available for binding by a particular
service.

59.10 Protocol-Independent Host and Service Conversion

The getaddrinfo() function converts host and service names to IP addresses and port
numbers. It was defined in POSIX.1g as the (reentrant) successor to the obsolete
gethostbyname() and getservbyname() functions. (Replacing the use of gethostbyname()
with getaddrinfo() allows us to eliminate IPv4-versus-IPv6 dependencies from our
programs.)

The getnameinfo() function is the converse of getaddrinfo(). It translates a socket
address structure (either IPv4 or IPv6) to strings containing the corresponding host
and service name. This function is the (reentrant) equivalent of the obsolete
gethostbyaddr() and getservbyport() functions.

Chapter 11 of [Stevens et al., 2004] describes getaddrinfo() and getnameinfo() in
detail, and provides implementations of these functions. These functions are
also described in RFC 3493.

59.10.1 The getaddrinfo() Function
Given a host name and a service name, getaddrinfo() returns a list of socket address
structures, each of which contains an IP address and port number.

#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *host, const char *service,
                const struct addrinfo *hints, struct addrinfo **result);

Returns 0 on success, or nonzero on error
Sockets:  In ternet  Domains 1213



As input, getaddrinfo() takes the arguments host, service, and hints. The host argument
contains either a hostname or a numeric address string, expressed in IPv4 dotted-
decimal notation or IPv6 hex-string notation. (To be precise, getaddrinfo() accepts
IPv4 numeric strings in the more general numbers-and-dots notation described in
Section 59.13.1.) The service argument contains either a service name or a decimal
port number. The hints argument points to an addrinfo structure that specifies fur-
ther criteria for selecting the socket address structures returned via result. We
describe the hints argument in more detail below.

As output, getaddrinfo() dynamically allocates a linked list of addrinfo structures
and sets result pointing to the beginning of this list. Each of these addrinfo struc-
tures includes a pointer to a socket address structure corresponding to host and
service (Figure 59-3). The addrinfo structure has the following form:

struct addrinfo {
    int    ai_flags;            /* Input flags (AI_* constants) */
    int    ai_family;           /* Address family */
    int    ai_socktype;         /* Type: SOCK_STREAM, SOCK_DGRAM */
    int    ai_protocol;         /* Socket protocol */
    size_t ai_addrlen;          /* Size of structure pointed to by ai_addr */
    char  *ai_canonname;        /* Canonical name of host */
    struct sockaddr *ai_addr;   /* Pointer to socket address structure */
    struct addrinfo *ai_next;   /* Next structure in linked list */
};

The result argument returns a list of structures, rather than a single structure,
because there may be multiple combinations of host and service corresponding to
the criteria specified in host, service, and hints. For example, multiple address structures
could be returned for a host with more than one network interface. Furthermore,
if hints.ai_socktype was specified as 0, then two structures could be returned—one
for a SOCK_DGRAM socket, the other for a SOCK_STREAM socket—if the given service was
available for both UDP and TCP.

The fields of each addrinfo structure returned via result describe properties of
the associated socket address structure. The ai_family field is set to either AF_INET or
AF_INET6, informing us of the type of the socket address structure. The ai_socktype
field is set to either SOCK_STREAM or SOCK_DGRAM, indicating whether this address struc-
ture is for a TCP or a UDP service. The ai_protocol field returns a protocol value
appropriate for the address family and socket type. (The three fields ai_family,
ai_socktype, and ai_protocol supply the values required for the arguments used when
calling socket() to create a socket for this address.) The ai_addrlen field gives the size
(in bytes) of the socket address structure pointed to by ai_addr. The in_addr field
points to the socket address structure (an in_addr structure for IPv4 or an in6_addr
structure for IPv6). The ai_flags field is unused (it is used for the hints argument).
The ai_canonname field is used only in the first addrinfo structure, and only if the
AI_CANONNAME flag is employed in hints.ai_flags, as described below.

As with gethostbyname(), getaddrinfo() may need to send a request to a DNS
server, and this request may take some time to complete. The same applies for
getnameinfo(), which we describe in Section 59.10.4.

We demonstrate the use of getaddrinfo() in Section 59.11.
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Figure 59-3: Structures allocated and returned by getaddrinfo()

The hints argument

The hints argument specifies further criteria for selecting the socket address struc-
tures returned by getaddrinfo(). When used as the hints argument, only the ai_flags,
ai_family, ai_socktype, and ai_protocol fields of the addrinfo structure can be set. The
other fields are unused, and should be initialized to 0 or NULL, as appropriate.

The hints.ai_family field selects the domain for the returned socket address
structures. It may be specified as AF_INET or AF_INET6 (or some other AF_* constant, if
the implementation supports it). If we are interested in getting back all types of
socket address structures, we can specify the value AF_UNSPEC for this field.

The hints.ai_socktype field specifies the type of socket for which the returned
address structure is to be used. If we specify this field as SOCK_DGRAM, then a lookup
is performed for the UDP service, and a corresponding socket address structure is
returned via result. If we specify SOCK_STREAM, a lookup for the TCP service is performed.
If hints.ai_socktype is specified as 0, any socket type is acceptable.
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The hints.ai_flags field is a bit mask that modifies the behavior of getaddrinfo().
This field is formed by ORing together zero or more of the following values:

AI_ADDRCONFIG

Return IPv4 addresses only if there is at least one IPv4 address configured
for the local system (other than the IPv4 loopback address), and return
IPv6 addresses only if there is at least one IPv6 address configured for the
local system (other than the IPv6 loopback address).

AI_ALL

See the description of AI_V4MAPPED below.

AI_CANONNAME

If host is not NULL, return a pointer to a null-terminated string containing
the canonical name of the host. This pointer is returned in a buffer
pointed to by the ai_canonname field of the first of the addrinfo structures
returned via result.

AI_NUMERICHOST

Force interpretation of host as a numeric address string. This is used to prevent
name resolution in cases where it is unnecessary, since name resolution
can be time-consuming.

AI_NUMERICSERV

Interpret service as a numeric port number. This flag prevents the invoca-
tion of any name-resolution service, which is not required if service is a
numeric string.

AI_PASSIVE

Return socket address structures suitable for a passive open (i.e., a listen-
ing socket). In this case, host should be NULL, and the IP address component
of the socket address structure(s) returned by result will contain a wildcard
IP address (i.e., INADDR_ANY or IN6ADDR_ANY_INIT). If this flag is not set, then
the address structure(s) returned via result will be suitable for use with
connect() and sendto(); if host is NULL, then the IP address in the returned
socket address structures will be set to the loopback IP address (either
INADDR_LOOPBACK or IN6ADDR_LOOPBACK_INIT, according to the domain).

AI_V4MAPPED

If AF_INET6 was specified in the ai_family field of hints, then IPv4-mapped
IPv6 address structures should be returned in result if no matching IPv6
address could be found. If AI_ALL is specified in conjunction with AI_V4MAPPED,
then both IPv6 and IPv4 address structures are returned in result, with IPv4
addresses being returned as IPv4-mapped IPv6 address structures.

As noted above for AI_PASSIVE, host can be specified as NULL. It is also possible to
specify service as NULL, in which case the port number in the returned address struc-
tures is set to 0 (i.e., we are just interested in resolving hostnames to addresses). It
is not permitted, however, to specify both host and service as NULL.

If we don’t need to specify any of the above selection criteria in hints, then
hints may be specified as NULL, in which case ai_socktype and ai_protocol are assumed
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as 0, ai_flags is assumed as (AI_V4MAPPED | AI_ADDRCONFIG), and ai_family is assumed as
AF_UNSPEC. (The glibc implementation deliberately deviates from SUSv3, which states
that if hints is NULL, ai_flags is assumed as 0.)

59.10.2 Freeing addrinfo Lists: freeaddrinfo()

The getaddrinfo() function dynamically allocates memory for all of the structures
referred to by result (Figure 59-3). Consequently, the caller must deallocate these
structures when they are no longer needed. The freeaddrinfo() function is provided
to conveniently perform this deallocation in a single step.

If we want to preserve a copy of one of the addrinfo structures or its associated
socket address structure, then we must duplicate the structure(s) before calling
freeaddrinfo().

59.10.3 Diagnosing Errors: gai_strerror()

On error, getaddrinfo() returns one of the nonzero error codes shown in Table 59-1. 

Given one of the error codes in Table 59-1, the gai_strerror() function returns a
string describing the error. (This string is typically briefer than the description
shown in Table 59-1.)

#include <sys/socket.h>
#include <netdb.h>

void freeaddrinfo(struct addrinfo *result);

Table 59-1: Error returns for getaddrinfo() and getnameinfo()

Error constant Description

EAI_ADDRFAMILY No addresses for host exist in hints.ai_family (not in SUSv3, but defined on 
most implementations; getaddrinfo() only)

EAI_AGAIN Temporary failure in name resolution (try again later)
EAI_BADFLAGS An invalid flag was specified in hints.ai_flags
EAI_FAIL Unrecoverable failure while accessing name server
EAI_FAMILY Address family specified in hints.ai_family is not supported
EAI_MEMORY Memory allocation failure
EAI_NODATA No address associated with host (not in SUSv3, but defined on most 

implementations; getaddrinfo() only)
EAI_NONAME Unknown host or service, or both host and service were NULL, or 

AI_NUMERICSERV specified and service didn’t point to numeric string
EAI_OVERFLOW Argument buffer overflow
EAI_SERVICE Specified service not supported for hints.ai_socktype (getaddrinfo() only)
EAI_SOCKTYPE Specified hints.ai_socktype is not supported (getaddrinfo() only)
EAI_SYSTEM System error returned in errno
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We can use the string returned by gai_strerror() as part of an error message dis-
played by an application.

59.10.4 The getnameinfo() Function
The getnameinfo() function is the converse of getaddrinfo(). Given a socket address
structure (either IPv4 or IPv6), it returns strings containing the corresponding host
and service name, or numeric equivalents if the names can’t be resolved.

The addr argument is a pointer to the socket address structure that is to be con-
verted. The length of that structure is given in addrlen. Typically, the values for addr
and addrlen are obtained from a call to accept(), recvfrom(), getsockname(), or
getpeername().

The resulting host and service names are returned as null-terminated strings in
the buffers pointed to by host and service. These buffers must be allocated by the caller,
and their sizes must be passed in hostlen and servlen. The <netdb.h> header file
defines two constants to assist in sizing these buffers. NI_MAXHOST indicates the maxi-
mum size, in bytes, for a returned hostname string. It is defined as 1025. NI_MAXSERV
indicates the maximum size, in bytes, for a returned service name string. It is
defined as 32. These two constants are not specified in SUSv3, but they are defined
on all UNIX implementations that provide getnameinfo(). (Since glibc 2.8, we must
define one of the feature text macros _BSD_SOURCE, _SVID_SOURCE, or _GNU_SOURCE to
obtain the definitions of NI_MAXHOST and NI_MAXSERV.)

If we are not interested in obtaining the hostname, we can specify host as NULL
and hostlen as 0. Similarly, if we don’t need the service name, we can specify service
as NULL and servlen as 0. However, at least one of host and service must be non-NULL
(and the corresponding length argument must be nonzero).

The final argument, flags, is a bit mask that controls the behavior of getnameinfo().
The following constants may be ORed together to form this bit mask:

NI_DGRAM

By default, getnameinfo() returns the name corresponding to a stream socket
(i.e., TCP) service. Normally, this doesn’t matter, because, as noted in
Section 59.9, the service names are usually the same for corresponding

#include <netdb.h>

const char *gai_strerror(int errcode);

Returns pointer to string containing error message

#include <sys/socket.h>
#include <netdb.h>

int getnameinfo(const struct sockaddr *addr, socklen_t addrlen, char *host,
                size_t hostlen, char *service, size_t servlen, int flags);

Returns 0 on success, or nonzero on error
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TCP and UDP ports. However, in the few instances where the names differ,
the NI_DGRAM flag forces the name of the datagram socket (i.e., UDP) service
to be returned.

NI_NAMEREQD

By default, if the hostname can’t be resolved, a numeric address string is
returned in host. If the NI_NAMEREQD flag is specified, an error (EAI_NONAME) is
returned instead.

NI_NOFQDN

By default, the fully qualified domain name for the host is returned. Speci-
fying the NI_NOFQDN flag causes just the first (i.e., the hostname) part of the
name to be returned, if this is a host on the local network.

NI_NUMERICHOST

Force a numeric address string to be returned in host. This is useful if we
want to avoid a possibly time-consuming call to the DNS server.

NI_NUMERICSERV

Force a decimal port number string to be returned in service. This is useful
in cases where we know that the port number doesn’t correspond to a service
name—for example, if it is an ephemeral port number assigned to the
socket by the kernel—and we want to avoid the inefficiency of unnecessarily
searching /etc/services.

On success, getnameinfo() returns 0. On error, it returns one of the nonzero error
codes shown in Table 59-1.

59.11 Client-Server Example (Stream Sockets)

We now have enough information to look at a simple client-server application
using TCP sockets. The task performed by this application is the same as that per-
formed by the FIFO client-server application presented in Section 44.8: allocating
unique sequence numbers (or ranges of sequence numbers) to clients.

In order to handle the possibility that integers may be represented in different
formats on the server and client hosts, we encode all transmitted integers as strings
terminated by a newline, and use our readLine() function (Listing 59-1) to read
these strings.

Common header file

Both the server and the client include the header file shown in Listing 59-5. This
file includes various other header files, and defines the TCP port number to be
used by the application.

Server program

The server program shown in Listing 59-6 performs the following steps:

Initialize the server’s sequence number either to 1 or to the value supplied in
the optional command-line argument q.
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Ignore the SIGPIPE signal w. This prevents the server from receiving the SIGPIPE
signal if it tries to write to a socket whose peer has been closed; instead, the
write() fails with the error EPIPE.

Call getaddrinfo() r to obtain a set of socket address structures for a TCP socket
that uses the port number PORT_NUM. (Instead of using a hard-coded port number,
we would more typically use a service name.) We specify the AI_PASSIVE flag e so
that the resulting socket will be bound to the wildcard address (Section 58.5). As
a result, if the server is run on a multihomed host, it can accept connection
requests sent to any of the host’s network addresses.

Enter a loop that iterates through the socket address structures returned by the
previous step t. The loop terminates when the program finds an address struc-
ture that can be used to successfully create and bind a socket u.

Set the SO_REUSEADDR option for the socket created in the previous step y. We
defer discussion of this option until Section 61.10, where we note that a TCP
server should usually set this option on its listening socket.

Mark the socket as a listening socket i.

Commence an infinite for loop o that services clients iteratively (Chapter 60).
Each client’s request is serviced before the next client’s request is accepted. For
each client, the server performs the following steps:

– Accept a new connection a. The server passes non-NULL pointers for the
second and third arguments to accept(), in order to obtain the address of
the client. The server displays the client’s address (IP address plus port
number) on standard output s.

– Read the client’s message d, which consists of a newline-terminated string
specifying how many sequence numbers the client wants. The server con-
verts this string to an integer and stores it in the variable reqLen f.

– Send the current value of the sequence number (seqNum) back to the cli-
ent, encoding it as a newline-terminated string g. The client can assume
that it has been allocated all of the sequence numbers in the range seqNum
to (seqNum + reqLen – 1).

– Update the value of the server’s sequence number by adding reqLen to
seqNum h.

Listing 59-5: Header file used by is_seqnum_sv.c and is_seqnum_cl.c

–––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/is_seqnum.h

#include <netinet/in.h>
#include <sys/socket.h>
#include <signal.h>
#include "read_line.h"          /* Declaration of readLine() */
#include "tlpi_hdr.h"

#define PORT_NUM "50000"        /* Port number for server */

#define INT_LEN 30              /* Size of string able to hold largest
                                   integer (including terminating '\n') */

–––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/is_seqnum.h
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Listing 59-6: An iterative server that uses a stream socket to communicate with clients
–––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/is_seqnum_sv.c

#define _BSD_SOURCE             /* To get definitions of NI_MAXHOST and
                                   NI_MAXSERV from <netdb.h> */
#include <netdb.h>
#include "is_seqnum.h"

#define BACKLOG 50

int
main(int argc, char *argv[])
{
    uint32_t seqNum;
    char reqLenStr[INT_LEN];            /* Length of requested sequence */
    char seqNumStr[INT_LEN];            /* Start of granted sequence */
    struct sockaddr_storage claddr;
    int lfd, cfd, optval, reqLen;
    socklen_t addrlen;
    struct addrinfo hints;
    struct addrinfo *result, *rp;
#define ADDRSTRLEN (NI_MAXHOST + NI_MAXSERV + 10)
    char addrStr[ADDRSTRLEN];
    char host[NI_MAXHOST];
    char service[NI_MAXSERV];

    if (argc > 1 && strcmp(argv[1], "--help") == 0)
        usageErr("%s [init-seq-num]\n", argv[0]);

q     seqNum = (argc > 1) ? getInt(argv[1], 0, "init-seq-num") : 0;

w     if (signal(SIGPIPE, SIG_IGN) == SIG_ERR)
        errExit("signal");

    /* Call getaddrinfo() to obtain a list of addresses that
       we can try binding to */

    memset(&hints, 0, sizeof(struct addrinfo));
    hints.ai_canonname = NULL;
    hints.ai_addr = NULL;
    hints.ai_next = NULL;
    hints.ai_socktype = SOCK_STREAM;
    hints.ai_family = AF_UNSPEC;        /* Allows IPv4 or IPv6 */

e     hints.ai_flags = AI_PASSIVE | AI_NUMERICSERV;
                        /* Wildcard IP address; service name is numeric */

r     if (getaddrinfo(NULL, PORT_NUM, &hints, &result) != 0)
        errExit("getaddrinfo");

    /* Walk through returned list until we find an address structure
       that can be used to successfully create and bind a socket */

    optval = 1;
t     for (rp = result; rp != NULL; rp = rp->ai_next) {

        lfd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
        if (lfd == -1)
            continue;                   /* On error, try next address */
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y         if (setsockopt(lfd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval))
                 == -1)
             errExit("setsockopt");

u         if (bind(lfd, rp->ai_addr, rp->ai_addrlen) == 0)
            break;                      /* Success */

        /* bind() failed: close this socket and try next address */

        close(lfd);
    }

    if (rp == NULL)
        fatal("Could not bind socket to any address");

i     if (listen(lfd, BACKLOG) == -1)
        errExit("listen");

    freeaddrinfo(result);

o     for (;;) {                 /* Handle clients iteratively */

        /* Accept a client connection, obtaining client's address */

        addrlen = sizeof(struct sockaddr_storage);
a         cfd = accept(lfd, (struct sockaddr *) &claddr, &addrlen);

        if (cfd == -1) {
            errMsg("accept");
            continue;
        }

s         if (getnameinfo((struct sockaddr *) &claddr, addrlen,
                    host, NI_MAXHOST, service, NI_MAXSERV, 0) == 0)
            snprintf(addrStr, ADDRSTRLEN, "(%s, %s)", host, service);
        else
            snprintf(addrStr, ADDRSTRLEN, "(?UNKNOWN?)");
        printf("Connection from %s\n", addrStr);

        /* Read client request, send sequence number back */

d         if (readLine(cfd, reqLenStr, INT_LEN) <= 0) {
            close(cfd);
            continue;                   /* Failed read; skip request */
        }

f         reqLen = atoi(reqLenStr);
        if (reqLen <= 0) {              /* Watch for misbehaving clients */
            close(cfd);
            continue;                   /* Bad request; skip it */
        }

g         snprintf(seqNumStr, INT_LEN, "%d\n", seqNum);
        if (write(cfd, &seqNumStr, strlen(seqNumStr)) != strlen(seqNumStr))
            fprintf(stderr, "Error on write");
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h         seqNum += reqLen;               /* Update sequence number */

        if (close(cfd) == -1)           /* Close connection */
            errMsg("close");
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/is_seqnum_sv.c

Client program

The client program is shown in Listing 59-7. This program accepts two arguments. The
first argument, which is the name of the host on which the server is running, is
mandatory. The optional second argument is the length of the sequence desired by
the client. The default length is 1. The client performs the following steps:

Call getaddrinfo() to obtain a set of socket address structures suitable for con-
necting to a TCP server bound to the specified host q. For the port number,
the client specifies PORT_NUM.

Enter a loop w that iterates through the socket address structures returned by the
previous step, until the client finds one that can be used to successfully create e
and connect r a socket to the server. Since the client has not bound its socket,
the connect() call causes the kernel to assign an ephemeral port to the socket.

Send an integer specifying the length of the client’s desired sequence t. This
integer is sent as a newline-terminated string.

Read the sequence number sent back by the server (which is likewise a newline-
terminated string) y and print it on standard output u.

When we run the server and the client on the same host, we see the following:

$ ./is_seqnum_sv &
[1] 4075
$ ./is_seqnum_cl localhost              Client 1: requests 1 sequence number
Connection from (localhost, 33273)      Server displays client address + port
Sequence number: 0                      Client displays returned sequence number
$ ./is_seqnum_cl localhost 10           Client 2: requests 10 sequence numbers
Connection from (localhost, 33274)
Sequence number: 1
$ ./is_seqnum_cl localhost              Client 3: requests 1 sequence number
Connection from (localhost, 33275)
Sequence number: 11

Next, we demonstrate the use of telnet for debugging this application:

$ telnet localhost 50000                Our server uses this port number
                                        Empty line printed by telnet
Trying 127.0..0.1...
Connection from (localhost, 33276)
Connected to localhost.
Escape character is '^]'.
1                                       Enter length of requested sequence
12                                      telnet displays sequence number and
Connection closed by foreign host.      detects that server closed connection
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In the shell session log, we see that the kernel cycles sequentially through the
ephemeral port numbers. (Other implementations exhibit similar behavior.)
On Linux, this behavior is the result of an optimization to minimize hash look-
ups in the kernel’s table of local socket bindings. When the upper limit for
these numbers is reached, the kernel recommences allocating an available
number starting at the low end of the range (defined by the Linux-specific
/proc/sys/net/ipv4/ip_local_port_range file).

Listing 59-7: A client that uses stream sockets

–––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/is_seqnum_cl.c

#include <netdb.h>
#include "is_seqnum.h"

int
main(int argc, char *argv[])
{
    char *reqLenStr;                    /* Requested length of sequence */
    char seqNumStr[INT_LEN];            /* Start of granted sequence */
    int cfd;
    ssize_t numRead;
    struct addrinfo hints;
    struct addrinfo *result, *rp;

    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s server-host [sequence-len]\n", argv[0]);

    /* Call getaddrinfo() to obtain a list of addresses that
       we can try connecting to */

    memset(&hints, 0, sizeof(struct addrinfo));
    hints.ai_canonname = NULL;
    hints.ai_addr = NULL;
    hints.ai_next = NULL;
    hints.ai_family = AF_UNSPEC;                /* Allows IPv4 or IPv6 */
    hints.ai_socktype = SOCK_STREAM;
    hints.ai_flags = AI_NUMERICSERV;

q     if (getaddrinfo(argv[1], PORT_NUM, &hints, &result) != 0)
        errExit("getaddrinfo");

    /* Walk through returned list until we find an address structure
       that can be used to successfully connect a socket */

w     for (rp = result; rp != NULL; rp = rp->ai_next) {
e         cfd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);

        if (cfd == -1)
            continue;                           /* On error, try next address */

r         if (connect(cfd, rp->ai_addr, rp->ai_addrlen) != -1)
            break;                              /* Success */
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        /* Connect failed: close this socket and try next address */

        close(cfd);
    }

    if (rp == NULL)
        fatal("Could not connect socket to any address");

    freeaddrinfo(result);

    /* Send requested sequence length, with terminating newline */

t     reqLenStr = (argc > 2) ? argv[2] : "1";
    if (write(cfd, reqLenStr, strlen(reqLenStr)) !=  strlen(reqLenStr))
        fatal("Partial/failed write (reqLenStr)");
    if (write(cfd, "\n", 1) != 1)
        fatal("Partial/failed write (newline)");

    /* Read and display sequence number returned by server */

y     numRead = readLine(cfd, seqNumStr, INT_LEN);
    if (numRead == -1)
        errExit("readLine");
    if (numRead == 0)
        fatal("Unexpected EOF from server");

u     printf("Sequence number: %s", seqNumStr);           /* Includes '\n' */

    exit(EXIT_SUCCESS);                                 /* Closes 'cfd' */
}

–––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/is_seqnum_cl.c

59.12 An Internet Domain Sockets Library

In this section, we use the functions presented in Section 59.10 to implement a
library of functions to perform tasks commonly required for Internet domain sockets.
(This library abstracts many of the steps shown in the example programs presented
in Section 59.11.) Since these functions employ the protocol-independent
getaddrinfo() and getnameinfo() functions, they can be used with both IPv4 and IPv6.
Listing 59-8 shows the header file that declares these functions.

Many of the functions in this library have similar arguments:

The host argument is a string containing either a hostname or a numeric
address (in IPv4 dotted-decimal, or IPv6 hex-string notation). Alternatively,
host can be specified as a NULL pointer to indicate that the loopback IP address is
to be used.

The service argument is either a service name or a port number specified as a
decimal string.

The type argument is a socket type, specified as either SOCK_STREAM or SOCK_DGRAM.
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Listing 59-8: Header file for inet_sockets.c

–––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/inet_sockets.h

#ifndef INET_SOCKETS_H
#define INET_SOCKETS_H          /* Prevent accidental double inclusion */

#include <sys/socket.h>
#include <netdb.h>

int inetConnect(const char *host, const char *service, int type);

int inetListen(const char *service, int backlog, socklen_t *addrlen);

int inetBind(const char *service, int type, socklen_t *addrlen);

char *inetAddressStr(const struct sockaddr *addr, socklen_t addrlen,
                char *addrStr, int addrStrLen);

#define IS_ADDR_STR_LEN 4096
                        /* Suggested length for string buffer that caller
                           should pass to inetAddressStr(). Must be greater
                           than (NI_MAXHOST + NI_MAXSERV + 4) */
#endif

–––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/inet_sockets.h

The inetConnect() function creates a socket with the given socket type, and connects
it to the address specified by host and service. This function is designed for TCP or
UDP clients that need to connect their socket to a server socket.

The file descriptor for the new socket is returned as the function result.
The inetListen() function creates a listening stream (SOCK_STREAM) socket bound

to the wildcard IP address on the TCP port specified by service. This function is
designed for use by TCP servers.

The file descriptor for the new socket is returned as the function result.
The backlog argument specifies the permitted backlog of pending connections

(as for listen()).

#include "inet_sockets.h"

int inetConnect(const char *host, const char *service, int type);

Returns a file descriptor on success, or –1 on error

#include "inet_sockets.h"

int inetListen(const char *service, int backlog, socklen_t *addrlen);

Returns a file descriptor on success, or –1 on error
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If addrlen is specified as a non-NULL pointer, then the location it points to is used
to return the size of the socket address structure corresponding to the returned file
descriptor. This value allows us to allocate a socket address buffer of the appropri-
ate size to be passed to a later accept() call if we want to obtain the address of a con-
necting client.

The inetBind() function creates a socket of the given type, bound to the wildcard
IP address on the port specified by service and type. (The socket type indicates
whether this is a TCP or UDP service.) This function is designed (primarily) for
UDP servers and clients to create a socket bound to a specific address.

The file descriptor for the new socket is returned as the function result.
As with inetListen(), inetBind() returns the length of the associated socket

address structure for this socket in the location pointed to by addrlen. This is useful
if we want to allocate a buffer to pass to recvfrom() in order to obtain the address of
the socket sending a datagram. (Many of the steps required for inetListen() and
inetBind() are the same, and these steps are implemented within the library by a
single function, inetPassiveSocket().)

The inetAddressStr() function converts an Internet socket address to printable form.

Given a socket address structure in addr, whose length is specified in addrlen,
inetAddressStr() returns a null-terminated string containing the corresponding host-
name and port number in the following form:

(hostname, port-number)

The string is returned in the buffer pointed to by addrStr. The caller must specify the
size of this buffer in addrStrLen. If the returned string would exceed (addrStrLen – 1)
bytes, it is truncated. The constant IS_ADDR_STR_LEN defines a suggested size for the
addrStr buffer that should be large enough to handle all possible return strings. As
its function result, inetAddressStr() returns addrStr.

The implementation of the functions described in this section is shown in
Listing 59-9.

#include "inet_sockets.h"

int inetBind(const char *service, int type, socklen_t *addrlen);

Returns a file descriptor on success, or –1 on error

#include "inet_sockets.h"

char *inetAddressStr(const struct sockaddr *addr, socklen_t addrlen,
                     char *addrStr, int addrStrLen);

Returns pointer to addrStr, a string containing host and service name
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Listing 59-9: An Internet domain sockets library

–––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/inet_sockets.c

#define _BSD_SOURCE             /* To get NI_MAXHOST and NI_MAXSERV
                                   definitions from <netdb.h> */
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include "inet_sockets.h"       /* Declares functions defined here */
#include "tlpi_hdr.h"

int
inetConnect(const char *host, const char *service, int type)
{
    struct addrinfo hints;
    struct addrinfo *result, *rp;
    int sfd, s;

    memset(&hints, 0, sizeof(struct addrinfo));
    hints.ai_canonname = NULL;
    hints.ai_addr = NULL;
    hints.ai_next = NULL;
    hints.ai_family = AF_UNSPEC;        /* Allows IPv4 or IPv6 */
    hints.ai_socktype = type;

    s = getaddrinfo(host, service, &hints, &result);
    if (s != 0) {
        errno = ENOSYS;
        return -1;
    }

    /* Walk through returned list until we find an address structure
       that can be used to successfully connect a socket */

    for (rp = result; rp != NULL; rp = rp->ai_next) {
        sfd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
        if (sfd == -1)
            continue;                   /* On error, try next address */

        if (connect(sfd, rp->ai_addr, rp->ai_addrlen) != -1)
            break;                      /* Success */

        /* Connect failed: close this socket and try next address */

        close(sfd);
    }

    freeaddrinfo(result);

    return (rp == NULL) ? -1 : sfd;
}
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static int              /* Public interfaces: inetBind() and inetListen() */
inetPassiveSocket(const char *service, int type, socklen_t *addrlen,
                  Boolean doListen, int backlog)
{
    struct addrinfo hints;
    struct addrinfo *result, *rp;
    int sfd, optval, s;

    memset(&hints, 0, sizeof(struct addrinfo));
    hints.ai_canonname = NULL;
    hints.ai_addr = NULL;
    hints.ai_next = NULL;
    hints.ai_socktype = type;
    hints.ai_family = AF_UNSPEC;        /* Allows IPv4 or IPv6 */
    hints.ai_flags = AI_PASSIVE;        /* Use wildcard IP address */

    s = getaddrinfo(NULL, service, &hints, &result);
    if (s != 0)
        return -1;

    /* Walk through returned list until we find an address structure
       that can be used to successfully create and bind a socket */

    optval = 1;
    for (rp = result; rp != NULL; rp = rp->ai_next) {
        sfd = socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
        if (sfd == -1)
            continue;                   /* On error, try next address */

        if (doListen) {
            if (setsockopt(sfd, SOL_SOCKET, SO_REUSEADDR, &optval,
                    sizeof(optval)) == -1) {
                close(sfd);
                freeaddrinfo(result);
                return -1;
            }
        }

        if (bind(sfd, rp->ai_addr, rp->ai_addrlen) == 0)
            break;                      /* Success */

        /* bind() failed: close this socket and try next address */

        close(sfd);
    }

    if (rp != NULL && doListen) {
        if (listen(sfd, backlog) == -1) {
            freeaddrinfo(result);
            return -1;
        }
    }

    if (rp != NULL && addrlen != NULL)
        *addrlen =  rp->ai_addrlen;     /* Return address structure size */
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    freeaddrinfo(result);

    return (rp == NULL) ? -1 : sfd;
}

int
inetListen(const char *service, int backlog, socklen_t *addrlen)
{
    return inetPassiveSocket(service, SOCK_STREAM, addrlen, TRUE, backlog);
}

int
inetBind(const char *service, int type, socklen_t *addrlen)
{
    return inetPassiveSocket(service, type, addrlen, FALSE, 0);
}

char *
inetAddressStr(const struct sockaddr *addr, socklen_t addrlen,
               char *addrStr, int addrStrLen)
{
    char host[NI_MAXHOST], service[NI_MAXSERV];

    if (getnameinfo(addr, addrlen, host, NI_MAXHOST,
                    service, NI_MAXSERV, NI_NUMERICSERV) == 0)
        snprintf(addrStr, addrStrLen, "(%s, %s)", host, service);
    else
        snprintf(addrStr, addrStrLen, "(?UNKNOWN?)");

    addrStr[addrStrLen - 1] = '\0';     /* Ensure result is null-terminated */
    return addrStr;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/inet_sockets.c

59.13 Obsolete APIs for Host and Service Conversions

In the following sections, we describe the older, now obsolete functions for con-
verting host names and service names to and from binary and presentation for-
mats. Although new programs should perform these conversions using the modern
functions described earlier in this chapter, a knowledge of the obsolete functions is
useful because we may encounter them in older code.

59.13.1 The inet_aton() and inet_ntoa() Functions
The inet_aton() and inet_ntoa() functions convert IPv4 addresses between dotted-
decimal notation and binary form (in network byte order). These functions are
nowadays made obsolete by inet_pton() and inet_ntop().

The inet_aton() (“ASCII to network”) function converts the dotted-decimal string
pointed to by str into an IPv4 address in network byte order, which is returned in the
in_addr structure pointed to by addr.
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The inet_aton() function returns 1 if the conversion was successful, or 0 if str was
invalid.

The numeric components of the string given to inet_aton() need not be decimal.
They can be octal (specified by a leading 0) or hexadecimal (specified by a leading
0x or 0X). Furthermore, inet_aton() supports shorthand forms that allow an address
to be specified using fewer than four numeric components. (See the inet(3) manual
page for details.) The term numbers-and-dots notation is used for the more general
address strings that employ these features.

SUSv3 doesn’t specify inet_aton(). Nevertheless, this function is available on
most implementations. On Linux, we must define one of the feature test macros
_BSD_SOURCE, _SVID_SOURCE, or _GNU_SOURCE in order to obtain the declaration of inet_aton()
from <arpa/inet.h>.

The inet_ntoa() (“network to ASCII”) function performs the converse of
inet_aton().

Given an in_addr structure (a 32-bit IPv4 address in network byte order), inet_ntoa()
returns a pointer to a (statically allocated) string containing the address in dotted-
decimal notation.

Because the string returned by inet_ntoa() is statically allocated, it is overwritten
by successive calls.

59.13.2 The gethostbyname() and gethostbyaddr() Functions
The gethostbyname() and gethostbyaddr() functions allow conversion between hostnames
and IP addresses. These functions are nowadays made obsolete by getaddrinfo() and
getnameinfo().

#include <arpa/inet.h>

int inet_aton(const char *str, struct in_addr *addr);

Returns 1 (true) if str is a valid dotted-decimal address, or 0 (false) on error

#include <arpa/inet.h>

char *inet_ntoa(struct in_addr addr);

Returns pointer to (statically allocated)
dotted-decimal string version of addr

#include <netdb.h>

extern int h_errno;

struct hostent *gethostbyname(const char *name);
struct hostent *gethostbyaddr(const char *addr, socklen_t len, int type);

Both return pointer to (statically allocated) hostent structure
on success, or NULL on error
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The gethostbyname() function resolves the hostname given in name, returning a
pointer to a statically allocated hostent structure containing information about that
hostname. This structure has the following form:

struct hostent {
    char  *h_name;              /* Official (canonical) name of host */
    char **h_aliases;           /* NULL-terminated array of pointers
                                   to alias strings */
    int    h_addrtype;          /* Address type (AF_INET or AF_INET6) */
    int    h_length;            /* Length (in bytes) of addresses pointed
                                   to by h_addr_list (4 bytes for AF_INET,
                                   16 bytes for AF_INET6) */
    char **h_addr_list;         /* NULL-terminated array of pointers to
                                   host IP addresses (in_addr or in6_addr
                                   structures) in network byte order */
};

#define h_addr  h_addr_list[0]

The h_name field returns the official name of the host, as a null-terminated string. The
h_aliases fields points to an array of pointers to null-terminated strings containing
aliases (alternative names) for this hostname.

The h_addr_list field is an array of pointers to IP address structures for this
host. (A multihomed host has more than one address.) This list consists of either
in_addr or in6_addr structures. We can determine the type of these structures from
the h_addrtype field, which contains either AF_INET or AF_INET6, and their length from the
h_length field. The h_addr definition is provided for backward compatibility with
earlier implementations (e.g., 4.2BSD) that returned just one address in the hostent
structure. Some existing code relies on this name (and thus is not multihomed-
host aware).

With modern versions of gethostbyname(), name can also be specified as a
numeric IP address string; that is, numbers-and-dots notation for IPv4 or hex-string
notation for IPv6. In this case, no lookup is performed; instead, name is copied into
the h_name field of the hostent structure, and h_addr_list is set to the binary equiva-
lent of name.

The gethostbyaddr() function performs the converse of gethostbyname(). Given a
binary IP address, it returns a hostent structure containing information about the
host with that address.

On error (e.g., a name could not be resolved), both gethostbyname() and
gethostbyaddr() return a NULL pointer and set the global variable h_errno. As the name
suggests, this variable is analogous to errno (possible values placed in this variable
are described in the gethostbyname(3) manual page), and the herror() and hstrerror()
functions are analogous to perror() and strerror().

The herror() function displays (on standard error) the string given in str, fol-
lowed by a colon (:), and then a message for the current error in h_errno. Alterna-
tively, we can use hstrerror() to obtain a pointer to a string corresponding to the error
value specified in err.
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Listing 59-10 demonstrates the use of gethostbyname(). This program displays hostent
information for each of the hosts named on its command line. The following shell
session demonstrates the use of this program:

$ ./t_gethostbyname www.jambit.com
Canonical name: jamjam1.jambit.com
        alias(es):      www.jambit.com
        address type:   AF_INET
        address(es):    62.245.207.90

Listing 59-10: Using gethostbyname() to retrieve host information

––––––––––––––––––––––––––––––––––––––––––––––––– sockets/t_gethostbyname.c

#define _BSD_SOURCE     /* To get hstrerror() declaration from <netdb.h> */
#include <netdb.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    struct hostent *h;
    char **pp;
    char str[INET6_ADDRSTRLEN];

    for (argv++; *argv != NULL; argv++) {
        h = gethostbyname(*argv);
        if (h == NULL) {
            fprintf(stderr, "gethostbyname() failed for '%s': %s\n",
                    *argv, hstrerror(h_errno));
            continue;
        }

        printf("Canonical name: %s\n", h->h_name);

        printf("        alias(es):     ");
        for (pp = h->h_aliases; *pp != NULL; pp++)
            printf(" %s", *pp);
        printf("\n");

#define _BSD_SOURCE           /* Or _SVID_SOURCE or _GNU_SOURCE */
#include <netdb.h>

void herror(const char *str);

const char *hstrerror(int err);

Returns pointer to h_errno error string corresponding to err
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        printf("        address type:   %s\n",
                (h->h_addrtype == AF_INET) ? "AF_INET" :
                (h->h_addrtype == AF_INET6) ? "AF_INET6" : "???");

        if (h->h_addrtype == AF_INET || h->h_addrtype == AF_INET6) {
            printf("        address(es):   ");
            for (pp = h->h_addr_list; *pp != NULL; pp++)
                printf(" %s", inet_ntop(h->h_addrtype, *pp,
                                        str, INET6_ADDRSTRLEN));
            printf("\n");
        }
    }

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––– sockets/t_gethostbyname.c

59.13.3 The getservbyname() and getservbyport() Functions
The getservbyname() and getservbyport() functions retrieve records from the /etc/services
file (Section 59.9). These functions are nowadays made obsolete by getaddrinfo() and
getnameinfo().

The getservbyname() function looks up the record whose service name (or one of its
aliases) matches name and whose protocol matches proto. The proto argument is a
string such as tcp or udp, or it can be NULL. If proto is specified as NULL, any record
whose service name matches name is returned. (This is usually sufficient since,
where both UDP and TCP records with the same name exist in the /etc/services
file, they normally have the same port number.) If a matching record is found, then
getservbyname() returns a pointer to a statically allocated structure of the following type:

struct servent {
    char  *s_name;          /* Official service name */
    char **s_aliases;       /* Pointers to aliases (NULL-terminated) */
    int    s_port;          /* Port number (in network byte order) */
    char  *s_proto;         /* Protocol */
};

Typically, we call getservbyname() only in order to obtain the port number, which is
returned in the s_port field.

The getservbyport() function performs the converse of getservbyname(). It returns
a servent record containing information from the /etc/services record whose port
number matches port and whose protocol matches proto. Again, we can specify proto
as NULL, in which case the call will return any record whose port number matches

#include <netdb.h>

struct servent *getservbyname(const char *name, const char *proto);
struct servent *getservbyport(int port, const char *proto);

Both return pointer to a (statically allocated) servent structure
on success, or NULL on not found or error
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the one specified in port. (This may not return the desired result in the few cases
mentioned above where the same port number maps to different service names in
UDP and TCP.)

An example of the use of the getservbyname() function is provided in the file
files/t_getservbyname.c in the source code distribution for this book.

59.14 UNIX Versus Internet Domain Sockets

When writing applications that communicate over a network, we must necessarily
use Internet domain sockets. However, when using sockets to communicate
between applications on the same system, we have the choice of using either Inter-
net or UNIX domain sockets. In the case, which domain should we use and why?

Writing an application using just Internet domain sockets is often the simplest
approach, since it will work on both a single host and across a network. However,
there are some reasons why we may choose to use UNIX domain sockets:

On some implementations, UNIX domain sockets are faster than Internet
domain sockets.

We can use directory (and, on Linux, file) permissions to control access to
UNIX domain sockets, so that only applications with a specified user or group
ID can connect to a listening stream socket or send a datagram to a datagram
socket. This provides a simple method of authenticating clients. With Internet
domain sockets, we need to do rather more work if we wish to authenticate clients.

Using UNIX domain sockets, we can pass open file descriptors and sender creden-
tials, as summarized in Section 61.13.3.

59.15 Further Information

There is a wealth of printed and online resources on TCP/IP and the sockets API:

The key book on network programming with the sockets API is [Stevens at al.,
2004]. [Snader, 2000] adds some useful guidelines on sockets programming.

[Stevens, 1994] and [Wright & Stevens, 1995] describe TCP/IP in detail.
[Comer, 2000], [Comer & Stevens, 1999], [Comer & Stevens, 2000], [Kozierok,
2005], and [Goralksi, 2009] also provide good coverage of the same material.

[Tanenbaum, 2002] provides general background on computer networks.

[Herbert, 2004] describes the details of the Linux 2.6 TCP/IP stack.

The GNU C library manual (online at http://www.gnu.org/) has an extensive dis-
cussion of the sockets API.

The IBM Redbook, TCP/IP Tutorial and Technical Overview, provides lengthy
coverage of networking concepts, TCP/IP internals, the sockets API, and a host
of related topics. It is freely downloadable from http://www.redbooks.ibm.com/.

[Gont, 2008] and [Gont, 2009b] provide security assessments of IPv4 and TCP.

The Usenet newsgroup comp.protocols.tcp-ip is dedicated to questions related to
the TCP/IP networking protocols.
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[Sarolahti & Kuznetsov, 2002] describes congestion control and other details
of the Linux TCP implementation.

Linux-specific information can be found in the following manual pages:
socket(7), ip(7), raw(7), tcp(7), udp(7), and packet(7).

See also the RFC list in Section 58.7.

59.16 Summary

Internet domain sockets allow applications on different hosts to communicate via a
TCP/IP network. An Internet domain socket address consists of an IP address and
a port number. In IPv4, an IP address is a 32-bit number; in IPv6, it is a 128-bit number.
Internet domain datagram sockets operate over UDP, providing connectionless,
unreliable, message-oriented communication. Internet domain stream sockets operate
over TCP, and provide a reliable, bidirectional, byte-stream communication channel
between two connected applications.

Different computer architectures use different conventions for representing
data types. For example, integers may be stored in little-endian or big-endian form,
and different computers may use different numbers of bytes to represent numeric
types such as int or long. These differences mean that we need to employ some
architecture-independent representation when transferring data between hetero-
geneous machines connected via a network. We noted that various marshalling
standards exist to deal this problem, and also described a simple solution used by
many applications: encoding all transmitted data in text form, with fields delimited
by a designated character (usually a newline).

We looked at a range of functions that can be used to convert between
(numeric) string representations of IP addresses (dotted-decimal for IPv4 and hex-
string for IPv6) and their binary equivalents. However, it is generally preferable to
use host and service names rather than numbers, since names are easier to remem-
ber and continue to be usable, even if the corresponding number is changed. We
looked at various functions that convert host and service names to their numeric
equivalents and vice versa. The modern function for translating host and service
names into socket addresses is getaddrinfo(), but it is common to see the historical
functions gethostbyname() and getservbyname() in existing code.

Consideration of hostname conversions led us into a discussion of DNS, which
implements a distributed database for a hierarchical directory service. The advan-
tage of DNS is that the management of the database is not centralized. Instead,
local zone administrators update changes for the hierarchical component of the
database for which they are responsible, and DNS servers communicate with one
another in order to resolve a hostname.

59.17 Exercises

59-1. When reading large quantities of data, the readLine() function shown in Listing 59-1
is inefficient, since a system call is required to read each character. A more efficient
interface would read a block of characters into a buffer and extract a line at a time from
this buffer. Such an interface might consist of two functions. The first of these
functions, which might be called readLineBufInit(fd, &rlbuf), initializes the bookkeeping
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data structure pointed to by rlbuf. This structure includes space for a data buffer,
the size of that buffer, and a pointer to the next “unread” character in that buffer.
It also includes a copy of the file descriptor given in the argument fd. The second
function, readLineBuf(&rlbuf), returns the next line from the buffer associated with
rlbuf. If required, this function reads a further block of data from the file descriptor
saved in rlbuf. Implement these two functions. Modify the programs in Listing 59-6
(is_seqnum_sv.c) and Listing 59-7 (is_seqnum_cl.c) to use these functions.

59-2. Modify the programs in Listing 59-6 (is_seqnum_sv.c) and Listing 59-7 (is_seqnum_cl.c) to
use the inetListen() and inetConnect() functions provided in Listing 59-9 (inet_sockets.c).

59-3. Write a UNIX domain sockets library with an API similar to the Internet domain
sockets library shown in Section 59.12. Rewrite the programs in Listing 57-3
(us_xfr_sv.c, on page 1168) and Listing 57-4 (us_xfr_cl.c, on page 1169) to use this
library.

59-4. Write a network server that stores name-value pairs. The server should allow names
to be added, deleted, modified, and retrieved by clients. Write one or more client
programs to test the server. Optionally, implement some kind of security
mechanism that allows only the client that created the name to delete it or to
modify the value associated with it.

59-5. Suppose that we create two Internet domain datagram sockets, bound to specific
addresses, and connect the first socket to the second. What happens if we create a
third datagram socket and try to send (sendto()) a datagram via that socket to the
first socket? Write a program to determine the answer.
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S O C K E T S :  S E R V E R  D E S I G N

This chapter discusses the fundamentals of designing iterative and concurrent servers
and describes inetd, a special daemon designed to facilitate the creation of Inter-
net servers.

60.1 Iterative and Concurrent Servers

Two common designs for network servers using sockets are the following:

Iterative: The server handles one client at a time, processing that client’s
request(s) completely, before proceeding to the next client.

Concurrent: The server is designed to handle multiple clients simultaneously.

We have already seen an example of an iterative server using FIFOs in Section 44.8
and an example of a concurrent server using System V message queues in Section 46.8.

Iterative servers are usually suitable only when client requests can be handled
quickly, since each client must wait until all of the preceding clients have been ser-
viced. A typical scenario for employing an iterative server is where the client and
server exchange a single request and response.



Concurrent servers are suitable when a significant amount of processing time
is required to handle each request, or where the client and server engage in an
extended conversation, passing messages back and forth. In this chapter, we mainly
focus on the traditional (and simplest) method of designing a concurrent server:
creating a new child process for each new client. Each server child performs all
tasks necessary to service a single client and then terminates. Since each of these
processes can operate independently, multiple clients can be handled simulta-
neously. The principal task of the main server process (the parent) is to create a
new child process for each new client. (A variation on this approach is to create a new
thread for each client.)

In the following sections, we look at examples of an iterative and a concurrent
server using Internet domain sockets. These two servers implement the echo service
(RFC 862), a rudimentary service that returns a copy of whatever the client sends it.

60.2 An Iterative UDP echo Server

In this and the next section, we present servers for the echo service. The echo service
operates on both UDP and TCP port 7. (Since this is a reserved port, the echo server
must be run with superuser privileges.)

The UDP echo server continuously reads datagrams, returning a copy of each
datagram to the sender. Since the server needs to handle only a single message at a
time, an iterative server design suffices. The header file for the server is shown in
Listing 60-1.

Listing 60-1: Header file for id_echo_sv.c and id_echo_cl.c

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/id_echo.h

#include "inet_sockets.h"       /* Declares our socket functions */
#include "tlpi_hdr.h"

#define SERVICE "echo"          /* Name of UDP service */

#define BUF_SIZE 500            /* Maximum size of datagrams that can
                                   be read by client and server */

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/id_echo.h

Listing 60-2 shows the implementation of the server. Note the following points
regarding the server implementation:

We use the becomeDaemon() function of Section 37.2 to turn the server into a
daemon.

To shorten this program, we employ the Internet domain sockets library devel-
oped in Section 59.12.

If the server can’t send a reply to the client, it logs a message using syslog().

In a real-world application, we would probably apply some rate limit to the
messages written with syslog(), both to prevent the possibility of an attacker fill-
ing the system log and because each call to syslog() is expensive, since (by
default) syslog() in turn calls fsync().
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Listing 60-2: An iterative server that implements the UDP echo service

––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/id_echo_sv.c

#include <syslog.h>
#include "id_echo.h"
#include "become_daemon.h"

int
main(int argc, char *argv[])
{
    int sfd;
    ssize_t numRead;
    socklen_t addrlen, len;
    struct sockaddr_storage claddr;
    char buf[BUF_SIZE];
    char addrStr[IS_ADDR_STR_LEN];

    if (becomeDaemon(0) == -1)
        errExit("becomeDaemon");

    sfd = inetBind(SERVICE, SOCK_DGRAM, &addrlen);
    if (sfd == -1) {
        syslog(LOG_ERR, "Could not create server socket (%s)", strerror(errno));
        exit(EXIT_FAILURE);
    }

/* Receive datagrams and return copies to senders */

    for (;;) {
        len = sizeof(struct sockaddr_storage);
        numRead = recvfrom(sfd, buf, BUF_SIZE, 0,
                           (struct sockaddr *) &claddr, &len);
        if (numRead == -1)
            errExit("recvfrom");

        if (sendto(sfd, buf, numRead, 0, (struct sockaddr *) &claddr, len)
                    != numRead)
            syslog(LOG_WARNING, "Error echoing response to %s (%s)",
                    inetAddressStr((struct sockaddr *) &claddr, len,
                                   addrStr, IS_ADDR_STR_LEN),
                    strerror(errno));
    }
}

––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/id_echo_sv.c

To test the server, we use the client program shown in Listing 60-3. This program
also employs the Internet domain sockets library developed in Section 59.12. As its
first command-line argument, the client program expects the name of the host on
which the server resides. The client executes a loop in which it sends each of its
remaining command-line arguments to the server as separate datagrams, and reads
and prints each response datagram sent back by the server.
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Listing 60-3: A client for the UDP echo service

––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/id_echo_cl.c

#include "id_echo.h"

int
main(int argc, char *argv[])
{
    int sfd, j;
    size_t len;
    ssize_t numRead;
    char buf[BUF_SIZE];

    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s: host msg...\n", argv[0]);

/* Construct server address from first command-line argument */

    sfd = inetConnect(argv[1], SERVICE, SOCK_DGRAM);
    if (sfd == -1)
        fatal("Could not connect to server socket");

/* Send remaining command-line arguments to server as separate datagrams */

    for (j = 2; j < argc; j++) {
        len = strlen(argv[j]);
        if (write(sfd, argv[j], len) != len)
            fatal("partial/failed write");

        numRead = read(sfd, buf, BUF_SIZE);
        if (numRead == -1)
            errExit("read");

        printf("[%ld bytes] %.*s\n", (long) numRead, (int) numRead, buf);
    }

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/id_echo_cl.c

Here is an example of what we see when we run the server and two instances of the
client:

$ su                                      Need privilege to bind reserved port
Password:
# ./id_echo_sv                            Server places itself in background
# exit                                    Cease to be superuser
$ ./id_echo_cl localhost hello world      This client sends two datagrams
[5 bytes] hello                           Client prints responses from server
[5 bytes] world
$ ./id_echo_cl localhost goodbye          This client sends one datagram
[7 bytes] goodbye
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60.3 A Concurrent TCP echo Server

The TCP echo service also operates on port 7. The TCP echo server accepts a con-
nection and then loops continuously, reading all transmitted data and sending it
back to the client on the same socket. The server continues reading until it detects
end-of-file, at which point it closes its socket (so that the client sees end-of-file if it is
still reading from its socket).

Since the client may send an indefinite amount of data to the server (and thus ser-
vicing the client may take an indefinite amount of time), a concurrent server design
is appropriate, so that multiple clients can be simultaneously served. The server
implementation is shown in Listing 60-4. (We show an implementation of a client
for this service in Section 61.2.) Note the following points about the implementation:

The server becomes a daemon by calling the becomeDaemon() function shown in
Section 37.2.

To shorten this program, we employ the Internet domain sockets library
shown in Listing 59-9 (page 1228).

Since the server creates a child process for each client connection, we must
ensure that zombies are reaped. We do this within a SIGCHLD handler.

The main body of the server consists of a for loop that accepts a client connec-
tion and then uses fork() to create a child process that invokes the
handleRequest() function to handle that client. In the meantime, the parent con-
tinues around the for loop to accept the next client connection.

In a real-world application, we would probably include some code in our
server to place an upper limit on the number of child processes that the server
could create, in order to prevent an attacker from attempting a remote fork
bomb by using the service to create so many processes on the system that it
becomes unusable. We could impose this limit by adding extra code in the
server to count the number of children currently executing (this count would
be incremented after a successful fork() and decremented as each child was
reaped in the SIGCHLD handler). If the limit on the number of children were
reached, we could then temporarily stop accepting connections (or alterna-
tively, accept connections and then immediately close them).

After each fork(), the file descriptors for the listening and connected sockets
are duplicated in the child (Section 24.2.1). This means that both the parent
and the child could communicate with the client using the connected socket.
However, only the child needs to perform such communication, and so the
parent closes the file descriptor for the connected socket immediately after the
fork(). (If the parent did not do this, then the socket would never actually be
closed; furthermore, the parent would eventually run out of file descriptors.)
Since the child doesn’t accept new connections, it closes its duplicate of the file
descriptor for the listening socket.

Each child process terminates after handling a single client.
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Listing 60-4: A concurrent server that implements the TCP echo service

––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/is_echo_sv.c

#include <signal.h>
#include <syslog.h>
#include <sys/wait.h>
#include "become_daemon.h"
#include "inet_sockets.h"       /* Declarations of inet*() socket functions */
#include "tlpi_hdr.h"

#define SERVICE "echo"          /* Name of TCP service */
#define BUF_SIZE 4096

static void             /* SIGCHLD handler to reap dead child processes */
grimReaper(int sig)
{
    int savedErrno;             /* Save 'errno' in case changed here */

    savedErrno = errno;
    while (waitpid(-1, NULL, WNOHANG) > 0)
        continue;
    errno = savedErrno;
}

/* Handle a client request: copy socket input back to socket */

static void
handleRequest(int cfd)
{
    char buf[BUF_SIZE];
    ssize_t numRead;

    while ((numRead = read(cfd, buf, BUF_SIZE)) > 0) {
        if (write(cfd, buf, numRead) != numRead) {
            syslog(LOG_ERR, "write() failed: %s", strerror(errno));
            exit(EXIT_FAILURE);
        }
    }

    if (numRead == -1) {
        syslog(LOG_ERR, "Error from read(): %s", strerror(errno));
        exit(EXIT_FAILURE);
    }
}

int
main(int argc, char *argv[])
{
    int lfd, cfd;               /* Listening and connected sockets */
    struct sigaction sa;

    if (becomeDaemon(0) == -1)
        errExit("becomeDaemon");
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    sigemptyset(&sa.sa_mask);
    sa.sa_flags = SA_RESTART;
    sa.sa_handler = grimReaper;
    if (sigaction(SIGCHLD, &sa, NULL) == -1) {
        syslog(LOG_ERR, "Error from sigaction(): %s", strerror(errno));
        exit(EXIT_FAILURE);
    }

    lfd = inetListen(SERVICE, 10, NULL);
    if (lfd == -1) {
        syslog(LOG_ERR, "Could not create server socket (%s)", strerror(errno));
        exit(EXIT_FAILURE);
    }

    for (;;) {
        cfd = accept(lfd, NULL, NULL); /* Wait for connection */
        if (cfd == -1) {
            syslog(LOG_ERR, "Failure in accept(): %s", strerror(errno));
            exit(EXIT_FAILURE);
        }

/* Handle each client request in a new child process */

switch (fork()) {
        case -1:
            syslog(LOG_ERR, "Can't create child (%s)", strerror(errno));
            close(cfd);                 /* Give up on this client */
            break;                      /* May be temporary; try next client */

        case 0:                         /* Child */
            close(lfd);                 /* Unneeded copy of listening socket */
            handleRequest(cfd);
            _exit(EXIT_SUCCESS);

        default:                        /* Parent */
            close(cfd);                 /* Unneeded copy of connected socket */
            break;                      /* Loop to accept next connection */
        }
    }
}

––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/is_echo_sv.c

60.4 Other Concurrent Server Designs

The traditional concurrent server model described in the previous section is ade-
quate for many applications that need to simultaneously handle multiple clients via
TCP connections. However, for very high-load servers (for example, web servers
handling thousands of requests per minute), the cost of creating a new child (or
even thread) for each client imposes a significant burden on the server (refer to
Section 28.3), and alternative designs need to be employed. We briefly consider
some of these alternatives.
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Preforked and prethreaded servers

Preforked and prethreaded servers are described in some detail in Chapter 30 of
[Stevens et al., 2004]. The key ideas are the following:

Instead of creating a new child process (or thread) for each client, the server
precreates a fixed number of child processes (or threads) immediately on startup
(i.e., before any client requests are even received). These children constitute a
so-called server pool.

Each child in the server pool handles one client at a time, but instead of termi-
nating after handling the client, the child fetches the next client to be serviced
and services it, and so on.

Employing the above technique requires some careful management within the
server application. The server pool should be large enough to ensure adequate
response to client requests. This means that the server parent must monitor the
number of unoccupied children, and, in times of peak load, increase the size of the
pool so that there are always enough child processes available to immediately serve
new clients. If the load decreases, then the size of the server pool should be
reduced, since having excess processes on the system can degrade overall system
performance.

In addition, the children in the server pool must follow some protocol to allow
them to exclusively select individual client connections. On most UNIX implemen-
tations (including Linux), it is sufficient to have each child in the pool block in an
accept() call on the listening descriptor. In other words, the server parent creates
the listening socket before creating any children, and each of the children inherits
a file descriptor for the socket during the fork(). When a new client connection
arrives, only one of the children will complete the accept() call. However, because
accept() is not an atomic system call on some older implementations, the call may
need to be bracketed by some mutual-exclusion technique (e.g., a file lock) to
ensure that only one child at a time performs the call ([Stevens et al., 2004]).

There are alternatives to having all of the children in the server pool perform
accept() calls. If the server pool consists of separate processes, the server parent
can perform the accept() call, and then pass the file descriptor containing the
new connection to one of the free processes in the pool, using a technique that
we briefly describe in Section 61.13.3. If the server pool consists of threads, the
main thread can perform the accept() call, and then inform one of the free
server threads that a new client is available on the connected descriptor.

Handling multiple clients from a single process

In some cases, we can design a single server process to handle multiple clients. To
do this, we must employ one of the I/O models (I/O multiplexing, signal-driven I/O,
or epoll) that allow a single process to simultaneously monitor multiple file descrip-
tors for I/O events. These models are described in Chapter 63.

In a single-server design, the server process must take on some of the scheduling
tasks that are normally handled by the kernel. In a solution that involves one server
process per client, we can rely on the kernel to ensure that each server process (and
thus client) gets a fair share of access to the resources of the server host. But when we
use a single server process to handle multiple clients, the server must do some work
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to ensure that one or a few clients don’t monopolize access to the server while other
clients are starved. We say a little more about this point in Section 63.4.6.

Using server farms

Other approaches to handling high client loads involve the use of multiple server
systems—a server farm.

One of the simplest approaches to building a server farm (employed by some
web servers) is DNS round-robin load sharing (or load distribution), where the authori-
tative name server for a zone maps the same domain name to several IP addresses
(i.e., several servers share the same domain name). Successive requests to the DNS
server to resolve the domain name return these IP addresses in a different order, in
a round-robin fashion. Further information about DNS round-robin load sharing
can be found in [Albitz & Liu, 2006].

Round-robin DNS has the advantage of being inexpensive and easy to set up.
However, it does present some problems. One of these is the caching performed by
remote DNS servers, which means that future requests from clients on a particular
host (or set of hosts) bypass the round-robin DNS server and are always handled by
the same server. Also, round-robin DNS doesn’t have any built-in mechanisms for
ensuring good load balancing (different clients may place different loads on a
server) or ensuring high availability (what if one of the servers dies or the server
application that it is running crashes?). Another issue that we may need to consider—
one that is faced by many designs that employ multiple server machines—is ensuring
server affinity; that is, ensuring that a sequence of requests from the same client are
all directed to the same server, so that any state information maintained by the
server about the client remains accurate.

A more flexible, but also more complex, solution is server load balancing. In this
scenario, a single load-balancing server routes incoming client requests to one of
the members of the server farm. (To ensure high availability, there may be a
backup server that takes over if the primary load-balancing server crashes.) This
eliminates the problems associated with remote DNS caching, since the server farm
presents a single IP address (that of the load-balancing server) to the outside world.
The load-balancing server incorporates algorithms to measure or estimate server
load (perhaps based on metrics supplied by the members of the server farm) and
intelligently distribute the load across the members of the server farm. The load-bal-
ancing server also automatically detects failures in members of the server farm (and
the addition of new servers, if demand requires it). Finally, a load-balancing server
may also provide support for server affinity. Further information about server load
balancing can be found in [Kopparapu, 2002].

60.5 The inetd (Internet Superserver) Daemon

If we look through the contents of /etc/services, we see literally hundreds of differ-
ent services listed. This implies that a system could theoretically be running a large
number server processes. However, most of these servers would usually be doing
nothing but waiting for infrequent connection requests or datagrams. All of these
server processes would nevertheless occupy slots in the kernel process table, and
consume some memory and swap space, thus placing a load on the system.
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The inetd daemon is designed to eliminate the need to run large numbers of
infrequently used servers. Using inetd provides two main benefits:

Instead of running a separate daemon for each service, a single process—the
inetd daemon—monitors a specified set of socket ports and starts other servers
as required. Thus, the number of processes running on the system is reduced.

The programming of the servers started by inetd is simplified, because inetd
performs several of the steps that are commonly required by all network servers
on startup.

Since it oversees a range of services, invoking other servers as required, inetd is
sometimes known as the Internet superserver.

An extended version of inetd, xinetd, is provided in some Linux distributions.
Among other things, xinetd adds a number of security enhancements. Informa-
tion about xinetd can be found at http://www.xinetd.org/.

Operation of the inetd daemon

The inetd daemon is normally started during system boot. After becoming a daemon
process (Section 37.2), inetd performs the following steps:

1. For each of the services specified in its configuration file, /etc/inetd.conf, inetd
creates a socket of the appropriate type (i.e., stream or datagram) and binds it
to the specified port. Each TCP socket is additionally marked to permit incom-
ing connections via a call to listen().

2. Using the select() system call (Section 63.2.1), inetd monitors all of the sockets
created in the preceding step for datagrams or incoming connection requests.

3. The select() call blocks until either a UDP socket has a datagram available to
read or a connection request is received on a TCP socket. In the case of a TCP
connection, inetd performs an accept() for the connection before proceeding to
the next step.

4. To start the server specified for this socket, inetd() calls fork() to create a new
process that then does an exec() to start the server program. Before performing
the exec(), the child process performs the following steps:

a) Close all of the file descriptors inherited from its parent, except the one
for the socket on which the UDP datagram is available or the TCP connec-
tion has been accepted.

b) Use the techniques described in Section 5.5 to duplicate the socket file
descriptor on file descriptors 0, 1, and 2, and close the socket file descriptor
itself (since it is no longer required). After this step, the execed server is able
to communicate on the socket by using the three standard file descriptors.

c) Optionally, set the user and group IDs for the execed server to values spec-
ified in /etc/inetd.conf.

5. If a connection was accepted on a TCP socket in step 3, inetd closes the connected
socket (since it is needed only in the execed server).

6. The inetd server returns to step 2.
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The /etc/inetd.conf file

The operation of the inetd daemon is controlled by a configuration file, normally
/etc/inetd.conf. Each line in this file describes one of the services to be handled by
inetd. Listing 60-5 shows some examples of entries in the /etc/inetd.conf file that
comes with one Linux distribution.

Listing 60-5: Example lines from /etc/inetd.conf

# echo  stream  tcp  nowait  root    internal
# echo  dgram   udp  wait    root    internal
ftp     stream  tcp  nowait  root    /usr/sbin/tcpd   in.ftpd
telnet  stream  tcp  nowait  root    /usr/sbin/tcpd   in.telnetd
login   stream  tcp  nowait  root    /usr/sbin/tcpd   in.rlogind

The first two lines of Listing 60-5 are commented out by the initial # character; we
show them now since we’ll refer to the echo service shortly.

Each line of /etc/inetd.conf consists of the following fields, delimited by white
space:

Service name: This specifies the name of a service from the /etc/services file. In
conjunction with the protocol field, this is used to look up /etc/services to deter-
mine which port number inetd should monitor for this service.

Socket type: This specifies the type of socket used by this service—for example,
stream or dgram.

Protocol: This specifies the protocol to be used by this socket. This field can con-
tain any of the Internet protocols listed in the file /etc/protocols (documented
in the protocols(5) manual page), but almost every service specifies either tcp
(for TCP) or udp (for UDP).

Flags: This field contains either wait or nowait. This field specifies whether or
not the server execed by inetd (temporarily) takes over management of the socket
for this service. If the execed server manages the socket, then this field is specified
as wait. This causes inetd to remove this socket from the file descriptor set that
it monitors using select() until the execed server exits (inetd detects this via a
handler for SIGCHLD). We say some more about this field below.

Login name: This field consists of a username from /etc/passwd, optionally followed
by a period (.) and a group name from /etc/group. These determine the user
and group IDs under which the execed server is run. (Since inetd runs with an
effective user ID of root, its children are also privileged and can thus use calls to
setuid() and setgid() to change process credentials if desired.)

Server program: This specifies the pathname of the server program to be execed.

Server program arguments: This field specifies one or more arguments, separated
by white space, to be used as the argument list when execing the server program.
The first of these corresponds to argv[0] in the execed program and is thus usually
the same as the basename part of the server program name. The next argument
corresponds to argv[1], and so on.
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In the example lines shown in Listing 60-5 for the ftp, telnet, and login services,
we see the server program and arguments are set up differently than just
described. All three of these services cause inetd to invoke the same program,
tcpd(8) (the TCP daemon wrapper), which performs some logging and access-
control checks before in turn execing the appropriate program, based on the
value specified as the first server program argument (which is available to tcpd
via argv[0]). Further information about tcpd can be found in the tcpd(8) manual
page and in [Mann & Mitchell, 2003].

Stream socket (TCP) servers invoked by inetd are normally designed to handle just
a single client connection and then terminate, leaving inetd with the job of listening
for further connections. For such servers, flags should be specified as nowait. (If,
instead, the execed server is to accept connections, then wait should be specified, in
which case inetd does not accept the connection, but instead passes the file descrip-
tor for the listening socket to the execed server as descriptor 0.)

For most UDP servers, the flags field should be specified as wait. A UDP server
invoked by inetd is normally designed to read and process all outstanding datagrams on
the socket and then terminate. (This usually requires some sort of timeout when
reading the socket, so that the server terminates when no new datagrams arrive
within a specified interval.) By specifying wait, we prevent the inetd daemon from
simultaneously trying to select() on the socket, which would have the unintended
consequence that inetd would race the UDP server to check for datagrams and, if it
won the race, start another instance of the UDP server.

Because the operation of inetd and the format of its configuration file are not
specified by SUSv3, there are some (generally small) variations in the values
that can be specified in the fields of /etc/inetd.conf. Most versions of inetd pro-
vide at least the syntax that we describe in the main text. For further details,
see the inetd.conf(8) manual page.

As an efficiency measure, inetd implements a few simple services itself, instead of
execing separate servers to perform the task. The UDP and TCP echo services are
examples of services that inetd implements. For such services, the server program field of
the corresponding /etc/inetd.conf record is specified as internal, and the server
program arguments are omitted. (In the example lines in Listing 60-5, we saw that the
echo service entries were commented out. To enable the echo service, we need to
remove the # character at the start of these lines.)

Whenever we change the /etc/inetd.conf file, we need to send a SIGHUP signal to
inetd to request it to reread the file:

# killall -HUP inetd

Example: invoking a TCP echo service via inetd

We noted earlier that inetd simplifies the programming of servers, especially con-
current (usually TCP) servers. It does this by carrying out the following steps on
behalf of the servers it invokes:

1. Perform all socket-related initialization, calling socket(), bind(), and (for TCP
servers) listen().

2. For a TCP service, perform an accept() for the new connection.
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3. Create a new process to handle the incoming UDP datagram or TCP connec-
tion. The process is automatically set up as a daemon. The inetd program han-
dles all details of process creation via fork() and the reaping of dead children
via a handler for SIGCHLD.

4. Duplicate the file descriptor of the UDP socket or the connected TCP socket
on file descriptors 0, 1, and 2, and close all other file descriptors (since they are
unused in the execed server).

5. Exec the server program.

(In the description of the above steps, we assume the usual cases that the flags field
of the service entry in /etc/inetd.conf is specified as nowait for TCP services and wait
for UDP services.)

As an example of how inetd simplifies the programming of a TCP service, in List-
ing 60-6, we show the inetd-invoked equivalent of the TCP echo server from Listing 60-4.
Since inetd performs all of the above steps, all that remains of the server is the code
executed by the child process to handle the client request, which can be read from
file descriptor 0 (STDIN_FILENO).

If the server resides in the directory /bin (for example), then we would need to
create the following entry in /etc/inetd.conf in order to have inetd invoke the server:

echo stream tcp nowait root /bin/is_echo_inetd_sv is_echo_inetd_sv

Listing 60-6: TCP echo server designed to be invoked via inetd
–––––––––––––––––––––––––––––––––––––––––––––––– sockets/is_echo_inetd_sv.c

#include <syslog.h>
#include "tlpi_hdr.h"

#define BUF_SIZE 4096

int
main(int argc, char *argv[])
{
    char buf[BUF_SIZE];
    ssize_t numRead;

    while ((numRead = read(STDIN_FILENO, buf, BUF_SIZE)) > 0) {
        if (write(STDOUT_FILENO, buf, numRead) != numRead) {
            syslog(LOG_ERR, "write() failed: %s", strerror(errno));
            exit(EXIT_FAILURE);
        }
    }

    if (numRead == -1) {
        syslog(LOG_ERR, "Error from read(): %s", strerror(errno));
        exit(EXIT_FAILURE);
    }

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––– sockets/is_echo_inetd_sv.c
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60.6 Summary

An iterative server handles one client at a time, processing that client’s request(s)
completely, before proceeding to the next client. A concurrent server handles mul-
tiple clients simultaneously. In high-load scenarios, a traditional concurrent server
design that creates a new child process (or thread) for each client may not perform
well enough, and we outlined a range of other approaches for concurrently han-
dling large numbers of clients.

The Internet superserver daemon, inetd, monitors multiple sockets and starts
the appropriate servers in response to incoming UDP datagrams or TCP connec-
tions. Using inetd allows us to decrease system load by minimizing the number of
network server processes on the system, and also simplifies the programming of server
processes, since it performs most of the initialization steps required by a server.

Further information

Refer to the sources of further information listed in Section 59.15.

60.7 Exercises

60-1. Add code to the program in Listing 60-4 (is_echo_sv.c) to place a limit on the
number of simultaneously executing children.

60-2. Sometimes, it may be necessary to write a socket server so that it can be invoked
either directly from the command line or indirectly via inetd. In this case, a command-
line option is used to distinguish the two cases. Modify the program in Listing 60-4
so that, if it is given a –i command-line option, it assumes that it is being invoked by
inetd and handles a single client on the connected socket, which inetd supplies via
STDIN_FILENO. If the –i option is not supplied, then the program can assume it is
being invoked from the command line, and operate in the usual fashion. (This
change requires only the addition of a few lines of code.) Modify /etc/inetd.conf to
invoke this program for the echo service.
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S O C K E T S :  A D V A N C E D  T O P I C S

This chapter considers a range of more advanced topics relating to sockets pro-
gramming, including the following:

the circumstances in which partial reads and writes can occur on stream sockets;

the use of shutdown() to close one half of the bidirectional channel between two
connected sockets;

the recv() and send() I/O system calls, which provide socket-specific functionality
not available with read() and write();

the sendfile() system call, which is used in certain circumstances to efficiently
output data on a socket;

details of the operation of the TCP protocol, with the aim of eliminating some
common misunderstandings that lead to mistakes when writing programs that
use TCP sockets;

the use of the netstat and tcpdump commands for monitoring and debugging
applications that use sockets; and

the use of the getsockopt() and setsockopt() system calls to retrieve and modify
options affecting the operation of a socket.

We also consider a number of other more minor topics, and conclude the chapter
with a summary of some advanced sockets features.



61.1 Partial Reads and Writes on Stream Sockets

When we first introduced the read() and write() system calls in Chapter 4, we noted
that, in some circumstances, they may transfer fewer bytes than requested. Such
partial transfers can occur when performing I/O on stream sockets. We now con-
sider why they can occur and show a pair of functions that transparently handle
partial transfers.

A partial read may occur if there are fewer bytes available in the socket than were
requested in the read() call. In this case, read() simply returns the number of bytes avail-
able. (This is the same behavior that we saw with pipes and FIFOs in Section 44.10.)

A partial write may occur if there is insufficient buffer space to transfer all of
the requested bytes and one of the following is true:

A signal handler interrupted the write() call (Section 21.5) after it transferred
some of the requested bytes.

The socket was operating in nonblocking mode (O_NONBLOCK), and it was possible
to transfer only some of the requested bytes.

An asynchronous error occurred after only some of the requested bytes had
been transferred. By an asynchronous error, we mean an error that occurs asyn-
chronously with respect to the application’s use of calls in the sockets API. An
asynchronous error can arise, for example, because of a problem with a TCP
connection, perhaps resulting from a crash by the peer application.

In all of the above cases, assuming that there was space to transfer at least 1 byte,
the write() is successful, and returns the number of bytes that were transferred to the
output buffer.

If a partial I/O occurs—for example, if a read() returns fewer bytes than
requested or a blocked write() is interrupted by a signal handler after transferring
only part of the requested data—then it is sometimes useful to restart the system
call to complete the transfer. In Listing 61-1, we provide two functions that do this:
readn() and writen(). (The ideas for these functions are drawn from functions of the
same name presented in [Stevens et al., 2004].)

The readn() and writen() functions take the same arguments as read() and write().
However, they use a loop to restart these system calls, thus ensuring that the
requested number of bytes is always transferred (unless an error occurs or end-of-
file is detected on a read()).

#include "rdwrn.h"

ssize_t readn(int fd, void *buffer, size_t count);

Returns number of bytes read, 0 on EOF, or –1 on error

ssize_t writen(int fd, void *buffer, size_t count);

Returns number of bytes written, or –1 on error
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Listing 61-1: Implementation of readn() and writen()
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/rdwrn.c

#include <unistd.h>
#include <errno.h>
#include "rdwrn.h"                      /* Declares readn() and writen() */

ssize_t
readn(int fd, void *buffer, size_t n)
{
    ssize_t numRead;                    /* # of bytes fetched by last read() */
    size_t totRead;                     /* Total # of bytes read so far */
    char *buf;

    buf = buffer;                       /* No pointer arithmetic on "void *" */
    for (totRead = 0; totRead < n; ) {
        numRead = read(fd, buf, n - totRead);

        if (numRead == 0)               /* EOF */
            return totRead;             /* May be 0 if this is first read() */
        if (numRead == -1) {
            if (errno == EINTR)
                continue;               /* Interrupted --> restart read() */
            else
                return -1;              /* Some other error */
        }
        totRead += numRead;
        buf += numRead;
    }
    return totRead;                     /* Must be 'n' bytes if we get here */
}

ssize_t
writen(int fd, const void *buffer, size_t n)
{
    ssize_t numWritten;                 /* # of bytes written by last write() */
    size_t totWritten;                  /* Total # of bytes written so far */
    const char *buf;

    buf = buffer;                       /* No pointer arithmetic on "void *" */
    for (totWritten = 0; totWritten < n; ) {
        numWritten = write(fd, buf, n - totWritten);

        if (numWritten <= 0) {
            if (numWritten == -1 && errno == EINTR)
                continue;               /* Interrupted --> restart write() */
            else
                return -1;              /* Some other error */
        }
        totWritten += numWritten;
        buf += numWritten;
    }
    return totWritten;                  /* Must be 'n' bytes if we get here */
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/rdwrn.c
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61.2 The shutdown() System Call

Calling close() on a socket closes both halves of the bidirectional communication
channel. Sometimes, it is useful to close one half of the connection, so that data can
be transmitted in just one direction through the socket. The shutdown() system call
provides this functionality.

The shutdown() system call closes one or both channels of the socket sockfd, depend-
ing on the value of how, which is specified as one of the following:

SHUT_RD

Close the reading half of the connection. Subsequent reads will return
end-of-file (0). Data can still be written to the socket. After a SHUT_RD on a
UNIX domain stream socket, the peer application receives a SIGPIPE signal and
the EPIPE error if it makes further attempts to write to the peer socket. As dis-
cussed in Section 61.6.6, SHUT_RD can’t be used meaningfully for TCP sockets.

SHUT_WR

Close the writing half of the connection. Once the peer application has
read all outstanding data, it will see end-of-file. Subsequent writes to the
local socket yield the SIGPIPE signal and an EPIPE error. Data written by the peer
can still be read from the socket. In other words, this operation allows us to
signal end-of-file to the peer while still being able to read data that the peer
sends back to us. The SHUT_WR operation is employed by programs such as
ssh and rsh (refer to Section 18.5 of [Stevens, 1994]). The SHUT_WR operation
is the most common use of shutdown(), and is sometimes referred to as a
socket half-close.

SHUT_RDWR

Close both the read and the write halves of the connection. This is the
same as performing a SHUT_RD followed by a SHUT_WR.

Aside from the semantics of the how argument, shutdown() differs from close() in
another important respect: it closes the socket channel(s) regardless of whether
there are other file descriptors referring to the socket. (In other words, shutdown()
is performing an operation on the open file description, rather than the file descriptor.
See Figure 5-1, on page 91.) Suppose, for example, that sockfd refers to a connected
stream socket. If we make the following calls, then the connection remains open,
and we can still perform I/O on the connection via the file descriptor fd2:

fd2 = dup(sockfd);
close(sockfd);

#include <sys/socket.h>

int shutdown(int sockfd, int how);

Returns 0 on success, or –1 on error
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However, if we make the following sequence of calls, then both channels of the
connection are closed, and I/O can no longer be performed via fd2:

fd2 = dup(sockfd);
shutdown(sockfd, SHUT_RDWR);

A similar scenario holds if a file descriptor for a socket is duplicated during a fork().
If, after the fork(), one process does a SHUT_RDWR on its copy of the descriptor, then
the other process also can no longer perform I/O on its descriptor.

Note that shutdown() doesn’t close the file descriptor, even if how is specified as
SHUT_RDWR. To close the file descriptor, we must additionally call close().

Example program

Listing 61-2 demonstrates the use of the shutdown() SHUT_WR operation. This pro-
gram is a TCP client for the echo service. (We presented a TCP server for the echo
service in Section 60.3.) To shorten the implementation, we make use of functions
in the Internet domain sockets library shown in Section 59.12.

In some Linux distributions, the echo service is not enabled by default, and
therefore we must enable it before running the program in Listing 61-2. Typically,
this service is implemented internally by the inetd(8) daemon (Section 60.5), and,
to enable the echo service, we must edit the file /etc/inetd.conf to uncomment
the two lines corresponding to the UDP and TCP echo services (see Listing 60-5,
on page 1249), and then send a SIGHUP signal to the inetd daemon.

Many distributions supply the more modern xinetd(8) instead of inetd(8).
Consult the xinetd documentation for information about how to make the
equivalent changes under xinetd.

As its single command-line argument, the program takes the name of the host on
which the echo server is running. The client performs a fork(), yielding parent and
child processes.

The client parent writes the contents of standard input to the socket, so that it
can be read by the echo server. When the parent detects end-of-file on standard
input, it uses shutdown() to close the writing half of its socket. This causes the echo
server to see end-of-file, at which point it closes its socket (which causes the client
child in turn to see end-of-file). The parent then terminates.

The client child reads the echo server’s response from the socket and echoes the
response on standard output. The child terminates when it sees end-of-file on the
socket.

The following shows an example of what we see when running this program:

$ cat > tell-tale-heart.txt                           Create a file for testing
It is impossible to say how the idea entered my brain;
but once conceived, it haunted me day and night.
Type Control-D
$ ./is_echo_cl tekapo < tell-tale-heart.txt
It is impossible to say how the idea entered my brain;
but once conceived, it haunted me day and night.
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Listing 61-2: A client for the echo service

–––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/is_echo_cl.c

#include "inet_sockets.h"
#include "tlpi_hdr.h"

#define BUF_SIZE 100

int
main(int argc, char *argv[])
{
    int sfd;
    ssize_t numRead;
    char buf[BUF_SIZE];

    if (argc != 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s host\n", argv[0]);

    sfd = inetConnect(argv[1], "echo", SOCK_STREAM);
    if (sfd == -1)
        errExit("inetConnect");

    switch (fork()) {
    case -1:
        errExit("fork");

    case 0:             /* Child: read server's response, echo on stdout */
        for (;;) {
            numRead = read(sfd, buf, BUF_SIZE);
            if (numRead <= 0)           /* Exit on EOF or error */
                break;
            printf("%.*s", (int) numRead, buf);
        }
        exit(EXIT_SUCCESS);

    default:            /* Parent: write contents of stdin to socket */
        for (;;) {
            numRead = read(STDIN_FILENO, buf, BUF_SIZE);
            if (numRead <= 0)           /* Exit loop on EOF or error */
                break;
            if (write(sfd, buf, numRead) != numRead)
                fatal("write() failed");
        }

        /* Close writing channel, so server sees EOF */

        if (shutdown(sfd, SHUT_WR) == -1)
            errExit("shutdown");
        exit(EXIT_SUCCESS);
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/is_echo_cl.c
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61.3 Socket-Specific I/O System Calls: recv() and send()

The recv() and send() system calls perform I/O on connected sockets. They provide
socket-specific functionality that is not available with the traditional read() and
write() system calls.

The return value and the first three arguments to recv() and send() are the same as
for read() and write(). The last argument, flags, is a bit mask that modifies the
behavior of the I/O operation. For recv(), the bits that may be ORed in flags
include the following:

MSG_DONTWAIT

Perform a nonblocking recv(). If no data is available, then instead of block-
ing, return immediately with the error EAGAIN. We can obtain the same
behavior by using fcntl() to set nonblocking mode (O_NONBLOCK) on the socket,
with the difference that MSG_DONTWAIT allows us to control nonblocking
behavior on a per-call basis.

MSG_OOB

Receive out-of-band data on the socket. We briefly describe this feature in
Section 61.13.1.

MSG_PEEK

Retrieve a copy of the requested bytes from the socket buffer, but don’t
actually remove them from the buffer. The data can later be reread by
another recv() or read() call.

MSG_WAITALL

Normally, a recv() call returns the lesser of the number of bytes requested
(length) and the number of bytes actually available in the socket. Specifying
the MSG_WAITALL flag causes the system call to block until length bytes have
been received. However, even when this flag is specified, the call may
return fewer bytes than requested if: (a) a signal is caught; (b) the peer on a
stream socket terminated the connection; (c) an out-of-band data byte
(Section 61.13.1) was encountered; (d) the received message from a data-
gram socket is less than length bytes; or (e) an error occurs on the socket. (The
MSG_WAITALL flag can replace the readn() function that we show in Listing 61-1,
with the difference that our readn() function does restart itself if inter-
rupted by a signal handler.)

#include <sys/socket.h>

ssize_t recv(int sockfd, void *buffer, size_t length, int flags);

Returns number of bytes received, 0 on EOF, or –1 on error

ssize_t send(int sockfd, const void *buffer, size_t length, int flags);

Returns number of bytes sent, or –1 on error
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All of the above flags are specified in SUSv3, except for MSG_DONTWAIT, which is never-
theless available on some other UNIX implementations. The MSG_WAITALL flag was a
later addition to the sockets API, and is not present in some older implementations.

For send(), the bits that may be ORed in flags include the following:

MSG_DONTWAIT

Perform a nonblocking send(). If the data can’t be immediately trans-
ferred (because the socket send buffer is full), then, instead of blocking,
fail with the error EAGAIN. As with recv(), the same effect can be achieved
by setting the O_NONBLOCK flag for the socket.

MSG_MORE (since Linux 2.4.4)
This flag is used with TCP sockets to achieve the same effect as the TCP_CORK
socket option (Section 61.4), with the difference that it provides corking of
data on a per-call basis. Since Linux 2.6, this flag can also be used with data-
gram sockets, where it has a different meaning. Data transmitted in successive
send() or sendto() calls specifying MSG_MORE is packaged into a single datagram
that is transmitted only when a further call is made that does not specify
this flag. (Linux also provides an analogous UDP_CORK socket option that
causes data from successive send() or sendto() calls to be accumulated into a
single datagram that is transmitted when UDP_CORK is disabled.) The MSG_MORE
flag has no effect for UNIX domain sockets.

MSG_NOSIGNAL

When sending data on a connected stream socket, don’t generate a SIGPIPE
signal if the other end of the connection has been closed. Instead, the send()
call fails with the error EPIPE. This is the same behavior as can be obtained
by ignoring the SIGPIPE signal, with the difference that the MSG_NOSIGNAL flag
controls the behavior on a per-call basis.

MSG_OOB

Send out-of-band data on a stream socket. Refer to Section 61.13.1.

Of the above flags, only MSG_OOB is specified by SUSv3. MSG_DONTWAIT appears on a few
other UNIX implementations, and MSG_NOSIGNAL and MSG_MORE are Linux-specific.

The send(2) and recv(2) manual pages describe further flags that we don’t
cover here.

61.4 The sendfile() System Call

Applications such as web servers and file servers frequently need to transfer the
unaltered contents of a disk file through a (connected) socket. One way to do this
would be a loop of the following form:

while ((n = read(diskfilefd, buf, BUZ_SIZE)) > 0)
    write(sockfd, buf, n);

For many applications, such a loop is perfectly acceptable. However, if we fre-
quently transfer large files via a socket, this technique is inefficient. In order to
transmit the file, we must use two system calls (possibly multiple times within a
loop): one to copy the file contents from the kernel buffer cache into user space,
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and the other to copy the user-space buffer back to kernel space in order to be
transmitted via the socket. This scenario is shown on the left side of Figure 61-1.
Such a two-step process is wasteful if the application doesn’t perform any process-
ing of the file contents before transmitting them. The sendfile() system call is
designed to eliminate this inefficiency. When an application calls sendfile(), the file
contents are transferred directly to the socket, without passing through user space,
as shown on the right side of Figure 61-1. This is referred to as a zero-copy transfer.

Figure 61-1: Transferring the contents of a file to a socket

The sendfile() system call transfers bytes from the file referred to by the descriptor
in_fd to the file referred to by the descriptor out_fd. The out_fd descriptor must
refer to a socket. The in_fd argument must refer to a file to which mmap() can be
applied; in practice, this usually means a regular file. This somewhat restricts the
use of sendfile(). We can use it to pass data from a file to a socket, but not vice versa.
And we can’t use sendfile() to pass data directly from one socket to another.

Performance benefits could also be obtained if sendfile() could be used to transfer
bytes between two regular files. On Linux 2.4 and earlier, out_fd could refer to
a regular file. Some reworking of the underlying implementation meant that
this possibility disappeared in the 2.6 kernel. However, this feature may be
reinstated in a future kernel version.

If offset is not NULL, then it should point to an off_t value that specifies the starting file
offset from which bytes should be transferred from in_fd. This is a value-result
argument. On return, it contains the offset of the next byte following the last byte
that was transferred from in_fd. In this case, sendfile() doesn’t change the file offset
for in_fd.

If offset is NULL, then bytes are transferred from in_fd starting at the current file
offset, and the file offset is updated to reflect the number of bytes transferred.

#include <sys/sendfile.h>

ssize_t sendfile(int out_fd, int in_fd, off_t *offset, size_t count);

Returns number of bytes transferred, or –1 on error
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The count argument specifies the number of bytes to be transferred. If end-of-
file is encountered before count bytes are transferred, only the available bytes are
transferred. On success, sendfile() returns the number of bytes actually transferred.

SUSv3 doesn’t specify sendfile(). Versions of sendfile() are available on some
other UNIX implementations, but the argument list is typically different from the
version on Linux.

Starting with kernel 2.6.17, Linux provides three new (nonstandard) system
calls—splice(), vmsplice(), and tee()—that provide a superset of the functionality
of sendfile(). See the manual pages for details.

The TCP_CORK socket option

To further improve the efficiency of TCP applications using sendfile(), it is some-
times useful to employ the Linux-specific TCP_CORK socket option. As an example,
consider a web server delivering a page in response to a request by a web browser.
The web server’s response consists of two parts: HTTP headers, perhaps output
using write(), followed by the page data, perhaps output using sendfile(). In this sce-
nario, normally two TCP segments are transmitted: the headers are sent in the first
(rather small) segment, and then the page data is sent in a second segment. This is
an inefficient use of network bandwidth. It probably also creates unnecessary work
for both the sending and the receiving TCP, since in many cases the HTTP headers
and the page data would be small enough to fit inside a single TCP segment. The
TCP_CORK option is designed to address this inefficiency.

When the TCP_CORK option is enabled on a TCP socket, all subsequent output is
buffered into a single TCP segment until either the upper limit on the size of a seg-
ment is reached, the TCP_CORK option is disabled, the socket is closed, or a maximum
of 200 milliseconds passes from the time that the first corked byte is written. (The
timeout ensures that the corked data is transmitted if the application forgets to dis-
able the TCP_CORK option.)

We enable and disable the TCP_CORK option using the setsockopt() system call
(Section 61.9). The following code (which omits error checking) demonstrates the
use of TCP_CORK for our hypothetical HTTP server example:

int optval;

/* Enable TCP_CORK option on 'sockfd' - subsequent TCP output is corked
   until this option is disabled. */

optval = 1;
setsockopt(sockfd, IPPROTO_TCP, TCP_CORK, sizeof(optval));

write(sockfd, ...);                     /* Write HTTP headers */
sendfile(sockfd, ...);                  /* Send page data */

/* Disable TCP_CORK option on 'sockfd' - corked output is now transmitted
   in a single TCP segment. */

optval = 0
setsockopt(sockfd, IPPROTO_TCP, TCP_CORK, sizeof(optval));
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We could avoid the possibility of two segments being transmitted by building a single
data buffer within our application, and then transmitting that buffer with a single
write(). (Alternatively, we could use writev() to combine two distinct buffers in a sin-
gle output operation.) However, if we want to combine the zero-copy efficiency of
sendfile() with the ability to include a header as part of the first segment of transmit-
ted file data, then we need to use TCP_CORK.

In Section 61.3, we noted that the MSG_MORE flag provides similar functionality
to TCP_CORK, but on a per-system-call basis. This is not necessarily an advantage.
It is possible to set the TCP_CORK option on the socket, and then exec a program
that performs output on the inherited file descriptor without being aware of
the TCP_CORK option. By contrast, the use of MSG_MORE requires explicit changes
to the source code of a program.

FreeBSD provides an option similar to TCP_CORK in the form of TCP_NOPUSH.

61.5 Retrieving Socket Addresses

The getsockname() and getpeername() system calls return, respectively, the local
address to which a socket is bound and the address of the peer socket to which the
local socket is connected.

For both calls, sockfd is a file descriptor referring to a socket, and addr is a pointer to
a suitably sized buffer that is used to return a structure containing the socket address.
The size and type of this structure depend on the socket domain. The addrlen argu-
ment is a value-result argument. Before the call, it should be initialized to the
length of the buffer pointed to by addr; on return, it contains the number of bytes
actually written to this buffer.

The getsockname() function returns a socket’s address family and the address to
which a socket is bound. This is useful if the socket was bound by another program
(e.g., inetd(8)) and the socket file descriptor was then preserved across an exec().

Calling getsockname() is also useful if we want to determine the ephemeral port
number that the kernel assigned to a socket when performing an implicit bind of
an Internet domain socket. The kernel performs an implicit bind in the following
circumstances:

after a connect() or a listen() call on a TCP socket that has not previously been
bound to an address by bind();

on the first sendto() on a UDP socket that had not previously been bound to an
address; or

after a bind() call where the port number (sin_port) was specified as 0. In this
case, the bind() specifies the IP address for the socket, but the kernel selects an
ephemeral port number.

#include <sys/socket.h>

int getsockname(int sockfd, struct sockaddr *addr, socklen_t *addrlen);
int getpeername(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

Both return 0 on success, or –1 on error
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The getpeername() system call returns the address of the peer socket on a stream
socket connection. This is useful primarily with TCP sockets, if the server wants to
find out the address of the client that has made a connection. This information
could also be obtained when the accept() call is performed; however, if the server
was execed by the program that did the accept() (e.g., inetd), then it inherits the
socket file descriptor, but the address information returned by accept() is no longer
available.

Listing 61-3 demonstrates the use of getsockname() and getpeername(). This pro-
gram employs the functions that we defined in Listing 59-9 (on page 1228), and
performs the following steps:

1. Use our inetListen() function to create a listening socket, listenFd, bound to the
wildcard IP address and the port specified in the program’s sole command-line
argument. (The port can be specified numerically or as a service name.) The
len argument returns the length of the address structure for this socket’s
domain. This value is passed in a later call to malloc() to allocate a buffer that is
used to return a socket address from calls to getsockname() and getpeername().

2. Use our inetConnect() function to create a second socket, connFd, which is used
to send a connection request to the socket created in step 1.

3. Call accept() on the listening socket in order to create a third socket, acceptFd,
that is connected to the socket created in the previous step.

4. Use calls to getsockname() and getpeername() to obtain the local and peer
addresses for the two connected sockets, connFd and acceptFd. After each of
these calls, the program uses our inetAddressStr() function to convert the socket
address into printable form.

5. Sleep for a few seconds so that we can run netstat in order to confirm the socket
address information. (We describe netstat in Section 61.7.)

The following shell session log shows an example run of this program:

$ ./socknames 55555 &
getsockname(connFd):   (localhost, 32835)
getsockname(acceptFd): (localhost, 55555)
getpeername(connFd):   (localhost, 55555)
getpeername(acceptFd): (localhost, 32835)
[1] 8171
$ netstat -a | egrep '(Address|55555)'
Proto Recv-Q Send-Q Local Address    Foreign Address  State
tcp        0      0 *:55555          *:*              LISTEN
tcp        0      0 localhost:32835  localhost:55555  ESTABLISHED
tcp        0      0 localhost:55555  localhost:32835  ESTABLISHED

From the above output, we can see that the connected socket (connFd) was bound
to the ephemeral port 32835. The netstat command shows us information about all
three sockets created by the program, and allows us to confirm the port information
for the two connected sockets, which are in the ESTABLISHED state (described in
Section 61.6.3).
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Listing 61-3: Using getsockname() and getpeername()
–––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/socknames.c

#include "inet_sockets.h"               /* Declares our socket functions */
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int listenFd, acceptFd, connFd;
    socklen_t len;                      /* Size of socket address buffer */
    void *addr;                         /* Buffer for socket address */
    char addrStr[IS_ADDR_STR_LEN];

    if (argc != 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s service\n", argv[0]);

    listenFd = inetListen(argv[1], 5, &len);
    if (listenFd == -1)
        errExit("inetListen");

    connFd = inetConnect(NULL, argv[1], SOCK_STREAM);
    if (connFd == -1)
        errExit("inetConnect");

    acceptFd = accept(listenFd, NULL, NULL);
    if (acceptFd == -1)
        errExit("accept");

    addr = malloc(len);
    if (addr == NULL)
        errExit("malloc");

    if (getsockname(connFd, addr, &len) == -1)
        errExit("getsockname");
    printf("getsockname(connFd):   %s\n",
            inetAddressStr(addr, len, addrStr, IS_ADDR_STR_LEN));
    if (getsockname(acceptFd, addr, &len) == -1)
        errExit("getsockname");
    printf("getsockname(acceptFd): %s\n",
            inetAddressStr(addr, len, addrStr, IS_ADDR_STR_LEN));

    if (getpeername(connFd, addr, &len) == -1)
        errExit("getpeername");
    printf("getpeername(connFd):   %s\n",
            inetAddressStr(addr, len, addrStr, IS_ADDR_STR_LEN));
    if (getpeername(acceptFd, addr, &len) == -1)
        errExit("getpeername");
    printf("getpeername(acceptFd): %s\n",
            inetAddressStr(addr, len, addrStr, IS_ADDR_STR_LEN));

    sleep(30);                          /* Give us time to run netstat(8) */
    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– sockets/socknames.c
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61.6 A Closer Look at TCP

Knowing some of the details of the operation of TCP helps us to debug applications
that use TCP sockets, and, in some cases, to make such applications more efficient. In
the following sections, we look at:

the format of TCP segments;

the TCP acknowledgement scheme;

the TCP state machine;

TCP connection establishment and termination; and

the TCP TIME_WAIT state.

61.6.1 Format of a TCP Segment
Figure 61-2 shows the format of the TCP segments that are exchanged between the
endpoints of a TCP connection. The meanings of these fields are as follows:

Source port number: This is the port number of the sending TCP.

Destination port number: This is the port number of the destination TCP.

Sequence number: This is the sequence number for this segment. This is the offset
of the first byte of data in this segment within the stream of data being transmit-
ted in this direction over the connection, as described in Section 58.6.3.

Figure 61-2: Format of a TCP segment
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Acknowledgement number: If the ACK bit (see below) is set, then this field con-
tains the sequence number of the next byte of data that the receiver expects to
receive from the sender.

Header length: This is the length of the header, in units of 32-bit words. Since
this is a 4-bit field, the total header length can be up to 60 bytes (15 words).
This field enables the receiving TCP to determine the length of the variable-
length options field and the starting point of the data.

Reserved: This consists of 4 unused bits (must be set to 0).

Control bits: This field consists of 8 bits that further specify the meaning of the
segment:

– CWR: the congestion window reduced flag.

– ECE: the explicit congestion notification echo flag. The CWR and ECE flags
are used as part of TCP/IP’s Explicit Congestion Notification (ECN) algo-
rithm. ECN is a relatively recent addition to TCP/IP and is described in
RFC 3168 and in [Floyd, 1994]. ECN is implemented in Linux from kernel
2.4 onward, and enabled by placing a nonzero value in the Linux-specific
/proc/sys/net/ipv4/tcp_ecn file.

– URG: if set, then the urgent pointer field contains valid information.

– ACK: if set, then the acknowledgement number field contains valid informa-
tion (i.e., this segment acknowledges data previously sent by the peer).

– PSH: push all received data to the receiving process. This flag is described
in RFC 993 and in [Stevens, 1994].

– RST: reset the connection. This is used to handle various error situations.

– SYN: synchronize sequence numbers. Segments with this flag set are
exchanged during connection establishment to allow the two TCPs to specify
the initial sequence numbers to be used for transferring data in each direction.

– FIN: used by a sender to indicate that it has finished sending data.

Multiple control bits (or none at all) may be set in a segment, which allows a single
segment to serve multiple purposes. For example, we’ll see later that a segment
with both the SYN and the ACK bits set is exchanged during TCP connection
establishment.

Window size: This field is used when a receiver sends an ACK to indicate the
number of bytes of data that the receiver has space to accept. (This relates to
the sliding window scheme briefly described in Section 58.6.3.)

Checksum: This is a 16-bit checksum covering both the TCP header and the
TCP data.

The TCP checksum covers not just the TCP header and data, but also 12 bytes
usually referred to as the TCP pseudoheader. The pseudoheader consists of the
following: the source and destination IP address (4 bytes each); 2 bytes specifying
the size of the TCP segment (this value is computed, but doesn’t form part of
either the IP or the TCP header); 1 byte containing the value 6, which is TCP’s
unique protocol number within the TCP/IP suite of protocols; and 1 padding
byte containing 0 (so that the length of the pseudoheader is a multiple of 16 bits).
The purpose of including the pseudoheader in the checksum calculation is to
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allow the receiving TCP to double-check that an incoming segment has arrived
at the correct destination (i.e., that IP has not wrongly accepted a datagram
that was addressed to another host or passed TCP a packet that should have
gone to another upper layer). UDP calculates the checksum in its packet headers
in a similar manner and for similar reasons. See [Stevens, 1994] for further
details on the pseudoheader.

Urgent pointer: If the URG control bit is set, then this field indicates the location
of so-called urgent data within the stream of data being transmitted from the
sender to the receiver. We briefly discuss urgent data in Section 61.13.1.

Options: This is a variable-length field containing options controlling the opera-
tion of the TCP connection.

Data: This field contains the user data transmitted in this segment. This field
may be of length 0 if this segment doesn’t contain any data (e.g., if it is simply
an ACK segment).

61.6.2 TCP Sequence Numbers and Acknowledgements
Each byte that is transmitted over a TCP connection is assigned a logical sequence
number by TCP. (Each of the two streams in a connection has its own sequence num-
bering.) When a segment is transmitted, its sequence number field is set to the logical
offset of the first byte of data in the segment within the stream of data being
transmitted in this direction over the connection. This allows the receiving TCP to
assemble the received segments in the correct order, and to indicate which data
was received when sending an acknowledgement to the sender.

To implement reliable communication, TCP uses positive acknowledgements;
that is, when a segment is successfully received, an acknowledgement message (i.e.,
a segment with the ACK bit set) is sent from the receiving TCP to the sending TCP,
as shown in Figure 61-3. The acknowledgement number field of this message is set to
indicate the logical sequence number of the next byte of data that the receiver
expects to receive. (In other words, the value in the acknowledgement number
field is the sequence number of the last byte in the segment that it acknowledges,
plus 1.)

Figure 61-3: Acknowledgements in TCP
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Figure 61-3 and later similar diagrams are intended to illustrate the exchange
of TCP segments between two endpoints. An implicit time dimension is
assumed when reading these diagrams from top to bottom.

61.6.3 TCP State Machine and State Transition Diagram
Maintaining a TCP connection requires the coordination of the TCPs at both ends
of the connection. To reduce the complexity of this task, a TCP endpoint is mod-
eled as a state machine. This means that the TCP can be in one of a fixed set of states,
and it moves from one state to another in response to events, such as system calls by
the application above the TCP or the arrival of TCP segments from the peer TCP.
The TCP states are the following:

LISTEN: The TCP is waiting for a connection request from a peer TCP.

SYN_SENT: The TCP has sent a SYN on behalf of an application performing
an active open and is waiting for a reply from the peer in order to complete the
connection.

SYN_RECV: The TCP, formerly in the LISTEN state, has received a SYN and
has responded with a SYN/ACK (i.e., a TCP segment with both the SYN and ACK
bits set), and is now waiting for an ACK from the peer TCP in order to com-
plete the connection.

ESTABLISHED: Establishment of the connection to the peer TCP has been
completed. Data segments can now be exchanged in either direction between
the two TCPs.

FIN_WAIT1: The application has closed the connection. The TCP has sent a FIN
to the peer TCP in order to terminate its side of the connection and is waiting
for an ACK from the peer. This and the next three states are associated with an
application performing an active close—that is, the first application to close its
side of the connection.

FIN_WAIT2: The TCP, formerly in the FIN_WAIT1 state, has now received an
ACK from the peer TCP.

CLOSING: The TCP, formerly awaiting an ACK in the FIN_WAIT1 state,
instead received a FIN from its peer indicating that the peer simultaneously
tried to perform an active close. (In other words, the two TCPs sent FIN seg-
ments at almost the same time. This is a rare scenario.)

TIME_WAIT: Having done an active close, the TCP has received a FIN, indicating
that the peer TCP has performed a passive close. This TCP now spends a fixed
period of time in the TIME_WAIT state, in order to ensure reliable termina-
tion of the TCP connection and to ensure that any old duplicate segments
expire in the network before a new incarnation of the same connection is created.
(We explain the TIME_WAIT state in more detail in Section 61.6.7.) When this
fixed time period expires, the connection is closed, and the associated kernel
resources are freed.

CLOSE_WAIT: The TCP has received a FIN from the peer TCP. This and the
following state are associated with an application performing a passive close—
that is, the second application to close the connection.
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LAST_ACK: The application performed a passive close, and the TCP, formerly
in the CLOSE_WAIT state, sent a FIN to the peer TCP and is waiting for it to
be acknowledged. When this ACK is received, the connection is closed, and
the associated kernel resources are freed.

To the above states, RFC 793 adds one further, fictional state, CLOSED, represent-
ing the state when there is no connection (i.e., no kernel resources are allocated to
describe a TCP connection).

In the above list we use the spellings for the TCP states as defined in the Linux
source code. These differ slightly from the spellings in RFC 793.

Figure 61-4 shows the state transition diagram for TCP. (This figure is based on diagrams
in RFC 793 and [Stevens et al., 2004].) This diagram shows how a TCP endpoint moves
from one state to another in response to various events. Each arrow indicates a pos-
sible transition and is labeled with the event that triggers the transition. This label is
either an action by the application (in boldface) or the string recv, indicating the
receipt of a segment from the peer TCP. As a TCP moves from one state to
another, it may transmit a segment to the peer, and this is indicated by the send label
on the transition. For example, the arrow for the transition from the ESTABLISHED
to the FIN_WAIT1 state shows that the triggering event is a close() by the local appli-
cation, and that, during the transition, the TCP sends a FIN segment to its peer.

In Figure 61-4, the usual transition path for a client TCP is shown with heavy
solid arrows, and the usual transition path for a server TCP is shown with heavy
dashed arrows. (Other arrows indicate paths less traveled.) Looking at the paren-
thetical numbering on the arrows in these paths, we can see that the segments sent
and received by the two TCPs are mirror images of one another. (After the ESTAB-
LISHED state, the paths traveled by the server TCP and the client TCP may be the
opposite of those indicated, if it is the server that performs the active close.)

Figure 61-4 doesn’t show all possible transitions for the TCP state machine; it
illustrates just those of principal interest. A more detailed TCP state transition
diagram can be found at http://www.cl.cam.ac.uk/~pes20/Netsem/poster.pdf.

61.6.4 TCP Connection Establishment
At the sockets API level, two stream sockets are connected via the following steps
(see Figure 56-1, on page 1156):

1. The server calls listen() to perform a passive open of a socket, and then calls
accept(), which blocks until a connection is established.

2. The client calls connect() to perform an active open of a socket in order to estab-
lish a connection to the server’s passive socket.

The steps performed by TCP to establish a connection are shown in Figure 61-5.
These steps are often referred to as the three-way handshake, since three segments
pass between the two TCPs. The steps are as follows:

1. The connect() causes the client TCP to send a SYN segment to the server TCP.
This segment informs the server TCP of the client TCP’s initial sequence number
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(labeled M in the diagram). This information is necessary because sequence
numbers don’t begin at 0, as noted in Section 58.6.3.

2. The server TCP must both acknowledge the client TCP’s SYN segment and
inform the client TCP of its own initial sequence number (labeled N in the
diagram). (Two sequence numbers are required because a stream socket is
bidirectional.) The server TCP can perform both operations by returning a single
segment with both the SYN and the ACK control bits set. (We say that the ACK
is piggybacked on the SYN.)

3. The client TCP sends an ACK segment to acknowledge the server TCP’s SYN
segment.

Figure 61-4: TCP state transition diagram

clo
se

 

se
nd: F

IN
 (4

) close
 

send: FIN
 (6)

ac
tiv

e o
pe

n; s
en

d:
 S

YN
 (1

)

 

recv: FIN
send: ACK

recv: A
C

K
send: <nil>

recv: SYN, ACK (2)

 send: ACK (3)
recv: A

CK (3
)

send: <nil>

recv: A
C

K
 (5)

send: <nil>

recv: FIN (6)
send: ACK (7)

  recv: FIN, ACK

  send: ACK

clo
se

 (o
r t

im
eo

ut
)

2MSL
timeout

recv: A
C

K
 (7)

send: <nil>

passive close

active close

data-transfer
state

passive open

active open

boldface : action by local applicationusual path for client

usual path for server
recv : segment from peer that caused transitionK

ey

SYN_RECV

CLOSE_WAIT

LAST_ACK

CLOSED

SYN_SENT

FIN_WAIT1

TIME_WAITFIN_WAIT2

send: segment sent to peer during transition

CLOSING

recv: FIN (4)

send: ACK (5)
ESTABLISHED

p
assive
op

en
cl

os
e

recv: SYN  (1)

send: SYN, ACK (2)

LISTEN

CLOSED
Sockets:  Advanced Topics 1271



The SYN segments exchanged in the first two steps of the three-way handshake
may contain information in the options field of the TCP header that is used to
determine various parameters for the connection. See [Stevens et al., 2004],
[Stevens, 1994], and [Wright & Stevens, 1995] for details.

The labels inside angle brackets (e.g., <LISTEN>) in Figure 61-5 indicate the states
of the TCPs on either side of the connection.

The SYN flag consumes a byte of the sequence-number space for the connec-
tion. This is necessary so that this flag can be acknowledged unambiguously, since
segments with this flag set may also contain data bytes. This is why we show the
acknowledgement of the SYN M segment as ACK M+1 in Figure 61-5.

Figure 61-5: Three-way handshake for TCP connection establishment
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As with the SYN flag, and for the same reasons, the FIN flag consumes a byte of the
sequence-number space for the connection. This is why we show the acknowledge-
ment of the FIN M segment as ACK M+1 in Figure 61-6.

Figure 61-6: TCP connection termination
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61.6.7 The TIME_WAIT State
The TCP TIME_WAIT state is a frequent source of confusion in network program-
ming. Looking at Figure 61-4, we can see that a TCP performing an active close
goes through this state. The TIME_WAIT state exists to serve two purposes:

to implement reliable connection termination; and

to allow expiration of old duplicate segments in the network so that they are
not accepted by a new incarnation of the connection.

The TIME_WAIT state differs from the other states in that the event that causes a
transition out of this state (to CLOSED) is a timeout. This timeout has a duration
of twice the MSL (2MSL), where MSL (maximum segment lifetime) is the assumed
maximum lifetime of a TCP segment in the network.

An 8-bit time-to-live (TTL) field in the IP header ensures that all IP packets are
eventually discarded if they don’t reach their destination within a fixed number
of hops (routers traversed) while traveling from the source to the destination
host. The MSL is an estimate of the maximum time that an IP packet could
take to exceed the TTL limit. Since it is represented using 8 bits, the TTL per-
mits a maximum of 255 hops. Normally, an IP packet requires considerably
fewer hops than this to complete its journey. A packet could encounter this
limit because of certain types of router anomalies (e.g., a router configuration
problem) that cause the packet to get caught in a network loop until it exceeds
the TTL limit.

The BSD sockets implementation assumes a value of 30 seconds for the MSL, and
Linux follows the BSD norm. Thus, the TIME_WAIT state has a lifetime of 60 sec-
onds on Linux. However, RFC 1122 recommends a value of 2 minutes for the MSL,
and, on implementations following this recommendation, the TIME_WAIT state
can thus last 4 minutes.

We can understand the first purpose of the TIME_WAIT state—ensuring reliable
connection termination—by looking at Figure 61-6. In this diagram, we can see that
four segments are usually exchanged during the termination of a TCP connection.
The last of these is an ACK sent from the TCP performing the active close to the
TCP performing the passive close. Suppose that this ACK gets lost in the network.
If this occurs, then the TCP performing the passive close will eventually retransmit
its FIN. Having the TCP that performs the active close remain in the TIME_WAIT
state for a fixed period ensures that it is available to resend the final ACK in this
case. If the TCP that performs the active close did not still exist, then—since it
wouldn’t have any state information for the connection—the TCP protocol would
respond to the resent FIN by sending an RST (reset) segment to the TCP perform-
ing the passive close, and this RST would be interpreted as an error. (This explains
why the duration of the TIME_WAIT state is twice the MSL: one MSL for the final
ACK to reach the peer TCP, plus a further MSL in case a further FIN must be sent.)

An equivalent of the TIME_WAIT state is not required for the TCP performing
the passive close, because it is the initiator of the final exchange in the connec-
tion termination. After sending the FIN, this TCP will wait for the ACK from its
peer, and retransmit the FIN if its timer expires before the ACK is received.
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To understand the second purpose of the TIME_WAIT state—ensuring the expiration
of old duplicate segments in the network—we must remember that the retransmission
algorithm used by TCP means that duplicate segments may be generated, and that,
depending on routing decisions, these duplicates could arrive after the connection
has been closed. For example, suppose that we have a TCP connection between two
socket addresses, say, 204.152.189.116 port 21 (the FTP port) and 200.0.0.1 port 50,000.
Suppose also that this connection is closed, and that later a new connection is estab-
lished using exactly the same IP addresses and ports. This is referred to as a new incar-
nation of the connection. In this case, TCP must ensure that no old duplicate
segments from the previous incarnation are accepted as valid data in the new incarna-
tion. This is done by preventing a new incarnation from being established while there
is an existing TCP in the TIME_WAIT state on one of the endpoints.

A frequent question posted to online forums is how to disable the TIME_WAIT
state, since it can lead to the error EADDRINUSE (“Address already in use”) when a
restarted server tries to bind a socket to an address that has a TCP in the TIME_WAIT
state. Although there are ways of doing this (see [Stevens et al., 2004]), and also ways
of assassinating a TCP in this state (i.e., causing the TIME_WAIT state to terminate
prematurely, see [Snader, 2000]), this should be avoided, since it would thwart the
reliability guarantees that the TIME_WAIT state provides. In Section 61.10, we
look at the use of the SO_REUSEADDR socket option, which can be used to avoid the
usual causes of the EADDRINUSE error, while still allowing the TIME_WAIT to provide
its reliability guarantees.

61.7 Monitoring Sockets: netstat

The netstat program displays the state of Internet and UNIX domain sockets on a
system. It is a useful debugging tool when writing socket applications. Most UNIX
implementations provide a version of netstat, although there is some variation in
the syntax of its command-line arguments across implementations.

By default, when executed with no command-line options, netstat displays
information for connected sockets in both the UNIX and Internet domains. We
can use a number of command-line options to change the information displayed.
Some of these options are listed in Table 61-1.

Table 61-1: Options for the netstat command

Option Description

-a Display information about all sockets, including listening sockets
-e Display extended information (includes user ID of socket owner)
-c Redisplay socket information continuously (each second)
-l Display information only about listening sockets
-n Display IP addresses, port numbers, and usernames in numerical form
-p Show the process ID and name of program to which socket belongs
--inet Display information for Internet domain sockets
--tcp Display information for Internet domain TCP (stream) sockets
--udp Display information for Internet domain UDP (datagram) sockets
--unix Display information for UNIX domain sockets
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Here is an abridged example of the output that we see when using netstat to list all
Internet domain sockets on the system:

$ netstat -a --inet
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address    Foreign Address  State
tcp        0      0 *:50000          *:*              LISTEN
tcp        0      0 *:55000          *:*              LISTEN
tcp        0      0 localhost:smtp   *:*              LISTEN
tcp        0      0 localhost:32776  localhost:58000  TIME_WAIT
tcp    34767      0 localhost:55000  localhost:32773  ESTABLISHED
tcp        0 115680 localhost:32773  localhost:55000  ESTABLISHED
udp        0      0 localhost:61000  localhost:60000  ESTABLISHED
udp      684      0 *:60000          *:*

For each Internet domain socket, we see the following information:

Proto: This is the socket protocol—for example, tcp or udp.

Recv-Q: This is the number of bytes in the socket receive buffer that are as yet
unread by the local application. For UDP sockets, this field counts not just
data, but also bytes in UDP headers and other metadata.

Send-Q: This is the number of bytes queued for transmission in the socket send
buffer. As with the Recv-Q field, for UDP sockets, this field includes bytes in
UDP headers and other metadata.

Local Address: This is the address to which the socket is bound, expressed in the
form host-IP-address:port. By default, both components of the address are dis-
played as names, unless the numeric values can’t be resolved to corresponding
host and service names. An asterisk (*) in the host part of the address means
the wildcard IP address.

Foreign Address: This is the address of the peer socket to which this socket is
bound. The string *:* indicates no peer address.

State: This is the current state of the socket. For a TCP socket, this state is one
of those described in Section 61.6.3.

For further details, see the netstat(8) manual page.
Various Linux-specific files in the directory /proc/net allow a program to read

much of the same information that is displayed by netstat. These files are named
tcp, udp, tcp6, udp6, and unix, with the obvious purposes. For further details, see the
proc(5) manual page.

61.8 Using tcpdump to Monitor TCP Traffic

The tcpdump program is a useful debugging tool that allows the superuser to moni-
tor the Internet traffic on a live network, generating a real-time textual equivalent
of diagrams such as Figure 61-3. Despite its name, tcpdump can be used to display
traffic for all kinds of TCP/IP packets (e.g., TCP segments, UDP datagrams, and
ICMP packets). For each network packet, tcpdump displays information such as
timestamps, the source and destination IP addresses, and further protocol-specific
details. It is possible to select the packets to be monitored by protocol type, source
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and destination IP address and port number, and a range of other criteria. Full
details are provided in the tcpdump manual page.

The wireshark (formerly ethereal; http://www.wireshark.org/) program performs a
similar task to tcpdump, but displays traffic information via a graphical interface.

For each TCP segment, tcpdump displays a line of the following form:

src > dst: flags data-seqno ack window urg <options>

These fields have the following meanings:

src: This is the source IP address and port.

dst: This is the destination IP address and port.

flags: This field contains zero or more of the following letters, each of which
corresponds to one of the TCP control bits described in Section 61.6.1: S (SYN),
F (FIN), P (PSH), R (RST), E (ECE), and C (CWR).

data-seqno: This is the range of the sequence-number space covered by the bytes
in this packet.

By default, the sequence-number range is displayed relative to the first byte
monitored for this direction of the data stream. The tcpdump –S option causes
sequence numbers to be displayed in absolute format.

ack: This is a string of the form “ack num” indicating the sequence number of
the next byte expected from the other direction on this connection.

window: This is a string of the form “win num” indicating the number of bytes of
receive buffer space available for transmission in the opposite direction on this
connection.

urg: This is a string of the form “urg num” indicating that this segment contains
urgent data at the specified offset within the segment.

options: This string describes any TCP options contained in the segment.

The src, dst, and flags fields always appear. The remaining fields are displayed only if
appropriate.

The shell session below shows how tcpdump can be used to monitor the traffic
between a client (running on the host pukaki) and a server (running on tekapo). In
this shell session, we use two tcpdump options that make the output less verbose.
The –t option suppresses the display of timestamp information. The –N option
causes hostnames to be displayed without a qualifying domain name. Furthermore,
for brevity, and because we don’t describe the details of TCP options, we have
removed the options fields from the lines of tcpdump output.

The server operates on port 55555, so our tcpdump command selects traffic for
that port. The output shows the three segments exchanged during connection
establishment:

$ tcpdump -t -N 'port 55555'
IP pukaki.60391 > tekapo.55555: S 3412991013:3412991013(0) win 5840
IP tekapo.55555 > pukaki.60391: S 1149562427:1149562427(0) ack 3412991014 win 5792
IP pukaki.60391 > tekapo.55555: . ack 1 win 5840
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These three segments are the SYN, SYN/ACK, and ACK segments exchanged for
the three-way handshake (see Figure 61-5).

In the following output, the client sends the server two messages, containing
16 and 32 bytes, respectively, and the server responds in each case with a 4-byte
message:

IP pukaki.60391 > tekapo.55555: P 1:17(16) ack 1 win 5840
IP tekapo.55555 > pukaki.60391: . ack 17 win 1448
IP tekapo.55555 > pukaki.60391: P 1:5(4) ack 17 win 1448
IP pukaki.60391 > tekapo.55555: . ack 5 win 5840
IP pukaki.60391 > tekapo.55555: P 17:49(32) ack 5 win 5840
IP tekapo.55555 > pukaki.60391: . ack 49 win 1448
IP tekapo.55555 > pukaki.60391: P 5:9(4) ack 49 win 1448
IP pukaki.60391 > tekapo.55555: . ack 9 win 5840

For each of the data segments, we see an ACK sent in the opposite direction.
Lastly, we show the segments exchanged during connection termination (first,

the client closes its end of the connection, and then the server closes the other end):

IP pukaki.60391 > tekapo.55555: F 49:49(0) ack 9 win 5840
IP tekapo.55555 > pukaki.60391: . ack 50 win 1448
IP tekapo.55555 > pukaki.60391: F 9:9(0) ack 50 win 1448
IP pukaki.60391 > tekapo.55555: . ack 10 win 5840

The above output shows the four segments exchanged during connection termina-
tion (see Figure 61-6).

61.9 Socket Options

Socket options affect various features of the operation of a socket. In this book, we
describe just a couple of the many socket options that are available. An extensive
discussion covering most standard socket options is provided in [Stevens et al.,
2004]. See the tcp(7), udp(7), ip(7), socket(7), and unix(7) manual pages for addi-
tional Linux-specific details.

The setsockopt() and getsockopt() system calls set and retrieve socket options.

For both setsockopt() and getsockopt(), sockfd is a file descriptor referring to a socket.
The level argument specifies the protocol to which the socket option applies—

for example, IP or TCP. For most of the socket options that we describe in this
book, level is set to SOL_SOCKET, which indicates an option that applies at the sockets
API level.

#include <sys/socket.h>

int getsockopt(int sockfd, int level, int optname, void *optval,
               socklen_t *optlen);
int setsockopt(int sockfd, int level, int optname, const void *optval,
               socklen_t optlen);

Both return 0 on success, or –1 on error
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The optname argument identifies the option whose value we wish to set or
retrieve. The optval argument is a pointer to a buffer used to specify or return the
option value; this argument is a pointer to an integer or a structure, depending on
the option.

The optlen argument specifies the size (in bytes) of the buffer pointed to by
optval. For setsockopt(), this argument is passed by value. For getsockopt(), optlen is a
value-result argument. Before the call, we initialize it to the size of the buffer
pointed to by optval; upon return, it is set to the number of bytes actually written to
that buffer.

As detailed in Section 61.11, the socket file descriptor returned by a call to
accept() inherits the values of settable socket options from the listening socket.

Socket options are associated with an open file description (refer to Figure 5-2,
on page 95). This means that file descriptors duplicated as a consequence of dup()
(or similar) or fork() share the same set of socket options.

A simple example of a socket option is SO_TYPE, which can be used to find out
the type of a socket, as follows:

int optval;
socklen_t optlen;

optlen = sizeof(optval);
if (getsockopt(sfd, SOL_SOCKET, SO_TYPE, &optval, &optlen) == -1)
    errExit("getsockopt");

After this call, optval contains the socket type—for example, SOCK_STREAM or
SOCK_DGRAM. Using this call can be useful in a program that inherited a socket file
descriptor across an exec()—for example, a program execed by inetd—since that pro-
gram may not know which type of socket it inherited.

SO_TYPE is an example of a read-only socket option. It is not possible to use
setsockopt() to change a socket’s type.

61.10 The SO_REUSEADDR Socket Option

The SO_REUSEADDR socket option serves a number of purposes (see Chapter 7 of
[Stevens et al., 2004] for details). We’ll concern ourselves with only one common
use: to avoid the EADDRINUSE (“Address already in use”) error when a TCP server is
restarted and tries to bind a socket to a port that currently has an associated TCP.
There are two scenarios in which this usually occurs:

A previous invocation of the server that was connected to a client performed
an active close, either by calling close(), or by crashing (e.g., it was killed by a signal).
This leaves a TCP endpoint that remains in the TIME_WAIT state until the
2MSL timeout expires.

A previous invocation of the server created a child process to handle a connec-
tion to a client. Later, the server terminated, while the child continues to serve
the client, and thus maintain a TCP endpoint using the server’s well-known port.
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In both of these scenarios, the outstanding TCP endpoint is unable to accept new
connections. Nevertheless, in both cases, by default, most TCP implementations
prevent a new listening socket from being bound to the server’s well-known port.

The EADDRINUSE error doesn’t usually occur with clients, since they typically use an
ephemeral port that won’t be one of those ports currently in the TIME_WAIT
state. However, if a client binds to a specific port number, then it also can
encounter this error.

To understand the operation of the SO_REUSEADDR socket option, it can help to return
to our earlier telephone analogy for stream sockets (Section 56.5). Like a telephone
call (we ignore the notion of conference calls), a TCP socket connection is identifiable
by the combination of a pair of connected endpoints. The operation of accept() is
analogous to the task performed by a telephone operator on an internal company
switchboard (“a server”). When an external telephone call arrives, the operator
transfers it to some internal telephone (“a new socket”) within the organization.
From an outside perspective, there is no way of identifying that internal telephone.
When multiple external calls are being handled by the switchboard, the only way of
distinguishing them is via the combination of the external caller’s number and the
switchboard number. (The latter is necessary when we consider that there will be
multiple company switchboards within the telephone network as a whole.) Analo-
gously, each time we accept a socket connection on a listening socket, a new socket
is created. All of these sockets are associated with the same local address as the
listening socket. The only way of distinguishing them is via their connections to
different peer sockets.

In other words, a connected TCP socket is identified by a 4-tuple (i.e., a combi-
nation of four values) of the following form:

{ local-IP-address, local-port, foreign-IP-address, foreign-port }

The TCP specification requires that each such tuple be unique; that is, only one
corresponding connection incarnation (“telephone call”) can exist. The problem is
that most implementations (including Linux) enforce a stricter constraint: a local
port can’t be reused (i.e., specified in a call to bind()) if any TCP connection incar-
nation with a matching local port exists on the host. This rule is enforced even
when the TCP could not accept new connections, as in the scenarios described at
the start of this section.

Enabling the SO_REUSEADDR socket option relaxes this constraint, bringing it
closer to the TCP requirement. By default, this option has the value 0, meaning
that it is disabled. We enable the option by giving it a nonzero value before binding
a socket, as shown in Listing 61-4.

Setting the SO_REUSEADDR option means that we can bind a socket to a local port
even if another TCP is bound to the same port in either of the scenarios described
at the start of this section. Most TCP servers should enable this option. We have
already seen some examples of the use of this option in Listing 59-6 (page 1221)
and Listing 59-9 (page 1228).
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Listing 61-4: Setting the SO_REUSEADDR socket option

    int sockfd, optval;

    sockfd = socket(AF_INET, SOCK_STREAM, 0);
    if (sockfd == -1)
        errExit("socket");

    optval = 1;
    if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &optval,
            sizeof(optval)) == -1)
        errExit("socket");

    if (bind(sockfd, &addr, addrlen) == -1)
        errExit("bind");
    if (listen(sockfd, backlog) == -1)
        errExit("listen");

61.11 Inheritance of Flags and Options Across accept()

Various flags and settings can be associated with open file descriptions and file
descriptors (Section 5.4). Furthermore, as described in Section 61.9, various options
can be set for a socket. If these flags and options are set on a listening socket, are
they inherited by the new socket returned by accept()? We describe the details here.

On Linux, the following attributes are not inherited by the new file descriptor
returned by accept():

The status flags associated with an open file description—the flags that can be
altered using the fcntl() F_SETFL operation (Section 5.3). These include flags
such as O_NONBLOCK and O_ASYNC.

The file descriptor flags—the flags that can be altered using the fcntl() F_SETFD
operation. The only such flag is the close-on-exec flag (FD_CLOEXEC, described in
Section 27.4).

The fcntl() F_SETOWN (owner process ID) and F_SETSIG (generated signal) file
descriptor attributes associated with signal-driven I/O (Section 63.3).

On the other hand, the new descriptor returned by accept() inherits a copy of most
of the socket options that can be set using setsockopt() (Section 61.9).

SUSv3 is silent on the details described here, and the inheritance rules for the
new connected socket returned by accept() vary across UNIX implementations.
Most notably, on some UNIX implementations, if open file status flags such as
O_NONBLOCK and O_ASYNC are set on a listening socket, then they are inherited by the
new socket returned by accept(). For portability, it may be necessary to explicitly
reset these attributes on a socket returned by accept().
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61.12 TCP Versus UDP

Given that TCP provides reliable delivery of data, while UDP does not, an obvious
question is, “Why use UDP at all?” The answer to this question is covered at some
length in Chapter 22 of [Stevens et al., 2004]. Here, we summarize some of the
points that may lead us to choose UDP over TCP:

A UDP server can receive (and reply to) datagrams from multiple clients, with-
out needing to create and terminate a connection for each client (i.e., transmis-
sion of single messages using UDP has a lower overhead than is required when
using TCP).

For simple request-response communications, UDP can be faster than TCP,
since it doesn’t require connection establishment and termination. Appendix A
of [Stevens, 1996] notes that in the best-case scenario, the time using TCP is

2 * RTT + SPT

In this formula, RTT is the round-trip time (the time required to send a request
and receive a response), and SPT is the time spent by the server processing the
request. (On a wide area network, the SPT value may be small compared to the
RTT.) For UDP, the best-case scenario for a single request-response communi-
cation is

RTT + SPT

This is one RTT less than the time required for TCP. Since the RTT between
hosts separated by large (i.e., intercontinental) distances or many intervening
routers is typically several tenths of a second, this difference can make UDP
attractive for some types of request-response communication. DNS is a good
example of an application that uses UDP for this reason—using UDP allows
name lookup to be performed by transmitting a single packet in each direction
between servers.

UDP sockets permit broadcasting and multicasting. Broadcasting allows a
sender to transmit a datagram to the same destination port on all of the hosts
connected to a network. Multicasting is similar, but allows a datagram to be sent
to a specified set of hosts. For further details see Chapters 21 and 22 of
[Stevens et al., 2004].

Certain types of applications (e.g., streaming video and audio transmission)
can function acceptably without the reliability provided by TCP. On the other
hand, the delay that may occur after TCP tries to recover from a lost segment
may result in transmission delays that are unacceptably long. (A delay in
streaming media transmission may be worse than a brief loss of the transmission
stream.) Therefore, such applications may prefer UDP, and adopt application-
specific recovery strategies to deal with occasional packet loss.

An application that uses UDP, but nevertheless requires reliability, must imple-
ment reliability features itself. Usually, this requires at least sequence numbers,
acknowledgements, retransmission of lost packets, and duplicate detection. An
example of how to do this is shown in [Stevens et al., 2004]. However, if more
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advanced features such as flow control and congestion control are also required,
then it is probably best to use TCP instead. Trying to implement all of these features
on top of UDP is complex, and, even when well implemented, the result is unlikely
to perform better than TCP.

61.13 Advanced Features

UNIX and Internet domain sockets have many other features that we have not
detailed in this book. We summarize a few of these features in this section. For full
details, see [Stevens et al., 2004].

61.13.1 Out-of-Band Data
Out-of-band data is a feature of stream sockets that allows a sender to mark trans-
mitted data as high priority; that is, the receiver can obtain notification of the avail-
ability of out-of-band data without needing to read all of the intervening data in the
stream. This feature is used in programs such as telnet, rlogin, and ftp to make it possible
to abort previously transmitted commands. Out-of-band data is sent and received
using the MSG_OOB flag in calls to send() and recv(). When a socket receives notification
of the availability of out-of-band data, the kernel generates the SIGURG signal for the
socket owner (normally the process using the socket), as set by the fcntl() F_SETOWN
operation.

When employed with TCP sockets, at most 1 byte of data may be marked as
being out-of-band at any one time. If the sender transmits an additional byte of out-
of-band data before the receiver has processed the previous byte, then the indica-
tion for the earlier out-of-band byte is lost.

TCP’s limitation of out-of-band data to a single byte is an artifact of the mis-
match between the generic out-of-band model of the sockets API and its spe-
cific implementation using TCP’s urgent mode. We touched on TCP’s urgent
mode when looking at the format of TCP segments in Section 61.6.1. TCP
indicates the presence of urgent (out-of-band) data by setting the URG bit in
the TCP header and setting the urgent pointer field to point to the urgent
data. However, TCP has no way of indicating the length of an urgent data
sequence, so the urgent data is considered to consist of a single byte.

Further information about TCP urgent data can be found in RFC 793.

Under some UNIX implementations, out-of-band data is supported for UNIX
domain stream sockets. Linux doesn’t support this.

The use of out-of-band data is nowadays discouraged, and it may be unreliable in
some circumstances (see [Gont & Yourtchenko, 2009]). An alternative is to maintain
a pair of stream sockets for communication. One of these is used for normal commu-
nication, while the other is used for high-priority communication. An application
can monitor both channels using one of the techniques described in Chapter 63.
This approach allows multiple bytes of priority data to be transmitted. Furthermore,
it can be employed with stream sockets in any communication domain (e.g., UNIX
domain sockets).
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61.13.2 The sendmsg() and recvmsg() System Calls
The sendmsg() and recvmsg() system calls are the most general purpose of the socket
I/O system calls. The sendmsg() system call can do everything that is done by write(),
send(), and sendto(); the recvmsg() system call can do everything that is done by
read(), recv(), and recvfrom(). In addition, these calls allow the following:

We can perform scatter-gather I/O, as with readv() and writev() (Section 5.7).
When we use sendmsg() to perform gather output on a datagram socket (or writev()
on a connected datagram socket), a single datagram is generated. Conversely,
recvmsg() (and readv()) can be used to perform scatter input on a datagram
socket, dispersing the bytes of a single datagram into multiple user-space buffers.

We can transmit messages containing domain-specific ancillary data (also
known as control information). Ancillary data can be passed via both stream
and datagram sockets. We describe some examples of ancillary data below.

Linux 2.6.33 adds a new system call, recvmmsg(). This system call is similar to
recvmsg(), but allows multiple datagrams to be received in a single system call.
This reduces the system-call overhead in applications that deal with high levels
of network traffic. An analogous sendmmsg() system call is likely to be added
in a future kernel version.

61.13.3 Passing File Descriptors
Using sendmsg() and recvmsg(), we can pass ancillary data containing a file descriptor
from one process to another process on the same host via a UNIX domain socket.
Any type of file descriptor can be passed in this manner—for example, one obtained
from a call to open() or pipe(). An example that is more relevant to sockets is that a
master server could accept a client connection on a TCP listening socket and pass that
descriptor to one of the members of a pool of server child processes (Section 60.4),
which would then respond to the client request.

Although this technique is commonly referred to as passing a file descriptor,
what is really being passed between the two processes is a reference to the same
open file description (Figure 5-2, on page 95). The file descriptor number employed in
the receiving process would typically be different from the number employed in the
sender.

An example of passing file descriptors is provided in the files scm_rights_send.c
and scm_rights_recv.c in the sockets subdirectory in the source code distribu-
tion for this book.

61.13.4 Receiving Sender Credentials
Another example of the use of ancillary data is for receiving sender credentials via
a UNIX domain socket. These credentials consist of the user ID, the group ID, and
the process ID of the sending process. The sender may specify its user and group
IDs as the corresponding real, effective, or saved set IDs. This allows the receiving
process to authenticate a sender on the same host. For further details, see the
socket(7) and unix(7) manual pages.

Unlike passing file credentials, passing sender credentials is not specified in
SUSv3. Aside from Linux, this feature is implemented in some of the modern BSDs
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(where the credentials structure contains somewhat more information than on
Linux), but is available on few other UNIX implementations. The details of creden-
tial passing on FreeBSD are described in [Stevens et al., 2004].

On Linux, a privileged process can fake the user ID, group ID, and process ID
that are passed as credentials if it has, respectively, the CAP_SETUID, CAP_SETGID, and
CAP_SYS_ADMIN capabilities.

An example of passing credentials is provided in the files scm_cred_send.c and
scm_cred_recv.c in the sockets subdirectory in the source code distribution for
this book.

61.13.5 Sequenced-Packet Sockets
Sequenced-packet sockets combine features of both stream and datagram sockets:

Like stream sockets, sequenced-packet sockets are connection-oriented. Con-
nections are established in the same way as for stream sockets, using bind(),
listen(), accept(), and connect().

Like datagram sockets, message boundaries are preserved. A read() from a
sequenced-packet socket returns exactly one message (as written by the peer).
If the message is longer than the buffer supplied by the caller, the excess bytes
are discarded.

Like stream sockets, and unlike datagram sockets, communication via sequenced-
packet sockets is reliable. Messages are delivered to the peer application error-free,
in order, and unduplicated, and they are guaranteed to arrive (assuming that
there is not a system or application crash, or a network outage).

A sequenced-packet socket is created by calling socket() with the type argument spec-
ified as SOCK_SEQPACKET.

Historically, Linux, like most UNIX implementations, did not support
sequenced-packet sockets in either the UNIX or the Internet domains. However,
starting with kernel 2.6.4, Linux supports SOCK_SEQPACKET for UNIX domain sockets.

In the Internet domain, the UDP and TCP protocols do not support
SOCK_SEQPACKET, but the SCTP protocol (described in the next section) does.

We don’t show an example of the use of sequenced-packet sockets in this book,
but, other than the preservation of message boundaries, their use is very similar to
stream sockets.

61.13.6 SCTP and DCCP Transport-Layer Protocols
SCTP and DCCP are two newer transport-layer protocols that are likely to become
increasingly common in the future.

The Stream Control Transmission Protocol (SCTP, http://www.sctp.org/) was
designed to support telephony signaling in particular, but is also general purpose.
Like TCP, SCTP provides reliable, bidirectional, connection-oriented transport.
Unlike TCP, SCTP preserves message boundaries. One of the distinctive features
of SCTP is multistream support, which allows multiple logical data streams to be
employed over a single connection.
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SCTP is described in [Stewart & Xie, 2001], [Stevens et al., 2004], and in
RFCs 4960, 3257, and 3286.

SCTP is available on Linux since kernel 2.6. Further information about this
implementation can be found at http://lksctp.sourceforge.net/.

Throughout the preceding chapters that describe the sockets API, we equated
Internet domain stream sockets with TCP. However, SCTP provides an alternative
protocol for implementing stream sockets, created using the following call:

socket(AF_INET, SOCK_STREAM, IPPROTO_SCTP);

Starting in kernel 2.6.14, Linux supports a new datagram protocol, the Datagram
Congestion Control Protocol (DCCP). Like TCP, DCCP provides congestion control
(removing the need to implement congestion control at the application level) to
prevent a fast transmitter from overwhelming the network. (We explained conges-
tion control when describing TCP in Section 58.6.3.) However, unlike TCP (but
like UDP), DCCP doesn’t provide guarantees about reliable or in-order delivery,
and thus allows applications that don’t need these features to avoid the delays
that they can incur. Information about DCCP can be found at http://
www.read.cs.ucla.edu/dccp/ and RFCs 4336 and 4340.

61.14 Summary

In various circumstances, partial reads and writes can occur when performing I/O
on stream sockets. We showed the implementation of two functions, readn() and
writen(), that can be used to ensure a complete buffer of data is read or written.

The shutdown() system call provides more precise control over connection ter-
mination. Using shutdown(), we can forcibly shut down either or both halves of a
bidirectional communication stream, regardless of whether there are other open
file descriptors referring to the socket.

Like read() and write(), recv() and send() can be used to perform I/O on a socket, but
calls provide an extra argument, flags, that controls socket-specific I/O functionality.

The sendfile() system call allows us to efficiently copy the contents of a file to a
socket. This efficiency is gained because we don’t need to copy the file data to and
from user memory, as would be required with calls to read() and write().

The getsockname() and getpeername() system calls retrieve, respectively, the local
address to which a socket is bound and the address of the peer to which that socket
is connected.

We considered some details of the operation of TCP, including TCP states and
the TCP state transition diagram, and TCP connection establishment and termina-
tion. As part of this discussion, we saw why the TIME_WAIT state is an important
part of TCP’s reliability guarantee. Although this state can lead to the “Address
already in use” error when restarting a server, we later saw that the SO_REUSEADDR socket
option can be used to avoid this error, while nevertheless allowing the TIME_WAIT
state to serve its intended purpose.

The netstat and tcpdump commands are useful tools for monitoring and debug-
ging applications that use sockets.
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The getsockopt() and setsockopt() system calls retrieve and modify options affecting
the operation of a socket.

On Linux, when a new socket is created by accept(), it does not inherit the listen-
ing sockets open file status flags, file descriptor flags, or file descriptor attributes
related to signal-driven I/O. However, it does inherit the settings of socket options.
We noted that SUSv3 is silent on these details, which vary across implementations.

Although UDP doesn’t provide the reliability guarantees of TCP, we saw that
there are nevertheless reasons why UDP can be preferable for some applications.

Finally, we outlined a few advanced features of sockets programming that we
don’t describe in detail in this book.

Further information

Refer to the sources of further information listed in Section 59.15.

61.15 Exercises

61-1. Suppose that the program in Listing 61-2 (is_echo_cl.c) was modified so that,
instead of using fork() to create two processes that operate concurrently, it instead
used just one process that first copies its standard input to the socket and then
reads the server’s response. What problem might occur when running this client?
(Look at Figure 58-8, on page 1190.)

61-2. Implement pipe() in terms of socketpair(). Use shutdown() to ensure that the resulting
pipe is unidirectional.

61-3. Implement a replacement for sendfile() using read(), write(), and lseek().

61-4. Write a program that uses getsockname() to show that, if we call listen() on a TCP
socket without first calling bind(), the socket is assigned an ephemeral port number.

61-5. Write a client and a server that permit the client to execute arbitrary shell
commands on the server host. (If you don’t implement any security mechanism in
this application, you should ensure that the server is operating under a user
account where it can do no damage if invoked by malicious users.) The client
should be executed with two command-line arguments:

$ ./is_shell_cl server-host 'some-shell-command'

After connecting to the server, the client sends the given command to the server,
and then closes its writing half of the socket using shutdown(), so that the server sees
end-of-file. The server should handle each incoming connection in a separate child
process (i.e., a concurrent design). For each incoming connection, the server
should read the command from the socket (until end-of-file), and then exec a shell
to perform the command. Here are a couple hints:

See the implementation of system() in Section 27.7 for an example of how to
execute a shell command.

By using dup2() to duplicate the socket on standard output and standard error,
the execed command will automatically write to the socket.
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61-6. Section 61.13.1 noted that an alternative to out-of-band data would be to create two
socket connections between the client and server: one for normal data and one for
priority data. Write client and server programs that implement this framework.
Here are a few hints:

The server needs some way of knowing which two sockets belong to the same
client. One way to do this is to have the client first create a listening socket
using an ephemeral port (i.e., binding to port 0). After obtaining the ephemeral
port number of its listening socket (using getsockname()), the client connects its
“normal” socket to the server’s listening socket and sends a message containing
the port number of the client’s listening socket. The client then waits for the
server to use the client’s listening socket to make a connection in the opposite
direction for the “priority” socket. (The server can obtain the client’s IP
address during the accept() of the normal connection.)

Implement some type of security mechanism to prevent a rogue process from
trying to connect to the client’s listening socket. To do this, the client could
send a cookie (i.e., some type of unique message) to the server using the nor-
mal socket. The server would then return this cookie via the priority socket so
that the client could verify it.

In order to experiment with transmitting normal and priority data from the cli-
ent to the server, you will need to code the server to multiplex the input from
the two sockets using select() or poll() (described in Section 63.2).
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T E R M I N A L S

Historically, users accessed a UNIX system using a terminal connected via a serial
line (an RS-232 connection). Terminals were cathode ray tubes (CRTs) capable of
displaying characters and, in some cases, primitive graphics. Typically, CRTs pro-
vided a monochrome display of 24 lines by 80 columns. By today’s standards, these
CRTs were small and expensive. In even earlier times, terminals were sometimes
hard-copy teletype devices. Serial lines were also used to connect other devices,
such as printers and modems, to a computer or to connect one computer to
another.

On early UNIX systems, the terminal lines connected to the system were repre-
sented by character devices with names of the form /dev/ttyn. (On Linux,
the /dev/ttyn devices are the virtual consoles on the system.) It is common to
see the abbreviation tty (derived from teletype) as a shorthand for terminal.

Especially during the early years of UNIX, terminal devices were not standardized,
which meant that different character sequences were required to perform opera-
tions such as moving the cursor to the beginning of the line or the top of the
screen. (Eventually, some vendor implementations of such escape sequences—for
example, Digital’s VT-100—became de facto and, ultimately, ANSI standards, but a
wide variety of terminal types continued to exist.) This lack of standardization
meant that it was difficult to write portable programs that used terminal features.
The vi editor was an early example of a program with such requirements. The
termcap and terminfo databases (described in [Strang et al., 1988]), which tabulate



how to perform various screen-control operations for a wide variety of terminal
types, and the curses library ([Strang, 1986]) were developed in response to this lack
of standardization.

It is no longer common to see a conventional terminal. The usual interface to
modern UNIX systems is an X Window System window manager on a high-
performance bit-mapped graphical monitor. (An old-style terminal provided func-
tionality roughly equivalent to a single terminal window—an xterm or similar—in an
X Window System. The fact that the user of such a terminal had only a single “win-
dow” to the system was the driving force behind the development of the job-
control facilities described in Section 34.7.) Similarly, many devices (e.g., printers)
that were once connected directly to a computer are now often intelligent devices
connected via a network.

All of the above is a preamble to saying that the need to program terminal
devices is less frequent than it used to be. Therefore, this chapter focuses on the
aspects of terminal programming that are particularly relevant to software terminal
emulators (i.e., xterm and similar). It gives only brief coverage to serial lines; refer-
ences for further information about serial programming are provided at the end of
this chapter.

62.1 Overview

Both a conventional terminal and a terminal emulator have an associated terminal
driver that handles input and output on the device. (In the case of a terminal emu-
lator, the device is a pseudoterminal. We describe pseudoterminals in Chapter 64.)
Various aspects of the operation of the terminal driver can be controlled using the
functions described in this chapter.

When performing input, the driver is capable of operating in either of the fol-
lowing modes:

Canonical mode: In this mode, terminal input is processed line by line, and line
editing is enabled. Lines are terminated by a newline character, generated when
the user presses the Enter key. A read() from the terminal returns only when a
complete line of input is available, and returns at most one line. (If the read()
requests fewer bytes than are available in the current line, then the remaining
bytes are available for the next read().) This is the default input mode.

Noncanonical mode: Terminal input is not gathered into lines. Programs such as
vi, more, and less place the terminal in noncanonical mode so that they can read
single characters without the user needing to press the Enter key.

The terminal driver also interprets a range of special characters, such as the
interrupt character (normally Control-C) and the end-of-file character (normally
Control-D). Such interpretation may result in a signal being generated for the fore-
ground process group or some type of input condition occurring for a program
reading from the terminal. Programs that place the terminal in noncanonical mode
typically also disable processing of some or all of these special characters.

A terminal driver operates two queues (Figure 62-1): one for input characters
transmitted from the terminal device to the reading process(es) and the other for
output characters transmitted from processes to the terminal. If terminal echoing
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is enabled, then the terminal driver automatically appends a copy of any input
character to the end of the output queue, so that input characters are also output
on the terminal.

SUSv3 specifies the limit MAX_INPUT, which an implementation can use to indi-
cate the maximum length of the terminal’s input queue. A related limit,
MAX_CANON, defines the maximum number of bytes in a line of input in canonical
mode. On Linux, sysconf(_SC_MAX_INPUT) and sysconf(_SC_MAX_CANON)
both return the value 255. However, neither of these limits is actually
employed by the kernel, which simply imposes a limit of 4096 bytes on the
input queue. A corresponding limit on the size of the output queue also exists.
However, applications don’t need to be concerned with this, since, if a process
produces output faster than the terminal driver can handle it, the kernel sus-
pends execution of the writing process until space is once more available in
the output queue.

On Linux, we can call ioctl(fd, FIONREAD, &cnt) to obtain the number of
unread bytes in the input queue of the terminal referred to by the file descrip-
tor fd. This feature is not specified in SUSv3.

Figure 62-1: Input and output queues for a terminal device

62.2 Retrieving and Modifying Terminal Attributes

The tcgetattr() and tcsetattr() functions retrieve and modify the attributes of a terminal.
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#include <termios.h>

int tcgetattr(int fd, struct termios *termios_p);
int tcsetattr(int fd, int optional_actions, const struct termios *termios_p);

Both return 0 on success, or –1 on error
Terminals 1291



The fd argument is a file descriptor that refers to a terminal. (If fd doesn’t refer to a
terminal, these functions fail with the error ENOTTY.)

The termios_p argument is a pointer to a termios structure, which records termi-
nal attributes:

struct termios {
    tcflag_t c_iflag;           /* Input flags */
    tcflag_t c_oflag;           /* Output flags */
    tcflag_t c_cflag;           /* Control flags */
    tcflag_t c_lflag;           /* Local modes */
    cc_t     c_line;            /* Line discipline (nonstandard)*/
    cc_t     c_cc[NCCS];        /* Terminal special characters */
    speed_t  c_ispeed;          /* Input speed (nonstandard; unused) */
    speed_t  c_ospeed;          /* Output speed (nonstandard; unused) */
};

The first four fields of the termios structure are bit masks (the tcflag_t data type is an
integer type of suitable size) containing flags that control various aspects of the ter-
minal driver’s operation:

c_iflag contains flags controlling terminal input;

c_oflag contains flags controlling terminal output;

c_cflag contains flags relating to hardware control of the terminal line; and

c_lflag contains flags controlling the user interface for terminal input.

All of the flags used in the above fields are listed in Table 62-2 (on page 1302).
The c_line field specifies the line discipline for this terminal. For the purposes

of programming terminal emulators, the line discipline will always be set to N_TTY,
the so-called new discipline, a component of the kernel terminal-handling code that
implements canonical mode I/O processing. Setting the line discipline can be rele-
vant when programming serial lines.

The c_cc array contains the terminal special characters (interrupt, suspend, and
so on) as well as fields controlling the operation of noncanonical mode input. The
cc_t data type is an unsigned integer type suitable for holding these values, and the
NCCS constant specifies the number of elements in this array. We describe the termi-
nal special characters in Section 62.4.

The c_ispeed and c_ospeed fields are unused on Linux (and are not specified in
SUSv3). We explain how Linux stores terminal line speeds in Section 62.7.

The Seventh Edition and early BSD terminal driver (known as the tty driver)
had grown over time so that it used no less than four different data structures
to represent the information equivalent to the termios structure. System V
replaced this baroque arrangement with a single structure called termio. The
initial POSIX committee selected the System V API almost as is, in the process
renaming it to termios.
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When changing terminal attributes with tcsetattr(), the optional_actions argument
determines when the change takes effect. This argument is specified as one of the
following values:

TCSANOW

The change is carried out immediately.

TCSADRAIN

The change takes effect after all currently queued output has been trans-
mitted to the terminal. Normally, this flag should be specified when making
changes that affect terminal output, so that we don’t affect output that has
already been queued but not yet displayed.

TCSAFLUSH

The change takes effect as for TCSADRAIN, but, in addition, any input that is
still pending at the time the change takes effect is discarded. This is useful,
for example, when reading a password, where we wish to disable terminal
echoing and prevent user type-ahead.

The usual (and recommended) way to change terminal attributes is to use tcgetattr()
to retrieve a termios structure containing a copy of the current settings, change the
desired attributes, and then use tcsetattr() to push the updated structure back to the
driver. (This approach ensures that we pass a fully initialized structure to tcsetattr().)
For example, we can use the following sequence to turn terminal echoing off:

struct termios tp;

if (tcgetattr(STDIN_FILENO, &tp) == -1)
    errExit("tcgetattr");
tp.c_lflag &= ~ECHO;
if (tcsetattr(STDIN_FILENO, TCSAFLUSH, &tp) == -1)
    errExit("tcsetattr");

The tcsetattr() function returns successfully if any of the requested changes to terminal
attributes could be performed; it fails only if none of the requested changes could
be made. This means that, when making multiple attribute changes, it may some-
times be necessary to make a further call to tcgetattr() to retrieve the new terminal
attributes and compare them against the requested changes.

In Section 34.7.2, we noted that if tcsetattr() is called from a process in a back-
ground process group, then the terminal driver suspends the process group by
delivering a SIGTTOU signal, and that, if called from an orphaned process group,
tcsetattr() fails with the error EIO. The same statements apply for various other
functions described in this chapter, including tcflush(), tcflow(), tcsendbreak(),
and tcdrain().

In earlier UNIX implementations, terminal attributes were accessed using
ioctl() calls. Like several other functions described in this chapter, the tcgetattr() and
tcsetattr() functions are POSIX inventions designed to address the problem that
type checking of the third argument of ioctl() isn’t possible. On Linux, as in many
other UNIX implementations, these are library functions layered on top of ioctl().
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62.3 The stty Command

The stty command is the command-line analog of the tcgetattr() and tcsetattr() functions,
allowing us to view and change terminal attributes from the shell. This is useful
when trying to monitor, debug, or undo the effects of programs that modify termi-
nal attributes.

We can view the current settings of all terminal attributes using the following
command (here carried out on a virtual console):

$ stty -a
speed 38400 baud; rows 25; columns 80; line = 0;
intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; eol = <undef>;
eol2 = <undef>; start = ^Q; stop = ^S; susp = ^Z; rprnt = ^R;
werase = ^W; lnext = ^V; flush = ^O; min = 1; time = 0;
-parenb -parodd cs8 hupcl -cstopb cread -clocal -crtscts
-ignbrk brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon -ixoff 
-iuclc -ixany imaxbel -iutf8
opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tab0 bs0 vt0 ff0
isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt 
echoctl echoke

The first line of the above output shows the terminal line speed (bits per second),
the terminal window size, and the line discipline in numeric form (0 corresponds
to N_TTY, the new line discipline).

The next three lines show the settings of the various terminal special characters.
The notation ^C denotes Control-C, and so on. The string <undef> means that the corre-
sponding terminal special character is not currently defined. The min and time values
relate to noncanonical mode input, and are described in Section 62.6.2.

The remaining lines show the settings of the various flags from (in order) the
c_cflag, c_iflag, c_oflag, and c_lflag fields of the termios structure. Where a flag name
is preceded by a hyphen (-), the flag is currently disabled; otherwise, it is currently
enabled.

When entered without command-line arguments, stty shows just the terminal
line speed, the line discipline, and any of the other settings that deviate from sane
values.

We can change the settings of terminal special characters using commands
such as the following:

$ stty intr ^L                  Make the interrupt character Control-L

When specifying a control character as the final argument, we can do so in a variety
of ways:

as a 2-character sequence consisting of a caret (^) followed by the correspond-
ing character (as shown above);

as an octal or hexadecimal number (thus: 014 or 0xC); or

by typing the actual character itself.
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If we employ the final option, and the character in question is one interpreted spe-
cially by the shell or the terminal driver, then we must precede it with the literal next
character (usually Control-V):

$ stty intr Control-V Control-L

(Although, for readability, a space is shown between the Control-V and the Control-L
in the above example, no white-space characters should be typed between the
Control-V and the desired character.)

It is possible, though unusual, to define terminal special characters to be some-
thing other than control characters:

$ stty intr q                   Make the interrupt character q

Of course, when we do this, we can no longer use the q key for its usual purpose
(i.e., generating the letter q).

To change terminal flags, such as the TOSTOP flag, we can use commands such as
the following:

$ stty tostop                   Enable the TOSTOP flag
$ stty -tostop                  Disable the TOSTOP flag

Sometimes, when developing programs that modify terminal attributes, a program
may crash, leaving the terminal in a state that renders it all but unusable. On a ter-
minal emulator, we have the luxury of simply closing the terminal window and
starting another. Alternatively, we can type in the following character sequence to
restore the terminal flags and special characters to a reasonable state:

Control-J stty sane Control-J

The Control-J character is the real newline character (ASCII 10 decimal). We use
this character because, in some modes, the terminal driver may no longer map the
Enter key (ASCII 13 decimal) into a newline character. We type an initial Control-J
to ensure that we have a fresh command line with no preceding characters. This
may not be easy to verify if, for example, terminal echoing has been disabled.

The stty command operates on the terminal referred to by standard input.
Using the –F option, we can (subject to permission checks) monitor and set the
attributes of a terminal other than the one on which the stty command is run:

$ su                            Need privilege to access another user’s terminal
Password:
# stty -a -F /dev/tty3          Fetch attributes for terminal /dev/tty3
Output omitted for brevity

The –F option is a Linux-specific extension to the stty command. On many other
UNIX implementations, stty always acts on the terminal referred to by standard input,
and we must use the following alternative form (which can also be used on Linux):

# stty -a < /dev/tty3
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62.4 Terminal Special Characters

Table 62-1 lists the special characters recognized by the Linux terminal driver. The
first two columns show the name of the character and the corresponding constant
that can be used as a subscript in the c_cc array. (As can be seen, these constants
simply prefix the letter V in front of the character name.) The CR and NL charac-
ters don’t have corresponding c_cc subscripts, because the values of these characters
can’t be changed.

The Default setting column of the table shows the usual default value for the
special character. As well as being able to set a terminal special character to a spe-
cific value, it is also possible to disable the character by setting it to the value
returned by the call fpathconf(fd, _PC_VDISABLE), where fd is a file descriptor refer-
ring to a terminal. (On most UNIX implementations, this call returns the value 0.)

The operation of each of the special characters is subject to the setting of vari-
ous flags in the termios bit-mask fields (described in Section 62.5), as shown in the
penultimate column of the table.

The final column indicates which of these characters are specified by SUSv3.
Regardless of the SUSv3 specification, most of these characters are supported on
all UNIX implementations.

The following paragraphs provide more detailed explanations of the terminal spe-
cial characters. Note that if the terminal driver performs its special input interpre-
tation on one of these characters, then—with the exception of CR, EOL, EOL2, and
NL—the character is discarded (i.e., it is not passed to any reading process).

Table 62-1: Terminal special characters

Character c_cc
subscript

Description Default 
setting

Relevant 
bit-mask flags

SUSv3

CR (none) Carriage return ^M ICANON, IGNCR, ICRNL, 
OPOST, OCRNL, ONOCR

•

DISCARD VDISCARD Discard output ^O (not implemented)
EOF VEOF End-of-file ^D ICANON •
EOL VEOL End-of-line ICANON •
EOL2 VEOL2 Alternate end-of-line ICANON, IEXTEN
ERASE VERASE Erase character ^? ICANON •
INTR VINTR Interrupt (SIGINT) ^C ISIG •
KILL VKILL Erase line ^U ICANON •
LNEXT VLNEXT Literal next ^V ICANON, IEXTEN
NL (none) Newline ^J ICANON, INLCR, ECHONL, 

OPOST, ONLCR, ONLRET
•

QUIT VQUIT Quit (SIGQUIT) ^\ ISIG •
REPRINT VREPRINT Reprint input line ^R ICANON, IEXTEN, ECHO
START VSTART Start output ^Q IXON, IXOFF •
STOP VSTOP Stop output ^S IXON, IXOFF •
SUSP VSUSP Suspend (SIGTSTP) ^Z ISIG •
WERASE VWERASE Erase word ^W ICANON, IEXTEN
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CR

CR is the carriage return character. This character is passed to the reading process.
In canonical mode (ICANON flag set) with the ICRNL (map CR to NL on input) flag set
(the default), this character is first converted to a newline (ASCII 10 decimal, ^J)
before being passed to the reading process. If the IGNCR (ignore CR) flag is set, then
this character is ignored on input (in which case the true newline character must be
used to terminate a line of input). An output CR character causes the terminal to
move the cursor to the beginning of the line.

DISCARD

DISCARD is the discard output character. Although this character is defined within
the c_cc array, it has no effect on Linux. On some other UNIX implementations,
typing this character once causes program output to be discarded. This character is
a toggle—typing it once more reenables the display of output. This is useful when a
program is generating a large amount of output and we want to skip some of it.
(This was much more useful on traditional terminals, where line speeds were
slower and other “terminal windows” were unavailable.) This character is not
passed to the reading process.

EOF

EOF is the canonical mode end-of-file character (usually Control-D). Entering this
character at the beginning of a line causes an end-of-file condition to be detected
by a process reading from the terminal (i.e., read() returns 0). If typed anywhere
other than the initial character of a line, then this character simply causes read() to
complete immediately, returning the characters so far input in the line. In both
cases, the EOF character itself is not passed to the reading process.

EOL and EOL2

EOL and EOL2 are additional line-delimiter characters that operate like the standard
newline (NL) character for canonical mode input, terminating a line of input and
making it available to the reading process. By default, these characters are unde-
fined. If they are defined, they are passed to the reading process. The EOL2 character
is operational only if the IEXTEN (extended input processing) flag is set (the default).

These characters are rarely used. One application that does use them is telnet.
By setting EOL or EOL2 to be the telnet escape character (usually Control-], or, alter-
natively, the tilde character, ~, if operating in rlogin mode), telnet is able to immediately
catch that character, even while reading input in canonical mode.

ERASE

In canonical mode, typing the ERASE character erases the previously input character
on the current line. The erased character and the ERASE character itself are not
passed to the reading process.

INTR

INTR is the interrupt character. If the ISIG (enable signals) flag is set (the default),
typing this character causes an interrupt signal (SIGINT) to be sent to the terminal’s
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foreground process group (Section 34.2). The INTR character itself is not passed
to the reading process.

KILL

KILL is the erase line (also known as kill line) character. In canonical mode, typing
this character causes the current line of input to be discarded (i.e., the characters
typed so far, as well as the KILL character itself, are not passed to the reading process).

LNEXT

LNEXT is the literal next character. In some circumstances, we may wish to treat
one of the terminal special characters as though it were a normal character for
input to a reading process. Typing the literal next character (usually Control-V)
causes the next character to be treated literally, voiding any special interpretation
of the character that the terminal driver would normally perform. Thus, we could
enter the 2-character sequence Control-V Control-C to supply a real Control-C character
(ASCII 3) as input to the reading process. The LNEXT character itself is not passed
to the reading process. This character is interpreted only in canonical mode with
the IEXTEN (extended input processing) flag set (which is the default).

NL

NL is the newline character. In canonical mode, this character terminates an input
line. The NL character itself is included in the line returned to the reading process.
(The CR character is normally converted to NL in canonical mode.) An output NL
character causes the terminal to move the cursor down one line. If the OPOST and
ONLCR (map NL to CR-NL) flags are set (the default), then, on output, a newline char-
acter is mapped to the 2-character sequence CR plus NL. (The combination of the
ICRNL and ONLCR flags means that an input CR is converted to a NL, and then echoed
as CR plus NL.)

QUIT

If the ISIG flag is set (the default), typing the QUIT character causes a quit signal
(SIGQUIT) to be sent to the terminal’s foreground process group (Section 34.2). The
QUIT character itself is not passed to the reading process.

REPRINT

REPRINT is the reprint input character. In canonical mode with the IEXTEN flag set
(the default), typing this character causes the current (as yet incomplete) line of
input to be redisplayed on the terminal. This is useful if some other program (e.g.,
wall(1) or write(1)) has written output that has messed up the terminal display. The
REPRINT character itself is not passed to the reading process.

START and STOP

START and STOP are the start output and stop output characters, which operate if
the IXON (enable start/stop output control) flag is enabled (the default). (The START
and STOP characters are not honored by some terminal emulators.)

Typing the STOP character suspends terminal output. The STOP character
itself is not passed to the reading process. If the IXOFF flag is set and the terminal
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input queue is full, then the terminal driver automatically sends a STOP character
to throttle the input.

Typing the START character causes terminal output to resume after previously
being stopped by the STOP character. The START character itself is not passed to
the reading process. If the IXOFF (enable start/stop input control) flag is set (this flag is
disabled by default) and the terminal driver had previously sent a STOP character
because the input queue was full, the terminal driver automatically generates a
START character when space once more becomes available in the input queue.

If the IXANY flag is set, then any character, not just START, may be typed in order
to restart output (and that character is similarly not passed to the reading process).

The START and STOP characters are used for software flow control in either
direction between the computer and the terminal device. One function of these
characters is to allow users to stop and start terminal output. This is output flow
control, as enabled by IXON. However, flow control in the other direction (i.e., control of
input flow from the device to the computer, as enabled by IXOFF) is also important
when, for example, the device in question is a modem or another computer. Input
flow control makes sure that no data is lost if the application is slow to handle input
and the kernel buffers fill up.

With the higher line speeds that are nowadays typical, software flow control
has been superseded by hardware (RTS/CTS) flow control, whereby data flow is
enabled and disabled using signals sent via separate wires on the serial port. (RTS
stands for Request To Send, and CTS stands for Clear To Send.)

SUSP

SUSP is the suspend character. If the ISIG flag is set (the default), typing this character
causes a terminal suspend signal (SIGTSTP) to be sent to the terminal’s foreground process
group (Section 34.2). The SUSP character itself is not passed to the reading process.

WERASE

WERASE is the word erase character. In canonical mode, with the IEXTEN flag set (the
default), typing this character erases all characters back to the beginning of the pre-
vious word. A word is considered to be a sequence of letters, digits, and the under-
score character. (On some UNIX implementations, a word is considered to be
delimited by white space.)

Other terminal special characters

Other UNIX implementations provide terminal special characters in addition to
those listed in Table 62-1.

BSD provides the DSUSP and STATUS characters. The DSUSP character (typi-
cally Control-Y) operates in a fashion similar to the SUSP character, but suspends
the foreground process group only when it attempts to read the character (i.e.,
after all preceding input has been read). Several non-BSD-derived implementations
also provide the DSUSP character.

The STATUS character (typically Control-T) causes the kernel to display status
information on the terminal (including the state of the foreground process and
how much CPU time it has consumed), and sends a SIGINFO signal to the foreground
process group. If desired, processes can catch this signal and display further status
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information. (Linux provides a vaguely similar feature in the form of the magic SysRq
key; see the kernel source file Documentation/sysrq.txt for details.)

System V derivatives provide the SWTCH character. This character is used to
switch shells under shell layers, a System V predecessor to job control.

Example program

Listing 62-1 shows the use of tcgetattr() and tcsetattr() to change the terminal
interrupt character. This program sets the interrupt character to be the character
whose numeric value is supplied as the program’s command-line argument, or dis-
ables the interrupt character if no command-line argument is supplied.

The following shell session demonstrates the use of this program. We begin by
setting the interrupt character to Control-L (ASCII 12), and then verify the change
with stty:

$ ./new_intr 12
$ stty
speed 38400 baud; line = 0;
intr = ^L;

We then start a process running sleep(1). We find that typing Control-C no longer
has its usual effect of terminating a process, but typing Control-L does terminate the
process.

$ sleep 10
^C                              Control-C has no effect; it is just echoed
Type Control-L to terminate sleep

We now display the value of the shell $? variable, which shows the termination status of
the last command:

$ echo $?
130

We see that the termination status of the process was 130. This indicates that the
process was killed by signal 130 – 128 = 2; signal number 2 is SIGINT.

Next, we use our program to disable the interrupt character.

$ ./new_intr
$ stty                          Verify the change
speed 38400 baud; line = 0;
intr = <undef>;

Now we find that neither Control-C nor Control-L generates a SIGINT signal, and we
must instead use Control-\ to terminate a program:

$ sleep 10
^C^L                            Control-C and Control-L are simply echoed
Type Control-\ to generate SIGQUIT
Quit
$ stty sane                     Return terminal to a sane state
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Listing 62-1: Changing the terminal interrupt character

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– tty/new_intr.c

#include <termios.h>
#include <ctype.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    struct termios tp;
    int intrChar;

    if (argc > 1 && strcmp(argv[1], "--help") == 0)
        usageErr("%s [intr-char]\n", argv[0]);

    /* Determine new INTR setting from command line */

    if (argc == 1) {                                     /* Disable */
        intrChar = fpathconf(STDIN_FILENO, _PC_VDISABLE);
        if (intrChar == -1)
            errExit("Couldn't determine VDISABLE");
    } else if (isdigit((unsigned char) argv[1][0])) {
        intrChar = strtoul(argv[1], NULL, 0);           /* Allows hex, octal */
    } else {                                            /* Literal character */
        intrChar = argv[1][0];
    }

    /* Fetch current terminal settings, modify INTR character, and
       push changes back to the terminal driver */

    if (tcgetattr(STDIN_FILENO, &tp) == -1)
        errExit("tcgetattr");
    tp.c_cc[VINTR] = intrChar;
    if (tcsetattr(STDIN_FILENO, TCSAFLUSH, &tp) == -1)
        errExit("tcsetattr");

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– tty/new_intr.c

62.5 Terminal Flags

Table 62-2 lists the settings controlled by each of the four flag fields of the termios
structure. The constants listed in this table correspond to single bits, except those
specifying the term mask, which are values spanning several bits; these may contain
one of a range of values, shown in parentheses. The column labeled SUSv3 indi-
cates whether the flag is specified in SUSv3. The Default column shows the default
settings for a virtual console login.
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Many shells that provide command-line editing facilities perform their own
manipulations of the flags listed in Table 62-2. This means that if we try using
stty(1) to experiment with these settings, then the changes may not be effective
when entering shell commands. To circumvent this behavior, we must disable
command-line editing in the shell. For example, command-line editing can be
disabled by specifying the command-line option ––noediting when invoking bash.

Table 62-2: Terminal flags

Field/Flag Description Default SUSv3

c_iflag
BRKINT Signal interrupt (SIGINT) on BREAK condition on •
ICRNL Map CR to NL on input on •
IGNBRK Ignore BREAK condition off •
IGNCR Ignore CR on input off •
IGNPAR Ignore characters with parity errors off •
IMAXBEL Ring bell when terminal input queue is full (unused) (on)
INLCR Map NL to CR on input off •
INPCK Enable input parity checking off •
ISTRIP Strip high bit (bit 8) from input characters off •
IUTF8 Input is UTF-8 (since Linux 2.6.4) off
IUCLC Map uppercase to lowercase on input (if IEXTEN also set) off
IXANY Allow any character to restart stopped output off •
IXOFF Enable start/stop input flow control off •
IXON Enable start/stop output flow control on •
PARMRK Mark parity errors (with 2 prefix bytes: 0377 + 0) off •

c_oflag
BSDLY Backspace delay mask (BS0, BS1) BS0 •
CRDLY CR delay mask (CR0, CR1, CR2, CR3) CR0 •
FFDLY Form-feed delay mask (FF0, FF1) FF0 •
NLDLY Newline delay mask (NL0, NL1) NL0 •
OCRNL Map CR to NL on output (see also ONOCR) off •
OFDEL Use DEL (0177) as fill character; otherwise NUL (0) off •
OFILL Use fill characters for delay (rather than timed delay) off •
OLCUC Map lowercase to uppercase on output off
ONLCR Map NL to CR-NL on output on •
ONLRET Assume NL performs CR function (move to start of line) off •
ONOCR Don’t output CR if already at column 0 (start of line) off •
OPOST Perform output postprocessing on •
TABDLY Horizontal-tab delay mask (TAB0, TAB1, TAB2, TAB3) TAB0 •
VTDLY Vertical-tab delay mask (VT0, VT1) VT0 •

c_cflag
CBAUD Baud (bit rate) mask (B0, B2400, B9600, and so on) B38400

CBAUDEX Extended baud (bit rate) mask (for rates > 38,400) off
CIBAUD Input baud (bit rate), if different from output (unused) (off)
CLOCAL Ignore modem status lines (don’t check carrier signal) off •
CMSPAR Use “stick” (mark/space) parity off
1302 Chapter 62



Several of the flags listed in Table 62-2 were provided for historical terminals with
limited capabilities, and these flags have little use on modern systems. For example,
the IUCLC, OLCUC, and XCASE flags were used with terminals that were capable of dis-
playing only uppercase letters. On many older UNIX systems, if a user tried logging
in with an uppercase username, the login program assumed that the user was sitting
at such a terminal and would set these flags, and then the following password
prompt would appear:

\PASSWORD:

From this point on, all lowercase characters were output in uppercase, and real upper-
case characters were preceded by a backslash (\). Similarly, for input, a real uppercase
character could be specified by a preceding backslash. The ECHOPRT flag was also
designed for limited-capability terminals.

The various delay masks are also historical, allowing for terminals and printers
that took longer to echo characters such as carriage return and form feed. The
related OFILL and OFDEL flags specified how such a delay was to be performed. Most
of these flags are unused on Linux. One exception is the TAB3 setting for the TABDLY
mask, which causes tab characters to be output as (up to eight) spaces.

The following paragraphs provide more details about some of the termios flags.

CREAD Allow input to be received on •
CRTSCTS Enable RTS/CTS (hardware) flow control off
CSIZE Character-size mask (5 to 8 bits: CS5, CS6, CS7, CS8) CS8 •
CSTOPB Use 2 stop bits per character; otherwise 1 off •
HUPCL Hang up (drop modem connection) on last close on •
PARENB Parity enable off •
PARODD Use odd parity; otherwise even off •

c_lflag
ECHO Echo input characters on •
ECHOCTL Echo control characters visually (e.g., ^L) on
ECHOE Perform ERASE visually on •
ECHOK Echo KILL visually on •
ECHOKE Don’t output a newline after echoed KILL on
ECHONL Echo NL (in canonical mode) even if echoing is disabled off •
ECHOPRT Echo deleted characters backward (between \ and /) off
FLUSHO Output is being flushed (unused) -
ICANON Canonical mode (line-by-line) input on •
IEXTEN Enable extended processing of input characters on •
ISIG Enable signal-generating characters (INTR, QUIT, SUSP) on •
NOFLSH Disable flushing on INTR, QUIT, and SUSP off •
PENDIN Redisplay pending input at next read (not implemented) (off)
TOSTOP Generate SIGTTOU for background output (Section 34.7.1) off •
XCASE Canonical upper/lowercase presentation (unimplemented) (off)

Table 62-2: Terminal flags (continued)

Field/Flag Description Default SUSv3
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BRKINT

If the BRKINT flag is set and the IGNBRK flag is not set, then a SIGINT signal is sent to the
foreground process group when a BREAK condition occurs.

Most conventional dumb terminals provided a BREAK key. Pressing this key
doesn’t actually generate a character, but instead causes a BREAK condition,
whereby a series of 0 bits is sent to the terminal driver for a specified length of
time, typically 0.25 or 0.5 seconds (i.e., longer than the time required to trans-
mit a single byte). (Unless the IGNBRK flag has been set, the terminal driver con-
sequently delivers a single 0 byte to the reading process.) On many UNIX
systems, the BREAK condition acted as a signal to a remote host to change its
line speed (baud) to something suitable for the terminal. Thus, the user would
press the BREAK key until a valid login prompt appeared, indicating that the
line speed was now suitable for this terminal.

On a virtual console, we can generate a BREAK condition by pressing
Control-Break.

ECHO

Setting the ECHO flag enables echoing of input characters. Disabling echoing is use-
ful when reading passwords. Echoing is also disabled within the command mode of
vi, where keyboard characters are interpreted as editing commands rather than
text input. The ECHO flag is effective in both canonical and noncanonical modes.

ECHOCTL

If ECHO is set, then enabling the ECHOCTL flag causes control characters other than tab,
newline, START, and STOP to be echoed in the form ^A (for Control-A), and so on.
If ECHOCTL is disabled, control characters are not echoed.

The control characters are those with ASCII codes less than 32, plus the DEL
character (127 decimal). A control character, x, is echoed using a caret (^) fol-
lowed by the character resulting from the expression (x ^ 64). For all characters
except DEL, the effect of the XOR (^) operator in this expression is to add 64
to the value of the character. Thus, Control-A (ASCII 1) is echoed as caret plus A
(ASCII 65). For DEL, the expression has the effect of subtracting 64 from 127,
yielding the value 63, the ASCII code for ?, so that DEL is echoed as ^?.

ECHOE

In canonical mode, setting the ECHOE flag causes ERASE to be performed visually, by
outputting the sequence backspace-space-backspace to the terminal. If ECHOE is dis-
abled, then the ERASE character is instead echoed (e.g., as ^?), but still performs its
function of deleting a character.

ECHOK and ECHOKE

The ECHOK and ECHOKE flags control the visual display when using the KILL (erase
line) character in canonical mode. In the default case (both flags enabled), a line is
erased visually (see ECHOE). If either of these flags is disabled, then a visual erase is not
performed (but the input line is still discarded), and the KILL character is echoed
(e.g., as ^U). If ECHOK is set, but not ECHOKE, then a newline character is also output.
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ICANON

Setting the ICANON flag enables canonical mode input. Input is gathered into lines,
and special interpretation of the EOF, EOL, EOL2, ERASE, LNEXT, KILL,
REPRINT, and WERASE characters is enabled (but note the effect of the IEXTEN
flag described below).

IEXTEN

Setting the IEXTEN flag enables extended processing of input characters. This flag
(as well as ICANON) must be set in order for the following characters to be inter-
preted: EOL2, LNEXT, REPRINT, and WERASE. The IEXTEN flag must also be set
for the IUCLC flag to be effective. SUSv3 merely says that the IEXTEN flag enables
extended (implementation-defined) functions; details may vary on other UNIX
implementations.

IMAXBEL

On Linux, the setting of the IMAXBEL flag is ignored. On a console login, the bell is
always rung when the input queue is full.

IUTF8

Setting the IUTF8 flag enables cooked mode (Section 62.6.3) to correctly handle
UTF-8 input when performing line editing.

NOFLSH

By default, when a signal is generated by typing the INTR, QUIT, or SUSP character,
any outstanding data in the terminal input and output queues is flushed (dis-
carded). Setting the NOFLSH flag disables such flushing.

OPOST

Setting the OPOST flag enables output postprocessing. This flag must be set in order
for any of the flags in the c_oflag field of the termios structure to be effective. (Put
conversely, disabling the OPOST flag prevents all output postprocessing.)

PARENB, IGNPAR, INPCK, PARMRK, and PARODD

The PARENB, IGNPAR, INPCK, PARMRK, and PARODD flags are concerned with parity genera-
tion and checking.

The PARENB flag enables generation of parity check bits for output characters
and parity checking for input characters. If we want to perform only output parity
generation, then we can disable input parity checking by turning INPCK off. If the
PARODD flag is set, then odd parity is used in both cases; otherwise, even parity is
used.

The remaining flags specify how an input character with parity errors should be
handled. If the IGNPAR flag is set, the character is discarded (not passed to the reading
process). Otherwise, if the PARMRK flag is set, then the character is passed to the read-
ing process, but is preceded by the 2-byte sequence 0377 + 0. (If the PARMRK flag is set
and ISTRIP is clear, then a real 0377 character is doubled to become 0377 + 0377.) If
PARMRK is not set, but INPCK is set, then the character is discarded, and a 0 byte is
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passed to the reading process instead. If none of IGNPAR, PARMRK, or INPCK is set, then
the character is passed as is to the reading process.

Example program

Listing 62-2 demonstrates the use of tcgetattr() and tcsetattr() to turn off the ECHO flag,
so that input characters are not echoed. Here is an example of what we see when
running this program:

$ ./no_echo
Enter text:                           We type some text, which is not echoed,
Read: Knock, knock, Neo.              but was nevertheless read

Listing 62-2: Disabling terminal echoing

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– tty/no_echo.c

#include <termios.h>
#include "tlpi_hdr.h"

#define BUF_SIZE 100

int
main(int argc, char *argv[])
{
    struct termios tp, save;
    char buf[BUF_SIZE];

    /* Retrieve current terminal settings, turn echoing off */

    if (tcgetattr(STDIN_FILENO, &tp) == -1)
        errExit("tcgetattr");
    save = tp;                          /* So we can restore settings later */
    tp.c_lflag &= ~ECHO;                /* ECHO off, other bits unchanged */
    if (tcsetattr(STDIN_FILENO, TCSAFLUSH, &tp) == -1)
        errExit("tcsetattr");

    /* Read some input and then display it back to the user */

    printf("Enter text: ");
    fflush(stdout);
    if (fgets(buf, BUF_SIZE, stdin) == NULL)
        printf("Got end-of-file/error on fgets()\n");
    else
        printf("\nRead: %s", buf);

    /* Restore original terminal settings */

    if (tcsetattr(STDIN_FILENO, TCSANOW, &save) == -1)
        errExit("tcsetattr");

    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– tty/no_echo.c
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62.6 Terminal I/O Modes

We have already noted that the terminal driver is capable of handling input in
either canonical or noncanonical mode, depending on the setting of the ICANON flag.
We now describe these two modes in detail. We then describe three useful terminal
modes—cooked, cbreak, and raw—that were available in Seventh Edition UNIX,
and show how these modes are emulated on modern UNIX systems by setting
appropriate values in the termios structure.

62.6.1 Canonical Mode
Canonical mode input is enabled by setting the ICANON flag. Terminal input in
canonical mode is distinguished by the following features:

Input is gathered into lines, terminated by one of the line-delimiter characters:
NL, EOL, EOL2 (if the IEXTEN flag is set), EOF (at anything other than the initial
position in the line), or CR (if the ICRNL flag is enabled). Except in the case of
EOF, the line delimiter is passed back to the reading process (as the last character
in the line).

Line editing is enabled, so that the current line of input can be modified. Thus,
the following characters are enabled: ERASE, KILL, and, if the IEXTEN flag is
set, WERASE.

If the IEXTEN flag is set, the REPRINT and LNEXT characters are also enabled.

In canonical mode, a terminal read() returns when a complete line of input is available.
(The read() itself may fetch only part of that line if it requested fewer bytes; remain-
ing bytes will be fetched by subsequent calls to read().) A read() may also terminate
if interrupted by a signal handler and restarting of system calls is not enabled for
this signal (Section 21.5).

While describing the NOFLSH flag in Section 62.5, we noted that the characters
that generate signals also cause the terminal driver to flush the terminal input
queue. This flushing occurs regardless of whether the signal is caught or
ignored by an application. We can prevent such flushing by enabling the
NOFLSH flag.

62.6.2 Noncanonical Mode
Some applications (e.g., vi and less) need to read characters from the terminal with-
out the user supplying a line delimiter. Noncanonical mode is provided for this
purpose. In noncanonical mode (ICANON unset), no special input processing is per-
formed. In particular, input is no longer gathered into lines, but is instead available
immediately.

In what circumstances does a noncanonical read() complete? We can specify
that a noncanonical read() terminates after a certain time, after a certain number of
bytes have been read, or both in combination. Two elements of the termios c_cc
array determine the behavior: TIME and MIN. The TIME element (indexed using
the constant VTIME) specifies a timeout value in tenths of a second. The MIN ele-
ment (indexed using VMIN) specifies the minimum number of bytes to be read. (The
MIN and TIME settings have no effect on canonical-mode terminal I/O.)
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The precise operation and interaction of the MIN and TIME parameters
depends on whether they each have nonzero values. The four possible cases are
described below. Note that in all cases, if, at the time of a read(), sufficient bytes
are already available to satisfy the requirements specified by MIN, read() returns
immediately with the lesser of the number of bytes available and the number of
bytes requested.

MIN == 0, TIME == 0 (polling read)

If data is available at the time of the call, then read() returns immediately with the
lesser of the number of bytes available or the number of bytes requested. If no
bytes are available, read() completes immediately, returning 0.

This case serves the usual requirements of polling, allowing the application to
check if input is available without blocking if it is not. This mode is somewhat simi-
lar to setting the O_NONBLOCK flag for the terminal (Section 5.9). However, with
O_NONBLOCK, if no bytes are available for reading, then read() returns –1 with the error
EAGAIN.

MIN > 0, TIME == 0 (blocking read)

The read() blocks (possibly indefinitely) until the lesser of the number of bytes
requested or MIN bytes are available, and returns the lesser of the two values.

Programs such as less typically set MIN to 1 and TIME to 0. This allows the pro-
gram to wait for single key presses without needing to waste CPU time by polling in
a busy loop.

If a terminal is placed in noncanonical mode with MIN set to 1 and TIME set to 0,
then the techniques described in Chapter 63 can be used to check whether a single
character (rather than a complete line) has been typed at the terminal.

MIN == 0, TIME > 0 (read with timeout)

A timer is started when read() is called. The call returns as soon as at least 1 byte is
available, or when TIME tenths of a second have elapsed. In the latter case, read()
returns 0.

This case is useful for programs talking to a serial device (e.g., a modem). The
program can send data to the device and then wait for a response, using a timeout
to avoid hanging forever in case the device doesn’t respond.

MIN > 0, TIME > 0 (read with interbyte timeout)

After the initial byte of input becomes available, a timer is restarted as each further
byte is received. The read() returns when either the lesser of MIN bytes or the number
of bytes requested have been read, or when the time between receiving successive
bytes exceeds TIME tenths of a second. Since the timer is started only after the initial
byte becomes available, at least 1 byte is returned. (A read() can block indefinitely
for this case.)

This case is useful for handling terminal keys that generate escape sequences.
For example, on many terminals, the left-arrow key generates the 3-character
sequence consisting of Escape followed by OD. These characters are transmitted in
quick succession. Applications handling such sequences need to distinguish the
pressing of such a key from the situation where the user slowly types each of the
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characters individually. This can be done by performing a read() with a small inter-
byte timeout, say 0.2 seconds. Such a technique is used in the command mode of
some versions of vi. (Depending on the length of the timeout, in such applications,
we may be able to simulate a left-arrow key press by quickly typing the aforemen-
tioned 3-character sequence.)

Portably modifying and restoring MIN and TIME

For historical compatibility with some UNIX implementations, SUSv3 allows the
values of the VMIN and VTIME constants to be the same as VEOF and VEOL, respectively,
which means that these elements of the termios c_cc array may coincide. (On Linux,
the values of these constants are distinct.) This is possible because VEOF and VEOL are
unused in noncanonical mode. The fact that VMIN and VEOF may have the same value
means that caution is needed in a program that enters noncanonical mode, sets
MIN (typically to 1), and then later returns to canonical mode. On return to canonical
mode, EOF will no longer have its usual value of ASCII 4 (Control-D). The portable way
to deal with this problem is to save a copy of the termios settings prior to changing to
noncanonical mode, and then use this saved structure to return to canonical mode.

62.6.3 Cooked, Cbreak, and Raw Modes
The terminal driver in Seventh Edition UNIX (as well as in early versions of BSD)
was capable of handling input in three modes: cooked, cbreak, and raw. The differ-
ences between the three modes are summarized in Table 62-3.

Cooked mode was essentially canonical mode with all of the default special charac-
ter processing enabled (i.e., interpretation of CR, NL, and EOF; enabling of line edit-
ing; handling of signal-generating characters; ICRNL; OCRNL; and so on).

Raw mode was the converse: noncanonical mode, with all input and output
processing, as well as echoing, switched off. (An application that needed to ensure
that the terminal driver makes absolutely no changes to the data transferred across
a serial line would use this mode.)

Cbreak mode was intermediate between cooked and raw modes. Input was
noncanonical, but signal-generating characters were interpreted, and the various
input and output transformations could still occur (depending on individual flag

Table 62-3: Differences between cooked, cbreak, and raw terminal modes

Feature Mode

Cooked Cbreak Raw

Input available line by line char. by char. char. by char.
Line-editing? yes no no
Signal-generating characters interpreted? yes yes no
START/STOP interpreted? yes yes no
Other special characters interpreted? yes no no
Other input processing performed? yes yes no
Other output processing performed? yes yes no
Input echoed? yes maybe no
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settings). Cbreak mode did not disable echoing, but applications employing this
mode would usually disable echoing as well. Cbreak mode was useful in screen-
handling applications (such as less) that permitted character-by-character input, but
still needed to allow interpretation of characters such as INTR, QUIT, and SUSP.

Example: setting raw and cbreak mode

In the Seventh Edition and the original BSD terminal drivers, it was possible to
switch to raw or cbreak mode by tweaking single bits (called RAW and CBREAK) in the
terminal driver data structures. With the transition to the POSIX termios interface
(now supported on all UNIX implementations), single bits for selecting raw and
cbreak mode are no longer available, and applications emulating these modes must
explicitly change the required fields of the termios structure. Listing 62-3 provides
two functions, ttySetCbreak() and ttySetRaw(), that implement the equivalents of
these terminal modes.

Applications that use the ncurses library can call the functions cbreak() and
raw(), which perform similar tasks to our functions in Listing 62-3.

Listing 62-3: Switching a terminal to cbreak and raw modes

–––––––––––––––––––––––––––––––––––––––––––––––––––––––tty/tty_functions.c

#include <termios.h>
#include <unistd.h>
#include "tty_functions.h"              /* Declares functions defined here */

/* Place terminal referred to by 'fd' in cbreak mode (noncanonical mode
   with echoing turned off). This function assumes that the terminal is
   currently in cooked mode (i.e., we shouldn't call it if the terminal
   is currently in raw mode, since it does not undo all of the changes
   made by the ttySetRaw() function below). Return 0 on success, or -1
   on error. If 'prevTermios' is non-NULL, then use the buffer to which
   it points to return the previous terminal settings. */

int
ttySetCbreak(int fd, struct termios *prevTermios)
{
    struct termios t;

    if (tcgetattr(fd, &t) == -1)
        return -1;

    if (prevTermios != NULL)
        *prevTermios = t;

    t.c_lflag &= ~(ICANON | ECHO);
    t.c_lflag |= ISIG;

    t.c_iflag &= ~ICRNL;
1310 Chapter 62



    t.c_cc[VMIN] = 1;                   /* Character-at-a-time input */
    t.c_cc[VTIME] = 0;                  /* with blocking */

    if (tcsetattr(fd, TCSAFLUSH, &t) == -1)
        return -1;

    return 0;
}

/* Place terminal referred to by 'fd' in raw mode (noncanonical mode
   with all input and output processing disabled). Return 0 on success,
   or -1 on error. If 'prevTermios' is non-NULL, then use the buffer to
   which it points to return the previous terminal settings. */

int
ttySetRaw(int fd, struct termios *prevTermios)
{
    struct termios t;

    if (tcgetattr(fd, &t) == -1)
        return -1;

    if (prevTermios != NULL)
        *prevTermios = t;

    t.c_lflag &= ~(ICANON | ISIG | IEXTEN | ECHO);
                        /* Noncanonical mode, disable signals, extended
                           input processing, and echoing */

    t.c_iflag &= ~(BRKINT | ICRNL | IGNBRK | IGNCR | INLCR |
                      INPCK | ISTRIP | IXON | PARMRK);
                        /* Disable special handling of CR, NL, and BREAK.
                           No 8th-bit stripping or parity error handling.
                           Disable START/STOP output flow control. */

    t.c_oflag &= ~OPOST;                /* Disable all output processing */

    t.c_cc[VMIN] = 1;                   /* Character-at-a-time input */
    t.c_cc[VTIME] = 0;                  /* with blocking */

    if (tcsetattr(fd, TCSAFLUSH, &t) == -1)
        return -1;

    return 0;
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––tty/tty_functions.c

A program that places the terminal in raw or cbreak mode must be careful to
return the terminal to a usable mode when it terminates. Among other tasks, this
entails handling all of the signals that are likely to be sent to the program, so that
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the program is not prematurely terminated. (Job-control signals can still be gener-
ated from the keyboard in cbreak mode.)

An example of how to do this is provided in Listing 62-4. This program per-
forms the following steps:

Set the terminal to either cbreak mode o or raw mode d, depending on
whether a command-line argument (any string) is supplied i. The previous ter-
minal settings are saved in the global variable userTermios q.

If the terminal was placed in cbreak mode, then signals can be generated from
the terminal. These signals need to be handled so that terminating or suspend-
ing the program leaves the terminal in a state that the user expects. The pro-
gram installs the same handler for SIGQUIT and SIGINT a. The SIGTSTP signal
requires special treatment, so a different handler is installed for that signal s.

Install a handler for the SIGTERM signal, in order to catch the default signal sent
by the kill command f.

Execute a loop that reads characters one at a time from stdin and echoes them
on standard output g. The program treats various input characters specially
before outputting them h:

– All letters are converted to lowercase before being output.

– The newline (\n) and carriage return (\r) characters are echoed without
change.

– Control characters other than the newline and carriage return are echoed
as a 2-character sequence: caret (^) plus the corresponding uppercase letter
(e.g., Control-A echoes as ^A).

– All other characters are echoed as asterisks (*).

– The letter q causes the loop to terminate j.

On exit from the loop, restore the terminal to its state as last set by the user,
and then terminate k.

The program installs the same handler for SIGQUIT, SIGINT, and SIGTERM. This handler
restores the terminal to its state as last set by the user and terminates the program w.

The handler for the SIGTSTP signal e deals with the signal in the manner
described in Section 34.7.3. Note the following additional details of the operation
of this signal handler:

Upon entry, the handler saves the current terminal settings (in ourTermios) r,
and then resets the terminal to the settings that were in effect (saved in
userTermios) when the program was started t, before once more raising SIGTSTP
to actually stop the process.

Upon resumption of execution after receipt of SIGCONT, the handler once more
saves the current terminal settings in userTermios y, since the user may have
changed the settings while the program was stopped (using the stty command,
for example). The handler then returns the terminal to the state (ourTermios)
required by the program u.
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Listing 62-4: Demonstrating cbreak and raw modes

–––––––––––––––––––––––––––––––––––––––––––––––––– tty/test_tty_functions.c

#include <termios.h>
#include <signal.h>
#include <ctype.h>
#include "tty_functions.h"              /* Declarations of ttySetCbreak()
                                           and ttySetRaw() */
#include "tlpi_hdr.h"

q static struct termios userTermios;
                        /* Terminal settings as defined by user */

static void             /* General handler: restore tty settings and exit */
handler(int sig)
{

w     if (tcsetattr(STDIN_FILENO, TCSAFLUSH, &userTermios) == -1)
        errExit("tcsetattr");
    _exit(EXIT_SUCCESS);
}

static void             /* Handler for SIGTSTP */
e tstpHandler(int sig)

{
    struct termios ourTermios;          /* To save our tty settings */
    sigset_t tstpMask, prevMask;
    struct sigaction sa;
    int savedErrno;

    savedErrno = errno;                 /* We might change 'errno' here */

    /* Save current terminal settings, restore terminal to
       state at time of program startup */

r     if (tcgetattr(STDIN_FILENO, &ourTermios) == -1)
        errExit("tcgetattr");

t     if (tcsetattr(STDIN_FILENO, TCSAFLUSH, &userTermios) == -1)
        errExit("tcsetattr");

    /* Set the disposition of SIGTSTP to the default, raise the signal
       once more, and then unblock it so that we actually stop */

    if (signal(SIGTSTP, SIG_DFL) == SIG_ERR)
        errExit("signal");
    raise(SIGTSTP);

    sigemptyset(&tstpMask);
    sigaddset(&tstpMask, SIGTSTP);
    if (sigprocmask(SIG_UNBLOCK, &tstpMask, &prevMask) == -1)
        errExit("sigprocmask");

    /* Execution resumes here after SIGCONT */

    if (sigprocmask(SIG_SETMASK, &prevMask, NULL) == -1)
        errExit("sigprocmask");         /* Reblock SIGTSTP */
Terminals 1313



    sigemptyset(&sa.sa_mask);           /* Reestablish handler */
    sa.sa_flags = SA_RESTART;
    sa.sa_handler = tstpHandler;
    if (sigaction(SIGTSTP, &sa, NULL) == -1)
        errExit("sigaction");

    /* The user may have changed the terminal settings while we were
       stopped; save the settings so we can restore them later */

y     if (tcgetattr(STDIN_FILENO, &userTermios) == -1)
        errExit("tcgetattr");

    /* Restore our terminal settings */

u     if (tcsetattr(STDIN_FILENO, TCSAFLUSH, &ourTermios) == -1)
        errExit("tcsetattr");

    errno = savedErrno;
}

int
main(int argc, char *argv[])
{
    char ch;
    struct sigaction sa, prev;
    ssize_t n;

    sigemptyset(&sa.sa_mask);
    sa.sa_flags = SA_RESTART;

i     if (argc > 1) {                     /* Use cbreak mode */
o         if (ttySetCbreak(STDIN_FILENO, &userTermios) == -1)

            errExit("ttySetCbreak");

        /* Terminal special characters can generate signals in cbreak
           mode. Catch them so that we can adjust the terminal mode.
           We establish handlers only if the signals are not being ignored. */

a         sa.sa_handler = handler;

        if (sigaction(SIGQUIT, NULL, &prev) == -1)
            errExit("sigaction");
        if (prev.sa_handler != SIG_IGN)
            if (sigaction(SIGQUIT, &sa, NULL) == -1)
                errExit("sigaction");

        if (sigaction(SIGINT, NULL, &prev) == -1)
            errExit("sigaction");
        if (prev.sa_handler != SIG_IGN)
            if (sigaction(SIGINT, &sa, NULL) == -1)
                errExit("sigaction");

s         sa.sa_handler = tstpHandler;
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        if (sigaction(SIGTSTP, NULL, &prev) == -1)
            errExit("sigaction");
        if (prev.sa_handler != SIG_IGN)
            if (sigaction(SIGTSTP, &sa, NULL) == -1)
                errExit("sigaction");
    } else {                            /* Use raw mode */

d         if (ttySetRaw(STDIN_FILENO, &userTermios) == -1)
            errExit("ttySetRaw");
    }

f     sa.sa_handler = handler;
    if (sigaction(SIGTERM, &sa, NULL) == -1)
        errExit("sigaction");

    setbuf(stdout, NULL);               /* Disable stdout buffering */

g     for (;;) {                          /* Read and echo stdin */
        n = read(STDIN_FILENO, &ch, 1);
        if (n == -1) {
            errMsg("read");
            break;
        }

        if (n == 0)             /* Can occur after terminal disconnect */
            break;

h         if (isalpha((unsigned char) ch))          /* Letters --> lowercase */
            putchar(tolower((unsigned char) ch));
        else if (ch == '\n' || ch == '\r')
            putchar(ch);
        else if (iscntrl((unsigned char) ch))
            printf("^%c", ch ^ 64);     /* Echo Control-A as ^A, etc. */
        else
            putchar('*');               /* All other chars as '*' */

j         if (ch == 'q')                  /* Quit loop */
            break;
    }

k     if (tcsetattr(STDIN_FILENO, TCSAFLUSH, &userTermios) == -1)
        errExit("tcsetattr");
    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––– tty/test_tty_functions.c

Here is an example of what we see when we ask the program in Listing 62-4 to use
raw mode:

$ stty                              Initial terminal mode is sane (cooked)
speed 38400 baud; line = 0;
$ ./test_tty_functions
abc                                 Type abc, and Control-J
   def                              Type DEF, Control-J, and Enter
^C^Z                                Type Control-C, Control-Z, and Control-J
    q$                              Type q to exit
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In the last line of the preceding shell session, we see that the shell printed its
prompt on the same line as the q character that caused the program to terminate.

The following shows an example run using cbreak mode:

$ ./test_tty_functions x
XYZ                                 Type XYZ and Control-Z
[1]+  Stopped       ./test_tty_functions x
$ stty                              Verify that terminal mode was restored
speed 38400 baud; line = 0;
$ fg                                Resume in foreground
./test_tty_functions x
***                                 Type 123 and Control-J
   $                                Type Control-C to terminate program
Press Enter to get next shell prompt
$ stty                              Verify that terminal mode was restored
speed 38400 baud; line = 0;

62.7 Terminal Line Speed (Bit Rate)

Different terminals (and serial lines) are capable of transmitting and receiving at differ-
ent speeds (bits per second). The cfgetispeed() and cfsetispeed() functions retrieve and
modify the input line speed. The cfgetospeed() and cfsetospeed() functions retrieve
and modify the output line speed.

The term baud is commonly used as a synonym for the terminal line speed (in
bits per second), although this usage is not technically correct. Precisely, baud
is the per-second rate at which signal changes can occur on the line, which is
not necessarily the same as the number of bits transmitted per second, since
the latter depends on how bits are encoded into signals. Nevertheless, the term
baud continues to be used synonymously with bit rate (bits per second). (The
term baud rate is often also used synonymously with baud, but this is redun-
dant; the baud is by definition a rate.) To avoid confusion, we’ll generally use
terms like line speed or bit rate.

Each of these functions works on a termios structure that must be previously initial-
ized by a call to tcgetattr().

#include <termios.h>

speed_t cfgetispeed(const struct termios *termios_p);
speed_t cfgetospeed(const struct termios *termios_p);

Both return a line speed from given termios structure

int cfsetospeed(struct termios *termios_p, speed_t speed);
int cfsetispeed(struct termios *termios_p, speed_t speed);

Both return 0 on success, or –1 on error
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For example, to find out the current terminal output line speed, we would do
the following:

struct termios tp;
speed_t rate;

if (tcgetattr(fd, &tp) == -1)
    errExit("tcgetattr");
rate = cfgetospeed(&tp);
if (rate == -1)
    errExit("cfgetospeed");

If we then wanted to change this line speed, we would continue as follows:

if (cfsetospeed(&tp, B38400) == -1)
    errExit("cfsetospeed");
if (tcsetattr(fd, TCSAFLUSH, &tp) == -1)
    errExit("tcsetattr");

The speed_t data type is used to store a line speed. Rather than directly assigning
numeric values for line speeds, a set of symbolic constants (defined in <termios.h>)
is used. These constants define a series of discrete values. Some examples of such
constants are B300, B2400, B9600, and B38400, corresponding, respectively, to the line
speeds 300, 2400, 9600, and 38,400 bits per second. The use of a set of discrete
values reflects the fact that terminals are normally designed to work with a limited
set of different (standardized) line speeds, derived from the division of some base
rate (e.g., 115,200 is typical on PCs) by integral values (e.g., 115,200 / 12 = 9600).

SUSv3 specifies that the terminal line speeds are stored in the termios structure,
but (deliberately) does not specify where. Many implementations, including Linux,
maintain these values in the c_cflag field, using the CBAUD mask and the CBAUDEX flag.
(In Section 62.2, we noted that the nonstandard c_ispeed and c_ospeed fields of the
Linux termios structure are unused.)

Although the cfsetispeed() and cfsetospeed() functions allow separate input and
output line speeds to be specified, on many terminals, these two speeds must be
the same. Furthermore, Linux uses only a single field to store the line speed (i.e., the
two rates are assumed to be always the same), which means that all of the input and
output line-speed functions access the same termios field.

Specifying speed as 0 in a call to cfsetispeed() means “set the input speed to what-
ever the output speed is when tcsetattr() is later called.” This is useful on systems
where the two line speeds are maintained as separate values.

62.8 Terminal Line Control

The tcsendbreak(), tcdrain(), tcflush(), and tcflow() functions perform tasks that are
usually collectively grouped under the term line control. (These functions are POSIX
inventions designed to replace various ioctl() operations.)
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In each function, fd is a file descriptor that refers to a terminal or other remote
device on a serial line.

The tcsendbreak() function generates a BREAK condition, by transmitting a
continuous stream of 0 bits. The duration argument specifies the length of the
transmission. If duration is 0, 0 bits are transmitted for 0.25 seconds. (SUSv3 speci-
fies at least 0.25 and not more than 0.5 seconds.) If duration is greater than 0, 0 bits
are transmitted for duration milliseconds. SUSv3 leaves this case unspecified; the
handling of a nonzero duration varies widely on other UNIX implementations (the
details described here are for glibc).

The tcdrain() function blocks until all output has been transmitted (i.e., until
the terminal output queue has been emptied).

The tcflush() function flushes (discards) the data in the terminal input queue,
the terminal output queue, or both queues (see Figure 62-1). Flushing the input
queue discards data that has been received by the terminal driver but not yet read
by any process. For example, an application can use tcflush() to discard terminal
type-ahead before prompting for a password. Flushing the output queue discards
data that has been written (passed to the terminal driver) but not yet transmitted to
the device. The queue_selector argument specifies one of the values shown in Table 62-4.

Note that the term flush is used in a different sense with tcflush() than when
talking about file I/O. For file I/O, flushing means forcing the output to be
transferred either user-space memory to the buffer cache in the case of the stdio
fflush(), or from the buffer cache to the disk, in the case of fsync(), fdatasync(),
and sync().

The tcflow() function controls the flow of data in either direction between the
computer and the terminal (or other remote device). The action argument is one of
the values shown in Table 62-5. The TCIOFF and TCION values are effective only if the
terminal is capable of interpreting STOP and START characters, in which case
these operations respectively cause the terminal to suspend and resume sending
data to the computer, respectively.

#include <termios.h>

int tcsendbreak(int fd, int duration);
int tcdrain(int fd);
int tcflush(int fd, int queue_selector);
int tcflow(int fd, int action);

All return 0 on success, or –1 on error

Table 62-4: Values for the tcflush() queue_selector argument

Value Description

TCIFLUSH Flush the input queue
TCOFLUSH Flush the output queue
TCIOFLUSH Flush both the input and the output queues
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62.9 Terminal Window Size

In a windowing environment, a screen-handling application needs to be able to
monitor the size of a terminal window, so that the screen can be redrawn appropri-
ately if the user modifies the window size. The kernel provides two pieces of sup-
port to allow this to happen:

A SIGWINCH signal is sent to the foreground process group after a change in the
terminal window size. By default, this signal is ignored.

At any time—usually following the receipt of a SIGWINCH signal—a process can use
the ioctl() TIOCGWINSZ operation to find out the current size of the terminal window.

The ioctl() TIOCGWINSZ operation is used as follows:

if (ioctl(fd, TIOCGWINSZ, &ws) == -1)
    errExit("ioctl");

The fd argument is a file descriptor referring to a terminal window. The final argu-
ment to ioctl() is a pointer to a winsize structure (defined in <sys/ioctl.h>), used to
return the terminal window size:

struct winsize {
    unsigned short ws_row;          /* Number of rows (characters) */
    unsigned short ws_col;          /* Number of columns (characters) */
    unsigned short ws_xpixel;       /* Horizontal size (pixels) */
    unsigned short ws_ypixel;       /* Vertical size (pixels) */
};

Like many other implementations, Linux doesn’t use the pixel-size fields of the
winsize structure.

Listing 62-5 demonstrates the use of the SIGWINCH signal and the ioctl() TIOCGWINSZ
operation. The following shows an example of the output produced when this pro-
gram is run under a window manager and the terminal window size is changed
three times:

$ ./demo_SIGWINCH
Caught SIGWINCH, new window size: 35 rows * 80 columns
Caught SIGWINCH, new window size: 35 rows * 73 columns
Caught SIGWINCH, new window size: 22 rows * 73 columns
Type Control-C to terminate program

Table 62-5: Values for the tcflush() action argument

Value Description

TCOOFF Suspend output to the terminal
TCOON Resume output to the terminal
TCIOFF Transmit a STOP character to the terminal
TCION Transmit a START character to the terminal
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Listing 62-5: Monitoring changes in the terminal window size

–––––––––––––––––––––––––––––––––––––––––––––––––––––– tty/demo_SIGWINCH.c

#include <signal.h>
#include <termios.h>
#include <sys/ioctl.h>
#include "tlpi_hdr.h"

static void
sigwinchHandler(int sig)
{
}

int
main(int argc, char *argv[])
{
    struct winsize ws;
    struct sigaction sa;

    sigemptyset(&sa.sa_mask);
    sa.sa_flags = 0;
    sa.sa_handler = sigwinchHandler;
    if (sigaction(SIGWINCH, &sa, NULL) == -1)
        errExit("sigaction");

    for (;;) {
        pause();                        /* Wait for SIGWINCH signal */

        if (ioctl(STDIN_FILENO, TIOCGWINSZ, &ws) == -1)
            errExit("ioctl");
        printf("Caught SIGWINCH, new window size: "
                "%d rows * %d columns\n", ws.ws_row, ws.ws_col);
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––– tty/demo_SIGWINCH.c

It is also possible to change the terminal driver’s notion of the window size by pass-
ing an initialized winsize structure in an ioctl() TIOCSWINSZ operation:

ws.ws_row = 40;
ws.ws_col = 100;
if (ioctl(fd, TIOCSWINSZ, &ws) == -1)
    errExit("ioctl");

If the new values in the winsize structure differ from the terminal driver’s current
notion of the terminal window size, two things happen:

The terminal driver data structures are updated using the values supplied in
the ws argument.

A SIGWINCH signal is sent to the foreground process group of the terminal.
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Note, however, that these events on their own are insufficient to change the actual
dimensions of the displayed window, which are controlled by software outside the
kernel (such as a window manager or a terminal emulator program).

Although not standardized in SUSv3, most UNIX implementations provide
access to the terminal window size using the ioctl() operations described in this section.

62.10 Terminal Identification

In Section 34.4, we described the ctermid() function, which returns the name of the
controlling terminal for a process (usually /dev/tty on UNIX systems). The func-
tions described in this section are also useful for identifying a terminal.

The isatty() function enables us to determine whether a file descriptor, fd, is
associated with a terminal (as opposed to some other file type).

The isatty() function is useful in editors and other screen-handling programs that
need to determine whether their standard input and output are directed to a terminal.

Given a file descriptor, the ttyname() function returns the name of the associ-
ated terminal device.

To find the name of the terminal, ttyname() uses the opendir() and readdir() func-
tions described in Section 18.8 to walk through the directories holding terminal
device names, looking at each directory entry until it finds one whose device ID (the
st_rdev field of the stat structure) matches that of the device referred to by the file
descriptor fd. Terminal device entries normally reside in two directories: /dev and
/dev/pts. The /dev directory contains entries for virtual consoles (e.g., /dev/tty1)
and BSD pseudoterminals. The /dev/pts directory contains entries for (System V-
style) pseudoterminal slave devices. (We describe pseudoterminals in Chapter 64.)

A reentrant version of ttyname() exists in the form of ttyname_r().
The tty(1) command, which displays the name of the terminal referred to

by its standard input, is the command-line analog of ttyname().

#include <unistd.h>

int isatty(int fd);

Returns true (1) if fd is associated with a terminal, otherwise false (0)

#include <unistd.h>

char *ttyname(int fd);

Returns pointer to (statically allocated) string containing
terminal name, or NULL on error
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62.11 Summary

On early UNIX systems, terminals were real hardware devices connected to a
computer via serial lines. Early terminals were not standardized, meaning that different
escape sequences were required to program the terminals produced by different
vendors. On modern workstations, such terminals have been superseded by bit-
mapped monitors running the X Window System. However, the ability to program
terminals is still required when dealing with virtual devices, such as virtual consoles
and terminal emulators (which employ pseudoterminals), and real devices connected
via serial lines.

Terminal settings (with the exception of the terminal window size) are main-
tained in a structure of type termios, which contains four bit-mask fields that control
various terminal settings and an array that defines the various special characters
interpreted by the terminal driver. The tcgetattr() and tcsetattr() functions allow a
program to retrieve and modify the terminal settings.

When performing input, the terminal driver can operate in two different
modes. In canonical mode, input is gathered into lines (terminated by one of the
line-delimiter characters) and line editing is enabled. By contrast, noncanonical
mode allows an application to read terminal input a character at a time, without need-
ing to wait for the user to type a line-delimiter character. Line editing is disabled in
noncanonical mode. Completion of a noncanonical mode read is controlled by the
MIN and TIME fields of the termios structure, which determine the minimum number
of characters to be read and a timeout to be applied to the read operation. We
described four distinct cases for the operation of noncanonical reads.

Historically, the Seventh Edition and BSD terminal drivers provided three
input modes—cooked, cbreak, and raw—which performed varying degrees of pro-
cessing of terminal input and output. Cbreak and raw modes can be emulated by
changing various fields within the termios structure.

A range of functions perform various other terminal operations. These include
changing the terminal line speed and performing line-control operations (generat-
ing a break condition, pausing until output has been transmitted, flushing terminal
input and output queues, and suspending or resuming transmission of data in either
direction between the terminal and the computer). Other functions allow us to check if
a given file descriptor refers to a terminal and to obtain the name of that terminal. The
ioctl() system call can be used to retrieve and modify the terminal window size recorded
by the kernel, and to perform a range of other terminal-related operations.

Further information

[Stevens, 1992] also describes terminal programming and goes into much more
detail on programming serial ports. Several good online resources discuss terminal
programming. Hosted at the LDP web site (http://www.tldp.org) are the Serial
HOWTO and the Text-terminal HOWTO, both by David S. Lawyer. Another useful
source of information is the Serial Programming Guide for POSIX Operating Systems
by Michael R. Sweet, available online at http://www.easysw.com/~mike/serial/.
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62.12 Exercises

62-1. Implement isatty(). (You may find it useful to read the description of tcgetattr() in
Section 62.2.)

62-2. Implement ttyname().

62-3. Implement the getpass() function described in Section 8.5. (The getpass() function
can obtain a file descriptor for the controlling terminal by opening /dev/tty.)

62-4. Write a program that displays information indicating whether the terminal
referred to by standard input is in canonical or noncanonical mode. If in
noncanonical mode, then display the values of TIME and MIN.
Terminals 1323





A L T E R N A T I V E  I / O  M O D E L S

This chapter discusses three alternatives to the conventional file I/O model that we
have employed in most programs shown in this book:

I/O multiplexing (the select() and poll() system calls);

signal-driven I/O; and

the Linux-specific epoll API.

63.1 Overview

Most of the programs that we have presented so far in this book employ an I/O
model under which a process performs I/O on just one file descriptor at a time,
and each I/O system call blocks until the data is transferred. For example, when
reading from a pipe, a read() call normally blocks if no data is currently present in
the pipe, and a write() call blocks if there is insufficient space in the pipe to hold the
data to be written. Similar behavior occurs when performing I/O on various other
types of files, including FIFOs and sockets.



Disk files are a special case. As described in Chapter 13, the kernel employs the
buffer cache to speed disk I/O requests. Thus, a write() to a disk returns as
soon as the requested data has been transferred to the kernel buffer cache,
rather than waiting until the data is written to disk (unless the O_SYNC flag was
specified when opening the file). Correspondingly, a read() transfers data from
the buffer cache to a user buffer, and if the required data is not in the buffer
cache, then the kernel puts the process to sleep while a disk read is performed.

The traditional blocking I/O model is sufficient for many applications, but not all.
In particular, some applications need to able to do one or both of the following:

Check whether I/O is possible on a file descriptor without blocking if it is not
possible.

Monitor multiple file descriptors to see if I/O is possible on any of them.

We have already encountered two techniques that can be used to partially address
these needs: nonblocking I/O and the use of multiple processes or threads.

We described nonblocking I/O in some detail in Sections 5.9 and 44.9. If we
place a file descriptor in nonblocking mode by enabling the O_NONBLOCK open file sta-
tus flag, then an I/O system call that can’t be immediately completed returns an
error instead of blocking. Nonblocking I/O can be employed with pipes, FIFOs,
sockets, terminals, pseudoterminals, and some other types of devices.

Nonblocking I/O allows us to periodically check (“poll”) whether I/O is possible
on a file descriptor. For example, we can make an input file descriptor nonblocking,
and then periodically perform nonblocking reads. If we need to monitor multiple file
descriptors, then we mark them all nonblocking, and poll each of them in turn.
However, polling in this manner is usually undesirable. If polling is done only infre-
quently, then the latency before an application responds to an I/O event may be
unacceptably long; on the other hand, polling in a tight loop wastes CPU time.

In this chapter, we use the word poll in two distinct ways. One of these is as the
name of the I/O multiplexing system call, poll(). In the other use, we mean
“performing a nonblocking check on the status of a file descriptor.”

If we don’t want a process to block when performing I/O on a file descriptor, we
can instead create a new process to perform the I/O. The parent process can then
carry on to perform other tasks, while the child process blocks until the I/O is
complete. If we need to handle I/O on multiple file descriptors, we can create one
child for each descriptor. The problems with this approach are expense and com-
plexity. Creating and maintaining processes places a load on the system, and, typi-
cally, the child processes will need to use some form of IPC to inform the parent
about the status of I/O operations.

Using multiple threads instead of processes is less demanding of resources, but
the threads will probably still need to communicate information to one another
about the status of I/O operations, and the programming can be complex, especially
if we are using thread pools to minimize the number of threads used to handle
large numbers of simultaneous clients. (One place where threads can be particularly
useful is if the application needs to call a third-party library that performs blocking
I/O. An application can avoid blocking in this case by making the library call in a
separate thread.)
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Because of the limitations of both nonblocking I/O and the use of multiple
threads or processes, one of the following alternatives is often preferable:

I/O multiplexing allows a process to simultaneously monitor multiple file descrip-
tors to find out whether I/O is possible on any of them. The select() and poll()
system calls perform I/O multiplexing.

Signal-driven I/O is a technique whereby a process requests that the kernel send
it a signal when input is available or data can be written on a specified file
descriptor. The process can then carry on performing other activities, and is
notified when I/O becomes possible via receipt of the signal. When monitor-
ing large numbers of file descriptors, signal-driven I/O provides significantly
better performance than select() and poll().

The epoll API is a Linux-specific feature that first appeared in Linux 2.6. Like
the I/O multiplexing APIs, the epoll API allows a process to monitor multiple
file descriptors to see if I/O is possible on any of them. Like signal-driven I/O,
the epoll API provides much better performance when monitoring large num-
bers of file descriptors.

In the remainder of this chapter, we’ll generally frame the discussion of the
above techniques in terms of processes. However, these techniques can also be
employed in multithreaded applications.

In effect, I/O multiplexing, signal-driven I/O, and epoll are all methods of achiev-
ing the same result—monitoring one or, commonly, several file descriptors simulta-
neously to see if they are ready to perform I/O (to be precise, to see whether an I/O
system call could be performed without blocking). The transition of a file descrip-
tor into a ready state is triggered by some type of I/O event, such as the arrival of
input, the completion of a socket connection, or the availability of space in a previ-
ously full socket send buffer after TCP transmits queued data to the socket peer.
Monitoring multiple file descriptors is useful in applications such as network serv-
ers that must simultaneously monitor multiple client sockets, or applications that
must simultaneously monitor input from a terminal and a pipe or socket.

Note that none of these techniques performs I/O. They merely tell us that a
file descriptor is ready. Some other system call must then be used to actually per-
form the I/O.

One I/O model that we don’t describe in this chapter is POSIX asynchronous
I/O (AIO). POSIX AIO allows a process to queue an I/O operation to a file
and then later be notified when the operation is complete. The advantage of
POSIX AIO is that the initial I/O call returns immediately, so that the process
is not tied up waiting for data to be transferred to the kernel or for the opera-
tion to complete. This allows the process to perform other tasks in parallel
with the I/O (which may include queuing further I/O requests). For certain
types of applications, POSIX AIO can provide useful performance benefits.
Currently, Linux provides a threads-based implementation of POSIX AIO
within glibc. At the time of writing, work is ongoing toward providing an in-ker-
nel implementation of POSIX AIO, which should provide better scaling per-
formance. POSIX AIO is described in [Gallmeister, 1995] and [Robbins &
Robbins, 2003].
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Which technique?

During the course of this chapter, we’ll consider the reasons we may choose one of
these techniques rather than another. In the meantime, we summarize a few points:

The select() and poll() system calls are long-standing interfaces that have been
present on UNIX systems for many years. Compared to the other techniques,
their primary advantage is portability. Their main disadvantage is that they
don’t scale well when monitoring large numbers (hundreds or thousands) of
file descriptors.

The key advantage of the epoll API is that it allows an application to efficiently
monitor large numbers of file descriptors. Its primary disadvantage is that it is
a Linux-specific API.

Some other UNIX implementations provide (nonstandard) mechanisms simi-
lar to epoll. For example, Solaris provides the special /dev/poll file (described
in the Solaris poll(7d) manual page), and some of the BSDs provide the kqueue
API (which provides a more general-purpose monitoring facility than epoll).
[Stevens et al., 2004] briefly describes these two mechanisms; a longer discus-
sion of kqueue can be found in [Lemon, 2001].

Like epoll, signal-driven I/O allows an application to efficiently monitor large
numbers of file descriptors. However, epoll provides a number of advantages
over signal-driven I/O:

– We avoid the complexities of dealing with signals.

– We can specify the kind of monitoring that we want to perform (e.g., ready
for reading or ready for writing).

– We can select either level-triggered or edge-triggered notification (described
in Section 63.1.1).

Furthermore, taking full advantage of signal-driven I/O requires the use of
nonportable, Linux-specific features, and if we do this, signal-driven I/O is no
more portable than epoll.

Because, on the one hand, select() and poll() are more portable, while signal-driven
I/O and epoll deliver better performance, for some applications, it can be worth-
while writing an abstract software layer for monitoring file descriptor events. With
such a layer, portable programs can employ epoll (or a similar API) on systems that
provide it, and fall back to the use of select() or poll() on other systems.

The libevent library is a software layer that provides an abstraction for monitor-
ing file descriptor events. It has been ported to a number of UNIX systems. As
its underlying mechanism, libevent can (transparently) employ any of the tech-
niques described in this chapter: select(), poll(), signal-driven I/O, or epoll, as
well as the Solaris specific /dev/poll interface or the BSD kqueue interface. (Thus,
libevent also serves as an example of how to use each of these techniques.) Written
by Niels Provos, libevent is available at http://monkey.org/~provos/libevent/.
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63.1.1 Level-Triggered and Edge-Triggered Notification
Before discussing the various alternative I/O mechanisms in detail, we need to dis-
tinguish two models of readiness notification for a file descriptor:

Level-triggered notification: A file descriptor is considered to be ready if it is
possible to perform an I/O system call without blocking.

Edge-triggered notification: Notification is provided if there is I/O activity (e.g.,
new input) on a file descriptor since it was last monitored.

Table 63-1 summarizes the notification models employed by I/O multiplexing,
signal-driven I/O, and epoll. The epoll API differs from the other two I/O models in
that it can employ both level-triggered notification (the default) and edge-triggered
notification.

Details of the differences between these two notification models will become
clearer during the course of the chapter. For now, we describe how the choice of
notification model affects the way we design a program.

When we employ level-triggered notification, we can check the readiness of a
file descriptor at any time. This means that when we determine that a file descriptor
is ready (e.g., it has input available), we can perform some I/O on the descriptor, and
then repeat the monitoring operation to check if the descriptor is still ready (e.g., it
still has more input available), in which case we can perform more I/O, and so on. In
other words, because the level-triggered model allows us to repeat the I/O moni-
toring operation at any time, it is not necessary to perform as much I/O as possible
(e.g., read as many bytes as possible) on the file descriptor (or even perform any I/O
at all) each time we are notified that a file descriptor is ready.

By contrast, when we employ edge-triggered notification, we receive notifica-
tion only when an I/O event occurs. We don’t receive any further notification until
another I/O event occurs. Furthermore, when an I/O event is notified for a file
descriptor, we usually don’t know how much I/O is possible (e.g., how many bytes
are available for reading). Therefore, programs that employ edge-triggered notifi-
cation are usually designed according to the following rules:

After notification of an I/O event, the program should—at some point—perform
as much I/O as possible (e.g., read as many bytes as possible) on the corre-
sponding file descriptor. If the program fails to do this, then it might miss the
opportunity to perform some I/O, because it would not be aware of the need
to operate on the file descriptor until another I/O event occurred. This could
lead to spurious data loss or blockages in a program. We said “at some point,”
because sometimes it may not be desirable to perform all of the I/O immediately
after we determine that the file descriptor is ready. The problem is that we may

Table 63-1: Use of level-triggered and edge-triggered notification models

I/O model Level-triggered? Edge-triggered?

select(), poll() •
Signal-driven I/O •
epoll • •
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starve other file descriptors of attention if we perform a large amount of I/O
on one file descriptor. We consider this point in more detail when we describe
the edge-triggered notification model for epoll in Section 63.4.6.

If the program employs a loop to perform as much I/O as possible on the file
descriptor, and the descriptor is marked as blocking, then eventually an I/O sys-
tem call will block when no more I/O is possible. For this reason, each monitored
file descriptor is normally placed in nonblocking mode, and after notification
of an I/O event, I/O operations are performed repeatedly until the relevant
system call (e.g., read() or write()) fails with the error EAGAIN or EWOULDBLOCK.

63.1.2 Employing Nonblocking I/O with Alternative I/O Models
Nonblocking I/O (the O_NONBLOCK flag) is often used in conjunction with the I/O
models described in this chapter. Some examples of why this can be useful are the
following:

As explained in the previous section, nonblocking I/O is usually employed in con-
junction with I/O models that provide edge-triggered notification of I/O events.

If multiple processes (or threads) are performing I/O on the same open file
descriptions, then, from a particular process’s point of view, a descriptor’s
readiness may change between the time the descriptor was notified as being
ready and the time of the subsequent I/O call. Consequently, a blocking I/O call
could block, thus preventing the process from monitoring other file descriptors.
(This can occur for all of the I/O models that we describe in this chapter, regard-
less of whether they employ level-triggered or edge-triggered notification.)

Even after a level-triggered API such as select() or poll() informs us that a file
descriptor for a stream socket is ready for writing, if we write a large enough
block of data in a single write() or send(), then the call will nevertheless block.

In rare cases, level-triggered APIs such as select() and poll() can return spurious
readiness notifications—they can falsely inform us that a file descriptor is ready.
This could be caused by a kernel bug or be expected behavior in an uncom-
mon scenario.

Section 16.6 of [Stevens et al., 2004] describes one example of spurious readi-
ness notifications on BSD systems for a listening socket. If a client connects to
a server’s listening socket and then resets the connection, a select() performed
by the server between these two events will indicate the listening socket as
being readable, but a subsequent accept() that is performed after the client’s
reset will block.

63.2 I/O Multiplexing

I/O multiplexing allows us to simultaneously monitor multiple file descriptors to
see if I/O is possible on any of them. We can perform I/O multiplexing using
either of two system calls with essentially the same functionality. The first of these,
select(), appeared along with the sockets API in BSD. This was historically the more
widespread of the two system calls. The other system call, poll(), appeared in System V.
Both select() and poll() are nowadays required by SUSv3.
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We can use select() and poll() to monitor file descriptors for regular files, termi-
nals, pseudoterminals, pipes, FIFOs, sockets, and some types of character devices.
Both system calls allow a process either to block indefinitely waiting for file descrip-
tors to become ready or to specify a timeout on the call.

63.2.1 The select() System Call
The select() system call blocks until one or more of a set of file descriptors becomes
ready.

The nfds, readfds, writefds, and exceptfds arguments specify the file descriptors that
select() is to monitor. The timeout argument can be used to set an upper limit on the
time for which select() will block. We describe each of these arguments in detail below.

In the prototype for select() shown above, we include <sys/time.h> because that
was the header specified in SUSv2, and some UNIX implementations require
this header. (The <sys/time.h> header is present on Linux, and including it
does no harm.)

File descriptor sets

The readfds, writefds, and exceptfds arguments are pointers to file descriptor sets, repre-
sented using the data type fd_set. These arguments are used as follows:

readfds is the set of file descriptors to be tested to see if input is possible;

writefds is the set of file descriptors to be tested to see if output is possible; and

exceptfds is the set of file descriptors to be tested to see if an exceptional condi-
tion has occurred.

The term exceptional condition is often misunderstood to mean that some sort of
error condition has arisen on the file descriptor. This is not the case. An exceptional
condition occurs in just two circumstances on Linux (other UNIX implementations
are similar):

A state change occurs on a pseudoterminal slave connected to a master that is
in packet mode (Section 64.5).

Out-of-band data is received on a stream socket (Section 61.13.1).

Typically, the fd_set data type is implemented as a bit mask. However, we don’t
need to know the details, since all manipulation of file descriptor sets is done via
four macros: FD_ZERO(), FD_SET(), FD_CLR(), and FD_ISSET().

#include <sys/time.h>         /* For portability */
#include <sys/select.h>

int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
           struct timeval *timeout);

Returns number of ready file descriptors, 0 on timeout, or –1 on error
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These macros operate as follows:

FD_ZERO() initializes the set pointed to by fdset to be empty.

FD_SET() adds the file descriptor fd to the set pointed to by fdset.

FD_CLR() removes the file descriptor fd from the set pointed to by fdset.

FD_ISSET() returns true if the file descriptor fd is a member of the set pointed to
by fdset.

A file descriptor set has a maximum size, defined by the constant FD_SETSIZE. On
Linux, this constant has the value 1024. (Other UNIX implementations have similar
values for this limit.)

Even though the FD_* macros are operating on user-space data structures, and
the kernel implementation of select() can handle descriptor sets with larger
sizes, glibc provides no simple way of modifying the definition of FD_SETSIZE. If
we want to change this limit, we must modify the definition in the glibc header
files. However, for reasons that we describe later in this chapter, if we need to
monitor large numbers of descriptors, then using epoll is probably preferable
to the use of select().

The readfds, writefds, and exceptfds arguments are all value-result. Before the call to
select(), the fd_set structures pointed to by these arguments must be initialized
(using FD_ZERO() and FD_SET()) to contain the set of file descriptors of interest. The
select() call modifies each of these structures so that, on return, they contain the set
of file descriptors that are ready. (Since these structures are modified by the call,
we must ensure that we reinitialize them if we are repeatedly calling select() from
within a loop.) The structures can then be examined using FD_ISSET().

If we are not interested in a particular class of events, then the corresponding
fd_set argument can be specified as NULL. We say more about the precise meaning of
each of the three event types in Section 63.2.3.

The nfds argument must be set one greater than the highest file descriptor
number included in any of the three file descriptor sets. This argument allows
select() to be more efficient, since the kernel then knows not to check whether file
descriptor numbers higher than this value are part of each file descriptor set.

#include <sys/select.h>

void FD_ZERO(fd_set *fdset);
void FD_SET(int fd, fd_set *fdset);
void FD_CLR(int fd, fd_set *fdset);

int FD_ISSET(int fd, fd_set *fdset);

Returns true (1) if fd is in fdset, or false (0) otherwise
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The timeout argument

The timeout argument controls the blocking behavior of select(). It can be specified
either as NULL, in which case select() blocks indefinitely, or as a pointer to a timeval
structure:

struct timeval {
    time_t      tv_sec;         /* Seconds */
    suseconds_t tv_usec;        /* Microseconds (long int) */
};

If both fields of timeout are 0, then select() doesn’t block; it simply polls the specified
file descriptors to see which ones are ready and returns immediately. Otherwise,
timeout specifies an upper limit on the time for which select() is to wait.

Although the timeval structure affords microsecond precision, the accuracy of
the call is limited by the granularity of the software clock (Section 10.6). SUSv3
specifies that the timeout is rounded upward if it is not an exact multiple of this
granularity.

SUSv3 requires that the maximum permissible timeout interval be at least 31 days.
Most UNIX implementations allow a considerably higher limit. Since Linux/
x86-32 uses a 32-bit integer for the time_t type, the upper limit is many years.

When timeout is NULL, or points to a structure containing nonzero fields, select()
blocks until one of the following occurs:

at least one of the file descriptors specified in readfds, writefds, or exceptfds
becomes ready;

the call is interrupted by a signal handler; or

the amount of time specified by timeout has passed.

In older UNIX implementations that lacked a sleep call with subsecond preci-
sion (e.g., nanosleep()), select() was used to emulate this functionality by specifying
nfds as 0; readfds, writefds, and exceptfds as NULL; and the desired sleep interval
in timeout.

On Linux, if select() returns because one or more file descriptors became ready, and
if timeout was non-NULL, then select() updates the structure to which timeout points to
indicate how much time remained until the call would have timed out. However,
this behavior is implementation-specific. SUSv3 also allows the possibility that an
implementation leaves the structure pointed to by timeout unchanged, and most
other UNIX implementations don’t modify this structure. Portable applications
that employ select() within a loop should always ensure that the structure pointed to
by timeout is initialized before each select() call, and should ignore the information
returned in the structure after the call.

SUSv3 states that the structure pointed to by timeout may be modified only on a
successful return from select(). However, on Linux, if select() is interrupted by a signal
handler (so that it fails with the error EINTR), then the structure is modified to indicate
the time remaining until a timeout would have occurred (i.e., like a successful return).
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If we use the Linux-specific personality() system call to set a personality that
includes the STICKY_TIMEOUTS personality bit, then select() doesn’t modify the
structure pointed to by timeout.

Return value from select()

As its function result, select() returns one of the following:

A return value of –1 indicates that an error occurred. Possible errors include
EBADF and EINTR. EBADF indicates that one of the file descriptors in readfds, writefds,
or exceptfds is invalid (e.g., not currently open). EINTR, indicates that the call was
interrupted by a signal handler. (As noted in Section 21.5, select() is never auto-
matically restarted if interrupted by a signal handler.)

A return value of 0 means that the call timed out before any file descriptor became
ready. In this case, each of the returned file descriptor sets will be empty.

A positive return value indicates that one or more file descriptors is ready. The
return value is the number of ready descriptors. In this case, each of the
returned file descriptor sets must be examined (using FD_ISSET()) in order to
find out which I/O events occurred. If the same file descriptor is specified in
more than one of readfds, writefds, and exceptfds, it is counted multiple times if it
is ready for more than one event. In other words, select() returns the total num-
ber of file descriptors marked as ready in all three returned sets.

Example program

The program in Listing 63-1 demonstrates the use of select(). Using command-line
arguments, we can specify the timeout and the file descriptors that we wish to moni-
tor. The first command-line argument specifies the timeout for select(), in seconds. If
a hyphen (-) is specified here, then select() is called with a timeout of NULL, meaning
block indefinitely. Each of the remaining command-line arguments specifies the
number of a file descriptor to be monitored, followed by letters indicating the opera-
tions for which the descriptor is to be checked. The letters we can specify here are
r (ready for read) and w (ready for write).

Listing 63-1: Using select() to monitor multiple file descriptors

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– altio/t_select.c

#include <sys/time.h>
#include <sys/select.h>
#include "tlpi_hdr.h"

static void
usageError(const char *progName)
{
    fprintf(stderr, "Usage: %s {timeout|-} fd-num[rw]...\n", progName);
    fprintf(stderr, "    - means infinite timeout; \n");
    fprintf(stderr, "    r = monitor for read\n");
    fprintf(stderr, "    w = monitor for write\n\n");
    fprintf(stderr, "    e.g.: %s - 0rw 1w\n", progName);
    exit(EXIT_FAILURE);
}
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int
main(int argc, char *argv[])
{
    fd_set readfds, writefds;
    int ready, nfds, fd, numRead, j;
    struct timeval timeout;
    struct timeval *pto;
    char buf[10];                       /* Large enough to hold "rw\0" */

    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageError(argv[0]);

    /* Timeout for select() is specified in argv[1] */

    if (strcmp(argv[1], "-") == 0) {
        pto = NULL;                     /* Infinite timeout */
    } else {
        pto = &timeout;
        timeout.tv_sec = getLong(argv[1], 0, "timeout");
        timeout.tv_usec = 0;            /* No microseconds */
    }

    /* Process remaining arguments to build file descriptor sets */

    nfds = 0;
    FD_ZERO(&readfds);
    FD_ZERO(&writefds);

    for (j = 2; j < argc; j++) {
        numRead = sscanf(argv[j], "%d%2[rw]", &fd, buf);
        if (numRead != 2)
            usageError(argv[0]);
        if (fd >= FD_SETSIZE)
            cmdLineErr("file descriptor exceeds limit (%d)\n", FD_SETSIZE);

        if (fd >= nfds)
            nfds = fd + 1;              /* Record maximum fd + 1 */
        if (strchr(buf, 'r') != NULL)
            FD_SET(fd, &readfds);
        if (strchr(buf, 'w') != NULL)
            FD_SET(fd, &writefds);
    }

    /* We've built all of the arguments; now call select() */

    ready = select(nfds, &readfds, &writefds, NULL, pto);
                                        /* Ignore exceptional events */
    if (ready == -1)
        errExit("select");

    /* Display results of select() */

    printf("ready = %d\n", ready);
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    for (fd = 0; fd < nfds; fd++)
        printf("%d: %s%s\n", fd, FD_ISSET(fd, &readfds) ? "r" : "",
                FD_ISSET(fd, &writefds) ? "w" : "");

    if (pto != NULL)
        printf("timeout after select(): %ld.%03ld\n",
               (long) timeout.tv_sec, (long) timeout.tv_usec / 10000);
    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––– altio/t_select.c

In the following shell session log, we demonstrate the use of the program in  List-
ing 63-1. In the first example, we make a request to monitor file descriptor 0 for
input with a 10-second timeout:

$ ./t_select 10 0r
Press Enter, so that a line of input is available on file descriptor 0
ready = 1
0: r
timeout after select(): 8.003
$                                         Next shell prompt is displayed

The above output shows us that select() determined that one file descriptor was
ready. This was file descriptor 0, which was ready for reading. We can also see that
the timeout was modified. The final line of output, consisting of just the shell $
prompt, appeared because the t_select program didn’t read the newline character
that made file descriptor 0 ready, and so that character was read by the shell, which
responded by printing another prompt.

In the next example, we again monitor file descriptor 0 for input, but this time
with a timeout of 0 seconds:

$ ./t_select 0 0r
ready = 0
timeout after select(): 0.000

The select() call returned immediately, and found no file descriptor was ready.
In the next example, we monitor two file descriptors: descriptor 0, to see if

input is available, and descriptor 1, to see if output is possible. In this case, we specify
the timeout as NULL (the first command-line argument is a hyphen), meaning infinity:

$ ./t_select - 0r 1w
ready = 1
0:
1: w

The select() call returned immediately, informing us that output was possible on file
descriptor 1.
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63.2.2 The poll() System Call
The poll() system call performs a similar task to select(). The major difference
between the two system calls lies in how we specify the file descriptors to be moni-
tored. With select(), we provide three sets, each marked to indicate the file descriptors
of interest. With poll(), we provide a list of file descriptors, each marked with the set of
events of interest.

The fds argument and the pollfd array (nfds) specify the file descriptors that poll() is
to monitor. The timeout argument can be used to set an upper limit on the time for
which poll() will block. We describe each of these arguments in detail below.

The pollfd array

The fds argument lists the file descriptors to be monitored by poll(). This argument
is an array of pollfd structures, defined as follows:

struct pollfd {
    int   fd;               /* File descriptor */
    short events;           /* Requested events bit mask */
    short revents;          /* Returned events bit mask */
};

The nfds arguments specifies the number of items in the fds array. The nfds_t data
type used to type the nfds argument is an unsigned integer type.

The events and revents fields of the pollfd structure are bit masks. The caller ini-
tializes events to specify the events to be monitored for the file descriptor fd. Upon
return from poll(), revents is set to indicate which of those events actually occurred
for this file descriptor.

Table 63-2 lists the bits that may appear in the events and revents fields. The first
group of bits in this table (POLLIN, POLLRDNORM, POLLRDBAND, POLLPRI, and POLLRDHUP) are
concerned with input events. The next group of bits (POLLOUT, POLLWRNORM, and
POLLWRBAND) are concerned with output events. The third group of bits (POLLERR,
POLLHUP, and POLLNVAL) are set in the revents field to return additional information
about the file descriptor. If specified in the events field, these three bits are ignored.
The final bit (POLLMSG) is unused by poll() on Linux.

On UNIX implementations providing STREAMS devices, POLLMSG indicates
that a message containing a SIGPOLL signal has reached the head of the stream.
POLLMSG is unused on Linux, because Linux doesn’t implement STREAMS.

#include <poll.h>

int poll(struct pollfd fds[], nfds_t nfds, int timeout);

Returns number of ready file descriptors, 0 on timeout, or –1 on error
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It is permissible to specify events as 0 if we are not interested in events on a particular
file descriptor. Furthermore, specifying a negative value for the fd field (e.g., negating
its value if nonzero) causes the corresponding events field to be ignored and the
revents field always to be returned as 0. Either of these techniques can be used to
(perhaps temporarily) disable monitoring of a single file descriptor, without need-
ing to rebuild the entire fds list.

Note the following further points regarding the Linux implementation of poll():

Although defined as separate bits, POLLIN and POLLRDNORM are synonymous.

Although defined as separate bits, POLLOUT and POLLWRNORM are synonymous.

POLLRDBAND is generally unused; that is, it is ignored in the events field and not set
in revents.

The only place where POLLRDBAND is set is in code implementing the (obsolete)
DECnet networking protocol.

Although set for sockets in certain circumstances, POLLWRBAND conveys no useful
information. (There are no circumstances in which POLLWRBAND is set when POLLOUT
and POLLWRNORM are not also set.)

POLLRDBAND and POLLWRBAND are meaningful on implementations that provide
System V STREAMS (which Linux does not). Under STREAMS, a message can
be assigned a nonzero priority, and such messages are queued to the receiver
in decreasing order of priority, in a band ahead of normal (priority 0) messages.

The _XOPEN_SOURCE feature test macro must be defined in order to obtain the
definitions of the constants POLLRDNORM, POLLRDBAND, POLLWRNORM, and POLLWRBAND
from <poll.h>.

Table 63-2: Bit-mask values for events and revents fields of the pollfd structure

Bit Input in
events?

Returned
 in revents?

Description

POLLIN • • Data other than high-priority data can be read 
POLLRDNORM • • Equivalent to POLLIN
POLLRDBAND • • Priority data can be read (unused on Linux)
POLLPRI • • High-priority data can be read 
POLLRDHUP • • Shutdown on peer socket

POLLOUT • • Normal data can be written
POLLWRNORM • • Equivalent to POLLOUT
POLLWRBAND • • Priority data can be written

POLLERR • An error has occurred
POLLHUP • A hangup has occurred
POLLNVAL • File descriptor is not open

POLLMSG Unused on Linux (and unspecified in SUSv3)
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POLLRDHUP is a Linux-specific flag available since kernel 2.6.17. In order to obtain
this definition from <poll.h>, the _GNU_SOURCE feature test macro must be defined.

POLLNVAL is returned if the specified file descriptor was closed at the time of the
poll() call.

Summarizing the above points, the poll() flags of real interest are POLLIN, POLLOUT,
POLLPRI, POLLRDHUP, POLLHUP, and POLLERR. We consider the meanings of these flags in
greater detail in Section 63.2.3.

The timeout argument

The timeout argument determines the blocking behavior of poll() as follows:

If timeout equals –1, block until one of the file descriptors listed in the fds array
is ready (as defined by the corresponding events field) or a signal is caught.

If timeout equals 0, do not block—just perform a check to see which file descrip-
tors are ready.

If timeout is greater than 0, block for up to timeout milliseconds, until one of the
file descriptors in fds is ready, or until a signal is caught.

As with select(), the accuracy of timeout is limited by the granularity of the software
clock (Section 10.6), and SUSv3 specifies that timeout is always rounded upward if it
is not an exact multiple of the clock granularity.

Return value from poll()

As its function result, poll() returns one of the following:

A return value of –1 indicates that an error occurred. One possible error is
EINTR, indicating that the call was interrupted by a signal handler. (As noted in
Section 21.5, poll() is never automatically restarted if interrupted by a signal
handler.)

A return of 0 means that the call timed out before any file descriptor became
ready.

A positive return value indicates that one or more file descriptors are ready.
The returned value is the number of pollfd structures in the fds array that have a
nonzero revents field.

Note the slightly different meaning of a positive return value from select() and
poll(). The select() system call counts a file descriptor multiple times if it occurs
in more than one returned file descriptor set. The poll() system call returns a
count of ready file descriptors, and a file descriptor is counted only once, even
if multiple bits are set in the corresponding revents field.

Example program

Listing 63-2 provides a simple demonstration of the use of poll(). This program
creates a number of pipes (each pipe uses a consecutive pair of file descriptors),
writes bytes to the write ends of randomly selected pipes, and then performs a
poll() to see which pipes have data available for reading.
Al ternat ive I/O Models 1339



The following shell session shows an example of what we see when running this
program. The command-line arguments to the program specify that ten pipes
should be created, and writes should be made to three randomly selected pipes.

$ ./poll_pipes 10 3
Writing to fd:   4 (read fd:   3)
Writing to fd:  14 (read fd:  13)
Writing to fd:  14 (read fd:  13)
poll() returned: 2
Readable:   3
Readable:  13

From the above output, we can see that poll() found two pipes had data available
for reading.

Listing 63-2: Using poll() to monitor multiple file descriptors

––––––––––––––––––––––––––––––––––––––––––––––––––––––– altio/poll_pipes.c

#include <time.h>
#include <poll.h>
#include "tlpi_hdr.h"

int
main(int argc, char *argv[])
{
    int numPipes, j, ready, randPipe, numWrites;
    int (*pfds)[2];                     /* File descriptors for all pipes */
    struct pollfd *pollFd;

    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s num-pipes [num-writes]\n", argv[0]);

    /* Allocate the arrays that we use. The arrays are sized according
       to the number of pipes specified on command line */

    numPipes = getInt(argv[1], GN_GT_0, "num-pipes");

    pfds = calloc(numPipes, sizeof(int [2]));
    if (pfds == NULL)
        errExit("malloc");
    pollFd = calloc(numPipes, sizeof(struct pollfd));
    if (pollFd == NULL)
        errExit("malloc");

    /* Create the number of pipes specified on command line */

    for (j = 0; j < numPipes; j++)
        if (pipe(pfds[j]) == -1)
            errExit("pipe %d", j);

    /* Perform specified number of writes to random pipes */

    numWrites = (argc > 2) ? getInt(argv[2], GN_GT_0, "num-writes") : 1;
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    srandom((int) time(NULL));
    for (j = 0; j < numWrites; j++) {
        randPipe = random() % numPipes;
        printf("Writing to fd: %3d (read fd: %3d)\n",
                pfds[randPipe][1], pfds[randPipe][0]);
        if (write(pfds[randPipe][1], "a", 1) == -1)
            errExit("write %d", pfds[randPipe][1]);
    }

    /* Build the file descriptor list to be supplied to poll(). This list
       is set to contain the file descriptors for the read ends of all of
       the pipes. */

    for (j = 0; j < numPipes; j++) {
        pollFd[j].fd = pfds[j][0];
        pollFd[j].events = POLLIN;
    }

    ready = poll(pollFd, numPipes, -1);         /* Nonblocking */
    if (ready == -1)
        errExit("poll");

    printf("poll() returned: %d\n", ready);

    /* Check which pipes have data available for reading */

    for (j = 0; j < numPipes; j++)
        if (pollFd[j].revents & POLLIN)
            printf("Readable: %d %3d\n", j, pollFd[j].fd);

    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––– altio/poll_pipes.c

63.2.3 When Is a File Descriptor Ready?
Correctly using select() and poll() requires an understanding of the conditions
under which a file descriptor indicates as being ready. SUSv3 says that a file
descriptor (with O_NONBLOCK clear) is considered to be ready if a call to an I/O func-
tion would not block, regardless of whether the function would actually transfer data.
The key point is italicized: select() and poll() tell us whether an I/O operation would
not block, rather than whether it would successfully transfer data. In this light, let
us consider how these system calls operate for different types of file descriptors.
We show this information in tables containing two columns:

The select() column indicates whether a file descriptor is marked as readable (r),
writable (w), or having an exceptional condition (x).

The poll() column indicates the bit(s) returned in the revents field. In these
tables, we omit mention of POLLRDNORM, POLLWRNORM, POLLRDBAND, and POLLWRBAND.
Although some of these flags may be returned in revents in various circum-
stances (if they are specified in events), they convey no useful information
beyond that provided by POLLIN, POLLOUT, POLLHUP, and POLLERR.
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Regular files

File descriptors that refer to regular files are always marked as readable and writ-
able by select(), and returned with POLLIN and POLLOUT set in revents for poll(), for the
following reasons:

A read() will always immediately return data, end-of-file, or an error (e.g., the
file was not opened for reading).

A write() will always immediately transfer data or fail with some error.

SUSv3 says that select() should also mark a descriptor for a regular file as having
an exceptional condition (though this has no obvious meaning for regular
files). Only some implementations do this; Linux is one of those that do not.

Terminals and pseudoterminals

Table 63-3 summarizes the behavior of select() and poll() for terminals and
pseudoterminals (Chapter 64).

When one half of a pseudoterminal pair is closed, the revents setting returned
by poll() for the other half of the pair depends on the implementation. On Linux, at
least the POLLHUP flag is set. However, other implementations return various flags to
indicate this event—for example, POLLHUP, POLLERR, or POLLIN. Furthermore, on some
implementations, the flags that are set depend on whether it is the master or the
slave device that is being monitored.

Pipes and FIFOs

Table 63-4 summarizes the details for the read end of a pipe or FIFO. The Data in
pipe? column indicates whether the pipe has at least 1 byte of data available for read-
ing. In this table, we assume that POLLIN was specified in the events field for poll().

On some other UNIX implementations, if the write end of a pipe is closed,
then, instead of returning with POLLHUP set, poll() returns with the POLLIN bit set
(since a read() will return immediately with end-of-file). Portable applications
should check to see if either bit is set in order to know if a read() will block.

Table 63-5 summarizes the details for the write end of a pipe. In this table, we
assume that POLLOUT was specified in the events field for poll(). The Space for PIPE_BUF
bytes? column indicates whether the pipe has room to atomically write PIPE_BUF bytes
without blocking. This is the criterion on which Linux considers a pipe ready for
writing. Some other UNIX implementations use the same criterion; others con-
sider a pipe writable if even a single byte can be written. (In Linux 2.6.10 and ear-
lier, the capacity of a pipe is the same as PIPE_BUF. This means that a pipe is
considered unwritable if it contains even a single byte of data.)

Table 63-3: select() and poll() indications for terminals and pseudoterminals

Condition or event select() poll()

Input available r POLLIN

Output possible w POLLOUT

After close() by pseudoterminal peer rw See text
Pseudoterminal master in packet mode detects slave state change x POLLPRI
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On some other UNIX implementations, if the read end of a pipe is closed,
then, instead of returning with POLLERR set, poll() returns with either the POLLOUT bit
or the POLLHUP bit set. Portable applications need to check to see if any of these bits
is set to determine if a write() will block.

Sockets

Table 63-6 summarizes the behavior of select() and poll() for sockets. For the poll()
column, we assume that events was specified as (POLLIN | POLLOUT | POLLPRI). For the
select() column, we assume that the file descriptor is being tested to see if input is
possible, output is possible, or an exceptional condition occurred (i.e., the file
descriptor is specified in all three sets passed to select()). This table covers just the
common cases, not all possible scenarios.

The Linux poll() behavior for UNIX domain sockets after a peer close() differs
from that shown in Table 63-6. As well as the other flags, poll() additionally
returns POLLHUP in revents.

The Linux-specific POLLRDHUP flag (available since Linux 2.6.17) needs a little further
explanation. This flag—actually in the form of EPOLLRDHUP—is designed primarily for
use with the edge-triggered mode of the epoll API (Section 63.4). It is returned
when the remote end of a stream socket connection has shut down the writing half

Table 63-4: select() and poll() indications for the read end of a pipe or FIFO

Condition or event
select() poll()

Data in pipe? Write end open?

no no r POLLHUP

yes yes r POLLIN

yes no r POLLIN | POLLHUP

Table 63-5: select() and poll() indications for the write end of a pipe or FIFO

Condition or event
select() poll()

Space for PIPE_BUF bytes? Read end open?

no no w POLLERR

yes yes w POLLOUT

yes no w POLLOUT | POLLERR

Table 63-6: select() and poll() indications for sockets

Condition or event select() poll()

Input available r POLLIN

Output possible w POLLOUT

Incoming connection established on listening socket r POLLIN

Out-of-band data received (TCP only) x POLLPRI

Stream socket peer closed connection or executed 
shutdown(SHUT_WR)

rw POLLIN | POLLOUT | 
POLLRDHUP
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of the connection. The use of this flag allows an application that uses the epoll edge-
triggered interface to employ simpler code to recognize a remote shutdown. (The
alternative is for the application to note that the POLLIN flag is set and then perform
a read(), which indicates the remote shutdown with a return of 0.)

63.2.4 Comparison of select() and poll()
In this section, we consider some similarities and differences between select() and poll().

Implementation details

Within the Linux kernel, select() and poll() both employ the same set of kernel-
internal poll routines. These poll routines are distinct from the poll() system call
itself. Each routine returns information about the readiness of a single file descrip-
tor. This readiness information takes the form of a bit mask whose values corre-
spond to the bits returned in the revents field by the poll() system call (Table 63-2).
The implementation of the poll() system call involves calling the kernel poll routine
for each file descriptor and placing the resulting information in the corresponding
revents field.

To implement select(), a set of macros is used to convert the information
returned by the kernel poll routines into the corresponding event types returned
by select():

#define POLLIN_SET  (POLLRDNORM | POLLRDBAND | POLLIN | POLLHUP | POLLERR)
                                     /* Ready for reading */
#define POLLOUT_SET (POLLWRBAND | POLLWRNORM | POLLOUT | POLLERR)
                                     /* Ready for writing */
#define POLLEX_SET  (POLLPRI)        /* Exceptional condition */

These macro definitions reveal the semantic correspondence between the informa-
tion returned by select() and poll(). (If we look at the select() and poll() columns in the
tables in Section 63.2.3, we see that the indications provided by each system call are
consistent with the above macros.) The only additional information we need to
complete the picture is that poll() returns POLLNVAL in the revents field if one of the
monitored file descriptors was closed at the time of the call, while select() returns –1
with errno set to EBADF.

API differences

The following are some differences between the select() and poll() APIs:

The use of the fd_set data type places an upper limit (FD_SETSIZE) on the range of
file descriptors that can be monitored by select(). By default, this limit is 1024
on Linux, and changing it requires recompiling the application. By contrast, poll()
places no intrinsic limit on the range of file descriptors that can be monitored.

Because the fd_set arguments of select() are value-result, we must reinitialize
them if making repeated select() calls from within a loop. By using separate
events (input) and revents (output) fields, poll() avoids this requirement.
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The timeout precision afforded by select() (microseconds) is greater than that
afforded by poll() (milliseconds). (The accuracy of the timeouts of both of these
system calls is nevertheless limited by the software clock granularity.)

If one of the file descriptors being monitored was closed, then poll() informs us
exactly which one, via the POLLNVAL bit in the corresponding revents field. By
contrast, select() merely returns –1 with errno set to EBADF, leaving us to deter-
mine which file descriptor is closed by checking for an error when performing
an I/O system call on the descriptor. However, this is typically not an impor-
tant difference, since an application can usually keep track of which file
descriptors it has closed.

Portability

Historically, select() was more widely available than poll(). Nowadays, both interfaces
are standardized by SUSv3 and widely available on contemporary implementations.
However, there is some variation in the behavior of poll() across implementations, as
noted in Section 63.2.3.

Performance

The performance of poll() and select() is similar if either of the following is true:

The range of file descriptors to be monitored is small (i.e., the maximum file
descriptor number is low).

A large number of file descriptors are being monitored, but they are densely
packed (i.e., most or all of the file descriptors from 0 up to some limit are being
monitored).

However, the performance of select() and poll() can differ noticeably if the set of file
descriptors to be monitored is sparse; that is, the maximum file descriptor number, N,
is large, but only one or a few descriptors in the range 0 to N are being monitored.
In this case, poll() can perform better than select(). We can understand the reasons
for this by considering the arguments passed to the two system calls. With select(),
we pass one or more file descriptor sets and an integer, nfds, which is one greater
than the maximum file descriptor to be examined in each set. The nfds argument
has the same value, regardless of whether we are monitoring all file descriptors in
the range 0 to (nfds – 1) or only the descriptor (nfds – 1). In both cases, the kernel
must examine nfds elements in each set in order to check exactly which file descrip-
tors are to be monitored. By contrast, when using poll(), we specify only the file
descriptors of interest to us, and the kernel checks only those descriptors.

The difference in performance for poll() and select() with sparse descriptor sets
was quite significant in Linux 2.4. Some optimizations in Linux 2.6 have nar-
rowed the performance gap considerably.

We consider the performance of select() and poll() further in Section 63.4.5, where
we compare the performance of these system calls against epoll.
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63.2.5 Problems with select() and poll()
The select() and poll() system calls are the portable, long-standing, and widely used
methods of monitoring multiple file descriptors for readiness. However, these
APIs suffer some problems when monitoring a large number of file descriptors:

On each call to select() or poll(), the kernel must check all of the specified file
descriptors to see if they are ready. When monitoring a large number of
file descriptors that are in a densely packed range, the time required for this
operation greatly outweighs the time required for the next two operations.

In each call to select() or poll(), the program must pass a data structure to the
kernel describing all of the file descriptors to be monitored, and, after checking
the descriptors, the kernel returns a modified version of this data structure to
the program. (Furthermore, for select(), we must initialize the data structure
before each call.) For poll(), the size of the data structure increases with the
number of file descriptors being monitored, and the task of copying it from
user to kernel space and back again consumes a noticeable amount of CPU
time when monitoring many file descriptors. For select(), the size of the data
structure is fixed by FD_SETSIZE, regardless of the number of file descriptors
being monitored.

After the call to select() or poll(), the program must inspect every element of the
returned data structure to see which file descriptors are ready.

The consequence of the above points is that the CPU time required by select() and poll()
increases with the number of file descriptors being monitored (see Section 63.4.5 for
more details). This creates problems for programs that monitor large numbers of
file descriptors.

The poor scaling performance of select() and poll() stems from a simple limitation
of these APIs: typically, a program makes repeated calls to monitor the same set of file
descriptors; however, the kernel doesn’t remember the list of file descriptors to be
monitored between successive calls.

Signal-driven I/O and epoll, which we examine in the following sections, are
both mechanisms that allow the kernel to record a persistent list of file descriptors
in which a process is interested. Doing this eliminates the performance scaling
problems of select() and poll(), yielding solutions that scale according to the number
of I/O events that occur, rather than according to the number of file descriptors
being monitored. Consequently, signal-driven I/O and epoll provide superior per-
formance when monitoring large numbers of file descriptors.

63.3 Signal-Driven I/O

With I/O multiplexing, a process makes a system call (select() or poll()) in order to
check whether I/O is possible on a file descriptor. With signal-driven I/O, a process
requests that the kernel send it a signal when I/O is possible on a file descriptor.
The process can then perform any other activity until I/O is possible, at which time
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the signal is delivered to the process. To use signal-driven I/O, a program per-
forms the following steps:

1. Establish a handler for the signal delivered by the signal-driven I/O mecha-
nism. By default, this notification signal is SIGIO.

2. Set the owner of the file descriptor—that is, the process or process group that is
to receive signals when I/O is possible on the file descriptor. Typically, we make
the calling process the owner. The owner is set using an fcntl() F_SETOWN opera-
tion of the following form:

fcntl(fd, F_SETOWN, pid);

3. Enable nonblocking I/O by setting the O_NONBLOCK open file status flag.

4. Enable signal-driven I/O by turning on the O_ASYNC open file status flag. This
can be combined with the previous step, since they both require the use of the
fcntl() F_SETFL operation (Section 5.3), as in the following example:

flags = fcntl(fd, F_GETFL);                 /* Get current flags */
fcntl(fd, F_SETFL, flags | O_ASYNC | O_NONBLOCK);

5. The calling process can now perform other tasks. When I/O becomes possible,
the kernel generates a signal for the process and invokes the signal handler
established in step 1.

6. Signal-driven I/O provides edge-triggered notification (Section 63.1.1). This
means that once the process has been notified that I/O is possible, it should
perform as much I/O (e.g., read as many bytes) as possible. Assuming a non-
blocking file descriptor, this means executing a loop that performs I/O system
calls until a call fails with the error EAGAIN or EWOULDBLOCK.

On Linux 2.4 and earlier, signal-driven I/O can be employed with file descriptors
for sockets, terminals, pseudoterminals, and certain other types of devices. Linux 2.6
additionally allows signal-driven I/O to be employed with pipes and FIFOs. Since
Linux 2.6.25, signal-driven I/O can also be used with inotify file descriptors.

In the following pages, we first present an example of the use of signal-driven
I/O, and then explain some of the above steps in greater detail.

Historically, signal-driven I/O was sometimes referred to as asynchronous I/O,
and this is reflected in the name (O_ASYNC) of the associated open file status
flag. However, nowadays, the term asynchronous I/O is used to refer to the type
of functionality provided by the POSIX AIO specification. Using POSIX AIO,
a process requests the kernel to perform an I/O operation, and the kernel
initiates the operation, but immediately passes control back to the calling process;
the process is then later notified when the I/O operation completes or an
error occurs.

O_ASYNC was specified in POSIX.1g, but was not included in SUSv3 because
the specification of the required behavior for this flag was deemed insufficient.

Several UNIX implementations, especially older ones, don’t define the
O_ASYNC constant for use with fcntl(). Instead, the constant is named FASYNC, and
glibc defines this latter name as a synonym for O_ASYNC.
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Example program

Listing 63-3 provides a simple example of the use of signal-driven I/O. This program
performs the steps described above for enabling signal-driven I/O on standard
input, and then places the terminal in cbreak mode (Section 62.6.3), so that input is
available a character at a time. The program then enters an infinite loop, perform-
ing the “work” of incrementing a variable, cnt, while waiting for input to become avail-
able. Whenever input becomes available, the SIGIO handler sets a flag, gotSigio, that is
monitored by the main program. When the main program sees that this flag is set, it
reads all available input characters and prints them along with the current value of cnt.
If a hash character (#) is read in the input, the program terminates.

Here is an example of what we see when we run this program and type the x
character a number of times, followed by a hash (#) character:

$ ./demo_sigio
cnt=37; read x
cnt=100; read x
cnt=159; read x
cnt=223; read x
cnt=288; read x
cnt=333; read #

Listing 63-3: Using signal-driven I/O on a terminal

––––––––––––––––––––––––––––––––––––––––––––––––––––––– altio/demo_sigio.c

#include <signal.h>
#include <ctype.h>
#include <fcntl.h>
#include <termios.h>
#include "tty_functions.h"      /* Declaration of ttySetCbreak() */
#include "tlpi_hdr.h"

static volatile sig_atomic_t gotSigio = 0;
                                /* Set nonzero on receipt of SIGIO */

static void
sigioHandler(int sig)
{
    gotSigio = 1;
}

int
main(int argc, char *argv[])
{
    int flags, j, cnt;
    struct termios origTermios;
    char ch;
    struct sigaction sa;
    Boolean done;
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    /* Establish handler for "I/O possible" signal */

    sigemptyset(&sa.sa_mask);
    sa.sa_flags = SA_RESTART;
    sa.sa_handler = sigioHandler;
    if (sigaction(SIGIO, &sa, NULL) == -1)
        errExit("sigaction");

    /* Set owner process that is to receive "I/O possible" signal */

    if (fcntl(STDIN_FILENO, F_SETOWN, getpid()) == -1)
        errExit("fcntl(F_SETOWN)");

    /* Enable "I/O possible" signaling and make I/O nonblocking
       for file descriptor */

    flags = fcntl(STDIN_FILENO, F_GETFL);
    if (fcntl(STDIN_FILENO, F_SETFL, flags | O_ASYNC | O_NONBLOCK) == -1)
        errExit("fcntl(F_SETFL)");

    /* Place terminal in cbreak mode */

    if (ttySetCbreak(STDIN_FILENO, &origTermios) == -1)
        errExit("ttySetCbreak");

    for (done = FALSE, cnt = 0; !done ; cnt++) {
        for (j = 0; j < 100000000; j++)
            continue;                   /* Slow main loop down a little */

        if (gotSigio) {                 /* Is input available? */

            /* Read all available input until error (probably EAGAIN)
               or EOF (not actually possible in cbreak mode) or a
               hash (#) character is read */

            while (read(STDIN_FILENO, &ch, 1) > 0 && !done) {
                printf("cnt=%d; read %c\n", cnt, ch);
                done = ch == '#';
            }

            gotSigio = 0;
        }
    }

    /* Restore original terminal settings */

    if (tcsetattr(STDIN_FILENO, TCSAFLUSH, &origTermios) == -1)
        errExit("tcsetattr");
    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––– altio/demo_sigio.c
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Establish the signal handler before enabling signal-driven I/O

Because the default action of SIGIO is to terminate the process, we should enable the
handler for SIGIO before enabling signal-driven I/O on a file descriptor. If we enable
signal-driven I/O before establishing the SIGIO handler, then there is a time window
during which, if I/O becomes possible, delivery of SIGIO will terminate the process.

On some UNIX implementations, SIGIO is ignored by default.

Setting the file descriptor owner

We set the file descriptor owner using an fcntl() operation of the following form:

fcntl(fd, F_SETOWN, pid);

We may specify that either a single process or all of the processes in a process
group are to be signaled when I/O is possible on the file descriptor. If pid is positive,
it is interpreted as a process ID. If pid is negative, its absolute value specifies a pro-
cess group ID.

On older UNIX implementations, an ioctl() operation—either FIOSETOWN or
SIOCSPGRP—was used to achieve the same effect as F_SETOWN. For compatibility,
these ioctl() operations are also provided on Linux.

Typically, pid is specified as the process ID of the calling process (so that the signal is
sent to the process that has the file descriptor open). However, it is possible to specify
another process or a process group (e.g., the caller’s process group), and signals will
be sent to that target, subject to the permission checks described in Section 20.5,
where the sending process is considered to be the process that does the F_SETOWN.

The fcntl() F_GETOWN operation returns the ID of the process or process group
that is to receive signals when I/O is possible on a specified file descriptor:

id = fcntl(fd, F_GETOWN);
if (id == -1)
    errExit("fcntl");

A process group ID is returned as a negative number by this call.

The ioctl() operation that corresponds to F_GETOWN on older UNIX implementa-
tions was FIOGETOWN or SIOCGPGRP. Both of these ioctl() operations are also provided
on Linux.

A limitation in the system call convention employed on some Linux architectures
(notably, x86) means that if a file descriptor is owned by a process group ID less
than 4096, then, instead of returning that ID as a negative function result from the
fcntl() F_GETOWN operation, glibc misinterprets it as a system call error. Consequently,
the fcntl() wrapper function returns –1, and errno contains the (positive) process
group ID. This is a consequence of the fact that the kernel system call interface
indicates errors by returning a negative errno value as a function result, and there
are a few cases where it is necessary to distinguish such results from a successful call
that returns a valid negative value. To make this distinction, glibc interprets negative
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system call returns in the range –1 to –4095 as indicating an error, copies this (abso-
lute) value into errno, and returns –1 as the function result for the application pro-
gram. This technique is generally sufficient for dealing with the few system call
service routines that can return a valid negative result; the fcntl() F_GETOWN operation
is the only practical case where it fails. This limitation means that an application
that uses process groups to receive “I/O possible” signals (which is unusual) can’t
reliably use F_GETOWN to discover which process group owns a file descriptor.

Since glibc version 2.11, the fcntl() wrapper function fixes the problem of F_GETOWN
with process group IDs less than 4096. It does this by implementing F_GETOWN in
user space using the F_GETOWN_EX operation (Section 63.3.2), which is provided
by Linux 2.6.32 and later.

63.3.1 When Is “I/O Possible” Signaled?
We now consider the details of when “I/O possible” is signaled for various file types.

Terminals and pseudoterminals

For terminals and pseudoterminals, a signal is generated whenever new input becomes
available, even if previous input has not yet been read. “Input possible” is also sig-
naled if an end-of-file condition occurs on a terminal (but not on a pseudoterminal).

There is no “output possible” signaling for terminals. A terminal disconnect is
also not signaled.

Starting with kernel 2.4.19, Linux provides “output possible” signaling for the
slave side of a pseudoterminal. This signal is generated whenever input is consumed on
the master side of the pseudoterminal.

Pipes and FIFOs

For the read end of a pipe or FIFO, a signal is generated in these circumstances:

Data is written to the pipe (even if there was already unread input available).

The write end of the pipe is closed.

For the write end of a pipe or FIFO, a signal is generated in these circumstances:

A read from the pipe increases the amount of free space in the pipe so that it is
now possible to write PIPE_BUF bytes without blocking.

The read end of the pipe is closed.

Sockets

Signal-driven I/O works for datagram sockets in both the UNIX and the Internet
domains. A signal is generated in the following circumstances:

An input datagram arrives on the socket (even if there were already unread
datagrams waiting to be read).

An asynchronous error occurs on the socket.
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Signal-driven I/O works for stream sockets in both the UNIX and the Internet
domains. A signal is generated in the following circumstances:

A new connection is received on a listening socket.

A TCP connect() request completes; that is, the active end of a TCP connection
entered the ESTABLISHED state, as shown in Figure 61-5 (page 1272). The
analogous condition is not signaled for UNIX domain sockets.

New input is received on the socket (even if there was already unread input
available).

The peer closes its writing half of the connection using shutdown(), or closes its
socket altogether using close().

Output is possible on the socket (e.g., space has become available in the socket
send buffer).

An asynchronous error occurs on the socket.

inotify file descriptors

A signal is generated when the inotify file descriptor becomes readable—that is,
when an event occurs for one of the files monitored by the inotify file descriptor.

63.3.2 Refining the Use of Signal-Driven I/O
In applications that need to simultaneously monitor very large numbers (i.e., thou-
sands) of file descriptors—for example, certain types of network servers—signal-
driven I/O can provide significant performance advantages by comparison with
select() and poll(). Signal-driven I/O offers superior performance because the kernel
“remembers” the list of file descriptors to be monitored, and signals the program only
when I/O events actually occur on those descriptors. As a result, the performance of
a program employing signal-driven I/O scales according to the number of I/O
events that occur, rather than the number of file descriptors being monitored. 

To take full advantage of signal-driven I/O, we must perform two steps:

Employ a Linux-specific fcntl() operation, F_SETSIG, to specify a realtime signal
that should be delivered instead of SIGIO when I/O is possible on a file descriptor.

Specify the SA_SIGINFO flag when using sigaction() to establish the handler for the
realtime signal employed in the previous step (see Section 21.4).

The fcntl() F_SETSIG operation specifies an alternative signal that should be delivered
instead of SIGIO when I/O is possible on a file descriptor:

if (fcntl(fd, F_SETSIG, sig) == -1)
    errExit("fcntl");

The F_GETSIG operation performs the converse of F_SETSIG, retrieving the signal cur-
rently set for a file descriptor:

sig = fcntl(fd, F_GETSIG);
if (sig == -1)
    errExit("fcntl");
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(In order to obtain the definitions of the F_SETSIG and F_GETSIG constants from
<fcntl.h>, we must define the _GNU_SOURCE feature test macro.)

Using F_SETSIG to change the signal used for “I/O possible” notification serves
two purposes, both of which are needed if we are monitoring large numbers of I/O
events on multiple file descriptors:

The default “I/O possible” signal, SIGIO, is one of the standard, nonqueuing
signals. If multiple I/O events are signaled while SIGIO is blocked—perhaps
because the SIGIO handler is already invoked—all notifications except the first
will be lost. If we use F_SETSIG to specify a realtime signal as the “I/O possible”
signal, multiple notifications can be queued.

If the handler for the signal is established using a sigaction() call in which the
SA_SIGINFO flag is specified in the sa.sa_flags field, then a siginfo_t structure is
passed as the second argument to the signal handler (Section 21.4). This struc-
ture contains fields identifying the file descriptor on which the event occurred,
as well as the type of event.

Note that the use of both F_SETSIG and SA_SIGINFO is required in order for a valid
siginfo_t structure to be passed to the signal handler.

If we perform an F_SETSIG operation specifying sig as 0, then we return to the
default behavior: SIGIO is delivered, and a siginfo_t argument is not supplied to the
handler.

For an “I/O possible” event, the fields of interest in the siginfo_t structure
passed to the signal handler are as follows:

si_signo: the number of the signal that caused the invocation of the handler.
This value is the same as the first argument to the signal handler.

si_fd: the file descriptor for which the I/O event occurred.

si_code: a code indicating the type of event that occurred. The values that can
appear in this field, along with their general descriptions, are shown in Table 63-7.

si_band: a bit mask containing the same bits as are returned in the revents field
by the poll() system call. The value set in si_code has a one-to-one correspon-
dence with the bit-mask setting in si_band, as shown in Table 63-7.

In an application that is purely input-driven, we can further refine the use of F_SETSIG.
Instead of monitoring I/O events via a signal handler, we can block the nominated
“I/O possible” signal, and then accept the queued signals via calls to sigwaitinfo() or

Table 63-7: si_code and si_band values in the siginfo_t structure for “I/O possible” events

si_code si_band mask value Description

POLL_IN POLLIN | POLLRDNORM Input available; end-of-file condition
POLL_OUT POLLOUT | POLLWRNORM | POLLWRBAND Output possible
POLL_MSG POLLIN | POLLRDNORM | POLLMSG Input message available (unused)
POLL_ERR POLLERR I/O error 
POLL_PRI POLLPRI | POLLRDNORM High-priority input available
POLL_HUP POLLHUP | POLLERR Hangup occurred 
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sigtimedwait() (Section 22.10). These system calls return a siginfo_t structure that con-
tains the same information as is passed to a signal handler established with SA_SIGINFO.
Accepting signals in this manner returns us to a synchronous model of event process-
ing, but with the advantage that we are much more efficiently notified about the file
descriptors on which I/O events have occurred than if we use select() or poll().

Handling signal-queue overflow

We saw in Section 22.8 that there is a limit on the number of realtime signals that
may be queued. If this limit is reached, the kernel reverts to delivering the default
SIGIO signal for “I/O possible” notifications. This informs the process that a signal-
queue overflow occurred. When this happens, we lose information about which file
descriptors have I/O events, because SIGIO is not queued. (Furthermore, the SIGIO
handler doesn’t receive a siginfo_t argument, which means that the signal handler
can’t determine the file descriptor that generated the signal.)

We can reduce the likelihood of signal-queue overflows by increasing the limit
on the number of realtime signals that can be queued, as described in Section 22.8.
However, this doesn’t eliminate the need to handle the possibility of an overflow. A
properly designed application using F_SETSIG to establish a realtime signal as the “I/O
possible” notification mechanism must also establish a handler for SIGIO. If SIGIO is
delivered, then the application can drain the queue of realtime signals using
sigwaitinfo() and temporarily revert to the use of select() or poll() to obtain a com-
plete list of file descriptors with outstanding I/O events.

Using signal-driven I/O with multithreaded applications

Starting with kernel 2.6.32, Linux provides two new, nonstandard fcntl() operations
that can be used to set the target for “I/O possible” signals: F_SETOWN_EX and F_GETOWN_EX.

The F_SETOWN_EX operation is like F_SETOWN, but as well as allowing the target to be
specified as a process or process group, it also permits a thread to be specified as
the target for “I/O possible” signals. For this operation, the third argument of
fcntl() is a pointer to a structure of the following form:

struct f_owner_ex {
    int   type;
    pid_t pid;
};

The type field defines the meaning of the pid field, and has one of the following values:

F_OWNER_PGRP

The pid field specifies the ID of a process group that is to be the target of
“I/O possible” signals. Unlike with F_SETOWN, a process group ID is specified
as a positive value.

F_OWNER_PID

The pid field specifies the ID of a process that is to be the target of “I/O
possible” signals.
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F_OWNER_TID

The pid field specifies the ID of a thread that is to be the target of “I/O pos-
sible” signals. The ID specified in pid is a value returned by clone() or gettid().

The F_GETOWN_EX operation is the converse of the F_GETOWN_EX operation. It uses the
f_owner_ex structure pointed to by the third argument of fcntl() to return the settings
defined by a previous F_SETOWN_EX operation.

Because the F_SETOWN_EX and F_GETOWN_EX operations represent process group
IDs as positive values, F_GETOWN_EX doesn’t suffer the problem described earlier
for F_GETOWN when using process group IDs less than 4096.

63.4 The epoll API

Like the I/O multiplexing system calls and signal-driven I/O, the Linux epoll (event
poll) API is used to monitor multiple file descriptors to see if they are ready for I/O.
The primary advantages of the epoll API are the following:

The performance of epoll scales much better than select() and poll() when moni-
toring large numbers of file descriptors.

The epoll API permits either level-triggered or edge-triggered notification. By
contrast, select() and poll() provide only level-triggered notification, and signal-
driven I/O provides only edge-triggered notification.

The performance of epoll and signal-driven I/O is similar. However, epoll has some
advantages over signal-driven I/O:

We avoid the complexities of signal handling (e.g., signal-queue overflow).

We have greater flexibility in specifying what kind of monitoring we want to
perform (e.g., checking to see if a file descriptor for a socket is ready for read-
ing, writing, or both).

The epoll API is Linux-specific, and is new in Linux 2.6.
The central data structure of the epoll API is an epoll instance, which is referred

to via an open file descriptor. This file descriptor is not used for I/O. Instead, it is a
handle for kernel data structures that serve two purposes:

recording a list of file descriptors that this process has declared an interest in
monitoring—the interest list; and

maintaining a list of file descriptors that are ready for I/O—the ready list.

The membership of the ready list is a subset of the interest list.
For each file descriptor monitored by epoll, we can specify a bit mask indicating

events that we are interested in knowing about. These bit masks correspond closely
to the bit masks used with poll().

The epoll API consists of three system calls:

The epoll_create() system call creates an epoll instance and returns a file descriptor
referring to the instance.
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The epoll_ctl() system call manipulates the interest list associated with an epoll
instance. Using epoll_ctl(), we can add a new file descriptor to the list, remove
an existing descriptor from the list, and modify the mask that determines
which events are to be monitored for a descriptor.

The epoll_wait() system call returns items from the ready list associated with an
epoll instance.

63.4.1 Creating an epoll Instance: epoll_create()
The epoll_create() system call creates a new epoll instance whose interest list is ini-
tially empty.

The size argument specifies the number of file descriptors that we expect to monitor
via the epoll instance. This argument is not an upper limit, but rather a hint to the
kernel about how to initially dimension internal data structures. (Since Linux 2.6.8,
the size argument is ignored, because changes in the implementation meant
that the information it provided is no longer required.)

As its function result, epoll_create() returns a file descriptor referring to the new
epoll instance. This file descriptor is used to refer to the epoll instance in other epoll
system calls. When the file descriptor is no longer required, it should be closed in
the usual way, using close(). When all file descriptors referring to an epoll instance
are closed, the instance is destroyed and its associated resources are released back
to the system. (Multiple file descriptors may refer to the same epoll instance as a
consequence of calls to fork() or descriptor duplication using dup() or similar.)

Starting with kernel 2.6.27, Linux supports a new system call, epoll_create1().
This system call performs the same task as epoll_create(), but drops the obsolete
size argument and adds a flags argument that can be used to modify the behavior
of the system call. One flag is currently supported: EPOLL_CLOEXEC, which causes
the kernel to enable the close-on-exec flag (FD_CLOEXEC) for the new file descriptor.
This flag is useful for the same reasons as the open() O_CLOEXEC flag described in
Section 4.3.1.

63.4.2 Modifying the epoll Interest List: epoll_ctl()
The epoll_ctl() system call modifies the interest list of the epoll instance referred to
by the file descriptor epfd.

#include <sys/epoll.h>

int epoll_create(int size);

Returns file descriptor on success, or –1 on error

#include <sys/epoll.h>

int epoll_ctl(int epfd, int op, int fd, struct epoll_event *ev);

Returns 0 on success, or –1 on error
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The fd argument identifies which of the file descriptors in the interest list is to have
its settings modified. This argument can be a file descriptor for a pipe, FIFO,
socket, POSIX message queue, inotify instance, terminal, device, or even another epoll
descriptor (i.e., we can build a kind of hierarchy of monitored descriptors). However,
fd can’t be a file descriptor for a regular file or a directory (the error EPERM results).

The op argument specifies the operation to be performed, and has one of the
following values:

EPOLL_CTL_ADD

Add the file descriptor fd to the interest list for epfd. The set of events that
we are interested in monitoring for fd is specified in the buffer pointed to
by ev, as described below. If we attempt to add a file descriptor that is
already in the interest list, epoll_ctl() fails with the error EEXIST.

EPOLL_CTL_MOD

Modify the events setting for the file descriptor fd, using the information
specified in the buffer pointed to by ev. If we attempt to modify the set-
tings of a file descriptor that is not in the interest list for epfd, epoll_ctl() fails
with the error ENOENT.

EPOLL_CTL_DEL

Remove the file descriptor fd from the interest list for epfd. The ev argu-
ment is ignored for this operation. If we attempt to remove a file descriptor
that is not in the interest list for epfd, epoll_ctl() fails with the error ENOENT.
Closing a file descriptor automatically removes it from all of the epoll interest
lists of which it is a member.

The ev argument is a pointer to a structure of type epoll_event, defined as follows:

struct epoll_event {
    uint32_t     events;        /* epoll events (bit mask) */
    epoll_data_t data;          /* User data */
};

The data field of the epoll_event structure is typed as follows:

typedef union epoll_data {
    void        *ptr;           /* Pointer to user-defined data */
    int          fd;            /* File descriptor */
    uint32_t     u32;           /* 32-bit integer */
    uint64_t     u64;           /* 64-bit integer */
} epoll_data_t;

The ev argument specifies settings for the file descriptor fd, as follows:

The events subfield is a bit mask specifying the set of events that we are inter-
ested in monitoring for fd. We say more about the bit values that can be used in
this field in the next section.

The data subfield is a union, one of whose members can be used to specify
information that is passed back to the calling process (via epoll_wait()) if fd later
becomes ready.
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Listing 63-4 shows an example of the use of epoll_create() and epoll_ctl().

Listing 63-4: Using epoll_create() and epoll_ctl()

    int epfd;
    struct epoll_event ev;

    epfd = epoll_create(5);
    if (epfd == -1)
        errExit("epoll_create");

    ev.data.fd = fd;
    ev.events = EPOLLIN;
    if (epoll_ctl(epfd, EPOLL_CTL_ADD, fd, ev) == -1)
        errExit("epoll_ctl");

The max_user_watches limit

Because each file descriptor registered in an epoll interest list requires a small
amount of nonswappable kernel memory, the kernel provides an interface that
defines a limit on the total number of file descriptors that each user can register in
all epoll interest lists. The value of this limit can be viewed and modified via
max_user_watches, a Linux-specific file in the /proc/sys/fs/epoll directory. The default
value of this limit is calculated based on available system memory (see the epoll(7)
manual page).

63.4.3 Waiting for Events: epoll_wait()
The epoll_wait() system call returns information about ready file descriptors from
the epoll instance referred to by the file descriptor epfd. A single epoll_wait() call can
return information about multiple ready file descriptors.

The information about ready file descriptors is returned in the array of epoll_event
structures pointed to by evlist. (The epoll_event structure was described in the previ-
ous section.) The evlist array is allocated by the caller, and the number of elements
it contains is specified in maxevents.

Each item in the array evlist returns information about a single ready file
descriptor. The events subfield returns a mask of the events that have occurred on
this descriptor. The data subfield returns whatever value was specified in ev.data
when we registered interest in this file descriptor using epoll_ctl(). Note that the
data field provides the only mechanism for finding out the number of the file

#include <sys/epoll.h>

int epoll_wait(int epfd, struct epoll_event *evlist, int maxevents, int timeout);

Returns number of ready file descriptors, 0 on timeout, or –1 on error
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descriptor associated with this event. Thus, when we make the epoll_ctl() call that
places a file descriptor in the interest list, we should either set ev.data.fd to the file
descriptor number (as shown in Listing 63-4) or set ev.data.ptr to point to a struc-
ture that contains the file descriptor number.

The timeout argument determines the blocking behavior of epoll_wait(), as follows:

If timeout equals –1, block until an event occurs for one of the file descriptors in
the interest list for epfd or until a signal is caught.

If timeout equals 0, perform a nonblocking check to see which events are cur-
rently available on the file descriptors in the interest list for epfd.

If timeout is greater than 0, block for up to timeout milliseconds, until an event
occurs on one of the file descriptors in the interest list for epfd, or until a signal
is caught.

On success, epoll_wait() returns the number of items that have been placed in the
array evlist, or 0 if no file descriptors were ready within the interval specified by
timeout. On error, epoll_wait() returns –1, with errno set to indicate the error.

In a multithreaded program, it is possible for one thread to use epoll_ctl() to
add file descriptors to the interest list of an epoll instance that is already being
monitored by epoll_wait() in another thread. These changes to the interest list will
be taken into account immediately, and the epoll_wait() call will return readiness
information about the newly added file descriptors.

epoll events

The bit values that can be specified in ev.events when we call epoll_ctl() and that are
placed in the evlist[].events fields returned by epoll_wait() are shown in Table 63-8.
With the addition of an E prefix, most of these bits have names that are the same as
the corresponding event bits used with poll(). (The exceptions are EPOLLET and
EPOLLONESHOT, which we describe in more detail below.) The reason for this corre-
spondence is that, when specified as input to epoll_ctl() or returned as output via
epoll_wait(), these bits convey exactly the same meaning as the corresponding poll()
event bits.

Table 63-8: Bit-mask values for the epoll events field

Bit Input to 
epoll_ctl()?

Returned by 
epoll_wait()?

Description

EPOLLIN • • Data other than high-priority data can be read 
EPOLLPRI • • High-priority data can be read 
EPOLLRDHUP • • Shutdown on peer socket (since Linux 2.6.17)
EPOLLOUT • • Normal data can be written
EPOLLET • Employ edge-triggered event notification
EPOLLONESHOT • Disable monitoring after event notification
EPOLLERR • An error has occurred
EPOLLHUP • A hangup has occurred
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The EPOLLONESHOT flag

By default, once a file descriptor is added to an epoll interest list using the epoll_ctl()
EPOLL_CTL_ADD operation, it remains active (i.e., subsequent calls to epoll_wait() will
inform us whenever the file descriptor is ready) until we explicitly remove it from
the list using the epoll_ctl() EPOLL_CTL_DEL operation. If we want to be notified only
once about a particular file descriptor, then we can specify the EPOLLONESHOT flag
(available since Linux 2.6.2) in the ev.events value passed in epoll_ctl(). If this flag is
specified, then, after the next epoll_wait() call that informs us that the corresponding
file descriptor is ready, the file descriptor is marked inactive in the interest list, and
we won’t be informed about its state by future epoll_wait() calls. If desired, we can
subsequently reenable monitoring of this file descriptor using the epoll_ctl()
EPOLL_CTL_MOD operation. (We can’t use the EPOLL_CTL_ADD operation for this purpose,
because the inactive file descriptor is still part of the epoll interest list.)

Example program

Listing 63-5 demonstrates the use of the epoll API. As command-line arguments, this
program expects the pathnames of one or more terminals or FIFOs. The program
performs the following steps:

Create an epoll instance q.

Open each of the files named on the command line for input w and add the
resulting file descriptor to the interest list of the epoll instance e, specifying the
set of events to be monitored as EPOLLIN.

Execute a loop r that calls epoll_wait() t to monitor the interest list of the epoll
instance and handles the returned events from each call. Note the following
points about this loop:

– After the epoll_wait() call, the program checks for an EINTR return y, which
may occur if the program was stopped by a signal in the middle of the
epoll_wait() call and then resumed by SIGCONT. (Refer to Section 21.5.) If this
occurs, the program restarts the epoll_wait() call.

– It the epoll_wait() call was successful, the program uses a further loop to
check each of the ready items in evlist u. For each item in evlist, the pro-
gram checks the events field for the presence of not just EPOLLIN i, but also
EPOLLHUP and EPOLLERR o. These latter events can occur if the other end of a
FIFO was closed or a terminal hangup occurred. If EPOLLIN was returned,
then the program reads some input from the corresponding file descriptor
and displays it on standard output. Otherwise, if either EPOLLHUP or EPOLLERR
occurred, the program closes the corresponding file descriptor a and decre-
ments the counter of open files (numOpenFds).

– The loop terminates when all open file descriptors have been closed (i.e.,
when numOpenFds equals 0).

The following shell session logs demonstrate the use of the program in Listing 63-5.
We use two terminal windows. In one window, we use the program in Listing 63-5 to
monitor two FIFOs for input. (Each open of a FIFO for reading by this program
will complete only after another process has opened the FIFO for writing, as
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described in Section 44.7.) In the other window, we run instances of cat(1) that
write data to these FIFOs.

Terminal window 1                   Terminal window 2
$ mkfifo p q
$ ./epoll_input p q
                                    $ cat > p
Opened "p" on fd 4
                                    Type Control-Z to suspend cat
                                    [1]+  Stopped      cat >p
                                    $ cat > q
Opened "q" on fd 5
About to epoll_wait()
Type Control-Z to suspend the epoll_input program
[1]+  Stopped     ./epoll_input p q

Above, we suspended our monitoring program so that we can now generate input
on both FIFOs, and close the write end of one of them:

                                    qqq
                                    Type Control-D to terminate “cat > q”
                                    $ fg %1
                                    cat >p
                                    ppp

Now we resume our monitoring program by bringing it into the foreground, at
which point epoll_wait() returns two events:

$ fg
./epoll_input p q
About to epoll_wait()
Ready: 2
  fd=4; events: EPOLLIN
    read 4 bytes: ppp

  fd=5; events: EPOLLIN EPOLLHUP
    read 4 bytes: qqq

    closing fd 5
About to epoll_wait()

The two blank lines in the above output are the newlines that were read by the
instances of cat, written to the FIFOs, and then read and echoed by our monitoring
program.

Now we type Control-D in the second terminal window in order to terminate
the remaining instance of cat, which causes epoll_wait() to once more return, this
time with a single event:

                                    Type Control-D to terminate “cat >p”
Ready: 1
  fd=4; events: EPOLLHUP
    closing fd 4
All file descriptors closed; bye
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Listing 63-5: Using the epoll API
––––––––––––––––––––––––––––––––––––––––––––––––––––––– altio/epoll_input.c

#include <sys/epoll.h>
#include <fcntl.h>
#include "tlpi_hdr.h"

#define MAX_BUF     1000        /* Maximum bytes fetched by a single read() */
#define MAX_EVENTS     5        /* Maximum number of events to be returned from
                                   a single epoll_wait() call */

int
main(int argc, char *argv[])
{
    int epfd, ready, fd, s, j, num0penFds;
    struct epoll_event ev;
    struct epoll_event evlist[MAX_EVENTS];
    char buf[MAX_BUF];
    
    if (argc < 2 || strcmp(argv[1], "--help") == 0)
        usageErr("%s file...\n", argv[0]);

q     epfd = epoll_create(argc - 1);
    if (epfd == -1)
        errExit("epoll_create");

    /* Open each file on command line, and add it to the "interest
       list" for the epoll instance */

w     for (j = 1; j < argc; j++) {
        fd = open(argv[j], O_RDONLY);
        if (fd == -1)
            errExit("open");
        printf("Opened \"%s\" on fd %d\n", argv[j], fd);

        ev.events = EPOLLIN;            /* Only interested in input events */
        ev.data.fd = fd;

e         if (epoll_ctl(epfd, EPOLL_CTL_ADD, fd, &ev) == -1)
            errExit("epoll_ctl");
    }

    numOpenFds = argc - 1;

r     while (numOpenFds > 0) {

        /* Fetch up to MAX_EVENTS items from the ready list */

        printf("About to epoll_wait()\n");
t         ready = epoll_wait(epfd, evlist, MAX_EVENTS, -1);

        if (ready == -1) {
y             if (errno == EINTR)

                continue;               /* Restart if interrupted by signal */
            else
                errExit("epoll_wait");
        }
1362 Chapter 63



        printf("Ready: %d\n", ready);

        /* Deal with returned list of events */

u         for (j = 0; j < ready; j++) {
            printf("  fd=%d; events: %s%s%s\n", evlist[j].data.fd,
                    (evlist[j].events & EPOLLIN)  ? "EPOLLIN "  : "",
                    (evlist[j].events & EPOLLHUP) ? "EPOLLHUP " : "",
                    (evlist[j].events & EPOLLERR) ? "EPOLLERR " : "");

i             if (evlist[j].events & EPOLLIN) {
                s = read(evlist[j].data.fd, buf, MAX_BUF);
                if (s == -1)
                    errExit("read");
                printf("    read %d bytes: %.*s\n", s, s, buf);

o             } else if (evlist[j].events & (EPOLLHUP | EPOLLERR)) {

                /* If EPOLLIN and EPOLLHUP were both set, then there might
                   be more than MAX_BUF bytes to read. Therefore, we close
                   the file descriptor only if EPOLLIN was not set.
                   We'll read further bytes after the next epoll_wait(). */

                printf("    closing fd %d\n", evlist[j].data.fd);
a                 if (close(evlist[j].data.fd) == -1)

                    errExit("close");
                numOpenFds--;
            }
        }
    }

    printf("All file descriptors closed; bye\n");
    exit(EXIT_SUCCESS);
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––– altio/epoll_input.c

63.4.4 A Closer Look at epoll Semantics
We now look at some subtleties of the interaction of open files, file descriptors, and
epoll. For the purposes of this discussion, it is worth reviewing Figure 5-2 (page 95),
which shows the relationship between file descriptors, open file descriptions, and
the system-wide file i-node table.

When we create an epoll instance using epoll_create(), the kernel creates a new
in-memory i-node and open file description, and allocates a new file descriptor in
the calling process that refers to the open file description. The interest list for an
epoll instance is associated with the open file description, not with the epoll file
descriptor. This has the following consequences:

If we duplicate an epoll file descriptor using dup() (or similar), then the dupli-
cated descriptor refers to the same epoll interest and ready lists as the original
descriptor. We may modify the interest list by specifying either file descriptor
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as the epfd argument in a call to epoll_ctl(). Similarly, we can retrieve items from
the ready list by specifying either file descriptor as the epfd argument in a call to
epoll_wait().

The preceding point also applies after a call to fork(). The child inherits a dupli-
cate of the parent’s epoll file descriptor, and this duplicate descriptor refers to
the same epoll data structures.

When we perform an epoll_ctl() EPOLL_CTL_ADD operation, the kernel adds an item to
the epoll interest list that records both the number of the monitored file descriptor
and a reference to the corresponding open file description. For the purpose of
epoll_wait() calls, the kernel monitors the open file description. This means that we
must refine our earlier statement that when a file descriptor is closed, it is automatically
removed from any epoll interest lists of which it is a member. The refinement is this: an
open file description is removed from the epoll interest list once all file descriptors that
refer to it have been closed. This means that if we create duplicate descriptors refer-
ring to an open file—using dup() (or similar) or fork()—then the open file will be
removed only after the original descriptor and all of the duplicates have been closed.

These semantics can lead to some behavior that at first appears surprising.
Suppose that we execute the code shown in Listing 63-6. The epoll_wait() call in this
code will tell us that the file descriptor fd1 is ready (in other words, evlist[0].data.fd
will be equal to fd1), even though fd1 has been closed. This is because there is still
one open file descriptor, fd2, referring to the open file description contained in the
epoll interest list. A similar scenario occurs when two processes hold duplicate
descriptors for the same open file description (typically, as a result of a fork()), and
the process performing the epoll_wait() has closed its file descriptor, but the other
process still holds the duplicate descriptor open.

Listing 63-6: Semantics of epoll with duplicate file descriptors

    int epfd, fd1, fd2;
    struct epoll_event ev;
    struct epoll_event evlist[MAX_EVENTS];

    /* Omitted: code to open 'fd1' and create epoll file descriptor 'epfd' ... */

    ev.data.fd = fd1
    ev.events = EPOLLIN;
    if (epoll_ctl(epfd, EPOLL_CTL_ADD, fd1, ev) == -1)
        errExit("epoll_ctl");

    /* Suppose that 'fd1' now happens to become ready for input */

    fd2 = dup(fd1);
    close(fd1);
    ready = epoll_wait(epfd, evlist, MAX_EVENTS, -1);
    if (ready == -1)
        errExit("epoll_wait");
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63.4.5 Performance of epoll Versus I/O Multiplexing
Table 63-9 shows the results (on Linux 2.6.25) when we monitor N contiguous file
descriptors in the range 0 to N – 1 using poll(), select(), and epoll. (The test was
arranged such that during each monitoring operation, exactly one randomly
selected file descriptor is ready.) From this table, we see that as the number of file
descriptors to be monitored grows large, poll() and select() perform poorly. By con-
trast, the performance of epoll hardly declines as N grows large. (The small decline
in performance as N increases is possibly a result of reaching CPU caching limits on
the test system.)

For the purposes of this test, FD_SETSIZE was changed to 16,384 in the glibc
header files to allow the test program to monitor large numbers of file descrip-
tors using select().

In Section 63.2.5, we saw why select() and poll() perform poorly when monitoring large
numbers of file descriptors. We now look at the reasons why epoll performs better:

On each call to select() or poll(), the kernel must check all of the file descriptors
specified in the call. By contrast, when we mark a descriptor to be monitored
with epoll_ctl(), the kernel records this fact in a list associated with the underlying
open file description, and whenever an I/O operation that makes the file
descriptor ready is performed, the kernel adds an item to the ready list for the
epoll descriptor. (An I/O event on a single open file description may cause
multiple file descriptors associated with that description to become ready.) Subse-
quent epoll_wait() calls simply fetch items from the ready list.

Each time we call select() or poll(), we pass a data structure to the kernel that
identifies all of the file descriptors that are to be monitored, and, on return,
the kernel passes back a data structure describing the readiness of all of these
descriptors. By contrast, with epoll, we use epoll_ctl() to build up a data struc-
ture in kernel space that lists the set of file descriptors to be monitored. Once
this data structure has been built, each later call to epoll_wait() doesn’t need to
pass any information about file descriptors to the kernel, and the call returns
information about only those descriptors that are ready.

In addition to the above points, for select(), we must initialize the input data
structure prior to each call, and for both select() and poll(), we must inspect the
returned data structure to find out which of the N file descriptors are ready.
However, some testing showed that the time required for these other steps was

Table 63-9: Times taken by poll(), select(), and epoll for 100,000 monitoring operations

Number of descriptors
monitored (N)

poll() CPU time
(seconds)

select() CPU time
(seconds)

epoll CPU time 
(seconds)

   10 0.61 0.73 0.41

  100 2.9 3.0 0.42

 1000 35 35 0.53

10000 990 930 0.66
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insignificant compared to the time required for the system call to monitor N
descriptors. Table 63-9 doesn’t include the times for the inspection step.

Very roughly, we can say that for large values of N (the number of file descriptors
being monitored), the performance of select() and poll() scales linearly with N. We
start to see this behavior for the N = 100 and N = 1000 cases in Table 63-9. By the
time we reach N = 10000, the scaling has actually become worse than linear.

By contrast, epoll scales (linearly) according to the number of I/O events that
occur. The epoll API is thus particularly efficient in a scenario that is common in
servers that handle many simultaneous clients: of the many file descriptors being
monitored, most are idle; only a few descriptors are ready.

63.4.6 Edge-Triggered Notification
By default, the epoll mechanism provides level-triggered notification. By this, we
mean that epoll tells us whether an I/O operation can be performed on a file
descriptor without blocking. This is the same type of notification as is provided by
poll() and select().

The epoll API also allows for edge-triggered notification—that is, a call to
epoll_wait() tells us if there has been I/O activity on a file descriptor since the previous
call to epoll_wait() (or since the descriptor was opened, if there was no previous call).
Using epoll with edge-triggered notification is semantically similar to signal-driven
I/O, except that if multiple I/O events occur, epoll coalesces them into a single
notification returned via epoll_wait(); with signal-driven I/O, multiple signals may
be generated.

To employ edge-triggered notification, we specify the EPOLLET flag in ev.events
when calling epoll_ctl():

struct epoll_event ev;

ev.data.fd = fd
ev.events = EPOLLIN | EPOLLET;
if (epoll_ctl(epfd, EPOLL_CTL_ADD, fd, ev) == -1)
    errExit("epoll_ctl");

We illustrate the difference between level-triggered and edge-triggered epoll notifi-
cation using an example. Suppose that we are using epoll to monitor a socket for
input (EPOLLIN), and the following steps occur:

1. Input arrives on the socket.

2. We perform an epoll_wait(). This call will tell us that the socket is ready, regard-
less of whether we are employing level-triggered or edge-triggered notification.

3. We perform a second call to epoll_wait().

If we are employing level-triggered notification, then the second epoll_wait() call
will inform us that the socket is ready. If we are employing edge-triggered notifica-
tion, then the second call to epoll_wait() will block, because no new input has
arrived since the previous call to epoll_wait().
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As we noted in Section 63.1.1, edge-triggered notification is usually employed
in conjunction with nonblocking file descriptors. Thus, the general framework for
using edge-triggered epoll notification is as follows:

1. Make all file descriptors that are to be monitored nonblocking.

2. Build the epoll interest list using epoll_ctl().

3. Handle I/O events using the following loop:

a) Retrieve a list of ready descriptors using epoll_wait().

b) For each file descriptor that is ready, process I/O until the relevant system
call (e.g., read(), write(), recv(), send(), or accept()) returns with the error EAGAIN
or EWOULDBLOCK.

Preventing file-descriptor starvation when using edge-triggered notification

Suppose that we are monitoring multiple file descriptors using edge-triggered noti-
fication, and that a ready file descriptor has a large amount (perhaps an endless
stream) of input available. If, after detecting that this file descriptor is ready, we
attempt to consume all of the input using nonblocking reads, then we risk starving
the other file descriptors of attention (i.e., it may be a long time before we again
check them for readiness and perform I/O on them). One solution to this problem
is for the application to maintain a list of file descriptors that have been notified as
being ready, and execute a loop that continuously performs the following actions:

1. Monitor the file descriptors using epoll_wait() and add ready descriptors to the
application list. If any file descriptors are already registered as being ready in
the application list, then the timeout for this monitoring step should be small
or 0, so that if no new file descriptors are ready, the application can quickly
proceed to the next step and service any file descriptors that are already known
to be ready.

2. Perform a limited amount of I/O on those file descriptors registered as being
ready in the application list (perhaps cycling through them in round-robin fash-
ion, rather than always starting from the beginning of the list after each call to
epoll_wait()). A file descriptor can be removed from the application list when
the relevant nonblocking I/O system call fails with the EAGAIN or EWOULDBLOCK error.

Although it requires extra programming work, this approach offers other benefits
in addition to preventing file-descriptor starvation. For example, we can include
other steps in the above loop, such as handling timers and accepting signals with
sigwaitinfo() (or similar).

Starvation considerations can also apply when using signal-driven I/O, since it
also presents an edge-triggered notification mechanism. By contrast, starvation
considerations don’t necessarily apply in applications employing a level-triggered
notification mechanism. This is because we can employ blocking file descriptors
with level-triggered notification and use a loop that continuously checks descrip-
tors for readiness, and then performs some I/O on the ready descriptors before
once more checking for ready file descriptors.
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63.5 Waiting on Signals and File Descriptors

Sometimes, a process needs to simultaneously wait for I/O to become possible on
one of a set of file descriptors or for the delivery of a signal. We might attempt to
perform such an operation using select(), as shown in Listing 63-7.

Listing 63-7: Incorrect method of unblocking signals and calling select()

sig_atomic_t gotSig = 0;

void
handler(int sig)
{
    gotSig = 1;
}

int
main(int argc, char *argv[])
{
    struct sigaction sa;
    ...

    sa.sa_sigaction = handler;
    sigemptyset(&sa.sa_mask);
    sa.sa_flags = 0;
    if (sigaction(SIGUSR1, &sa, NULL) == -1)
        errExit("sigaction");

    /* What if the signal is delivered now? */

    ready = select(nfds, &readfds, NULL, NULL, NULL);
    if (ready > 0) {
        printf("%d file descriptors ready\n", ready);
    } else if (ready == -1 && errno == EINTR) {
        if (gotSig)
            printf("Got signal\n");
    } else {
        /* Some other error */
    }

    ...
}

The problem with this code is that if the signal (SIGUSR1 in this example) arrives
after establishing the handler but before select() is called, then the select() call will
nevertheless block. (This is a form of race condition.) We now look at some solu-
tions to this problem.

Since version 2.6.27, Linux provides a further technique that can be used to
simultaneously wait on signals and file descriptors: the signalfd mechanism
described in Section 22.11. Using this mechanism, we can receive signals via a
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file descriptor that is monitored (along with other file descriptors) using
select(), poll(), or epoll_wait().

63.5.1 The pselect() System Call
The pselect() system call performs a similar task to select(). The main semantic differ-
ence is an additional argument, sigmask, that specifies a set of signals to be
unmasked while the call is blocked.

More precisely, suppose we have the following pselect() call:

ready = pselect(nfds, &readfds, &writefds, &exceptfds, timeout, &sigmask);

This call is equivalent to atomically performing the following steps:

sigset_t origmask;

sigprocmask(SIG_SETMASK, &sigmask, &origmask);
ready = select(nfds, &readfds, &writefds, &exceptfds, timeout);
sigprocmask(SIG_SETMASK, &origmask, NULL);        /* Restore signal mask */

Using pselect(), we can recode the first part of the body of our main program in
Listing 63-7 as shown in Listing 63-8.

Aside from the sigmask argument, select() and pselect() differ in the following
ways:

The timeout argument to pselect() is a timespec structure (Section 23.4.2), which
allows the timeout to be specified with nanosecond (instead of microsecond)
precision.

SUSv3 explicitly states that pselect() doesn’t modify the timeout argument on return.

If we specify the sigmask argument of pselect() as NULL, then pselect() is equivalent to
select() (i.e., it performs no manipulation of the process signal mask), except for the
differences just noted.

The pselect() interface is an invention of POSIX.1g, and is nowadays incorpo-
rated in SUSv3. It is not available on all UNIX implementations, and was added to
Linux only in kernel 2.6.16.

Previously, a pselect() library function was provided by glibc, but this implemen-
tation didn’t provide the atomicity guarantees that are required for the correct
operation of the call. Such guarantees can be provided only by a kernel
implementation of pselect().

#define _XOPEN_SOURCE 600
#include <sys/select.h>

int pselect(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
            struct timespec *timeout, const sigset_t *sigmask);

Returns number of ready file descriptors, 0 on timeout, or –1 on error
Al ternat ive I/O Models 1369



Listing 63-8: Using pselect()

    sigset_t emptyset, blockset;
    struct sigaction sa;

    sigemptyset(&blockset);
    sigaddset(&blockset, SIGUSR1);

    if (sigprocmask(SIG_BLOCK, &blockset, NULL) == -1)
        errExit("sigprocmask");

    sa.sa_sigaction = handler;
    sigemptyset(&sa.sa_mask);
    sa.sa_flags = SA_RESTART;
    if (sigaction(SIGUSR1, &sa, NULL) == -1)
        errExit("sigaction");

    sigemptyset(&emptyset);
    ready = pselect(nfds, &readfds, NULL, NULL, NULL, &emptyset);
    if (ready == -1)
        errExit("pselect");

The ppoll() and epoll_pwait() system calls

Linux 2.6.16 also added a new, nonstandard system call, ppoll(), whose relationship
to poll() is analogous to the relationship of pselect() to select(). Similarly, starting with
kernel 2.6.19, Linux also includes epoll_pwait(), providing an analogous extension
to epoll_wait(). See the ppoll(2) and epoll_pwait(2) manual pages for details.

63.5.2 The Self-Pipe Trick
Since pselect() is not widely implemented, portable applications must employ other
strategies to avoid race conditions when simultaneously waiting for signals and call-
ing select() on a set of file descriptors. One common solution is the following:

1. Create a pipe, and mark its read and write ends as nonblocking.

2. As well as monitoring all of the other file descriptors that are of interest,
include the read end of the pipe in the readfds set given to select().

3. Install a handler for the signal that is of interest. When this signal handler is
called, it writes a byte of data to the pipe. Note the following points about the
signal handler:

– The write end of the pipe was marked as nonblocking in the first step to
prevent the possibility that signals arrive so rapidly that repeated invocations
of the signal handler fill the pipe, with the result that the signal handler’s
write() (and thus the process itself) is blocked. (It doesn’t matter if a write
to a full pipe fails, since the previous writes will already have indicated the
delivery of the signal.)
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– The signal handler is installed after creating the pipe, in order to prevent
the race condition that would occur if a signal was delivered before the
pipe was created.

– It is safe to use write() inside the signal handler, because it is one of the
async-signal-safe functions listed in Table 21-1, on page 426.

4. Place the select() call in a loop, so that it is restarted if interrupted by a signal
handler. (Restarting in this fashion is not strictly necessary; it merely means
that we can check for the arrival of a signal by inspecting readfds, rather than
checking for an EINTR error return.)

5. On successful completion of the select() call, we can determine whether a signal
arrived by checking if the file descriptor for the read end of the pipe is set in
readfds.

6. Whenever a signal has arrived, read all bytes that are in the pipe. Since multiple
signals may arrive, employ a loop that reads bytes until the (nonblocking) read()
fails with the error EAGAIN. After draining the pipe, perform whatever actions
must be taken in response to delivery of the signal.

This technique is commonly known as the self-pipe trick, and code demonstrating
this technique is shown in Listing 63-9.

Variations on this technique can equally be employed with poll() and epoll_wait().

Listing 63-9: Using the self-pipe trick

––––––––––––––––––––––––––––––––––––––––––––––––––––– from altio/self_pipe.c
static int pfd[2];                      /* File descriptors for pipe */

static void
handler(int sig)
{
    int savedErrno;                     /* In case we change 'errno' */

    savedErrno = errno;
    if (write(pfd[1], "x", 1) == -1 && errno != EAGAIN)
        errExit("write");
    errno = savedErrno;
}

int
main(int argc, char *argv[])
{
    fd_set readfds;
    int ready, nfds, flags;
    struct timeval timeout;
    struct timeval *pto;
    struct sigaction sa;
    char ch;
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    /* ... Initialize 'timeout', 'readfds', and 'nfds' for select() */

    if (pipe(pfd) == -1)
        errExit("pipe");

    FD_SET(pfd[0], &readfds);           /* Add read end of pipe to 'readfds' */
    nfds = max(nfds, pfd[0] + 1);       /* And adjust 'nfds' if required */

    flags = fcntl(pfd[0], F_GETFL);
    if (flags == -1)
        errExit("fcntl-F_GETFL");
    flags |= O_NONBLOCK;                /* Make read end nonblocking */
    if (fcntl(pfd[0], F_SETFL, flags) == -1)
        errExit("fcntl-F_SETFL");

    flags = fcntl(pfd[1], F_GETFL);
    if (flags == -1)
        errExit("fcntl-F_GETFL");
    flags |= O_NONBLOCK;                /* Make write end nonblocking */
    if (fcntl(pfd[1], F_SETFL, flags) == -1)
        errExit("fcntl-F_SETFL");

    sigemptyset(&sa.sa_mask);
    sa.sa_flags = SA_RESTART;           /* Restart interrupted read()s */
    sa.sa_handler = handler;
    if (sigaction(SIGINT, &sa, NULL) == -1) 

errExit("sigaction");

    while ((ready = select(nfds, &readfds, NULL, NULL, pto)) == -1 &&
            errno == EINTR)
        continue;                       /* Restart if interrupted by signal */
    if (ready == -1)                    /* Unexpected error */
        errExit("select");

    if (FD_ISSET(pfd[0], &readfds)) {   /* Handler was called */
        printf("A signal was caught\n");

        for (;;) {                      /* Consume bytes from pipe */
            if (read(pfd[0], &ch, 1) == -1) {
                if (errno == EAGAIN)
                    break;              /* No more bytes */
                else
                    errExit("read");    /* Some other error */
            }

            /* Perform any actions that should be taken in response to signal */
        }
    }

    /* Examine file descriptor sets returned by select() to see
       which other file descriptors are ready */

}

––––––––––––––––––––––––––––––––––––––––––––––––––––– from altio/self_pipe.c
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63.6 Summary
In this chapter, we explored various alternatives to the standard model for per-
forming I/O: I/O multiplexing (select() and poll()), signal-driven I/O, and the
Linux-specific epoll API. All of these mechanisms allow us to monitor multiple file
descriptors to see if I/O is possible on any of them. None of these mechanisms actually
performs I/O. Instead, once we have determined that a file descriptor is ready, we
use the traditional I/O system calls to perform the I/O.

The select() and poll() I/O multiplexing calls simultaneously monitor multiple
file descriptors to see if I/O is possible on any of the descriptors. With both system
calls, we pass a complete list of to-be-checked file descriptors to the kernel on each
system call, and the kernel returns a modified list indicating which descriptors are
ready. The fact that complete file descriptor lists are passed and checked on each
call means that select() and poll() perform poorly when monitoring large numbers of
file descriptors.

Signal-driven I/O allows a process to receive a signal when I/O is possible on a
file descriptor. To enable signal-driven I/O, we must establish a handler for the
SIGIO signal, set the owner process that is to receive the signal, and enable signal
generation by setting the O_ASYNC open file status flag. This mechanism offers signif-
icant performance benefits over I/O multiplexing when monitoring large numbers
of file descriptors. Linux allows us to change the signal used for notification, and if
we instead employ a realtime signal, then multiple notifications can be queued, and
the signal handler can use its siginfo_t argument to determine the file descriptor
and event type that generated the signal.

Like signal-driven I/O, epoll offers superior performance when monitoring
large numbers of file descriptors. The performance advantage of epoll (and signal-
driven I/O) derives from the fact that the kernel “remembers” the list of file
descriptors that a process is monitoring (by contrast with select() and poll(), where
each system call must again tell the kernel which file descriptors to check). The epoll
API has some notable advantages over the use of signal-driven I/O: we avoid the
complexities of dealing with signals and can specify which types of I/O events (e.g.,
input or output) are to be monitored.

In the course of this chapter, we drew a distinction between level-triggered and
edge-triggered readiness notification. With a level-triggered notification model, we
are informed whether I/O is currently possible on a file descriptor. By contrast,
edge-triggered notification informs us whether I/O activity has occurred on a file
descriptor since it was last monitored. The I/O multiplexing system calls offer a
level-triggered notification model; signal-driven I/O approximates to an edge-
triggered model; and epoll is capable of operating under either model (level-triggered
is the default). Edge-triggered notification is usually employed in conjunction with
nonblocking I/O.

We concluded the chapter by looking at a problem that sometimes faces pro-
grams that monitor multiple file descriptors: how to simultaneously also wait for
the delivery of a signal. The usual solution to this problem is the so-called self-pipe
trick, whereby a handler for the signal writes a byte to a pipe whose read end is
included among the set of monitored file descriptors. SUSv3 specifies pselect(), a vari-
ation of select() that provides another solution to this problem. However, pselect() is
not available on all UNIX implementations. Linux also provides the analogous (but
nonstandard) ppoll() and epoll_pwait().
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Further information

[Stevens et al., 2004] describes I/O multiplexing and signal-driven I/O, with partic-
ular emphasis on the use of these mechanisms with sockets. [Gammo et al, 2004] is
a paper comparing the performance of select(), poll(), and epoll.

A particularly interesting online resource is at http://www.kegel.com/c10k.html.
Written by Dan Kegel, and entitled “The C10K problem,” this web page explores
the issues facing developers of web servers designed to simultaneously serve tens of
thousands of clients. The web page includes a host of links to related information.

63.7 Exercises

63-1. Modify the program in Listing 63-2 (poll_pipes.c) to use select() instead of poll().

63-2. Write an echo server (see Sections 60.2 and 60.3) that handles both TCP and UDP
clients. To do this, the server must create both a listening TCP socket and a UDP
socket, and then monitor both sockets using one of the techniques described in
this chapter.

63-3. Section 63.5 noted that select() can’t be used to wait on both signals and file
descriptors, and described a solution using a signal handler and a pipe. A related
problem exists when a program needs to wait for input on both a file descriptor
and a System V message queue (since System V message queues don’t use file
descriptors). One solution is to fork a separate child process that copies each
message from the queue to a pipe included among the file descriptors monitored
by the parent. Write a program that uses this scheme with select() to monitor input
from both the terminal and a message queue.

63-4. The last step of the description of the self-pipe technique in Section 63.5.2 stated
that the program should first drain the pipe, and then perform any actions that
should be taken in response to the signal. What might happen if these substeps
were reversed?

63-5. Modify the program in Listing 63-9 (self_pipe.c) to use poll() instead of select().

63-6. Write a program that uses epoll_create() to create an epoll instance and then
immediately waits on the returned file descriptor using epoll_wait(). When, as in this
case, epoll_wait() is given an epoll file descriptor with an empty interest list, what
happens? Why might this be useful?

63-7. Suppose we have an epoll file descriptor that is monitoring multiple file descriptors,
all of which are always ready. If we perform a series of epoll_wait() calls in which
maxevents is much smaller than the number of ready file descriptors (e.g., maxevents
is 1), without performing all possible I/O on the ready descriptors between calls,
what descriptor(s) does epoll_wait() return in each call? Write a program to
determine the answer. (For the purposes of this experiment, it suffices to perform
no I/O between the epoll_wait() system calls.) Why might this behavior be useful?

63-8. Modify the program in Listing 63-3 (demo_sigio.c) to use a realtime signal instead of
SIGIO. Modify the signal handler to accept a siginfo_t argument and display the
values of the si_fd and si_code fields of this structure.
1374 Chapter 63



P S E U D O T E R M I N A L S

A pseudoterminal is a virtual device that provides an IPC channel. On one end of the
channel is a program that expects to be connected to a terminal device. On the
other end is a program that drives the terminal-oriented program by using the
channel to send it input and read its output.

This chapter describes the use of pseudoterminals, showing how they are
employed in applications such as terminal emulators, the script(1) program, and
programs such as ssh, which provide network login services.

64.1 Overview

Figure 64-1 illustrates one of the problems that pseudoterminals help us solve: how
can we enable a user on one host to operate a terminal-oriented program (e.g., vi)
on another host connected via a network?

As shown in the diagram, by permitting communication over a network, sockets
provide part of the machinery needed to solve this problem. However, we can’t
connect the standard input, output, and error of a terminal-oriented program directly
to a socket. This is because a terminal-oriented program expects to be connected to a
terminal—to be able to perform the terminal-oriented operations described in
Chapters 34 and 62. Such operations include placing the terminal in noncanonical
mode, turning echoing on and off, and setting the terminal foreground process
group. If a program tries to perform these operations on a socket, then the rele-
vant system calls will fail.



Furthermore, a terminal-oriented program expects a terminal driver to per-
form certain kinds of processing of its input and output. For example, in canonical
mode, when the terminal driver sees the end-of-file character (normally Control-D)
at the start of a line, it causes the next read() to return no data.

Finally, a terminal-oriented program must have a controlling terminal. This
allows the program to obtain a file descriptor for the controlling terminal by open-
ing /dev/tty, and also makes it possible to generate job-control and terminal-related
signals (e.g., SIGTSTP, SIGTTIN, and SIGINT) for the program.

From this description, it should be clear that the definition of a terminal-oriented
program is quite broad. It encompasses a wide range of programs that we would
normally run in an interactive terminal session.

Figure 64-1: The problem: how to operate a terminal-oriented program over a network?

The pseudoterminal master and slave devices

A pseudoterminal provides the missing link for creating a network connection to a
terminal-oriented program. A pseudoterminal is a pair of connected virtual devices:
a pseudoterminal master and a pseudoterminal slave, sometimes jointly referred to as a
pseudoterminal pair. A pseudoterminal pair provides an IPC channel somewhat like
a bidirectional pipe—two processes can open the master and slave and then transfer
data in either direction through the pseudoterminal.

The key point about a pseudoterminal is that the slave device appears just like a
standard terminal. All of the operations that can be applied to a terminal device
can also be applied to a pseudoterminal slave device. Some of these operations
aren’t meaningful for a pseudoterminal (e.g., setting the terminal line speed or parity),
but that’s okay, because the pseudoterminal slave silently ignores them.

How programs use pseudoterminals

Figure 64-2 shows how two programs typically employ a pseudoterminal. (The
abbreviation pty in this diagram is a commonly used shorthand for pseudoterminal,
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and we employ this abbreviation in various diagrams and function names in this
chapter.) The standard input, output, and error of the terminal-oriented program
are connected to the pseudoterminal slave, which is also the controlling terminal
for the program. On the other side of the pseudoterminal, a driver program acts as
a proxy for the user, supplying input to the terminal-oriented program and reading
that program’s output.

Figure 64-2: Two programs communicating via a pseudoterminal

Typically, the driver program is simultaneously reading from and writing to
another I/O channel. It is acting as a relay, passing data in both directions between
the pseudoterminal and another program. In order to do this, the driver program
must simultaneously monitor input arriving from either direction. Typically, this is
done using I/O multiplexing (select() or poll()), or using a pair of processes or threads to
perform data transfer in each direction.

An application that uses a pseudoterminal typically does so as follows:

1. The driver program opens the pseudoterminal master device.

2. The driver program calls fork() to create a child process. The child performs
the following steps:

a) Call setsid() to start a new session, of which the child is the session leader
(Section 34.3). This step also causes the child to lose its controlling terminal.

b) Open the pseudoterminal slave device that corresponds to the master
device. Since the child process is a session leader, and it doesn’t have a con-
trolling terminal, the pseudoterminal slave becomes the controlling terminal
for the child process.

c) Use dup() (or similar) to duplicate the file descriptor for the slave device on
standard input, output, and error.

d) Call exec() to start the terminal-oriented program that is to be connected to
the pseudoterminal slave.

At this point, the two programs can now communicate via the pseudoterminal.
Anything that the driver program writes to the master appears as input to the terminal-
oriented program on the slave, and anything that the terminal-oriented program
writes to the slave can be read by the driver program on the master. We consider
further details of pseudoterminal I/O in Section 64.5.
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Pseudoterminals can also be used to connect an arbitrary pair of processes
(i.e., not necessarily a parent and child). All that is required is that the process
that opens the pseudoterminal master informs the other process of the name
of the corresponding slave device, perhaps by writing that name to a file or by
transmitting it using some other IPC mechanism. (When we use fork() in the
manner described above, the child automatically inherits sufficient informa-
tion from the parent to enable it to determine the name of the slave.)

So far, our discussion of the use of pseudoterminals has been abstract. Figure 64-3
shows a specific example: the use of a pseudoterminal by ssh, an application that allows
a user to securely run a login session on a remote system connected via a network. (In
effect, this diagram combines the information from Figure 64-1 and Figure 64-2.) On
the remote host, the driver program for the pseudoterminal master is the ssh server
(sshd), and the terminal-oriented program connected to the pseudoterminal slave is
the login shell. The ssh server is the glue that connects the pseudoterminal via a
socket to the ssh client. Once all of the details of logging in have been completed,
the primary purpose of the ssh server and client is to relay characters in either direc-
tion between the user’s terminal on the local host and the shell on the remote host.

We omit describing many details of the ssh client and server. For example,
these programs encrypt the data transmitted in either direction across the net-
work. We show a single ssh server process on the remote host, but, in fact, the
ssh server is a concurrent network server. It becomes a daemon and creates a
passive TCP socket to listen for incoming connections from ssh clients. For
each connection, the master ssh server forks a child process that handles all of
the details for a single client login session. (We refer to this child process as the
ssh server in Figure 64-3.) Aside from the details of pseudoterminal setup
described above, the ssh server child authenticates the user, updates the login
accounting files on the remote host (as described in Chapter 40), and then
execs the login shell.

Figure 64-3: How ssh uses a pseudoterminal
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In some cases, multiple processes may be connected to the slave side of the
pseudoterminal. Our ssh example illustrates this point. The session leader for the slave
is a shell, which creates process groups to execute the commands entered by the
remote user. All of these processes have the pseudoterminal slave as their control-
ling terminal. As with a conventional terminal, one of these process groups can be
the foreground process group for the pseudoterminal slave, and only this process
group is allowed to read from the slave and (if the TOSTOP bit has been set) write to it.

Applications of pseudoterminals

Pseudoterminals are also used in many applications other than network services.
Examples include the following:

The expect(1) program uses a pseudoterminal to allow an interactive terminal-
oriented program to be driven from a script file.

Terminal emulators such as xterm employ pseudoterminals to provide the
terminal-related functionality that goes with a terminal window.

The screen(1) program uses pseudoterminals to multiplex a single physical terminal
(or terminal window) between multiple processes (e.g., multiple shell sessions).

Pseudoterminals are used in the script(1) program, which records all of the
input and output that occurs during a shell session.

Sometimes a pseudoterminal is useful to circumvent the default block buffer-
ing performed by the stdio functions when writing output to a disk file or pipe,
as opposed to the line buffering used for terminal output. (We consider this
point further in Exercise 64-7.)

System V (UNIX 98) and BSD pseudoterminals

BSD and System V provided different interfaces for finding and opening the two
halves of a pseudoterminal pair. The BSD pseudoterminal implementation was his-
torically the better known, since it was used with many sockets-based network appli-
cations. For compatibility reasons, many UNIX implementations eventually came
to support both styles of pseudoterminals.

The System V interface is somewhat simpler to use than the BSD interface, and the
SUSv3 specification of pseudoterminals is based on the System V interface. (A
pseudoterminal specification first appeared in SUSv1.) For historical reasons, on Linux
systems, this type of pseudoterminal is commonly referred to as a UNIX 98 pseudoter-
minal, even though the UNIX 98 standard (i.e., SUSv2) required pseudoterminals to be
STREAMS-based, and the Linux implementation of pseudoterminals is not. (SUSv3
doesn’t require a STREAMS-based implementation.)

Early versions of Linux supported only BSD-style pseudoterminals, but, since
kernel 2.2, Linux has supported both types of pseudoterminals. In this chapter, we
focus on UNIX 98 pseudoterminals. We describe the differences for BSD pseudo-
terminals in Section 64.8.
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64.2 UNIX 98 Pseudoterminals

Bit by bit, we’ll work toward the development of a function, ptyFork(), that does
most of the work to create the setup shown in Figure 64-2. We’ll then use this func-
tion to implement the script(1) program. Before doing this though, we look at the
various library functions used with UNIX 98 pseudoterminals:

The posix_openpt() function opens an unused pseudoterminal master device,
returning a file descriptor that is used to refer to the device in later calls.

The grantpt() function changes the ownership and permissions of the slave
device corresponding to a pseudoterminal master device.

The unlockpt() function unlocks the slave device corresponding to a pseudoter-
minal master device, so that the slave device can be opened.

The ptsname() function returns the name of the slave device corresponding to a
pseudoterminal master device. The slave device can then be opened using open().

64.2.1 Opening an Unused Master: posix_openpt()
The posix_openpt() function finds and opens an unused pseudoterminal master
device, and returns a file descriptor that can later be used to refer to this device.

The flags argument is constructed by ORing zero or more of the following con-
stants together:

O_RDWR

Open the device for both reading and writing. Normally, we would always
include this constant in flags.

O_NOCTTY

Don’t make this terminal the controlling terminal for the process. On
Linux, a pseudoterminal master can’t become a controlling terminal for a
process, regardless of whether the O_NOCTTY flag is specified when calling
posix_openpt(). (This makes sense because the pseudoterminal master isn’t
really a terminal; it is the other side of a terminal to which the slave is
connected.) However, on some implementations, O_NOCTTY is required if we
want to prevent a process from acquiring a controlling terminal as a conse-
quence of opening a pseudoterminal master device.

Like open(), posix_openpt() uses the lowest available file descriptor to open the
pseudoterminal master.

Calling posix_openpt() also results in the creation of a corresponding pseudoter-
minal slave device file in the /dev/pts directory. We say more about this file when
we describe the ptsname() function below.

#define _XOPEN_SOURCE 600
#include <stdlib.h>
#include <fcntl.h>

int posix_openpt(int flags);

Returns file descriptor on success, or –1 on error
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The posix_openpt() function is new in SUSv3, and was an invention of the
POSIX committee. In the original System V pseudoterminal implementation,
obtaining an available pseudoterminal master was accomplished by opening the
pseudoterminal master clone device, /dev/ptmx. Opening this virtual device automati-
cally locates and opens the next unused pseudoterminal master, and returns a file
descriptor for it. This device is provided on Linux, where posix_openpt() is imple-
mented as follows:

int
posix_openpt(int flags)
{
    return open("/dev/ptmx", flags);
}

Limits on the number of UNIX 98 pseudoterminals

Because each pseudoterminal pair in use consumes a small amount of nonswappable
kernel memory, the kernel imposes a limit on the number of UNIX 98 pseudo-
terminal pairs on the system. In kernels up to 2.6.3, this limit is controlled by a kernel
configuration option (CONFIG_UNIX98_PTYS). The default value for this option is 256,
but we can change the limit to any value in the range 0 to 2048.

From Linux 2.6.4 onward, the CONFIG_UNIX98_PTYS kernel configuration option
is discarded in favor of a more flexible approach. Instead, the limit on the number of
pseudoterminals is defined by the value in the Linux-specific /proc/sys/kernel/
pty/max file. The default value for this file is 4096, and it can be set to any value up
to 1,048,576. A related read-only file, /proc/sys/kernel/pty/nr, shows how many
UNIX 98 pseudoterminals are currently in use.

64.2.2 Changing Slave Ownership and Permissions: grantpt()
SUSv3 specifies the use of grantpt() to change the ownership and permissions of the
slave device that corresponds to the pseudoterminal master referred to by the file
descriptor mfd. On Linux, calling grantpt() is not actually necessary. However, the
use of grantpt() is required on some implementations, and portable applications
should call it after calling posix_openpt().

On systems where grantpt() is required, this function creates a child process that
executes a set-user-ID-root program. This program, usually called pt_chown, per-
forms the following operations on the pseudoterminal slave device:

change the ownership of the slave to be the same as the effective user ID of the
calling process;

change the group of the slave to tty; and

#define _XOPEN_SOURCE 500
#include <stdlib.h>

int grantpt(int mfd);

Returns 0 on success, or –1 on error
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change the permissions on the slave so that the owner has read and write per-
missions, and group has write permission.

The reason for changing the group of the terminal to tty and enabling group write
permission is that the wall(1) and write(1) programs are set-group-ID programs
owned by the tty group.

On Linux, a pseudoterminal slave is automatically configured in the above
manner, which is why calling grantpt() isn’t needed (but still should be done).

Because it may create a child process, SUSv3 says that the behavior of grantpt()
is unspecified if the calling program has installed a handler for SIGCHLD.

64.2.3 Unlocking the Slave: unlockpt()
The unlockpt() function removes an internal lock on the slave corresponding to the
pseudoterminal master referred to by the file descriptor mfd. The purpose of this
locking mechanism is to allow the calling process to perform whatever initialization
is required for the pseudoterminal slave (e.g., calling grantpt()) before another pro-
cess is allowed to open it.

An attempt to open a pseudoterminal slave before it has been unlocked with
unlockpt() fails with the error EIO.

64.2.4 Obtaining the Name of the Slave: ptsname()
The ptsname() function returns the name of the pseudoterminal slave correspond-
ing to the pseudoterminal master referred to by the file descriptor mfd.

On Linux (as on most implementations), ptsname() returns a name of the form /dev/
pts/nn, where nn is replaced by a number that uniquely identifies this pseudotermi-
nal slave.

The buffer used to return the slave name is normally statically allocated. It is
thus overwritten by subsequent calls to ptsname().

#define _XOPEN_SOURCE 500
#include <stdlib.h>

int unlockpt(int mfd);

Returns 0 on success, or –1 on error

#define _XOPEN_SOURCE 500
#include <stdlib.h>

char *ptsname(int mfd);

Returns pointer to (possibly statically allocated) string on success,
or NULL on error
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The GNU C library provides a reentrant analog of ptsname() in the form of
ptsname_r(mfd, strbuf, buflen). However, this function is nonstandard and is
available on few other UNIX implementations. The _GNU_SOURCE feature test
macro must be defined in order to obtain the declaration of ptsname_r() from
<stdlib.h>.

Once we have unlocked the slave device with unlockpt(), we can open it using the
traditional open() system call.

On System V derivatives that employ STREAMS, it may be necessary to per-
form some further steps (pushing STREAMS modules onto the slave device
after opening it). An example of how to perform these steps can be found in
[Stevens & Rago, 2005].

64.3 Opening a Master: ptyMasterOpen()

We now present a function, ptyMasterOpen(), that employs the functions described
in the previous sections to open a pseudoterminal master and obtain the name of
the corresponding pseudoterminal slave. Our reasons for providing such a func-
tion are twofold:

Most programs perform these steps in exactly the same way, so it is convenient
to encapsulate them in a single function.

Our ptyMasterOpen() function hides all of the details that are specific to UNIX 98
pseudoterminals. In Section 64.8, we present a reimplementation of this func-
tion that uses BSD-style pseudoterminals. All of the code that we present in the
remainder of this chapter can work with either of these implementations.

The ptyMasterOpen() function opens an unused pseudoterminal master, calls grantpt()
and unlockpt() on it, and copies the name of the corresponding pseudoterminal slave
into the buffer pointed to by slaveName. The caller must specify the amount of
space available in this buffer in the argument snLen. We show the implementation
of this function in Listing 64-1.

It would be equally possible to omit the use of the slaveName and snLen argu-
ments, and have the caller of ptyMasterOpen() call ptsname() directly in order
to obtain the name of the pseudoterminal slave. However, we employ the
slaveName and snLen arguments because BSD pseudoterminals don’t provide
an equivalent of the ptsname() function, and our implementation of the equivalent
function for BSD-style pseudoterminals (Listing 64-4) encapsulates the BSD
technique for obtaining the name of the slave.

#include "pty_master_open.h"

int ptyMasterOpen(char *slaveName, size_t snLen);

Returns file descriptor on success, or –1 on error
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Listing 64-1: Implementation of ptyMasterOpen()
––––––––––––––––––––––––––––––––––––––––––––––––––––– pty/pty_master_open.c

#define _XOPEN_SOURCE 600
#include <stdlib.h>
#include <fcntl.h>
#include "pty_master_open.h"            /* Declares ptyMasterOpen() */
#include "tlpi_hdr.h"

int
ptyMasterOpen(char *slaveName, size_t snLen)
{
    int masterFd, savedErrno;
    char *p;

    masterFd = posix_openpt(O_RDWR | O_NOCTTY); /* Open pty master */
    if (masterFd == -1)
        return -1;

    if (grantpt(masterFd) == -1) {              /* Grant access to slave pty */
        savedErrno = errno;
        close(masterFd);                        /* Might change 'errno' */
        errno = savedErrno;
        return -1;
    }

    if (unlockpt(masterFd) == -1) {             /* Unlock slave pty */
        savedErrno = errno;
        close(masterFd);                        /* Might change 'errno' */
        errno = savedErrno;
        return -1;
    }

    p = ptsname(masterFd);                      /* Get slave pty name */
    if (p == NULL) {
        savedErrno = errno;
        close(masterFd);                        /* Might change 'errno' */
        errno = savedErrno;
        return -1;
    }

    if (strlen(p) < snLen) {
        strncpy(slaveName, p, snLen);
    } else {                    /* Return an error if buffer too small */
        close(masterFd);
        errno = EOVERFLOW;
        return -1;
    }

    return masterFd;
}

––––––––––––––––––––––––––––––––––––––––––––––––––––– pty/pty_master_open.c
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64.4 Connecting Processes with a Pseudoterminal: ptyFork()

We are now ready to implement a function that does all of the work of setting up a con-
nection between two processes using a pseudoterminal pair, as shown in Figure 64-2.
The ptyFork() function creates a child process that is connected to the parent by a
pseudoterminal pair.

The implementation of ptyFork() is shown in Listing 64-2. This function performs
the following steps:

Open a pseudoterminal master using ptyMasterOpen() (Listing 64-1) q.

If the slaveName argument is not NULL, copy the name of the pseudoterminal
slave into this buffer w. (If slaveName is not NULL, then it must point to a buffer
of at least snLen bytes.) The caller can use this name to update the login
accounting files (Chapter 40), if appropriate. Updating the login accounting
files would be appropriate for applications that provide login services—for
example, ssh, rlogin, and telnet. On the other hand, programs such as script(1)
(Section 64.6) do not update the login accounting files, because they don’t pro-
vide login services.

Call fork() to create a child process e.

All that the parent does after the fork() is to ensure that the file descriptor for
the pseudoterminal master is returned to the caller in the integer pointed to by
masterFd r.

After the fork(), the child performs the following steps:

– Call setsid(), to create a new session (Section 34.3) t. The child is the leader
of the new session and loses its controlling terminal (if it had one).

– Close the file descriptor for the pseudoterminal master, since it is not required
in the child y.

– Open the pseudoterminal slave u. Since the child lost its controlling terminal
in the previous step, this step causes the pseudoterminal slave to become
the controlling terminal for the child.

– If the TIOCSCTTY macro is defined, perform a TIOCSCTTY ioctl() operation on
the file descriptor for the pseudoterminal slave i. This code allows our
ptyFork() function to work on BSD platforms, where a controlling terminal
can be acquired only as a consequence of an explicit TIOCSCTTY operation
(refer to Section 34.4).

– If the slaveTermios argument is non-NULL, call tcsetattr() to set the terminal
attributes of the slave to the values in the termios structure pointed to by

#include "pty_fork.h"

pid_t ptyFork(int *masterFd, char *slaveName, size_t snLen,
            const struct termios *slaveTermios, const struct winsize *slaveWS);

In parent: returns process ID of child on success, or –1 on error;
in successfully created child: always returns 0
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this argument o. Use of this argument is a convenience for certain interac-
tive programs (e.g., script(1)) that use a pseudoterminal and need to set the
attributes of the slave device to be the same as those of the terminal under
which the program is run.

– If the slaveWS argument is non-NULL, perform an ioctl() TIOCSWINSZ operation
to set the window size of the pseudoterminal slave to the values in the
winsize structure pointed to by this argument a. This step is performed for
the same reason as the previous step.

– Use dup2() to duplicate the slave file descriptor to be the standard input,
output, and error for the child s. At this point, the child can now exec an
arbitrary program, and that program can use the standard file descriptors
to communicate with the pseudoterminal. The execed program can per-
form all of the usual terminal-oriented operations that can be performed
by a program running on a conventional terminal.

As with fork(), ptyFork() returns the process ID of the child in the parent process, 0
in the child process, or –1 on error.

Eventually, the child process created by ptyFork() will terminate. If the parent
doesn’t terminate at the same time, then it must wait on the child to eliminate the
resulting zombie. However, this step can often be eliminated, since applications
that employ pseudoterminals are commonly designed so that the parent does ter-
minate at the same time as the child.

BSD derivatives provide two related, nonstandard functions for working with
pseudoterminals. The first of these is openpty(), which opens a pseudoterminal
pair, returns the file descriptors for the master and slave, optionally returns
the name of the slave device, and optionally sets the terminal attributes and
window size from arguments analogous to slaveTermios and slaveWS. The other
function, forkpty(), is the same as our ptyFork(), except that it doesn’t provide
an analog of the snLen argument. On Linux, both of these functions are pro-
vided by glibc and are documented in the openpty(3) manual page.

Listing 64-2: Implementation of ptyFork()
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– pty/pty_fork.c

#include <fcntl.h>
#include <termios.h>
#include <sys/ioctl.h>
#include "pty_master_open.h"
#include "pty_fork.h"                   /* Declares ptyFork() */
#include "tlpi_hdr.h"

#define MAX_SNAME 1000

pid_t
ptyFork(int *masterFd, char *slaveName, size_t snLen,
        const struct termios *slaveTermios, const struct winsize *slaveWS)
{
    int mfd, slaveFd, savedErrno;
    pid_t childPid;
    char slname[MAX_SNAME];
1386 Chapter 64



q     mfd = ptyMasterOpen(slname, MAX_SNAME);
    if (mfd == -1)
        return -1;

w     if (slaveName != NULL) {            /* Return slave name to caller */
        if (strlen(slname) < snLen) {
            strncpy(slaveName, slname, snLen);

        } else {                        /* 'slaveName' was too small */
            close(mfd);
            errno = EOVERFLOW;
            return -1;
        }
    }

e     childPid = fork();

    if (childPid == -1) {               /* fork() failed */
        savedErrno = errno;             /* close() might change 'errno' */
        close(mfd);                     /* Don't leak file descriptors */
        errno = savedErrno;
        return -1;
    }

r     if (childPid != 0) {                /* Parent */
        *masterFd = mfd;                /* Only parent gets master fd */
        return childPid;                /* Like parent of fork() */
    }

    /* Child falls through to here */

t     if (setsid() == -1)                 /* Start a new session */
        err_exit("ptyFork:setsid");

y     close(mfd);                         /* Not needed in child */

u     slaveFd = open(slname, O_RDWR);     /* Becomes controlling tty */
    if (slaveFd == -1)
        err_exit("ptyFork:open-slave");

i #ifdef TIOCSCTTY /* Acquire controlling tty on BSD */
    if (ioctl(slaveFd, TIOCSCTTY, 0) == -1)
        err_exit("ptyFork:ioctl-TIOCSCTTY");
#endif

o     if (slaveTermios != NULL)           /* Set slave tty attributes */
        if (tcsetattr(slaveFd, TCSANOW, slaveTermios) == -1)
            err_exit("ptyFork:tcsetattr");

a     if (slaveWS != NULL)                /* Set slave tty window size */
        if (ioctl(slaveFd, TIOCSWINSZ, slaveWS) == -1)
            err_exit("ptyFork:ioctl-TIOCSWINSZ");
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    /* Duplicate pty slave to be child's stdin, stdout, and stderr */

s     if (dup2(slaveFd, STDIN_FILENO) != STDIN_FILENO)
        err_exit("ptyFork:dup2-STDIN_FILENO");
    if (dup2(slaveFd, STDOUT_FILENO) != STDOUT_FILENO)
        err_exit("ptyFork:dup2-STDOUT_FILENO");
    if (dup2(slaveFd, STDERR_FILENO) != STDERR_FILENO)
        err_exit("ptyFork:dup2-STDERR_FILENO");

    if (slaveFd > STDERR_FILENO)        /* Safety check */
        close(slaveFd);                 /* No longer need this fd */

    return 0;                           /* Like child of fork() */
}

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– pty/pty_fork.c

64.5 Pseudoterminal I/O

A pseudoterminal pair is similar to a bidirectional pipe. Anything that is written on
the master appears as input on the slave, and anything that is written on the slave
appears as input on the master.

The point that distinguishes a pseudoterminal pair from a bidirectional pipe is
that the slave side operates like a terminal device. The slave interprets input in the
same way as a normal controlling terminal would interpret keyboard input. For
example, if we write a Control-C character (the usual terminal interrupt character) to
the pseudoterminal master, the slave will generate a SIGINT signal for its foreground
process group. Just as with a conventional terminal, when a pseudoterminal slave
operates in canonical mode (the default), input is buffered line by line. In other
words, the program reading from the pseudoterminal slave will see (a line of) input
only when we write a newline character to the pseudoterminal master.

Like pipes, pseudoterminals have a limited capacity. If we exhaust this capacity,
then further writes are blocked until the process on the other side of the pseudo-
terminal has consumed some bytes.

On Linux, the pseudoterminal capacity is about 4 kB in each direction.

If we close all file descriptors referring to the pseudoterminal master, then:

If the slave device has a controlling process, a SIGHUP signal is sent to that process
(see Section 34.6).

A read() from the slave device returns end-of-file (0).

A write() to the slave device fails with the error EIO. (On some other UNIX
implementations, write() fails with the error ENXIO in this case.)

If we close all file descriptors referring to the pseudoterminal slave, then:

A read() from the master device fails with the error EIO. (On some other UNIX
implementations, a read() returns end-of-file in this case.)
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A write() to the master device succeeds, unless the input queue of the slave
device is full, in which case the write() blocks. If the slave device is subsequently
reopened, these bytes can be read.

UNIX implementations vary widely in their behavior for the last case. On some UNIX
implementations, write() fails with the error EIO. On other implementations, write()
succeeds, but the output bytes are discarded (i.e., they can’t be read if the slave is
reopened). In general, these variations don’t present a problem. Normally, the
process on the master side detects that the slave has been closed because a read()
from the master returns end-of-file or fails. At this point, the process performs no
further writes to the master.

Packet mode

Packet mode is a mechanism that allows the process running above a pseudoterminal
master to be informed when the following events related to software flow control
occur on the pseudoterminal slave:

the input or output queue is flushed;

terminal output is stopped or started (Control-S/Control-Q); or

flow control was enabled or disabled.

Packet mode helps with handling software flow control in certain pseudoterminal
applications that provide network login services (e.g., telnet and rlogin).

Packet mode is enabled by applying the ioctl() TIOCPKT operation to the file
descriptor referring to the pseudoterminal master:

int arg;

arg = 1;                /* 1 == enable; 0 == disable */
if (ioctl(mfd, TIOCPKT, &arg) == -1)
    errExit("ioctl");

When packet mode is in operation, reads from the pseudoterminal master return
either a single nonzero control byte, which is a bit mask indicating the state
change(s) that occurred on the slave device, or a 0 byte followed by one or more
bytes of data that were written on the pseudoterminal slave.

When a state change occurs on a pseudoterminal that is operating in packet
mode, select() indicates that an exceptional condition (the exceptfds argument) has
occurred on the master, and poll() returns POLLPRI in the revents field. (Refer to
Chapter 63 for descriptions of select() and poll().)

Packet mode is not standardized in SUSv3, and some details vary on other
UNIX implementations. Further details of packet mode on Linux, including the
bit-mask values used to indicate state changes, can be found in the tty_ioctl(4) man-
ual page.
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64.6 Implementing script(1)

We are now ready to implement a simple version of the standard script(1) program.
This program starts a new shell session, and records all input and output from the ses-
sion to a file. Most of the shell sessions shown in this book were recorded using script.

In a normal login session, the shell is connected directly to the user’s terminal.
When we run script, it places itself between the user’s terminal and the shell, and
uses a pseudoterminal pair to create a communication channel between itself and the
shell (see Figure 64-4). The shell is connected to the pseudoterminal slave. The
script process is connected to the pseudoterminal master. The script process acts as
a proxy for the user, taking input entered at the terminal and writing it to the
pseudoterminal master, and reading output from the pseudoterminal master and
writing it to the user’s terminal.

In addition, script produces an output file (named typescript by default) that con-
tains a copy of all bytes that are output on the pseudoterminal master. This has the
effect of recording not only the output produced by the shell session, but also the
input that is supplied to it. The input is recorded because, just as with a conven-
tional terminal device, the kernel echoes input characters by copying them to the
terminal output queue (see Figure 62-1, on page 1291). However, when terminal
echoing is disabled, as is done by programs that read passwords, the pseudoterminal
slave input is not copied to the slave output queue, and thus is not copied to the
script output file.

Figure 64-4: The script program
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Our implementation of script is shown in Listing 64-3. This program performs the
following steps:

Retrieve the attributes and window size of the terminal under which the pro-
gram is run q. These are passed to the subsequent call to ptyFork(), which uses
them to set the corresponding values for the pseudoterminal slave device.

Call our ptyFork() function (Listing 64-2) to create a child process that is con-
nected to the parent via a pseudoterminal pair w.

After the ptyFork() call, the child execs a shell r. The choice of shell is deter-
mined by the setting of the SHELL environment variable e. If the SHELL variable is
not set or its value is an empty string, then the child execs /bin/sh.

After the ptyFork() call, the parent performs the following steps:

– Open the output script file t. If a command-line argument is supplied, this
is used as the name of the script file. If no command-line argument is sup-
plied, the default name typescript is used.

– Place the terminal in raw mode (using the ttySetRaw() function shown in
Listing 62-3, on page 1310), so that all input characters are passed directly
to the script program without being modified by the terminal driver y.
Characters output by the script program are likewise not modified by the
terminal driver.

The fact that the terminal is in raw mode doesn’t mean that raw, uninterpreted
control characters will be transmitted to the shell, or whatever other process
group is in the foreground for the pseudoterminal slave device, nor that output
from that process group is passed raw to the user’s terminal. Instead, interpreta-
tion of terminal special characters is taking place within the slave device (unless
the slave was also explicitly placed in raw mode by an application). By placing the
user’s terminal in raw mode, we prevent a second round of interpretation of
input and output characters from occurring.

– Call atexit() to install an exit handler that resets the terminal to its original
mode when the program terminates u.

– Execute a loop that transfers data in both directions between the terminal
and the pseudoterminal master i. In each loop iteration, the program first
uses select() (Section 63.2.1) to monitor both the terminal and the
pseudoterminal master for input o. If the terminal has input available,
then the program reads some of that input and writes it to the pseudo-
terminal master a. Similarly, if the pseudoterminal master has input avail-
able, the program reads some of that input and writes it to the terminal
and to the script file s. The loop executes until end-of-file or an error is
detected on one of the monitored file descriptors.
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Listing 64-3: A simple implementation of script(1)
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– pty/script.c

#include <sys/stat.h>
#include <fcntl.h>
#include <libgen.h>
#include <termios.h>
#include <sys/select.h>
#include "pty_fork.h"           /* Declaration of ptyFork() */
#include "tty_functions.h"      /* Declaration of ttySetRaw() */
#include "tlpi_hdr.h"

#define BUF_SIZE 256
#define MAX_SNAME 1000

struct termios ttyOrig;

static void             /* Reset terminal mode on program exit */
ttyReset(void)
{
    if (tcsetattr(STDIN_FILENO, TCSANOW, &ttyOrig) == -1)
        errExit("tcsetattr");
}

int
main(int argc, char *argv[])
{
    char slaveName[MAX_SNAME];
    char *shell;
    int masterFd, scriptFd;
    struct winsize ws;
    fd_set inFds;
    char buf[BUF_SIZE];
    ssize_t numRead;
    pid_t childPid;

q     if (tcgetattr(STDIN_FILENO, &ttyOrig) == -1)
        errExit("tcgetattr");
    if (ioctl(STDIN_FILENO, TIOCGWINSZ, &ws) < 0)
        errExit("ioctl-TIOCGWINSZ");

w     childPid = ptyFork(&masterFd, slaveName, MAX_SNAME, &ttyOrig, &ws);
    if (childPid == -1)
        errExit("ptyFork");

    if (childPid == 0) {        /* Child: execute a shell on pty slave */
e         shell = getenv("SHELL");

        if (shell == NULL || *shell == '\0')
            shell = "/bin/sh";

r         execlp(shell, shell, (char *) NULL);
        errExit("execlp");      /* If we get here, something went wrong */
    }
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    /* Parent: relay data between terminal and pty master */

t     scriptFd = open((argc > 1) ? argv[1] : "typescript",
                        O_WRONLY | O_CREAT | O_TRUNC,
                        S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP |
                                S_IROTH | S_IWOTH);
    if (scriptFd == -1)
        errExit("open typescript");

y     ttySetRaw(STDIN_FILENO, &ttyOrig);

u     if (atexit(ttyReset) != 0)
        errExit("atexit");

i     for (;;) {
        FD_ZERO(&inFds);
        FD_SET(STDIN_FILENO, &inFds);
        FD_SET(masterFd, &inFds);

o         if (select(masterFd + 1, &inFds, NULL, NULL, NULL) == -1)
            errExit("select");

a         if (FD_ISSET(STDIN_FILENO, &inFds)) {   /* stdin --> pty */
            numRead = read(STDIN_FILENO, buf, BUF_SIZE);
            if (numRead <= 0)
                exit(EXIT_SUCCESS);

            if (write(masterFd, buf, numRead) != numRead)
                fatal("partial/failed write (masterFd)");
        }

s        if (FD_ISSET(masterFd, &inFds)) {       /* pty --> stdout+file */
            numRead = read(masterFd, buf, BUF_SIZE);
            if (numRead <= 0)
                exit(EXIT_SUCCESS);

            if (write(STDOUT_FILENO, buf, numRead) != numRead)
                fatal("partial/failed write (STDOUT_FILENO)");
            if (write(scriptFd, buf, numRead) != numRead)
                fatal("partial/failed write (scriptFd)");
        }
    }
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– pty/script.c

In the following shell session, we demonstrate the use of the program in Listing 64-3.
We begin by displaying the name of the pseudoterminal used by the xterm on which
the login shell is running and the process ID of the login shell. This information is
useful later in the shell session.

$ tty
/dev/pts/1
$ echo $$
7979
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We then start an instance of our script program, which invokes a subshell. Once
more, we display the name of the terminal on which the shell is running and the
process ID of the shell:

$ ./script
$ tty
/dev/pts/24                         Pseudoterminal slave opened by script
$ echo $$
29825                               PID of subshell process started by script

Now we use ps(1) to display information about the two shells and the process run-
ning script, and then terminate the shell started by script:

$ ps -p 7979 -p 29825 -C script -o "pid ppid sid tty cmd"
  PID  PPID   SID TT       CMD
 7979  7972  7979 pts/1    /bin/bash
29824  7979  7979 pts/1    ./script
29825 29824 29825 pts/24   /bin/bash
$ exit

The output of ps(1) shows the parent-child relationships between the login shell,
the process running script, and the subshell started by script.

At this point, we have returned to the login shell. Displaying the contents of
the file typescript shows a record of all input and output that was produced while
script was running:

$ cat typescript
$ tty
/dev/pts/24
$ echo $$
29825
$ ps -p 7979 -p 29825 -C script -o "pid ppid sid tty cmd"
  PID  PPID   SID TT       CMD
 7979  7972  7979 pts/1    /bin/bash
29824  7979  7979 pts/1    ./script
29825 29824 29825 pts/24   /bin/bash
$ exit

64.7 Terminal Attributes and Window Size

The master and slave device share terminal attributes (termios) and window size
(winsize) structures. (Both of these structures are described in Chapter 62.) This
means that the program running above the pseudoterminal master can change
these attributes for the pseudoterminal slave by applying tcsetattr() and ioctl() to the
file descriptor of the master device.

One example of where changing terminal attributes can be useful is in the script
program. Suppose we are running script in a terminal emulator window, and we
change the size of the window. In this case, the terminal emulator program will
inform the kernel of the change in the size of the corresponding terminal device,
but this change is not reflected in the separate kernel record for the pseudoterminal
slave (see Figure 64-4). As a consequence, screen-oriented programs (e.g., vi) run-
ning above the pseudoterminal slave will produce confusing output, since their
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understanding of the terminal window size differs from the actual size of the termi-
nal. We can solve this problem as follows:

1. Install a handler for SIGWINCH in the script parent process, so that it is signaled
when the size of the terminal window changes.

2. When the script parent receives a SIGWINCH signal, it uses an ioctl() TIOCGWINSZ
operation to retrieve a winsize structure for the terminal window associated
with its standard input. It then uses this structure in an ioctl() TIOCSWINSZ opera-
tion that sets the window size of the pseudoterminal master.

3. If the new pseudoterminal window size is different from the old size, then the
kernel generates a SIGWINCH signal for the foreground process group of the
pseudoterminal slave. Screen-handling programs such as vi are designed to
catch this signal and perform an ioctl() TIOCGWINSZ operation to update their
understanding of the terminal window size.

We described the details of terminal window sizes and the ioctl() TIOCGWINSZ and
TIOCSWINSZ operations in Section 62.9.

64.8 BSD Pseudoterminals

For most of this chapter, we have focused on UNIX 98 pseudoterminals, since this
is the style of pseudoterminal that is standardized in SUSv3 and thus should be
used in all new programs. However, we may sometimes encounter BSD pseudoter-
minals in older applications or when porting programs to Linux from other UNIX
implementations. Therefore, we now consider the details of BSD pseudoterminals.

The use of BSD pseudoterminals is deprecated on Linux. From Linux 2.6.4
onward, BSD pseudoterminal support is an optional kernel component that
can be configured via the CONFIG_LEGACY_PTYS option.

BSD pseudoterminals differ from their UNIX 98 counterparts only in the details of
how pseudoterminal master and slave devices are found and opened. Once the
master and slave have been opened, BSD pseudoterminals operate in the same way
as UNIX 98 pseudoterminals.

With UNIX 98 pseudoterminals, we obtain an unused pseudoterminal master
by calling posix_openpt(), which opens /dev/ptmx, the pseudoterminal master clone
device. We then obtain the name of the corresponding pseudoterminal slave using
ptsname(). By contrast, with BSD pseudoterminals, the master and slave device pairs
are precreated entries in the /dev directory. Each master device has a name of the
form /dev/ptyxy, where x is replaced by a letter in the 16-letter range [p-za-e] and y
is replaced by a letter in the 16-letter range [0-9a-f]. The slave corresponding to a
particular pseudoterminal master has a name of the form /dev/ttyxy. Thus, for
example, the devices /dev/ptyp0 and /dev/ttyp0 constitute a BSD pseudoterminal pair.

UNIX implementations vary in the number and names of BSD pseudoterminal
pairs that they supply, with some supplying as few as 32 pairs by default. Most
implementations provide at least the 32 master devices with names in the
range /dev/pty[pq][0-9a-f], along with the corresponding slave devices.
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To find an unused pseudoterminal pair, we execute a loop that attempts to open
each master device in turn, until one of them is opened successfully. While execut-
ing this loop, there are two errors that we may encounter when calling open():

If a given master device name doesn’t exist, open() fails with the error ENOENT.
Typically, this means we’ve run through the complete set of pseudoterminal
master names on the system without finding a free device (i.e., there was not
the full range of devices listed above).

If the master device is in use, open() fails with the error EIO. We can just ignore
this error and try the next device.

On HP-UX 11, open() fails with the error EBUSY on an attempt to open a BSD
pseudoterminal master that is in use.

Once we have found an available master device, we can obtain the name of the cor-
responding slave by substituting tty for pty in the name of the master. We can then
open the slave using open().

With BSD pseudoterminals, there is no equivalent of grantpt() to change the
ownership and permissions of the pseudoterminal slave. If we need to do this,
then we must make explicit calls to chown() (only possible in a privileged program)
and chmod(), or write a set-user-ID program (like pt_chown) that performs this
task for an unprivileged program.

Listing 64-4 shows a reimplementation of the ptyMasterOpen() function of Section 64.3
using BSD pseudoterminals. Substituting this implementation is all that is required
to make our script program (Section 64.6) work with BSD pseudoterminals.

Listing 64-4: Implementation of ptyMasterOpen() using BSD pseudoterminals

––––––––––––––––––––––––––––––––––––––––––––––––– pty/pty_master_open_bsd.c

#include <fcntl.h>
#include "pty_master_open.h"            /* Declares ptyMasterOpen() */
#include "tlpi_hdr.h"

#define PTYM_PREFIX     "/dev/pty"
#define PTYS_PREFIX     "/dev/tty"
#define PTY_PREFIX_LEN  (sizeof(PTYM_PREFIX) - 1)
#define PTY_NAME_LEN    (PTY_PREFIX_LEN + sizeof("XY"))
#define X_RANGE         "pqrstuvwxyzabcde"
#define Y_RANGE         "0123456789abcdef"

int
ptyMasterOpen(char *slaveName, size_t snLen)
{
    int masterFd, n;
    char *x, *y;
    char masterName[PTY_NAME_LEN];

    if (PTY_NAME_LEN > snLen) {
        errno = EOVERFLOW;
        return -1;
    }
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    memset(masterName, 0, PTY_NAME_LEN);
    strncpy(masterName, PTYM_PREFIX, PTY_PREFIX_LEN);

    for (x = X_RANGE; *x != '\0'; x++) {
        masterName[PTY_PREFIX_LEN] = *x;

        for (y = Y_RANGE; *y != '\0'; y++) {
            masterName[PTY_PREFIX_LEN + 1] = *y;

            masterFd = open(masterName, O_RDWR);

            if (masterFd == -1) {
                if (errno == ENOENT)    /* No such file */
                    return -1;          /* Probably no more pty devices */
                else                    /* Other error (e.g., pty busy) */
                    continue;

            } else {            /* Return slave name corresponding to master */
                n = snprintf(slaveName, snLen, "%s%c%c", PTYS_PREFIX, *x, *y);
                if (n >= snLen) {
                    errno = EOVERFLOW;
                    return -1;
                } else if (n == -1) {
                    return -1;
                }

                return masterFd;
            }
        }
    }

    return -1;                  /* Tried all ptys without success */
}

––––––––––––––––––––––––––––––––––––––––––––––––– pty/pty_master_open_bsd.c

64.9 Summary

A pseudoterminal pair consists of a connected master device and slave device.
Together, these two devices provide a bidirectional IPC channel. The benefit of a
pseudoterminal is that, on the slave side of the pair, we can connect a terminal-oriented
program that is driven by the program that has opened the master device. The
pseudoterminal slave behaves just like a conventional terminal. All of the opera-
tions that can be applied to a conventional terminal can be applied to the slave, and
input transmitted from the master to the slave is interpreted in the same manner as
keyboard input is interpreted on a conventional terminal.

One common use of pseudoterminals is in applications that provide network
login services. However, pseudoterminals are also used in many other programs,
such as terminal emulators and the script(1) program.

Different pseudoterminals APIs arose on System V and BSD. Linux supports
both APIs, but the System V API forms the basis for the pseudoterminal API that is
standardized in SUSv3.
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64.10 Exercises

64-1. In what order do the script parent process and the child shell process terminate
when the user types the end-of-file character (usually Control-D) while running the
program in Listing 64-3? Why?

64-2. Make the following modifications to the program in Listing 64-3 (script.c):

a) The standard script(1) program adds lines to the beginning and the end of the
output file showing the time the script started and finished. Add this feature.

b) Add code to handle changes to the terminal window size as described in
Section 64.7. You may find the program in Listing 62-5 (demo_SIGWINCH.c) useful
for testing this feature.

64-3. Modify the program in Listing 64-3 (script.c) to replace the use of select() by a pair
of processes: one to handle data transfer from the terminal to the pseudoterminal
master, and the other to handle data transfer in the opposite direction.

64-4. Modify the program in Listing 64-3 (script.c) to add a time-stamped recording
feature. Each time the program writes a string to the typescript file, it should also
write a time-stamped string to a second file (say, typescript.timed). Records written
to this second file might have the following general form:

<timestamp> <space> <string> <newline>

The timestamp should be recorded in text form as the number of milliseconds since
the start of the script session. Recording the timestamp in text form has the advan-
tage that the resulting file is human-readable. Within string, real newline characters
will need to be escaped. One possibility is to record a newline as the 2-character
sequence \n and a backslash as \\.

Write a second program, script_replay.c, that reads the time-stamped script file
and displays its contents on standard output at the same rate at which they were
originally written. Together, these two programs provide a simple recording and
playback feature for shell session logs.

64-5. Implement client and server programs to provide a simple telnet-style remote login
facility. Design the server to handle clients concurrently (Section 60.1). Figure 64-3
shows the setup that needs to be established for each client login. What isn’t shown
in that diagram is the parent server process, which handles incoming socket
connections from clients and creates a server child to handle each connection.
Note that all of the work of authenticating the user and starting a login shell can be
dealt with in each server child by having the (grand)child created by ptyFork() go on
to exec login(1).

64-6. Add code to the program developed in the previous exercise to update the login
accounting files at the start and end of the login session (Chapter 40).

64-7. Suppose we execute a long-running program that slowly generates output that is
redirected to a file or pipe, as in this example:

$ longrunner | grep str
1398 Chapter 64



One problem with the above scenario is that, by default, the stdio package flushes
standard output only when the stdio buffer is filled. This means that the output from
the longrunner program will appear in bursts separated by long intervals of time. One
way to circumvent this problem is to write a program that does the following:

a) Create a pseudoterminal.

b) Exec the program named in its command-line arguments with the standard
file descriptors connected to the pseudoterminal slave.

c) Read output from the pseudoterminal master and write it immediately to
standard output (STDOUT_FILENO, file descriptor 1), and, at the same time,
read input from the terminal and write it to the pseudoterminal master, so
that it can be read by the execed program.

Such a program, which we’ll call unbuffer, would be used as follows:

$ ./unbuffer longrunner | grep str

Write the unbuffer program. (Much of the code for this program will be similar to
that of Listing 64-3.)

64-8. Write a program that implements a scripting language that can be used to drive vi
in a noninteractive mode. Since vi expects to be run from a terminal, the program
will need to employ a pseudoterminal.
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T R A C I N G  S Y S T E M  C A L L S

The strace command allows us to trace the system calls made by a program. This is
useful for debugging, or simply to find out what a program is doing. In its simplest
form, we use strace as follows:

$ strace command arg...

This runs command, with the given command-line arguments, producing a trace of
the system calls it makes. By default, strace writes its output to stderr, but we can
change this using the –o filename option.

Examples of the type of output produced by strace include the following (taken
from the output of the command strace date):

execve("/bin/date", ["date"], [/* 114 vars */]) = 0
access("/etc/ld.so.preload", R_OK)      = -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", O_RDONLY)      = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=111059, ...}) = 0
mmap2(NULL, 111059, PROT_READ, MAP_PRIVATE, 3, 0) = 0xb7f38000
close(3)                                = 0
open("/lib/libc.so.6", O_RDONLY)        = 3
fstat64(3, {st_mode=S_IFREG|0755, st_size=1491141, ...}) = 0
close(3)                                = 0
write(1, "Mon Jan 17 12:14:24 CET 2011\n", 29) = 29
exit_group(0)                           = ?



Each system call is displayed in the form of a function call, with both input and out-
put arguments shown in parentheses. As can be seen from the above examples,
arguments are printed in symbolic form:

Bit masks are represented using the corresponding symbolic constants.

Strings are printed in text form (up to a limit of 32 characters, but the –s strsize
option can be used to change this limit).

Structure fields are individually displayed (by default, only an abbreviated sub-
set of large structures is displayed, but the –v option can be used to display the
whole structure).

After the closing parenthesis of the traced call, strace prints an equal sign (=), fol-
lowed by the return value of the system call. If the system call failed, the symbolic
errno value is also displayed. Thus, we see ENOENT displayed for the failure of the
access() call above.

Even for a simple program, the output produced by strace is made voluminous
by the system calls executed by the C run-time startup code and the loading of
shared libraries. For a complex program, the strace output can be extremely long.
For these reasons, it is sometimes useful to selectively filter the output of strace.
One way to do this is to use grep, like so:

$ strace date 2>&1 | grep open

Another method is to use the –e option to select the events to be traced. For example,
we can use the following command to trace open() and close() system calls:

$ strace -e trace=open,close date

When using either of the above techniques, we need to be aware that, in a few cases,
the true name of a system call differs from the name of its glibc wrapper. For example,
though we refer to all of the wait()-type functions as system calls in Chapter 26, most of
them (wait(), waitpid(), and wait3()) are wrappers that invoke the kernel’s wait4()
system call service routine. This latter name is displayed by strace, and we must
specify that name in the –e trace= option. Similarly, all of the exec library functions
(Section 27.2) invoke the execve() system call. Often, we can make a good guess
about such transformations by looking at the strace output (or looking at the output
produced by strace –c, described below), but, failing that, we may need to check the glibc
source code to see what transformations may be occurring inside wrapper functions.

The strace(1) manual page documents a host of further options to strace, includ-
ing the following:

The –p pid option is used to trace an existing process, by specifying its process
ID. Unprivileged users are restricted to tracing only processes that they own
and that are not executing set-user-ID or set-group-ID programs (Section 9.3).

The –c option causes strace to print a summary of all system calls made by the
program. For each system call, the summary information includes the total num-
ber of calls, the number of calls that failed, and the total time spent executing
the calls.
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The –f option causes children of this process also to be traced. If we are sending
trace output to a file (–o filename), then the alternative –ff option causes each pro-
cess to write its trace output to a file named filename.PID.

The strace command is Linux-specific, but most UNIX implementations provide
their own equivalents (e.g., truss on Solaris and ktrace on the BSDs).

The ltrace command performs an analogous task to strace, but for library func-
tions. See the ltrace(1) manual page for details.
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P A R S I N G  C O M M A N D - L I N E  
O P T I O N S

A typical UNIX command line has the following form:

command [ options ] arguments

An option takes the form of a hyphen (-) followed by a unique character identify-
ing the option and a possible argument for the option. An option that takes an
argument may optionally be separated from that argument by white space. Multi-
ple options can be grouped after a single hyphen, and the last option in the group
may be one that takes an argument. According to these rules, the following com-
mands are all equivalent:

$ grep -l -i -f patterns *.c
$ grep -lif patterns *.c
$ grep -lifpatterns *.c

In the above commands, the –l and –i options don’t have an argument, while the –f
option takes the string patterns as its argument.

Since many programs (including some of the example programs in this book)
need to parse options in the above format, the facility to do so is encapsulated in a
standard library function, getopt().



The getopt() function parses the set of command-line arguments given in argc and
argv, which would normally be taken from the arguments of the same name to
main(). The optstring argument specifies the set of options that getopt() should look
for in argv. This argument consists of a sequence of characters, each of which iden-
tifies an option. SUSv3 specifies that getopt() should permit at least the characters in
the 62-character set [a-zA-Z0-9] as options. Most implementations allow other
characters as well, with the exception of :, ?, and -, which have special meaning to
getopt(). Each option character may be followed by a colon (:), indicating that this
option expects an argument.

We parse a command line by calling getopt() repeatedly. Each call returns infor-
mation about the next unprocessed option. If an option was found, the option
character is returned as the function result. If the end of the option list was
reached, getopt() returns –1. If an option has an argument, getopt() sets the global
variable optarg to point to that argument.

Note that the function result of getopt() is int. We must not assign the result of
getopt() to a variable of type char, because the comparison of the char variable with –1
won’t work on systems where char is unsigned.

If an option doesn’t have an argument, then the glibc getopt() implementation
(like most other implementations) sets optarg to NULL. However, SUSv3
doesn’t specify this behavior, so applications can’t portably rely on it (nor is
it usually needed).

SUSv3 specifies (and glibc implements) a related function, getsubopt(), that
parses option arguments that consist of one of more comma-separated strings
of the form name[=value]. See the getsubopt(3) manual page for details.

On each call to getopt(), the global variable optind is updated to contain the index of
the next unprocessed element of argv. (When multiple options are grouped in a
single word, getopt() does some internal bookkeeping to keep track of which part of
the word is next to be processed.) The optind variable is automatically set to 1
before the first call to getopt(). There are two circumstances where we may make use
of this variable:

If getopt() returns –1, indicating that no more options are present and optind is
less than argc, then argv[optind] is the location of the next nonoption word from
the command line.

If we are processing multiple command-line vectors or rescanning the same
command line, then we must explicitly reset optind to 1.

#include <unistd.h>

extern int optind, opterr, optopt;
extern char *optarg;

int getopt(int argc, char *const argv[], const char *optstring);

See main text for description of return value
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The getopt() function returns –1, indicating the end of the option list, in the follow-
ing circumstances:

The end of the list described by argc plus argv was reached (i.e., argv[optind] is NULL).

The next unprocessed word in argv does not start with an option delimiter (i.e.,
argv[optind][0] is not a hyphen).

The next unprocessed word in argv consists of a single hyphen (i.e., argv[optind]
is -). Some commands understand such a word as an argument with a special
meaning, as described in Section 5.11.

The next unprocessed word in argv consists of two hyphens (--). In this case,
getopt() silently consumes the two hyphens and optind is adjusted to point to the
next word after the double hyphen. This syntax enables a user to indicate the
end of the options of a command, even when the next word on the command
line (after the double hyphen) looks like an option (i.e., starts with a hyphen).
For example, if we want to use grep to search for the string –k inside a file,
then we would write grep –– –k myfile.

Two kinds of errors may occur as getopt() processes an option list. One error arises
when an option that is not specified in optstring is encountered. The other error
occurs when an argument is not supplied to an option that expects one (i.e., the
option appears at the end of the command line). The rules about how getopt()
handles and reports these errors are as follows:

By default, getopt() prints an appropriate error message on standard error and
returns the character ? as its function result. In this case, the global variable
optopt returns the erroneous option character (i.e., the one that is unrecog-
nized or whose argument is missing).

The global variable opterr can be used to suppress the error messages printed
by getopt(). By default, this variable is set to 1. If we set it to 0, then getopt()
doesn’t print error messages, but otherwise behaves as described in the preced-
ing point. The program can detect the error via the ? function result and dis-
play a customized error message.

Alternatively, we may suppress error messages by specifying a colon (:) as the
first character in optstring (doing so overrides the effect of setting opterr to 0).
In this case, an error is reported as with setting opterr to 0, except that an
option with a missing argument is reported by returning : as the function result.
This difference in return values allows us to distinguish the two types of errors
(unrecognized option and missing option argument), if we need to do so.

The above error-reporting alternatives are summarized in Table B-1.

Table B-1: getopt() error-reporting behavior

Error-reporting 
method

getopt() displays 
error message?

Return for 
unrecognized option

Return for 
missing argument

default (opterr == 1) Y ? ?

opterr == 0 N ? ?

: at start of optstring N ? :
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Example program

Listing B-1 demonstrates the use of getopt() to parse the command line for two
options: the –x option, which doesn’t expect an argument, and the –p option which
does expect an argument. This program suppresses error messages from getopt() by
specifying a colon (:) as the first character in optstring.

To allow us to observe the operation of getopt(), we include some printf() calls to
display the information returned by each getopt() call. On completion, the program
prints some summary information about the specified options and also displays the
next nonoption word on the command line, if there is one. The following shell ses-
sion log shows the results when we run this program with different command-line
arguments:

$ ./t_getopt -x -p hello world
opt =120 (x); optind = 2
opt =112 (p); optind = 4
-x was specified (count=1)
-p was specified with the value "hello"
First nonoption argument is "world" at argv[4]
$ ./t_getopt -p
opt = 58 (:); optind = 2; optopt =112 (p)
Missing argument (-p)
Usage: ./t_getopt [-p arg] [-x]
$ ./t_getopt -a
opt = 63 (?); optind = 2; optopt = 97 (a)
Unrecognized option (-a)
Usage: ./t_getopt [-p arg] [-x]
$ ./t_getopt -p str -- -x
opt =112 (p); optind = 3
-p was specified with the value "str"
First nonoption argument is "-x" at argv[4]
$ ./t_getopt -p -x
opt =112 (p); optind = 3
-p was specified with the value "-x"

Note that in the last example above, the string –x was interpreted as an argument to
the –p option, rather than as an option.

Listing B-1: Using getopt()
–––––––––––––––––––––––––––––––––––––––––––––––––––––––– getopt/t_getopt.c

#include <ctype.h>
#include "tlpi_hdr.h"

#define printable(ch) (isprint((unsigned char) ch) ? ch : '#')

static void             /* Print "usage" message and exit */
usageError(char *progName, char *msg, int opt)
{
    if (msg != NULL && opt != 0)
        fprintf(stderr, "%s (-%c)\n", msg, printable(opt));
    fprintf(stderr, "Usage: %s [-p arg] [-x]\n", progName);
    exit(EXIT_FAILURE);
}
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int
main(int argc, char *argv[])
{
    int opt, xfnd;
    char *pstr;

    xfnd = 0;
    pstr = NULL;

    while ((opt = getopt(argc, argv, ":p:x")) != -1) {
        printf("opt =%3d (%c); optind = %d", opt, printable(opt), optind);
        if (opt == '?' || opt == ':')
            printf("; optopt =%3d (%c)", optopt, printable(optopt));
        printf("\n");

        switch (opt) {
        case 'p': pstr = optarg;        break;
        case 'x': xfnd++;               break;
        case ':': usageError(argv[0], "Missing argument", optopt);
        case '?': usageError(argv[0], "Unrecognized option", optopt);
        default:  fatal("Unexpected case in switch()");
        }
    }

    if (xfnd != 0)
        printf("-x was specified (count=%d)\n", xfnd);
    if (pstr != NULL)
        printf("-p was specified with the value \"%s\"\n", pstr);
    if (optind < argc)
        printf("First nonoption argument is \"%s\" at argv[%d]\n",
                argv[optind], optind);
    exit(EXIT_SUCCESS);
}

–––––––––––––––––––––––––––––––––––––––––––––––––––––––– getopt/t_getopt.c

GNU-specific behavior

By default, the glibc implementation of getopt() implements a nonstandard feature: it
allows options and nonoptions to be intermingled. Thus, for example, the following
are equivalent:

$ ls -l file
$ ls file -l

In processing command lines of the second form, getopt() permutes the contents of
argv so that all options are moved to the beginning of the array and all nonoptions
are moved to the end of the array. (If argv contains an element pointing to the
word --, then only the elements preceding that element are subject to permutation
and interpretation as options.) In other words, the const declaration of argv in the
getopt() prototype shown earlier is not actually true for glibc.

Permuting the contents of argv is not permitted by SUSv3 (or SUSv4). We can
force getopt() to provide standards-conformant behavior (i.e., to follow the rules
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listed earlier for determining the end of the option list) by setting the environment
variable POSIXLY_CORRECT to any value. This can be done in two ways:

From within the program, we can call putenv() or setenv(). This has the advan-
tage that the user is not required to do anything. It has the disadvantages that it
requires modifications of the program source code and that it changes the
behavior of only that program.

We can define the variable from the shell before we execute the program:

$ export POSIXLY_CORRECT=y

This method has the advantage that it affects all programs that use getopt().
However, it also has some disadvantages. POSIXLY_CORRECT causes other changes
in the behavior of various Linux tools. Furthermore, setting this variable
requires explicit user intervention (most likely by setting the variable in a shell
startup file).

An alternative method of preventing getopt() from permuting command-line argu-
ments is to make the first character of optstring a plus sign (+). (If we want to also
suppress getopt() error messages as described above, then the first two characters of
optstring should be +:, in that order.) As with the use of putenv() or setenv(), this
approach has the disadvantage that it requires changes to the program code. See
the getopt(3) manual page for further details.

A future technical corrigendum of SUSv4 is likely to add a specification for the use
of the plus sign in optstring to prevent permutation of command-line arguments.

Note that the glibc getopt() permuting behavior affects how we write shell scripts.
(This affects developers porting shell scripts from other systems to Linux.) Suppose
we have a shell script that performs the following command on all of the files in a
directory:

chmod 644 *

If one of these filenames starts with a hyphen, then the glibc getopt() permuting
behavior would cause that filename to be interpreted as an option to chmod. This
would not happen on other UNIX implementations, where the occurrence of the
first nonoption (644) ensures that getopt() ceases looking for options in the remain-
der of the command line. For most commands, (if we don’t set POSIXLY_CORRECT,
then) the way of dealing with this possibility in shell scripts that must run on Linux
is to place the string -- before the first nonoption argument. Thus, we would
rewrite the above line as follows:

chmod -- 644 *

In this particular example, which employs filename generation, we could alterna-
tively write this:

chmod 644 ./*
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Although we have used the example of filename pattern matching (globbing)
above, similar scenarios can also occur as a result of other shell processing (e.g.,
command substitution and parameter expansion), and they can be dealt with simi-
larly, by using a -- string to separate options from arguments.

GNU extensions

The GNU C library provides a number of extensions to getopt(). We briefly note
the following:

The SUSv3 specification permits options to have only mandatory arguments.
In the GNU version of getopt(), we can place two colons after an option charac-
ter in optstring to indicate that its argument is optional. The argument to such
an option must appear in the same word as the option itself (i.e., no spaces may
appear between the option and its argument). If the argument is not present,
then, on return from getopt(), optarg is set to NULL.

Many GNU commands allow a form of long option syntax. A long option
begins with two hyphens, and the option itself is identified using a word, rather
than a single character, as in the following example:

$ gcc --version

The glibc function getopt_long() can be used to parse such options.

The GNU C library provides an even more sophisticated (but nonportable)
API for parsing the command-line, called argp. This API is described in the glibc
manual.
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C A S T I N G  T H E  NULL P O I N T E R

Consider the following call to the variadic function execl():

execl("ls", "ls", "-l", (char *) NULL);

A variadic function is one that takes a variable number of arguments or argu-
ments of varying types.

Whether the cast is required before the NULL in cases like this is the source of some
confusion. While we can often get away without the cast, the C standards require it;
failure to include it may lead an application to break on some systems.

NULL is typically defined as either 0 or as (void *) 0. (The C standards allow other
definitions, but they are essentially equivalent to one of these two possibilities.)
The main reason casts are needed is that NULL is allowed to be defined as 0, so this is
the case we examine first.

The C preprocessor translates NULL to 0 before the source code is passed to the
compiler. The C standards specify that the integer constant 0 may be used in any
context where a pointer may be used, and the compiler will ensure that this value is
treated as a null pointer. In most cases, everything is fine, and we don’t need to
worry about casts. We can, for example, write code such as the following:

int *p;

p = 0;                                  /* Assign null pointer to 'p' */
p = NULL;                               /* Same as 'p = 0' */



The above assignments work because the compiler can determine that a pointer
value is required on the right-hand side of the assignment, and it will convert
the value 0 to a null pointer.

Similarly, for functions with prototypes specifying a fixed argument list, we can
specify either 0 or NULL for a pointer argument, to indicate that a null pointer
should be passed to the function:

sigaction(SIGINT, &sa, 0);
sigaction(SIGINT, &sa, NULL);           /* Equivalent to the preceding */

If we are passing a null pointer to an old-style, nonprototyped C function, then
all of the arguments given here about the need to appropriately cast 0 or NULL
also apply, regardless of whether the argument is part of a variadic argument list.

Because casting is not required in any of the above examples, one might conclude
that it is never required. But this is wrong. The need for casting arises when specify-
ing a null pointer as one of the varying arguments in a call to a variadic function
such as execl(). To realize why this is necessary, we need to be aware of the following:

The compiler can’t determine the expected types of the varying arguments of a
variadic function.

The C standards don’t require that a null pointer is actually represented in the
same way as the integer constant 0. (In theory, a null pointer could be repre-
sented by any bit pattern that wasn’t the same as a valid pointer.) Nor do the
standards even require that a null pointer is the same size as the integer constant 0.
All that the standards require is that when the integer constant 0 is found in a
context where a pointer is expected, the 0 should be interpreted as a null pointer.

Consequently, it is wrong to write either of the following:

execl(prog, arg, 0);
execl(prog, arg, NULL);

This is an error because the compiler will pass the integer constant 0 to execl(), and
there is no guarantee that this is equivalent to a null pointer.

In practice, we can often get away without the cast, since, on many C imple-
mentations (e.g., Linux/x86-32), the representations of the integer (int) constant 0
and the null pointer are the same. However, there are implementations where they
are not—for example, where the size of a null pointer is larger than the size of the
integer constant 0—so that in the above examples, execl() is likely to receive some
random bits adjacent to the integer 0, and the resulting value will be interpreted as
a random (nonnull) pointer. Omitting the cast leads to programs breaking when
ported to such implementations. (On some of the aforementioned implementa-
tions, NULL is defined as the long integer constant 0L, and long and void * have the
same size, which may save wrongly constructed programs that use the second of
the execl() calls above.) Therefore, we should rewrite the above execl() calls in the
following ways:

execl(prog, arg, (char *) 0);
execl(prog, arg, (char *) NULL);
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Casting NULL in the manner of the last call above is generally required, even on
implementations where NULL is defined as (void *) 0. This is because, although the C
standards require that null pointers of different types should test true for compari-
sons on equality, they don’t require that pointers of different types have the same
internal representation (although on most implementations they do). And, as
before, in a variadic function, the compiler can’t cast (void *) 0 to a null pointer of
the appropriate type.

The C standards make one exception to the rule that pointers of different
types need not have the same representation: pointers of the types char * and
void * are required to have the same internal representation. This means that
passing (void *) 0 instead of (char *) 0 would not be a problem in the example
case of execl(), but, in the general case, a cast is needed.
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K E R N E L  C O N F I G U R A T I O N

Many features of the Linux kernel are components that can be optionally config-
ured. Before compiling the kernel, these components can be disabled, enabled, or,
in many cases, enabled as loadable kernel modules. One reason to disable an
unneeded component is to reduce the size of the kernel binary, and thus save
memory, if the component is not required. Enabling a component as a loadable
module means that it will be loaded into memory only if it is required at run time.
This likewise can save memory.

Kernel configuration is done by executing one of a few different make commands
in the root directory of the kernel source tree—for example, make menuconfig, which
provides a curses-style configuration menu, or, more comfortably, make xconfig,
which provides a graphical configuration menu. These commands produce a
.config file in the root directory of the kernel source tree that is then used during
kernel compilation. This file contains the settings of all configuration options.

The value of each option that is enabled is shown in the .config file in a line of
the following form:

CONFIG_NAME=value

If an option is not set, then the file contains a line of this form:

# CONFIG_NAME is not set

In the .config file, lines beginning with a # character are comments.



Throughout this book, when we describe kernel options, we won’t describe pre-
cisely where in the menuconfig or xconfig menu the option can be found. There are a
few reasons for this:

The location can often be determined fairly intuitively by navigating through
the menu hierarchy.

The location of configuration options does change over time, as the menu hier-
archy is restructured across kernel versions.

If we can’t find the location of a particular option within the menu hierarchy,
then both make menuconfig and make xconfig provide search facilities. For exam-
ple, we can search for the string CONFIG_INOTIFY to find the option for configur-
ing support for the inotify API.

The configuration options that were used to build the currently running kernel are
viewable via the /proc/config.gz virtual file, a compressed file whose contents are
the same as the .config file that was used to build the kernel. This file can be viewed
using zcat(1) and searched using zgrep(1).
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F U R T H E R  S O U R C E S  
O F  I N F O R M A T I O N

Aside from the material in this book, many other sources of information about
Linux system programming are available. This appendix provides a short introduc-
tion to some of them.

Manual pages

Manual pages are accessible via the man command. (The command man man
describes how to use man to read manual pages.) The manual pages are divided
into numbered sections that categorize information as follows:

1. Programs and shell commands: commands executed by users at the shell prompt.

2. System calls: Linux system calls.

3. Library functions: standard C library functions (as well as many other library
functions).

4. Special files: special files, such as device files.

5. File formats: formats of files such as the system password (/etc/passwd) and
group (/etc/group) files.

6. Games: games.



7. Overview, conventions, protocols, and miscellany: overviews of various topics, and
various pages on network protocols and sockets programming.

8. System administration commands: commands that are for use mainly by the
superuser.

In some cases, there are manual pages in different sections with the same name.
For example, there is a section 1 manual page for the chmod command and a sec-
tion 2 manual page for the chmod() system call. To distinguish manual pages with
the same name, we enclose the section number in parentheses after the name—for
example, chmod(1) and chmod(2). To display the manual page from a particular section,
we can insert the section number into the man command:

$ man 2 chmod

The manual pages for system calls and library functions are divided into a number
of parts, which usually include the following:

Name: the name of the function, accompanied by a one-line description. The
following command can be used to obtain a list of all manual pages whose one-
line description contains the specified string:

$ man -k string

This is useful if we can’t remember or don’t know exactly which manual page
we’re looking for.

Synopsis: the C prototype of the function. This identifies the type and order of
the function’s arguments, as well as the type of value returned by the function.
In most cases, a list of header files precedes the function prototype. These
header files define macros and C types needed for use with this function, as
well as the function prototype itself, and should be included in a program
using this function.

Description: a description of what the function does.

Return value: a description of the range of values returned by the function,
including how the function informs the caller of an error.

Errors: a list of the possible errno values that are returned in the event of an error.

Conforming to: a description of the various UNIX standards to which the func-
tion conforms. This gives us an idea of how portable this function is to other
UNIX implementations and also identifies Linux-specific aspects of the function.

Bugs: a description of things that are broken or that don’t work as they should.

Although some of the later commercial UNIX implementations have pre-
ferred more marketable euphemisms, from early times, the UNIX manual
pages called a bug a bug. Linux continues the tradition. Sometimes these “bugs”
are philosophical, simply describing ways in which things could be improved, or
warning about special or unexpected (but otherwise intended) behaviors.

Notes: miscellaneous additional notes on the function.

See also: a list of manual pages for related functions and commands.
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The manual pages describing the kernel and glibc APIs are available online at
http://www.kernel.org/doc/man-pages/.

GNU info documents

Rather than using the traditional manual page format, the GNU project documents
much of its software using info documents, which are hyperlinked documents that
can be browsed using the info command. A tutorial on the use of info can be
obtained using the command info info.

Although in many cases the information in manual pages and corresponding
info documents is the same, sometimes the info documentation for the C library
contains additional information not found in the manual pages or vice versa.

The reasons both manual pages and info documents exist, even though both
may contain the same information, are somewhat religious. The GNU project
prefers the info user interface, and so provides all documentation via info.
However, users and programmers on UNIX systems have had a long history of
using (and in many cases preferring) manual pages, so there is strong momen-
tum in favor of upholding this format. The manual pages also tend to include
more historical information (e.g., information about behavior changes across
versions) than do the info documents.

The GNU C library (glibc) manual

The GNU C library includes a manual that describes the use of many of the func-
tions in the library. The manual is available at http://www.gnu.org/. It is also pro-
vided with most distributions in both HTML format and info format (via the
command info libc).

Books

An extensive bibliography can be found at the end of this book, but a few books
deserve special mention.

At the top of the list are the books by the late W. Richard Stevens. Advanced
Programming in the UNIX Environment ([Stevens, 1992]) provides detailed coverage
of UNIX system programming, focusing on POSIX, System V, and BSD. A recent
revision by Stephen Rago, [Stevens & Rago, 2005] updates the text for modern
standards and implementations, and adds coverage of threads and a chapter on net-
work programming. This book is a good place to look for an alternative viewpoint on
many of the topics covered in this book. The two-volume UNIX Network Programming
([Stevens et al., 2004], [Stevens, 1999]) provides extremely detailed coverage of
network programming and interprocess communication on UNIX systems.

[Stevens et al., 2004] is a revision by Bill Fenner and Andrew Rudoff of
[Stevens, 1998], the previous edition of Volume 1 of the UNIX Network
Programming. While the revised edition covers several new areas, in most cases
where we make reference to [Stevens et al., 2004], the same material can also
be found in [Stevens, 1998], albeit under different chapter and section numbers.

Advanced UNIX Programming ([Rochkind, 1985]) was a good, brief, and sometimes
humorous, introduction to UNIX (System V) programming. It is nowadays avail-
able in an updated and extended second edition ([Rochkind, 2004]).
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The POSIX threading API is thoroughly described in Programming with POSIX
Threads ([Butenhof, 1996]).

Linux and the Unix Philosophy ([Gancarz, 2003]) is a brief introduction to the
philosophy of application design on Linux and UNIX systems.

Various books provide an introduction to reading and modifying the Linux
kernel sources, including Linux Kernel Development ([Love, 2010]) and Understanding
the Linux Kernel ([Bovet & Cesati, 2005]).

For more general background on UNIX kernels, The Design of the UNIX
Operating System ([Bach, 1986]) remains very readable and contains material rele-
vant to Linux. UNIX Internals: The New Frontiers ([Vahalia, 1996]) surveys kernel
internals for more modern UNIX implementations.

For writing Linux device drivers, the essential reference is Linux Device Drivers
([Corbet et al., 2005]).

Operating Systems: Design and Implementation ([Tanenbaum & Woodhull, 2006])
describes operating system implementation using the example of Minix. (See also
http://www.minix3.org/.)

Source code of existing applications

Looking at the source code of existing applications can often provide good exam-
ples of how to use particular system calls and library functions. On Linux distribu-
tions employing the RPM Package Manager, we can find the package that contains
a particular program (such as ls) as follows:

$ which ls                      Find pathname of ls program
/bin/ls
$ rpm -qf /bin/ls               Find out which package created the pathname /bin/ls
coreutils-5.0.75

The corresponding source code package will have a name similar to the above, but
with the suffix .src.rpm. This package will be on the installation media for the distri-
bution or be available for download from the distributor’s web site. Once we
obtain the package, we can install it using the rpm command, and then examine the
source code, which is typically placed in some directory under /usr/src.

On systems using the Debian package manager, the process is similar. We can
determine the package that created a pathname (for the ls program, in this example)
using the following command:

$ dpkg -S /bin/ls
coreutils: /bin/ls

The Linux Documentation Project

The Linux Documentation Project (http://www.tldp.org/) produces freely available
documentation on Linux, including HOWTO guides and FAQs (frequently asked
questions and answers) on various system administration and programming topics.
The site also offers more extensive electronic books on a range of topics.

The GNU project

The GNU project (http://www.gnu.org/) provides an enormous quantity of software
source code and associated documentation.
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Newsgroups

Usenet newsgroups can often be a good source of answers to specific programming
questions. The following newsgroups are of particular interest:

comp.unix.programmer addresses general UNIX programming questions.

comp.os.linux.development.apps addresses questions relating to application devel-
opment specifically on Linux.

comp.os.linux.development.system, the Linux system development newsgroup,
focuses on questions about modifying the kernel and developing device drivers
and loadable modules.

comp.programming.threads discusses programming with threads, especially POSIX
threads.

comp.protocols.tcp-ip discusses the TCP/IP networking protocol suite.

FAQs for many Usenet news groups can be found at http://www.faqs.org/.

Before posting a question to a newsgroup, check the FAQ for the group (often
posted regularly within the group itself) and to try a web search to find a solution
to the question. The http://groups.google.com/ web site provides a browser-
based interface for searching old Usenet postings.

Linux kernel mailing list

The Linux kernel mailing list (LKML) is the principal broadcast communication
medium for the Linux kernel developers. It provides an idea of what’s going on in
kernel development, and is a forum for submitting kernel bug reports and patches.
(LKML is not a forum for system programming questions.) To subscribe to LKML,
send an email message to majordomo@vger.kernel.org with the following message
body as a single line:

subscribe linux-kernel

For information about the workings of the list server, send a message body contain-
ing just the word “help” to the same address.

To send a message to LKML, use the address linux-kernel@vger.kernel.org. The
FAQ and pointers to some searchable archives for this mailing list are available at
http://www.kernel.org/.

Web sites

The following web sites are of particular interest:

http://www.kernel.org/, The Linux Kernel Archives, contains the source code for
all versions of the Linux kernel, past and present.

http://www.lwn.net/, Linux Weekly News, provides daily and weekly columns on
various Linux-related topics. A weekly kernel-development column summa-
rizes traffic through LKML.
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http://www.kernelnewbies.org/, Linux Kernel Newbies, is a starting point for pro-
grammers who want to learn about and modify the Linux kernel.

http://lxr.linux.no/linux/, Linux Cross-reference, provides browser access to vari-
ous versions of the Linux kernel source code. Each identifier in a source file is
hyperlinked to make it easy to find the definition and uses of that identifier.

The kernel source code

If none of the preceding sources answer our questions, or if we want to confirm that
documented information is true, then we can read the kernel source code. Although
parts of the source code can be difficult to understand, reading the code of a particu-
lar system call in the Linux kernel source (or a library function in the GNU C library
source) can often prove to be a surprisingly quick way to find the answer to a question.

If the Linux kernel source code has been installed on the system, it can usually
be found in the directory /usr/src/linux. Table E-1 provides summary information
about some of the subdirectories under this directory.

Table E-1: Subdirectories in the Linux kernel source tree

Directory Contents

Documentation Documentation of various aspects of the kernel
arch Architecture-specific code, organized into subdirectories—for example, 

alpha, arm, ia64, sparc, and x86
drivers Code for device drivers
fs File system–specific code, organized into subdirectories—for example, 

btrfs, ext4, proc (the /proc file system), and vfat
include Header files needed by kernel code
init Initialization code for the kernel
ipc Code for System V IPC and POSIX message queues
kernel Code related to processes, program execution, kernel modules, signals, 

time, and timers
lib General-purpose functions used by various parts of the kernel
mm Memory-management code
net Networking code (TCP/IP, UNIX and Internet domain sockets)
scripts Scripts to configure and build the kernel
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S O L U T I O N S  T O  
S E L E C T E D  E X E R C I S E S

Chapter 5

5-3. A solution is provided in the file fileio/atomic_append.c in the source code
distribution for this book. Here is an example of the results that we see when we
run this program as suggested:

$ ls -l f1 f2
-rw-------    1 mtk      users     2000000 Jan  9 11:14 f1
-rw-------    1 mtk      users     1999962 Jan  9 11:14 f2

Because the combination of lseek() plus write() is not atomic, one instance of the
program sometimes overwrote bytes written by the other instance. As a result, the file
f2 contains less than 2 million bytes.

5-4. A call to dup() can be rewritten as:

fd = fcntl(oldfd, F_DUPFD, 0);



A call to dup2() can be rewritten as:

if (oldfd == newfd) {                /* oldfd == newfd is a special case */
    if (fcntl(oldfd, F_GETFL) == -1) {                /* Is oldfd valid? */
        errno = EBADF;
        fd = -1;
    } else {
        fd = oldfd;
    }
} else {
    close(newfd);
    fd = fcntl(oldfd, F_DUPFD, newfd);
}

5-6. The first point to realize is that, since fd2 is a duplicate of fd1, they both share a
single open file description, and thus a single file offset. However, because fd3 is
created via a separate call to open(), it has a separate file offset.

After the first write(), the file contents are Hello,.

Since fd2 shares a file offset with fd1, the second write() call appends to the
existing text, yielding Hello, world.

The lseek() call adjusts the single file offset shared by fd1 and fd2 to point to the
start of the file, and thus the third write() call overwrites part of the existing text
to yield HELLO, world.

The file offset for fd3 has not so far been modified, and so points to the start of
the file. Therefore, the final write() call changes the file contents to Gidday world.

Run the program fileio/multi_descriptors.c in the source code distribution for this
book to see these results.

Chapter 6

6-1. Since the array mbuf is not initialized, it is part of the uninitialized data segment.
Therefore, no disk space is required to hold this variable. Instead, it is allocated
(and initialized to 0) when the program is loaded.

6-2. A demonstration of the incorrect usage of longjmp() is provided in the file proc/
bad_longjmp.c in the source code distribution for this book.

6-3. Sample implementations of setenv() and unsetenv() are provided in the file proc/
setenv.c in the source code distribution for this book.

Chapter 8

8-1. The two getpwnam() calls are executed before the printf() output string is
constructed, and—since getpwnam() returns its result in a statically allocated buffer—
the second call overwrites the result returned by the first call.
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Chapter 9

9-1. In considering the following, remember that changes to the effective user ID
always also change the file-system user ID.

a) real=2000, effective=2000, saved=2000, file-system=2000

b) real=1000, effective=2000, saved=2000, file-system=2000

c) real=1000, effective=2000, saved=0, file-system=2000

d) real=1000, effective=0, saved=0, file-system=2000

e) real=1000, effective=2000, saved=3000, file-system=2000

9-2. Strictly speaking, such a process is unprivileged, since its effective user ID is
nonzero. However, an unprivileged process can use the setuid(), setreuid(), seteuid(),
or setresuid() calls to set its effective user ID to the same value as its real user ID or
saved set-user-ID. Thus, this process could use one of these calls to regain privilege.

9-4. The following code shows the steps for each system call.

e = geteuid();     /* Save initial value of effective user ID */

setuid(getuid());                         /* Suspend privileges */
setuid(e);                                /* Resume privileges */
/* Can't permanently drop the set-user-ID identity with setuid() */

seteuid(getuid());                        /* Suspend privileges */
seteuid(e);                               /* Resume privileges */
/* Can't permanently drop the set-user-ID identity with seteuid() */

setreuid(-1, getuid());                   /* Temporarily drop privileges */
setreuid(-1, e);                          /* Resume privileges */
setreuid(getuid(), getuid());             /* Permanently drop privileges */

setresuid(-1, getuid(), -1);              /* Temporarily drop privileges */
setresuid(-1, e, -1);                     /* Resume privileges */
setresuid(getuid(), getuid(), getuid());  /* Permanently drop privileges */

9-5. With the exception of setuid(), the answers are the same as for the previous
exercise, except that we can substitute the value 0 for the variable e. For setuid(), the
following holds:

/* (a) Can't suspend and resume privileges with setuid() */

setuid(getuid());          /* (b) Permanently drop privileges */

Chapter 10

10-1. The maximum unsigned 32-bit integer value is 4,294,967,295. Divided by 100 clock
ticks per second, this corresponds to slightly more than 497 days. Divided by
1 million (CLOCKS_PER_SEC), this corresponds to 71 minutes and 35 seconds.
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Chapter 12

12-1. A solution is provided in the file sysinfo/procfs_user_exe.c in the source code
distribution for this book.

Chapter 13

13-3. This sequence of statements ensures that the data written to a stdio buffer is flushed
to the disk. The fflush() call flushes the stdio buffer for fp to the kernel buffer cache.
The argument given to the subsequent fsync() is the file descriptor underlying fp;
thus, the call flushes the (recently filled) kernel buffer for that file descriptor to
disk.

13-4. When standard output is sent to a terminal, it is line-buffered, so that the output of
the printf() call appears immediately, and is followed by the output of write(). When
standard output is sent to a disk file, it is block-buffered. Consequently, the output of
the printf() is held in a stdio buffer and is flushed only when the program exits (i.e.,
after the write() call). (A complete program containing the code of this exercise is
available in the file filebuff/mix23_linebuff.c in the source code distribution for
this book.)

Chapter 15

15-2. The stat() system call doesn’t change any file timestamps, since all it does is fetch
information from the file i-node (and there is no last i-node access timestamp).

15-4. The GNU C library provides just such a function, named euidaccess(), in the library
source file sysdeps/posix/euidaccess.c.

15-5. In order to do this, we must use two calls to umask(), as follows:

mode_t currUmask;

currUmask = umask(0);       /* Retrieve current umask, set umask to 0 */
umask(currUmask);           /* Restore umask to previous value */

Note, however, that this solution is not thread-safe, since threads share the process
umask setting.

15-7. A solution is provided in the file files/chiflag.c in the source code distribution for
this book.

Chapter 18

18-1. Using ls –li shows that the executable file has different i-node numbers after each
compilation. What happens is that the compiler removes (unlinks) any existing file
with the same name as its target executable, and then creates a new file with the
same name. It is permissible to unlink an executable file. The name is removed
immediately, but the file itself remains in existence until the process executing it
terminates.

18-2. The file myfile is created in the subdirectory test. The symlink() call creates a
relative link in the parent directory. Despite appearances, this is a dangling link,
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since it is interpreted relative to the location of the link file, and thus refers to a
nonexistent file in the parent directory. Consequently, chmod() fails with the error
ENOENT (“No such file or directory”). (A complete program containing the code of
this exercise is available in the file dirs_links/bad_symlink.c in the source code
distribution for this book.)

18-4. A solution is provided in the file dirs_links/list_files_readdir_r.c, which can be
found in the source code distribution for this book.

18-7. A solution is provided in the file dirs_links/file_type_stats.c, which can be found
in the source code distribution for this book.

18-9. Using fchdir() is more efficient. If we are performing the operation repeatedly
within a loop, then with fchdir() we can perform one call to open() before executing
the loop, and with chdir() we can place the getcwd() call outside the loop. Then we
are measuring the difference between repeated calls to fchdir(fd) and chdir(buf).
Calls to chdir() are more expensive for two reasons: passing the buf argument to the
kernel requires a larger data transfer between user space and kernel space, and the
pathname in buf must be resolved to the corresponding directory i-node on each
call. (Kernel caching of directory entry information reduces the work required for
the second point, but some work must still be done.)

Chapter 20

20-2. A solution is provided in the file signals/ignore_pending_sig.c in the source code
distribution for this book.

20-4. A solution is provided in the file signals/siginterrupt.c in the source code
distribution for this book.

Chapter 22

22-2. As with most UNIX implementations, Linux delivers standard signals before
realtime signals (SUSv3 doesn’t require this). This makes sense, because some
standard signals indicate critical conditions (e.g., hardware exceptions) that a
program should deal with as soon as possible.

22-3. Replacing sigsuspend() plus a signal handler with sigwaitinfo() in this program
provides a 25 to 40 percent speed improvement. (The exact figure varies somewhat
across kernel versions.)

Chapter 23

23-2. A modified program using clock_nanosleep() is provided in the file timers/

t_clock_nanosleep.c in the source code distribution for this book.

23-3. A solution is provided in the file timers/ptmr_null_evp.c in the source code
distribution for this book.

Chapter 24

24-1. The first fork() call creates one new child. Both parent and child carry on to execute
the second fork(), and thus each creates a further process, making a total of four
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processes. All four processes carry on to execute the next fork(), each creating a
further child. Consequently, a total of seven new processes are created.

24-2. A solution is provided in the file procexec/vfork_fd_test.c in the source code
distribution for this book.

24-3. If we call fork(), and then have the child call raise() to send itself a signal such as
SIGABRT, this will yield a core dump file that closely mirrors the state of the parent at
the time of the fork(). The gdb gcore command allows us to perform a similar task for
a program, without needing to change the source code.

24-5. Add a converse kill() call in the parent:

if (kill(childPid, SIGUSR1) == -1)
    errExit("kill")

And in the child, add a converse sigsuspend() call:

sigsuspend(&origMask);          /* Unblock SIGUSR1, wait for signal */

Chapter 25

25-1. Assuming a two’s complement architecture, where –1 is represented by a bit
pattern with all bits on, then the parent will see an exit status of 255 (all bits on in the
least significant 8 bits, which are all that is passed back to the parent when it calls
wait()). (The presence of the call exit(–1) in a program is usually a programmer error
resulting from confusion with the –1 return used to indicate failure of a system
call.)

Chapter 26

26-1. A solution is provided in the file procexec/orphan.c in the source code distribution
for this book.

Chapter 27

27-1. The execvp() function first fails to exec the file xyz in dir1, because execute
permission is denied. It therefore continues its search in dir2, where it successfully
execs xyz.

27-2. A solution is provided in the file procexec/execlp.c in the source code distribution of
this book.

27-3. The script specifies the cat program as its interpreter. The cat program “interprets”
a file by printing its contents—in this case with the –n (line numbering) option
enabled (as though we had entered the command cat –n ourscript). Thus, we would
see the following:

     1  #!/bin/cat -n
     2  Hello world

27-4. Two successive fork() calls yield a total of three processes related as parent, child,
and grandchild. Having created the grandchild process, the child immediately
exits, and is reaped by the waitpid() call in the parent. As a consequence of being
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orphaned, the grandchild is adopted by init (process ID of 1). The program doesn’t
need to perform a second wait() call, since init automatically reaps the zombie
when the grandchild terminates. Therein lies a possible use for this code sequence:
if we need to create a child for which we can’t later wait, then this sequence can be
used to ensure that no zombie results. One example of such a requirement is where
the parent execs some program that is not guaranteed to perform a wait (and we
don’t want to rely on setting the disposition of SIGCHLD to SIG_IGN, since the
disposition of an ignored SIGCHLD after an exec() is left unspecified by SUSv3).

27-5. The string given to printf() doesn’t include a newline character, and therefore the
output is not flushed before the execlp() call. The execlp() overwrites the existing
program’s data segments (as well as the heap and stack), which contain the stdio
buffers, and thus the unflushed output is lost.

27-6. SIGCHLD is delivered to the parent. If the SIGCHLD handler attempts to do a wait(), then
the call returns an error (ECHILD) indicating that there were no children whose status
could be returned. (This assumes that the parent had no other terminated
children. If it did, then the wait() would block; or if waitpid() was used with the
WNOHANG flag, waitpid() would return 0.) This is exactly the situation that may arise if a
program establishes a handler for SIGCHLD before calling system().

Chapter 29

29-1. There are two possible outcomes (both permitted by SUSv3): the thread deadlocks,
blocked while trying to join with itself, or the pthread_join() call fails, returning the
error EDEADLK. On Linux, the latter behavior occurs. Given a thread ID in tid, we can
prevent such an eventuality using the following code:

if (!pthread_equal(tid, pthread_self()))
   pthread_join(tid, NULL);

29-2. After the main thread terminates, threadFunc() will continue working with storage
on the main thread’s stack, with unpredictable results.

Chapter 31

31-1. A solution is provided in the file threads/one_time_init.c in the source code
distribution for this book.

Chapter 33

33-2. The SIGCHLD signal that is generated on child termination is process-directed. It may
be delivered to any thread (not necessarily the one that called fork()) that is not
blocking the signal.

Chapter 34

34-1. Suppose that the program is part of a shell pipeline:

$ ./ourprog | grep 'some string'
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The problem is that grep will be part of the same process group as ourprog, and
therefore the killpg() call will also terminate the grep process. This is probably not
desired, and is likely to confuse users. The solution is to use setpgid() to ensure that
the child processes are placed in their own new group (the process ID of the first
child could be used as the process group ID of the group), and then signal that process
group. This also removes the need for the parent to make itself immune to the signal.

34-5. If the SIGTSTP signal is unblocked before raising it again, then there is a small
window of time (between the calls to sigprocmask() and raise()) during which, if the
user types a second suspend character (Control-Z), the process will be stopped while
still in the handler. Consequently, two SIGCONT signals will be required to resume the
process.

Chapter 35

35-3. A solution is provided in the file procpri/demo_sched_fifo.c in the source code
distribution for this book.

Chapter 36

36-1. A solution is provided in the file procres/rusage_wait.c in the source code
distribution for this book.

36-2. A solution is provided in the files rusage.c and print_rusage.c in the procres
subdirectory in the source code distribution for this book.

Chapter 37

37-1. A solution is provided in the file daemons/t_syslog.c in the source code distribution
for this book.

Chapter 38

38-1. Whenever a file is modified by an unprivileged user, the kernel clears the file’s set-
user-ID permission bit. The set-group-ID permission bit is similarly cleared if the
group-execute permission bit is enabled. (As detailed in Section 55.4, the
combination of having the set-group-ID bit on while the group-execute bit is off has
nothing to do with set-group-ID programs; instead, it is used to enable mandatory
locking, and for this reason modifications to such a file don’t disable the set-group-
ID bit.) Clearing these bits ensures that if the program file is writable by arbitrary
users, then it can’t be modified and still retain its ability to give privileges to users
executing the file. A privileged (CAP_FSETID) process can modify a file without the
kernel clearing these permission bits.

Chapter 44

44-1. A solution is provided in the file pipes/change_case.c in the source code distribution
for this book.

44-5. It creates a race condition. Suppose that between the time the server sees end-of-
file and the time it closes the file reading descriptor, a client opens the FIFO for
1432 Appendix F



writing (this will succeed without blocking), and then writes data to the FIFO after
the server has closed the reading descriptor. At this point, the client will receive a
SIGPIPE signal, since no process has the FIFO open for reading. Alternatively, the
client might be able to both open the FIFO and write data to it before the server
closes the reading descriptor. In this case, the client’s data would be lost, and it
wouldn’t receive a response from the server. As a further exercise, you could try to
demonstrate these behaviors by making the suggested modification to the server
and creating a special-purpose client that repeatedly opens the server’s FIFOs,
sends a message to the server, closes the server’s FIFO, and reads the server’s
response (if any).

44-6. One possible solution would be to set a timer on the open() of the client FIFO using
alarm(), as described in Section 23.3. This solution suffers from the drawback that
the server would still be delayed for the period of the timeout. Another possible
solution would be to open the client FIFO using the O_NONBLOCK flag. If this fails,
then the server can assume a misbehaving client. This latter solution also requires
changes to the client, which needs to ensure that it opens its FIFO (also using the
O_NONBLOCK flag) prior to sending a request to the server. For convenience, the client
should then turn off the O_NONBLOCK flag for the FIFO file descriptor, so that the
subsequent read() call blocks. Finally, it is possible to implement a concurrent
server solution for this application, with the main server process creating a child to
send the response message to each client. (This would represent a rather resource-
expensive solution in the case of this simple application.)

Other conditions that are not handled by this server remain. For example, it
doesn’t handle the possibilities of the sequence number overflowing or a misbehaving
client requesting large groups of sequence numbers in order to produce such over-
flows. The server also does not handle the possibility that the client specifies a negative
value for the sequence length. Furthermore, a malicious client could create its
reply FIFO, and then open the FIFO for reading and writing, and fill it with data
before sending a request to the server; as a consequence, the server would be able
to successfully open the reply FIFO, but would block when it tries to write the
reply. As a further exercise, you could try to devise strategies for dealing with these
possibilities.

In Section 44.8, we also noted another limitation that applies to the server in
Listing 44-7: if a client sends a message that contains the wrong number of bytes,
then the server will be out of step when reading all subsequent client messages.
One simple way to deal with this problem is to discard the use of fixed-length mes-
sages in favor of the use of a delimiter character.

Chapter 45

45-2. A solution is provided in the file svipc/t_ftok.c in the source code distribution for
this book.

Chapter 46

46-3. The value 0 is a valid message queue identifier, but 0 can’t be used as a message
type.
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Chapter 47

47-5. A solution is provided in the file svsem/event_flags.c in the source code distribution
for this book.

47-6. A reserve operation can be implemented by reading a byte from the FIFO.
Conversely, a release operation can be implemented by writing a byte to the
FIFO. A conditional reserve operation can be implemented as a nonblocking read of
a byte from the FIFO.

Chapter 48

48-2. Since access to the shmp–>cnt value in the for loop increment step is no longer
protected by the semaphore, there is a race condition between the writer next
updating this value and the reader fetching it.

48-4. A solution is provided in the file svshm/svshm_mon.c in the source code distribution
for this book.

Chapter 49

49-1. A solution is provided in the file mmap/mmcopy.c in the source code distribution for
this book.

Chapter 50

50-2. A solution is provided in the file vmem/madvise_dontneed.c in the source code
distribution for this book.

Chapter 52

52-6. A solution is provided in the file pmsg/mq_notify_sigwaitinfo.c in the source code
distribution for this book.

52-7. It would not be safe to make buffer global. Once message notification is reenabled
in threadFunc(), there is a chance that a second notification would be generated
while threadFunc() is still executing. This second notification could initiate a second
thread that executes threadFunc() at the same time as the first thread. Both threads
would attempt to use the same global buffer, with unpredictable results. Note that
the behavior here is implementation-dependent. SUSv3 permits an implementa-
tion to sequentially deliver notifications to the same thread. However, it is also per-
missible to deliver notifications in separate threads that execute concurrently, and
this is what Linux does.

Chapter 53

53-2. A solution is provided in the file psem/psem_timedwait.c in the source code distribu-
tion for this book.
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Chapter 55

55-1. The following hold for flock() on Linux:

a) A series of shared locks can starve a process waiting to place an exclusive lock.

b) There are no rules regarding which process is granted the lock. Essentially,
the lock is granted to the process that is next scheduled. If that process
happens to be one that obtains a shared lock, then all other processes
requesting shared locks will also be able to have their requests granted
simultaneously.

55-2. The flock() system call doesn’t detect deadlock. This is true of most flock()
implementations, except those that implement flock() in terms of fcntl().

55-4. In all except early (1.2 and earlier) Linux kernels, the two types of locking operate
independently, and have no affect on one another.

Chapter 57

57-4. On Linux, the sendto() call fails with the error EPERM. On some other UNIX systems,
a different error results. Some other UNIX implementations don’t enforce this
constraint, letting a connected UNIX domain datagram socket receive datagrams
from a sender other than its peer.

Chapter 59

59-1. A solution is provided in the files read_line_buf.h and read_line_buf.c in the sockets
subdirectory in the source code distribution for this book.

59-2. A solution is provided in the files is_seqnum_v2_sv.c, is_seqnum_v2_cl.c, and
is_seqnum_v2.h in the sockets subdirectory in the source code distribution for this
book.

59-3. A solution is provided in the files unix_sockets.h, unix_sockets.c, us_xfr_v2.h,
us_xfr_v2_sv.c, and us_xfr_v2_cl.c in the sockets subdirectory in the source code
distribution for this book.

59-5. In the Internet domain, datagrams from a nonpeer socket are silently discarded.

Chapter 60

60-2. A solution is provided in the file sockets/is_echo_v2_sv.c in the source code
distribution for this book.

Chapter 61

61-1. Since the send and receive buffers for a TCP socket have a limited size, if the client
sent a large quantity of data, then it might fill these buffers, at which point a further
write() would (permanently) block the client before it read any of the server’s
response.

61-3. A solution is provided in the file sockets/sendfile.c in the source code distribution
for this book.
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Chapter 62

62-1. The tcgetattr() fails if it is applied to a file descriptor that doesn’t refer to a terminal.

62-2. A solution is provided in the file tty/ttyname.c in the source code distribution for
this book.

Chapter 63

63-3. A solution is provided in the file altio/select_mq.c in the source code distribution
for this book.

63-4. A race condition would result. Suppose the following sequence of events: (a) after
select() has informed the program that the self-pipe has data, it performs the
appropriate actions in response to the signal; (b) another signal arrives, and the
handler writes a byte to the self-pipe and returns; and (c) the main program drains
the self-pipe. As a consequence, the program misses the signal that was delivered in
step (b).

63-6. The epoll_wait() call blocks, even when the interest list is empty. This can be useful
in a multithreaded program, where one thread might add a descriptor to the epoll
interest list, while another thread is blocked in an epoll_wait() call.

63-7. Successive epoll_wait() calls cycle through the list of ready file descriptors. This is
useful because it helps prevent file-descriptor starvation, which could occur if
epoll_wait() always (for example) returned the lowest-numbered ready file
descriptor, and that file descriptor always had some input available.

Chapter 64

64-1. First, the child shell process terminates, followed by the script parent process.
Since the terminal is operating in raw mode, the Control-D character is not
interpreted by the terminal driver, but is instead passed as a literal character to
the script parent process, which writes it to the pseudoterminal master. The
pseudoterminal slave is operating in canonical mode, so this Control-D character is
treated as an end-of-file, which causes the child shell’s next read() to return 0, with
the result that the shell terminates. The termination of the shell closes the only file
descriptor referring to the pseudoterminal slave. As a consequence, the next read()
by the parent script process fails with the error EIO (or end-of-file on some other
UNIX implementations), and this process then terminates.

64-7. A solution is provided in the file pty/unbuffer.c in the source code distribution for
this book.
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I N D E X

The following conventions are used in the index:

Library function and system call prototypes are indexed with a subentry
labeled prototype. Normally, you’ll find the main discussion of a function
or system call in the same location as the prototype.

Definitions of C structures are indexed with subentries labeled definition.
This is where you’ll normally find the main discussion of a structure.

Implementations of functions developed in the text are indexed with a
subentry labeled code of implementation.

Instructional or otherwise interesting examples of the use of functions,
variables, signals, structures, macros, constants, and files in example pro-
grams are indexed with subentries labeled example of use. Not all
instances of the use of each interface are indexed; instead, just a  few
examples that provide useful guidance are indexed.

Diagrams are indexed with subentries labeled diagram.

The names of example programs are indexed to make it easy to find an
explanation of a program that is provided in the source code distribu-
tion for this book.

Citations referring to the publications listed in the bibliography are
indexed using the name of the first author and the year of publication,
in an entry of the form Name (Year)—for example, Rochkind (1985).

Items beginning with nonalphabetic characters (e.g., /dev/stdin, _BSD_SOURCE)
are sorted before alphabetic items.

Symbols
#! (interpreter script), 572
. (directory entry), 27, 351
.. (directory entry), 27, 351
/ (root directory), 27
/boot/vmlinuz file, 22
/dev directory, 252
/dev/console device, 777
/dev/fd directory, 107–108
/dev/kcore file, 801
/dev/kmem device, 801

/dev/log socket, 776
diagram, 775

/dev/mem device, 166, 801
/dev/null device, 769
/dev/poll device (Solaris), 1328
/dev/ptmx device, 1381
/dev/pts directory, 1321, 1380, 1382
/dev/ptyxy devices, 1395
/dev/random device, 801
/dev/shm directory, 275, 1090, 1108
/dev/stderr, 108
/dev/stdin, 108



/dev/stdout, 108
/dev/tty device, 707, 708, 1321. See also 

controlling terminal
/dev/ttyn devices, 1289
/dev/ttyxy devices, 1395
/dev/zero device, 1034

used with mmap(), 1034
example of use, 1036

/etc directory, 774
/etc/fstab file, 263
/etc/group file, 26, 155–156
/etc/gshadow file, 156
/etc/hosts file, 1210
/etc/inetd.conf file, 1249–1250
/etc/inittab file, 820
/etc/ld.so.cache file, 848, 854
/etc/ld.so.conf file, 847, 848
/etc/ld.so.preload file, 874
/etc/localtime file, 198
/etc/mtab file, 263
/etc/named.conf file, 1210
/etc/passwd file, 26, 153–155
/etc/resolv.conf file, 1211
/etc/services file, 1212–1213
/etc/shadow file, 155
/etc/syslog.conf file, 776, 781–782

diagram, 775
/lib directory, 847, 848, 854
/lib/ld-linux.so.2 (dynamic linker), 

839, 844
/lib/libc.so.6 (glibc 2), 844, 870
/proc file system, 42, 223–228

diagram, 227
/proc/config.gz file, 1418
/proc/cpuinfo file, 752
/proc/domainname file, 230
/proc/filesystems file, 255
/proc/hostname file, 230
/proc/kallsyms file, diagram, 119
/proc/kmsg file, 776
/proc/ksyms file, diagram, 119
/proc/locks file, 1140–1142
/proc/mounts file, 263
/proc/net/tcp file, 1276
/proc/net/tcp6 file, 1276
/proc/net/udp file, 1276
/proc/net/udp6 file, 1276
/proc/net/unix file, 1276
/proc/partitions file, 254
/proc/PID directory, 224–226
/proc/PID/cmdline file, 124, 225
/proc/PID/coredump_filter file, 449, 615
/proc/PID/cwd file, 225, 364, 800
/proc/PID/environ file, 126, 225, 801
/proc/PID/exe file, 225, 564, 800

/proc/PID/fd directory, 107, 225, 342, 762
/proc/PID/fdinfo directory, 75
/proc/PID/limits file, 755
/proc/PID/maps file, 225, 842, 1006, 1008, 

1019, 1025, 1041, 1115
example of use, 1046

/proc/PID/mem file, 225
/proc/PID/mounts file, 225, 263
/proc/PID/oom_adj file, 615, 1040
/proc/PID/oom_score file, 1040
/proc/PID/root file, 225, 367, 800
/proc/PID/smaps file, 1006
/proc/PID/stat file, 599, 700, 748, 755
/proc/PID/status file, 115, 172, 224, 225, 

764, 799, 806, 1049, 1050
/proc/PID/task directory, 225
/proc/PID/task/TID/status file, 799, 806
/proc/self symbolic link, 225
/proc/swaps file, 254
/proc/sys/fs/file-max file, 763, 801
/proc/sys/fs/inotify/max_queued_events 

file, 385
/proc/sys/fs/inotify/max_user_instances 

file, 385
/proc/sys/fs/inotify/max_user_watches file, 

385, 1358
/proc/sys/fs/mqueue/msg_max file, 1086
/proc/sys/fs/mqueue/msgsize_max file, 1086
/proc/sys/fs/mqueue/queues_max file, 1086
/proc/sys/fs/nr_open file, 762
/proc/sys/fs/pipe-max-size file, 892
/proc/sys/fs/suid_dumpable file, 449
/proc/sys/kernel/acct file, 594
/proc/sys/kernel/cap-bound file, 815
/proc/sys/kernel/core_pattern file, 449
/proc/sys/kernel/msgmax file, 951
/proc/sys/kernel/msgmnb file, 801, 949, 951
/proc/sys/kernel/msgmni file, 951
/proc/sys/kernel/ngroups_max file, 179
/proc/sys/kernel/osrelease file, 229
/proc/sys/kernel/ostype file, 229
/proc/sys/kernel/pid_max file, 115, 228
/proc/sys/kernel/pty/max file, 1381
/proc/sys/kernel/pty/nr file, 1381
/proc/sys/kernel/rtsig-max file, 458
/proc/sys/kernel/rtsig-nr file, 458
/proc/sys/kernel/sched_child_runs_first 

file, 526
/proc/sys/kernel/sem file, 992
/proc/sys/kernel/shmall file, 1015
/proc/sys/kernel/shmmax file, 1015
/proc/sys/kernel/shmmni file, 1015
/proc/sys/kernel/threads-max file, 763
/proc/sys/kernel/version file, 229
/proc/sys/net/core/somaxconn file, 1157
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/proc/sys/net/ipv4/ip_local_port_range 
file, 1189, 1224

/proc/sys/net/ipv4/tcp_ecn file, 1267
/proc/sys/vm/dirty_expire_centisecs 

file, 241
/proc/sys/vm/legacy_va_layout file, 793
/proc/sys/vm/overcommit_memory file, 1038
/proc/sys/vm/overcommit_ratio file, 1039
/proc/sysvipc/msg file, 935
/proc/sysvipc/sem file, 935
/proc/sysvipc/shm file, 935
/proc/version file, 229
/sbin/init file, 33
/sys directory, 252
/tmp directory, 300, 791
/usr/account/pacct file, 592
/usr/group association, 12
/usr/lib directory, 847, 848, 854
/usr/lib/locale directory, 201, 203
/usr/local/lib directory, 847, 848
/usr/share/locale directory, 201
/usr/share/locale/locale.alias file, 201
/usr/share/zoneinfo directory, 198
/usr/src/linux directory, 1424
/var/log directory, 774
/var/log/lastlog file, 830
/var/log/messages file, 782
/var/log/pacct file, 592
/var/log/wtmp file, 818
/var/run directory, 1142
/var/run/utmp file, 818
<errno.h> header file, 49
<features.h> header file, 62
<limits.h> header file, 212
<sys/types.h> header file, 68
__GLIBC__ constant, 48
__GLIBC_MINOR__ constant, 48
__WALL constant, 610
__WCLONE constant, 609

example of use, 602
__WNOTHREAD constant, 610
_ATFILE_SOURCE feature test macro, 366
_BSD_SOURCE feature test macro, 62
_CS_GNU_LIBC_VERSION constant, 48
_CS_GNU_LIBPTHREAD_VERSION constant, 694
_CS_PATH constant, 588
_exit(), 32, 426, 514, 531–532, 692

example of use, 524, 583, 587, 759
prototype, 531

_Exit(), 426
_FILE_OFFSET_BITS macro, 104, 106
_fini(), 873
_GNU_SOURCE feature test macro, 62
_init(), 873
_IOFBF constant, 238

_IOLBF constant, 238
_IONBF constant, 237
_LARGEFILE64_SOURCE feature test macro, 105
_longjmp(), 429
_PATH_LASTLOG constant, 830
_PATH_UTMP constant, 818
_PATH_WTMP constant, 818
_PC_CHOWN_RESTRICTED constant, 221
_PC_NAME_MAX constant, 214, 218
_PC_PATH_MAX constant, 214, 218
_PC_PIPE_BUF constant, 214, 218
_PC_VDISABLE constant, 1296

example of use, 1301
_POSIX_ASYNCHRONOUS_IO constant, 221
_POSIX_C_SOURCE feature test macro, 61, 63
_POSIX_CHOWN_RESTRICTED constant, 221
_POSIX_JOB_CONTROL constant, 221
_POSIX_MQ_OPEN_MAX constant, 1085
_POSIX_MQ_PRIO_MAX constant, 1073
_POSIX_PIPE_BUF constant, 891
_POSIX_PRIORITY_SCHEDULING constant, 221
_POSIX_REALTIME_SIGNALS constant, 221
_POSIX_RTSIG_MAX constant, 457
_POSIX_SAVED_ID constant, 221
_POSIX_SEMAPHORES constant, 221
_POSIX_SHARED_MEMORY_OBJECTS constant, 221
_POSIX_SIGQUEUE_MAX constant, 457
_POSIX_SOURCE feature test macro, 61
_POSIX_THREAD_KEYS_MAX constant, 668
_POSIX_THREADS constant, 221
_REENTRANT macro, 622
_SC_ARG_MAX constant, 124, 214, 217
_SC_ASYNCHRONOUS_IO constant, 221
_SC_ATEXIT_MAX constant, 535
_SC_CHILD_MAX constant, 217, 763
_SC_CLK_TCK constant, 206, 214

example of use, 209
_SC_GETPW_R_SIZE_MAX constant, 158
_SC_IOV_MAX constant, 100
_SC_JOB_CONTROL constant, 221
_SC_LOGIN_NAME_MAX constant, 214
_SC_MQ_PRIO_MAX constant, 1073
_SC_NGROUPS_MAX constant, 179, 214
_SC_OPEN_MAX constant, 214, 217

example of use, 771
RLIMIT_NOFILE resource limit and, 762

_SC_PAGE_SIZE constant, 214
_SC_PAGESIZE constant, 214, 215
_SC_PRIORITY_SCHEDULING constant, 221
_SC_REALTIME_SIGNALS constant, 221
_SC_RTSIG_MAX constant, 214
_SC_SEMAPHORES constant, 221
_SC_SHARED_MEMORY_OBJECTS constant, 221
_SC_SIGQUEUE_MAX constant, 214, 457
_SC_STREAM_MAX constant, 214
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_SC_THREAD_KEYS_MAX constant, 668
_SC_THREAD_STACK_MIN constant, 682
_SC_THREADS constant, 221
_SC_XOPEN_UNIX constant, 221
_SEM_SEMUN_UNDEFINED constant, 970
_setjmp(), 429
_SVID_SOURCE feature test macro, 62
_sys_errlist variable, 664
_sys_nerr variable, 664
_XOPEN_SOURCE feature test macro, 62, 63
_XOPEN_UNIX constant, 221

Numbers
2MSL, 1274
3BSD, 4
4.2BSD, 4, 155, 342, 390, 443, 476, 776, 

1149, 1180
4.3BSD, 4
4.4BSD, 4, 17, 1442
4.4BSD-Lite, 8
386/BSD, 7

A
a.out (executable file format), 113
ABI, 118, 867
abort(), 390, 426, 433–434, 446

prototype, 433
absolute pathname, 29, 367
abstract socket binding, 1175
ac command, 818
accept(), 426, 673, 801, 1152, 1157–1158

diagram, 1156
example of use, 1168, 1222
inheritance of file flags and socket 

options, 1281
interrupted by signal handler, 444
prototype, 1157
RLIMIT_NOFILE resource limit and, 762

accept4(), 1158
interrupted by signal handler, 444

access control list (ACL), 319–337, 
800, 1440

access ACL, 327
ACL entry, 320–321
application programming interface, 

diagram, 330
default ACL, 327
diagram, 320
extended ACL, 321
group class, 324–325
limits on number of entries, 328–329
long text form, 323
mask entry, 321, 323, 324–325
minimal ACL, 321

permission set, 320
permission-checking algorithm, 

321–322
short text form, 323
tag qualifier, 320, 321, 323, 332
tag type, 320, 323, 331

access mode, file, 72, 75, 93, 95
access(), 298–299, 345, 426

prototype, 299
acct structure, 593–594

definition, 593
acct(), 345, 592–593, 801

example of use, 593
prototype, 592

acct_on.c, 592
acct_v3 structure, 597–598

definition, 598
acct_v3_view.c, 598
acct_view.c, 596
accton command, 592
ACK control bit (TCP), 1267
ACL. See access control list
acl_add_perm(), 332

diagram, 330
acl_calc_mask(), 333
acl_check(), 334
acl_clear_perms(), 332

diagram, 330
acl_create_entry(), 332

diagram, 330
acl_delete_def_file(), 334
acl_delete_entry(), 333

diagram, 330
acl_delete_perm(), 332

diagram, 330
acl_dup(), 334
acl_entry_t data type, 331

diagram, 330
example of use, 335

acl_error(), 334
ACL_EXECUTE constant, 332
ACL_FIRST_ENTRY constant, 331
acl_free(), 334

example of use, 336
acl_from_text(), 333

diagram, 330
acl_get_entry(), 331

diagram, 330
example of use, 335

acl_get_file(), 331
diagram, 330
example of use, 335

acl_get_perm(), 332
diagram, 330
example of use, 336
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acl_get_permset(), 332
diagram, 330
example of use, 336

acl_get_qualifier(), 332
diagram, 330
example of use, 336

acl_get_tag_type(), 331
diagram, 330
example of use, 336

ACL_GROUP constant, 321, 322, 323
ACL_GROUP_OBJ constant, 321, 322, 323
acl_init(), 334
ACL_MASK constant, 321, 322, 323, 

324–325, 333
ACL_NEXT_ENTRY constant, 331
ACL_OTHER constant, 321, 322, 323
acl_permset_t data type, 332

diagram, 330
example of use, 335

ACL_READ constant, 332
acl_set_file(), 333

diagram, 330
acl_set_permset(), 332

diagram, 330
acl_set_qualifier(), 332

diagram, 330
acl_set_tag_type(), 331

diagram, 330
acl_t data type, 331

diagram, 330
example of use, 335

acl_to_text(), 333
diagram, 330

ACL_TYPE_ACCESS constant, 331, 333
ACL_TYPE_DEFAULT constant, 331, 333
acl_type_t data type, 331

diagram, 330
example of use, 335

acl_update.c, 334
ACL_USER constant, 320, 321, 322, 323
ACL_USER_OBJ constant, 320, 321, 322, 323
acl_valid(), 334
acl_view.c, 335
ACL_WRITE constant, 332
ACORE constant, 594
active close (TCP), 1272
active open (socket), 1155
address (socket), 1152
Address Resolution Protocol (ARP), 1181
address-space randomization, 793
addrinfo structure, 1214, 1215

definition, 1214
adjtime(), 205, 801

prototype, 205
adjtimex(), 205, 801

Advanced Research Projects Agency 
(ARPA), 1180

advisory file lock, 1119, 1137
AF_INET constant, 1150, 1151
AF_INET6 constant, 1150, 1151

example of use, 1208, 1209
AF_LOCAL constant, 1150
AF_UNIX constant, 1150, 1151

example of use, 1168, 1169, 1172, 1173
AF_UNSPEC constant, 1162, 1215, 1217

example of use, 1221, 1224, 1229
Affero General Public License (GNU), 

xxxiv
AFORK constant, 594
Aho (1988), 574, 1437
Aho, A.V., 1437
AI_ADDRCONFIG constant, 1216
AI_ALL constant, 1216
AI_CANONNAME constant, 1214, 1216
AI_NUMERICHOST constant, 1216
AI_NUMERICSERV constant, 1216

example of use, 1221
AI_PASSIVE constant, 1216

example of use, 1221, 1229
AI_V4MAPPED constant, 1216
AIO (asynchronous I/O), 613, 1327, 1347
aio_error(), 426
aio_return(), 426
aio_suspend(), 426, 673
AIX, 5
alarm(), 390, 426, 484–485, 486, 488, 614

example of use, 487
prototype, 484

Albitz (2006), 1210, 1247, 1437
Albitz, P., 1437
algorithmic-complexity attack, 794, 1438
Allman, M., 1194
alloca(), 150–151

prototype, 150
allocating memory

on the heap, 140–144, 147–150
on the stack, 150–151

alternate signal stack, 65, 434–437, 578, 
613, 683, 691, 693, 764

American National Standards Institute 
(ANSI), 11

Anley (2007), 792, 795, 1437
Anley, C., 1437
anon_mmap.c, 1036
anonymous mapping, 35, 882, 886, 1017, 

1033, 1034–1037
private, 1019, 1035
shared, 1019, 1035

anonymous root, DNS, 1210
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ANSI (American National Standards 
Institute), 11

ANSI C, 11
Anzinger, G., xxxix
application binary interface, 118, 867
ar command, 834
archive, 834
ARG_MAX constant, 214
argc argument to main(), 31, 123
argv argument to main(), 31, 118, 123, 

124, 214, 564, 567
diagram, 123
example of use, 123

ARP (Address Resolution Protocol), 1181
ARPA (Advanced Research Projects 

Agency), 1180
ARPANET, 1180
asctime(), 16, 191, 657

diagram, 188
example of use, 192, 199
prototype, 191

asctime_r(), 191, 658
ASN.1, 1200
ASU constant, 298, 594, 928
async-cancel-safe function, 680
asynchronous I/O, POSIX, 613, 

1327, 1347
async-signal-safe function, 425–428
AT_EACCESS constant, 365
AT_FDCWD constant, 290, 366
AT_REMOVEDIR constant, 365
AT_SYMLINK_FOLLOW constant, 365, 366
AT_SYMLINK_NOFOLLOW constant, 290, 365, 366
atexit(), 532, 534–535, 866

example of use, 537, 915, 960, 1393
prototype, 534

atomic_append.c, 1425
atomicity, 90–92, 465

when accessing shared variables, 631
Austin Common Standards Revision 

Group, 13
Autoconf program, 219, 1444
automatic variables, 116, 122
A/UX, 5
awk program, 574, 1437
AXSIG constant, 594

B
B programming language, 2
Bach (1986), 250, 278, 521, 530, 919, 

1422, 1437
Bach, M., 1437
background process group, 700, 708, 714

diagram, 701, 717
bad_exclusive_open.c, 90

bad_longjmp.c, 1426
bad_symlink.c, 1428, 1429
basename(), 370–372, 657

example of use, 371
prototype, 370

bash (Bourne again shell), 25
baud, 1316
bcopy(), 1166
BCPL programming language, 2
Becher, S., xxxix
become_daemon.c, 770
become_daemon.h, 770
becomeDaemon(), 769–771

code of implementation, 770–771
example of use, 774, 1241, 1244
prototype, 769

Bell Laboratories, 2
Benedyczak, K., xxxix
Berkeley Internet Name Domain (BIND), 

1210, 1437
Berkeley Software Distribution, 4, 7–8
bg shell command, 715

diagram, 717
Bhattiprolu (2008), 608, 1437
Bhattiprolu, S., 1437
Biddle, R.L., xl
Biederman, E.W., 1437
big-endian byte order, 1198

diagram, 1198
binary semaphores, 988–991
binary_sems.c, 990
binary_sems.h, 989
BIND (Berkeley Internet Name Domain), 

1210, 1437
bind mount, 272–274
bind(), 345, 426, 1152, 1153–1154, 1155

diagram, 1156, 1160
example of use, 1166, 1168, 1172, 1173, 

1176, 1208, 1222, 1229
prototype, 1153

Bishop (2003), 795, 1437
Bishop (2005), 795, 1437
Bishop, M., 795, 1437
Black, D., 1194
Blaess, C., xxxvi
blkcnt_t data type, 64, 280

casting in printf() calls, 107
blksize_t data type, 64, 280
block device, 252, 282
block groups (ext2 file system), 256
Boolean data type, 51
boot block, 256
BOOT_TIME constant, 820, 822
Borisov (2005), 300, 1438
Borisov, N., 1438
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Borman, D., 1194
Bostic, K., 1442
Bound, J., 1194
Bourne again shell (bash), 25
Bourne, S., 25
Bourne shell (sh), 3, 25, 154
Bovet (2005), 24, 46, 250, 256, 278, 419, 

521, 530, 616, 919, 936, 994, 
1015, 1044, 1147, 1422, 1438

Bovet, D.P., 1438
Braden, R., 1194
Brahneborg, D., xxxix
BREAK condition, 1302, 1304, 1318
Brecht, T., 1439
brk(), 140

prototype, 140
RLIMIT_AS resource limit and, 760
RLIMIT_DATA resource limit and, 761

BRKINT constant, 1302, 1304
example of use, 1311

broken pipe (error message). See SIGPIPE 
signal

broken-down time, 189
converting to and from printable form, 

195–197
converting to time_t, 190

Brouwer, A.E., xxxix
BS0 constant, 1302
BS1 constant, 1302
BSD, 4, 7–8
BSD file locks, 1120
BSD Net/2, 7
BSDi, 8
BSDLY constant, 1302
BSD/OS, 8
bss, 116
Btrfs file system, 261
buffer cache, 233, 234

using direct I/O to bypass, 246–247
buffer overrun, 792
buffering of file I/O, 233–250

diagram, 244
effect of buffer size on performance, 

234–236
in the kernel, 233–236, 239–243
overview, 243–244
in the stdio library, 237–239, 249

BUFSIZ constant, 238
Build_ename.sh, 57
built-in command (shell), 576
bus error (error message). See SIGBUS 

signal
BUS_ADRALN constant, 441
BUS_ADRERR constant, 441
BUS_MCEERR_AO constant, 441

BUS_MCEERR_AR constant, 441
BUS_OBJERR constant, 441
busy file system, 270
Butenhof (1996), 630, 639, 647, 659, 687, 

696, 751, 1105, 1422, 1438
Butenhof, D.R., xxxvi, 1438
byte stream, 879, 890

separating messages in, 910–911
diagram, 911

bzero(), 1166

C
C library, 47–48, 1442
C programming language, 2, 1440, 1444

ANSI 1989 standard, 11
C89 standard, 11, 17
C99 standard, 11, 17
ISO 1990 standard, 11
standards, 10–11

C shell (csh), 4, 25
C89, 11, 17
C99, 11, 17
cache line, 748
calendar time, 185–187

changing, 204–205
calendar_time.c, 191
calloc(), 147–148

example of use, 148
prototype, 148

canceling a thread. See thread cancellation
cancellation point, thread cancellation, 

673–674
canonical mode, terminal I/O, 1290, 

1305, 1307
Cao, M., 1441
CAP_AUDIT_CONTROL capability, 800
CAP_AUDIT_WRITE capability, 800
CAP_CHOWN capability, 292, 800, 807
CAP_DAC_OVERRIDE capability, 287, 299, 

800, 807
CAP_DAC_READ_SEARCH capability, 299, 

800, 807
CAP_FOWNER capability, 76, 168, 287, 288, 

300, 303, 308, 800, 807
cap_free(), 808

example of use, 809
CAP_FSETID capability, 304, 800, 807, 1432
cap_get_proc(), 807

example of use, 809
CAP_IPC_LOCK capability, 800, 999, 1012, 

1048, 1051
CAP_IPC_OWNER capability, 800, 928, 929
CAP_KILL capability, 402, 800
CAP_LEASE capability, 800
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CAP_LINUX_IMMUTABLE capability, 306, 
800, 807

CAP_MAC_ADMIN capability, 800
CAP_MAC_OVERRIDE capability, 800, 807
CAP_MKNOD capability, 252, 368, 800, 807
CAP_NET_ADMIN capability, 800
CAP_NET_BIND_SERVICE capability, 800, 1189
CAP_NET_BROADCAST capability, 800
CAP_NET_RAW capability, 800
CAP_SET constant, 807
cap_set_flag(), 807

example of use, 809
cap_set_proc(), 808

example of use, 809
CAP_SETFCAP capability, 799, 800
CAP_SETGID capability, 172, 800, 1285
CAP_SETPCAP capability, 801, 806, 807, 812, 

814, 815, 816
CAP_SETUID capability, 172, 801, 1285
CAP_SYS_ADMIN capability, 254, 262, 312, 

607, 763, 801, 929, 1285
CAP_SYS_BOOT capability, 801
CAP_SYS_CHROOT capability, 367, 801
CAP_SYS_MODULE capability, 801, 815
CAP_SYS_NICE capability, 736, 743, 747, 

750, 801
CAP_SYS_PACCT capability, 592, 801
CAP_SYS_PTRACE capability, 364, 801
CAP_SYS_RAWIO capability, 255, 801
CAP_SYS_RESOURCE capability, 306, 756, 763, 

801, 892, 949, 1086
CAP_SYS_TIME capability, 204, 492, 801
CAP_SYS_TTY_CONFIG capability, 801
cap_t data type, 807

example of use, 809
capability

file. See file capabilities
process. See process capabilities

capability bounding set, 615, 801, 
805–806, 815

capget(), 807
capset(), 807
Card, R., 255
catch_rtsigs.c, 462
catch_SIGHUP.c, 710
catgets(), 202, 533, 657
catopen(), 202, 533
CBAUD constant, 1302, 1317
CBAUDEX constant, 1302, 1317
cbreak mode (terminal I/O), 1309–1316
cc_t data type, 64, 1292
Cesati, M., 1438
cfgetispeed(), 426, 1316–1317

prototype, 1316

cfgetospeed(), 426, 1316–1317
prototype, 1316

cfsetispeed(), 426, 1316–1317
prototype, 1316

cfsetospeed(), 426, 1316–1317
prototype, 1316

Chandra, C., xl
change_case.c, 1432
character device, 252, 282
chattr command, 305
chdir(), 345, 364–365, 426, 604, 607

example of use, 365
prototype, 364

check_password.c, 164
check_password_caps.c, 808
Chen (2002), 795, 1438
Chen, H., 1438
chiflag.c, 1428
child process, 31, 513, 515

signaled on death of parent, 553
waiting on, 541–553

child_status.c, 548
chmod(), 286, 303–304, 325, 345, 426, 800

prototype, 303
Choffnes, D.R., 1438
chown command, 292
chown(), 221, 286, 291–293, 345, 426, 800

example of use, 294
prototype, 292

chroot jail, 273, 367, 789
chroot(), 345, 367–368, 580, 604, 607, 801

prototype, 367
Church, A.R., xxxix
Church, D.E., xl
Church, D.E.M., xl
Chuvakin, A., 1442
CIBAUD constant, 1302
Clare, G.W., xxxvii
CLD_CONTINUED constant, 441, 551
CLD_DUMPED constant, 441
CLD_EXITED constant, 440, 441, 551
CLD_KILLED constant, 441, 551
CLD_STOPPED constant, 441, 551
CLD_TRAPPED constant, 441
cleanup handler, thread cancellation, 

676–679
clearenv(), 129–130

prototype, 129
client, 40
client-server architecture, 40
CLOCAL constant, 1302
clock, POSIX. See POSIX clock
clock(), 207–208, 210

example of use, 209
prototype, 207
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clock_getcpuclockid(), 493, 496
prototype, 493

clock_getres(), 491
prototype, 491

clock_gettime(), 426, 491
example of use, 494, 511
prototype, 491

CLOCK_MONOTONIC constant, 491, 492, 
494, 508

CLOCK_MONOTONIC_COARSE constant, 492
CLOCK_MONOTONIC_RAW constant, 492
clock_nanosleep(), 493–494, 673

example of use, 494
interrupted by signal handler, 444
prototype, 493

CLOCK_PROCESS_CPUTIME_ID constant, 491, 
492, 494

CLOCK_REALTIME constant, 491, 492, 494, 508
example of use, 501, 507

CLOCK_REALTIME_COARSE constant, 492
clock_settime(), 492

prototype, 492
clock_t data type, 64, 206, 207, 208, 438
CLOCK_THREAD_CPUTIME_ID constant, 491, 492
clockid_t data type, 64, 491, 492, 493, 495
CLOCKS_PER_SEC constant, 207, 208, 210

example of use, 209
clone child, 609
clone(), 598–609, 801, 987

example of use, 602
prototype, 599
RLIMIT_NPROC resource limit and, 763
speed, 610–612

CLONE_CHILD_CLEARTID constant, 600, 606
CLONE_CHILD_SETTID constant, 600, 606
CLONE_FILES constant, 600, 603

example of use, 602
CLONE_FS constant, 600, 604, 607
CLONE_IDLETASK constant, 608
CLONE_IO constant, 600, 608
CLONE_NEWIPC constant, 600, 608
CLONE_NEWNET constant, 600, 608
CLONE_NEWNS constant, 261, 600, 607, 801
CLONE_NEWPID constant, 600, 608
CLONE_NEWUSER constant, 600, 608
CLONE_NEWUTC constant, 608
CLONE_NEWUTS constant, 600
CLONE_PARENT constant, 600, 608
CLONE_PARENT_SETTID constant, 600, 606
CLONE_PID constant, 600, 608
CLONE_PTRACE constant, 600, 608
CLONE_SETTLS constant, 600, 607
CLONE_SIGHAND constant, 600, 604, 605
CLONE_SYSVSEM constant, 600, 607, 987
CLONE_THREAD constant, 600, 604–606

CLONE_UNTRACED constant, 600, 608
CLONE_VFORK constant, 600, 608
CLONE_VM constant, 600, 604
clone2(), 599
close(), 70, 80–81, 426

example of use, 71
prototype, 81

CLOSE_WAIT state (TCP), 1269
closedir(), 354–355

example of use, 356
prototype, 355

closelog(), 777, 780
prototype, 780

close-on-exec flag, 74, 96, 98, 355, 377, 
576–578, 613, 788, 894, 1110, 
1153, 1158, 1175, 1281, 1356

closeonexec.c, 578
CLOSING state (TCP), 1269
cmdLineErr(), 53–54

code of implementation, 57
prototype, 54

CMSPAR constant, 1302
COFF (Common Object File Format), 113
Columbus UNIX, 922
Comer (1999), 1235, 1438
Comer (2000), 1210, 1235, 1438
Comer, D.E., 1438
command interpreter, 24
command-line arguments, 31, 

122–124, 225
Common Object File Format (COFF), 113
comp_t data type, 64, 593, 594, 598
compressed clock tick, 594
concurrent server, 912, 957, 1239–1240, 

1243–1247
condition variable, 614, 642–652, 881

association with mutex, 646
destroying, 652
initializing, 651–652
signaling, 643–644
statically allocated, 643
testing associated predicate, 647–648
waiting on, 643–645

CONFIG_BSD_PROCESS_ACCT kernel option, 592
CONFIG_HIGH_RES_TIMERS kernel option, 485
CONFIG_INOTIFY kernel option, 376
CONFIG_INOTIFY_USER kernel option, 376
CONFIG_LEGACY_PTYS kernel option, 1395
CONFIG_POSIX_MQUEUE kernel option, 1063
CONFIG_PROC_FS kernel option, 275
CONFIG_PROCESS_ACCT_V3 kernel option, 597
CONFIG_RT_GROUP_SCHED kernel option, 744
CONFIG_SECURITY_FILE_CAPABILITIES kernel 

option, 814
CONFIG_SYSVIPC kernel option, 922
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CONFIG_UNIX98_PTYS kernel option, 1381
confstr(), 48, 588, 694
congestion control (TCP), 1192, 1194, 

1236, 1443
connect(), 426, 673, 1152, 1158

diagram, 1156
example of use, 1169, 1224, 1228
interrupted by signal handler, 444
prototype, 1158
used with datagram sockets, 1162

connected datagram socket, 1162
container, 608
controlling process, 39, 533, 700, 

706–708, 712
controlling terminal, 34, 39, 77, 533, 615, 

700, 705, 706–708, 1380, 1385. 
See also /dev/tty device

diagram, 701
obtaining name of, 707
opening, 707

Cook, L., xl
cooked mode (terminal I/O), 1309–1310
copy.c, 71
copy-on-write, 521, 1018

diagram, 521
Corbet (2002), 307, 1438
Corbet (2005), 278, 1422, 1438
Corbet, J., 1438
core dump file, 83, 166, 389, 441, 

448–450, 530, 546, 594, 692, 789
circumstances when not produced, 

448–449
naming, 449–450
obtaining for running process, 

448, 1430
resource limit on size of, 760
set-user-ID programs and, 789

Cox, J., 1440
CPF_CLOEXEC constant, 1143
CPU affinity, 748
CPU time. See process time
CPU_CLR(), 749

prototype, 749
CPU_ISSET(), 749

prototype, 749
CPU_SET(), 749

example of use, 750
prototype, 749

CPU_ZERO(), 749
example of use, 750
prototype, 749

CR terminal special character, 1296, 1297, 
1298, 1302, 1307

CR0 constant, 1302
CR1 constant, 1302

CR2 constant, 1302
CR3 constant, 1302
CRDLY constant, 1302
CREAD constant, 1303
creat(), 78–79, 286, 345, 426, 673

prototype, 78
create_module(), 801
create_pid_file.c, 1143
createPidFile(), 1143–1144

code of implementation, 1144
credentials. See process, credentials
critical section, 631, 635
Crosby (2003), 794, 1438
Crosby, S.A., 1438
CRTSCTS constant, 1303
crypt(), 162–163, 657

example of use, 165, 425
prototype, 163

crypt_r(), 658
CS5 constant, 1303
CS6 constant, 1303
CS7 constant, 1303
CS8 constant, 1303
csh (C shell), 25
CSIZE constant, 1303
CSTOPB constant, 1303
ctermid(), 656, 707–708

prototype, 707
ctime(), 16, 188–189, 198, 657

diagram, 188
example of use, 192, 199
prototype, 188

ctime_r(), 189, 658
curr_time.c, 194
current working directory, 29, 225, 

363–365, 604, 613
Currie, A.L., xl
currTime(), 193

code of implementation, 194–195
prototype, 193

curses library, 14, 1290, 1444
Cvetkovic, D., xxxix

D
daemon process, 34, 767–774

creating, 768–771
ensuring just one instance runs, 

1142–1143
programming guidelines, 771–772
reinitializing, 391, 772–775

daemon(), 770
daemon_SIGHUP.c, 774
dangling link, 28, 342, 349, 360
DARPA (Defense Advanced Research 

Projects Agency), 1180
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da Silva, D., 1444
data segment, 116

resource limit on size of, 761
Datagram Congestion Control Protocol 

(DCCP), 1286
data-link layer, 1182

diagram, 1181
DATEMSK environment variable, 196
Davidson, F., xxxix
Davidson, S., xxxix
daylight saving time, 187
daylight variable, 198
dbm_clearerr(), 657
dbm_close(), 657
dbm_delete(), 657
dbm_error(), 657
dbm_fetch(), 657
dbm_firstkey(), 657
dbm_nextkey(), 657
dbm_open(), 657
dbm_store(), 657
DCCP (Datagram Congestion Control 

Protocol), 1286
DEAD_PROCESS constant, 820, 821, 822, 826
deadlock

mutex, 639
when locking files, 1128–1129
when opening FIFOs, 916

Dean, D., 1438
Deering, S., 1194
Defense Advanced Research Projects 

Agency (DARPA), 1180
Deitel (2004), 1147, 1438
Deitel, H.M., 1438
Deitel, P.J., 1438
delete_module(), 801
demo_clone.c, 603
demo_inotify.c, 382
demo_sched_fifo.c, 1432
demo_SIGFPE.c, 452
demo_sigio.c, 1348
demo_SIGWINCH.c, 1320
demo_timerfd.c, 510
denial-of-service attack, 793, 920, 1140, 

1167, 1438
detached_attrib.c, 628
dev_t data type, 64, 280, 281
devfs file system, 253
device, 252–253

major ID, 253, 281
minor ID, 253, 281

device control operations, 86
device driver, 252, 1438
de Weerd, P., xl
Diamond, D., 1444

diet libc, 47
Dijkstra (1968), 994, 1438
Dijkstra, E.W., 989, 1438
Dilger, A., 1441
DIR data type, 64, 352, 353, 354, 355, 357
direct I/O, 246–248
direct_read.c, 247
directory, 27, 282, 339–342

creating, 350–351
diagram, 340
opening, 76
permissions, 297
reading contents of, 352–357
removing, 351, 352
set-group-ID permission bit, 291
sticky permission bit, 300
synchronous updates, 264, 265, 267, 

305, 307
directory stream, 64, 352, 613

closed on process termination, 533
file descriptor associated with, 355

dirent structure, 353
definition, 353
example of use, 356

dirfd(), 15, 355
prototype, 355

dirname(), 370–372, 657
example of use, 371
prototype, 370

disc_SIGHUP.c, 712
DISCARD terminal special character, 

1296, 1297
discretionary locking, 1138
disk drive, 253
disk partition, 254

diagram, 255
disk quotas, 794, 801
display_env.c, 127
Dl_info structure, 866

definition, 866
dladdr(), 866

prototype, 866
dlclose(), 860, 861, 866, 876

example of use, 865
prototype, 866

dlerror(), 657, 862, 863
example of use, 865
prototype, 862

dlopen(), 860–862
example of use, 865
prototype, 860

dlsym(), 862–864
example of use, 865
prototype, 863

dlvsym(), 863
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dmalloc (malloc debugger), 147
dnotify (directory change notification), 

386, 615
DNS (Domain Name System), 

1209–1212, 1437
anonymous root, 1210
domain name, 1210
iterative resolution, 1211
name server, 1210
recursive resolution, 1211
root name server, 1211
round-robin load sharing, 1247
top-level domain, 1212

Domaigné, L., xxxvii
domain name, 1210
Domain Name System. See DNS
domainname command, 230
Döring, G., xxxvii
dotted-decimal notation (IPv4 address), 

1186
DragonFly BSD, 8
drand48(), 657
Drepper (2004a), 638, 1438
Drepper (2004b), 857, 868, 1439
Drepper (2007), 748, 1439
Drepper (2009), 795, 1439
Drepper, U., 47, 689, 1438, 1439
DST, 187
DSUSP terminal special character, 1299
DT_DIR constant, 353
DT_FIFO constant, 353
DT_LNK constant, 353
DT_NEEDED tag (ELF), 839
DT_REG constant, 353
DT_RPATH tag (ELF), 853, 854
DT_RUNPATH tag (ELF), 853, 854
DT_SONAME tag (ELF), 840
dumb terminal, 714
dump_utmpx.c, 824
Dunchak, M., xli
dup(), 97, 426, 1425

prototype, 97
RLIMIT_NOFILE resource limit and, 762

dup2(), 97, 426, 899, 900, 1426
example of use, 771, 901
prototype, 97
RLIMIT_NOFILE resource limit and, 762

dup3(), 98
prototype, 98

Dupont, K., xxxix
dynamic linker, 36, 839
dynamic linking, 839, 840
dynamically allocated storage, 116
dynamically loaded library, 859–867
dynload.c, 865

E
E2BIG error, 565, 943, 991
EACCES error, 77, 312, 564, 702, 928, 952, 

1031, 1127
eaccess(), 300
EADDRINUSE error, 1166, 1279
EAGAIN error, 57, 103, 270, 379, 460, 471, 

473, 509, 761, 763, 764, 917, 918, 
941, 979, 980, 1065, 1073, 1075, 
1095, 1127, 1139, 1259, 1260, 
1330, 1347, 1367

EAI_ADDRFAMILY constant, 1217
EAI_AGAIN constant, 1217
EAI_BADFLAGS constant, 1217
EAI_FAIL constant, 1217
EAI_FAMILY constant, 1217
EAI_MEMORY constant, 1217
EAI_NODATA constant, 1217
EAI_NONAME constant, 1217, 1219
EAI_OVERFLOW constant, 1217
EAI_SERVICE constant, 1217
EAI_SOCKTYPE constant, 1217
EAI_SYSTEM constant, 1217
EBADF error, 97, 762, 1126, 1334, 

1344, 1345
Ebner, R., xl
EBUSY error, 270, 637, 1078, 1396
ECHILD error, 542, 556, 903
ECHO constant, 1303, 1304

example of use, 1306, 1310, 1311
ECHOCTL constant, 1303, 1304
ECHOE constant, 1303, 1304
ECHOK constant, 1303, 1304
ECHOKE constant, 1303, 1304
ECHONL constant, 1296, 1303
ECHOPRT constant, 1303
ecvt(), 656, 657
edata variable, 118

diagram, 119
EDEADLK error, 636, 1129, 1139, 1431
edge-triggered notification, 1329–1330, 

1366–1367
preventing file-descriptor 

starvation, 1367
EEXIST error, 76, 315, 345, 349, 350, 

924, 932, 938, 969, 999, 1059, 
1109, 1357

EF_DUMPCORE environment variable, 52
EFAULT error, 187, 465
EFBIG error, 761
effective group ID, 33, 168, 172, 173, 175, 

177, 613
effective user ID, 33, 168, 172, 174, 175, 

177, 613
effect on process capabilities, 806
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EIDRM error, 933, 947, 971, 979
EINTR error, 418, 442, 443, 486, 489, 941, 

944, 979, 1095, 1334, 1339
EINVAL error, 179, 216, 246, 247, 349, 381, 

750, 762, 933, 950, 952, 969, 991, 
999, 1000, 1014

EIO error, 709, 718, 727, 730, 764, 1382, 
1388, 1389, 1396

EISDIR error, 78, 346, 349
elapsed time, 185
Electric Fence (malloc debugger), 147
ELF (Executable and Linking Format), 

113, 565, 837, 1441
ELF interpreter, 565
Elliston, B., 1444
ELOOP error, 77
EMFILE error, 78, 762
EMPTY constant, 820
EMSGSIZE error, 1073, 1075
ename.c.inc, 58
encapsulation, in networking 

protocols, 1182
encrypt(), 657
end variable, 118

diagram, 119
endgrent(), 161, 657
end-of-file character, 1296, 1297
end-of-file condition, 30, 70
endpwent(), 160–161, 657

prototype, 161
endspent(), 161

prototype, 161
endutxent(), 657, 821

example of use, 824, 830
prototype, 821

ENFILE error, 78, 763
enforcement-mode locking, 1138
ENODATA error, 315, 316
ENOENT error, 78, 158, 346, 349, 565, 823, 

924, 932, 1059, 1357, 1396, 1429
ENOEXEC error, 565
ENOMEM error, 760, 761, 1037
ENOMSG error, 944
ENOSPC error, 950, 991, 1014, 1206
ENOTDIR error, 76, 345, 349, 351, 379
ENOTEMPTY error, 349
ENOTTY error, 727, 825, 1292
env command, 126
envargs.c, 566
environ variable, 34, 124, 126, 568

diagram, 126
example of use, 127, 566

environment list, 34, 125–131, 214, 225, 
570–571, 612, 791

accessing from a program, 126–128

diagram, 126
modifying, 128–131

environment variable, 125
envp argument to main(), 127
ENXIO error, 707, 916, 1388
EOF terminal special character, 1296, 

1297, 1305, 1307
EOL terminal special character, 1296, 

1297, 1305, 1307
EOL2 terminal special character, 1296, 

1297, 1305, 1307
EOVERFLOW error, 106
EPERM error, 76, 173, 346, 403, 435, 702, 

705, 762, 929, 1357, 1435
ephemeral port, 1189, 1224, 1263
EPIPE error, 895, 912, 1159, 1256, 1260
Epoch, 40, 186
epoll, 1327, 1355–1367, 1439

creating epoll instance, 1356
duplicated file descriptors and, 

1363–1364
edge-triggered notification, 1366–1367
events, 1359

waiting for, 1358–1359
interest list, 1355

modifying, 1356–1358
performance, 1365–1366
ready list, 1355

EPOLL_CLOEXEC constant, 1356
epoll_create(), 801, 1355, 1356, 1363

example of use, 1358, 1362
prototype, 1356
RLIMIT_NOFILE resource limit and, 762

epoll_ctl(), 1356–1358, 1364
example of use, 1358, 1362
prototype, 1356

EPOLL_CTL_ADD constant, 1357
EPOLL_CTL_DEL constant, 1357
EPOLL_CTL_MOD constant, 1357
epoll_event structure, 1357, 1358

definition, 1357
example of use, 1362

epoll_input.c, 1362
epoll_pwait(), 1370

interrupted by signal handler, 444
interrupted by stop signal, 445

epoll_wait(), 1356, 1358–1360, 1364, 
1366–1367

example of use, 1362
interrupted by signal handler, 444
interrupted by stop signal, 445
prototype, 1358

EPOLLERR constant, 1359
EPOLLET constant, 1359, 1366
EPOLLHUP constant, 1359
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EPOLLIN constant, 1359
EPOLLONESHOT constant, 1359, 1360
EPOLLOUT constant, 1359
EPOLLPRI constant, 1359
EPOLLRDHUP constant, 1359
ERANGE error, 315, 363, 991
Eranian, S., 1442
ERASE terminal special character, 1296, 

1297, 1303, 1304, 1305, 1307
Erickson (2008), 792, 795, 1439
Erickson, J.M., 1439
EROFS error, 78
err_exit(), 52–53

code of implementation, 56
prototype, 52

errExit(), 52
code of implementation, 55
prototype, 52

errExitEN(), 52–53
code of implementation, 56
prototype, 52

errMsg(), 52
code of implementation, 55
prototype, 52

errno variable, 45, 49, 53, 620, 780
in threaded programs, 621
use inside signal handler, 427, 556

error handling, 48–50
error number, 49
error_functions.c, 54
error_functions.h, 52
error-diagnostic functions, 51–58
ESPIPE error, 83
ESRCH error, 158, 402, 403, 702
ESTABLISHED state (TCP), 1269
etext variable, 118

diagram, 119
ethereal command, 1277
ETIMEDOUT error, 637, 645, 1077, 1096
ETXTBSY error, 78, 373, 565
euidaccess(), 300
event (I/O), 1327
event_flags.c, 1434
eventfd(), 882
EWOULDBLOCK error, 57, 103, 1119, 1330, 

1347, 1367
example programs, xxxiv, 50–61, 100
EXDEV error, 349
exec shell command, 713
exec(), 32, 286, 345, 514, 563–579, 690, 801

effect on process attributes, 612–615
file descriptors and, 575–578
in multithreaded process, 605
process capabilities and, 805
set-user-ID program and, 169

signals and, 578–579
threads and, 686

execl(), 426, 567–568, 570–571
example of use, 571, 583, 587
prototype, 567

execle(), 426, 567–568, 570
example of use, 570
prototype, 567

execlp(), 567–569, 570, 575, 589
avoid in privileged programs, 788
example of use, 570, 901, 1392
prototype, 567

execlp.c, 1430
Executable and Linking Format (ELF), 

113, 565, 837, 1441
execute permission, 29, 282, 295, 297
execv(), 426, 567–568, 570

prototype, 567
execve(), 32, 426, 514, 563–566, 

567–568, 593
diagram, 515
example of use, 566
prototype, 564

execvp(), 567–570, 575, 1430
avoid in privileged programs, 788
prototype, 567

execvpe(), 568
exit handler, 532, 533–537, 615
exit status, 32, 545
exit(), 32, 390, 513, 531–533, 692

diagram, 515
example of use, 537
prototype, 532
threads and, 687

EXIT_FAILURE constant, 532
exit_group(), 692
exit_handlers.c, 536
exit_status structure, 819

definition, 819
EXIT_SUCCESS constant, 532
expect command, 1379
explicit congestion notification (TCP), 

1194, 1267, 1439
export shell command, 125
ext2 file system, 234, 255, 257–259

i-node flag, 304–308
ext3 file system, 260

i-node flag, 304–308
ext4 file system, 261, 1441

i-node flag, 304–308
extended attribute, 311–318

implementation limits, 314
name, 312
namespace, 312
os2 ( JFS), 312
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security, 312, 801
system, 312, 321, 327
trusted, 312, 316, 801
user, 312

extended file attribute (i-node flag), 
304–308

extended network ID, 1187
diagram, 1187

F
F_DUPFD constant, 97

RLIMIT_NOFILE resource limit and, 762
F_DUPFD_CLOEXEC constant, 98
F_GETFD constant, 577

example of use, 578
F_GETFL constant, 93–94, 96

example of use, 518, 917, 1349
F_GETLK constant, 1127

example of use, 1131, 1135
F_GETOWN constant, 1350–1351
F_GETOWN_EX constant, 1351, 1354, 1355
F_GETPIPE_SZ constant, 892
F_GETSIG constant, 1352, 1353
F_NOTIFY constant, 386, 615
F_OK constant, 299
f_owner_ex structure, 1354, 1355

definition, 1354
F_OWNER_PGRP constant, 1354
F_OWNER_PID constant, 1354
F_OWNER_TID constant, 1355
F_RDLCK constant, 1125

example of use, 1131
F_SETFD constant, 577

example of use, 578
F_SETFL constant, 93–94, 96

example of use, 519, 917, 1347, 1349
F_SETLEASE constant, 615, 800, 1142
F_SETLK constant, 1126–1127

example of use, 1131, 1134
F_SETLKW constant, 673, 1127

example of use, 1131, 1134
F_SETOWN constant, 1281, 1283, 1347

example of use, 1349
F_SETOWN_EX constant, 1354
F_SETPIPE_SZ constant, 891
F_SETSIG constant, 1281, 1352–1353
F_UNLCK constant, 1125

example of use, 1131
F_WRLCK constant, 1125

example of use, 1131
Fabry, R.S., 1442
faccessat(), 365, 426
fallocate(), 83
FALSE constant, 51
FAM (File Alteration Monitor), 375

FASYNC constant, 1347
fatal(), 54

code of implementation, 56
prototype, 54

fchdir(), 364
example of use, 364
prototype, 364

fchmod(), 286, 303, 426, 1110
prototype, 303

fchmodat(), 365, 426
fchown(), 221, 286, 291–293, 426, 1110

prototype, 292
fchownat(), 365, 426
fchroot(), 368
fcntl(), 92–93, 426, 673, 1124, 1134

changing signal associated with a file 
descriptor, 1352–1353

duplicating file descriptors, 97–98
example of use, 518, 578, 1131, 1349
interrupted by signal handler, 444
prototype, 93
retrieving and setting file descriptor 

flags, 577–578
retrieving and setting open file status 

flags, 93–94
setting file descriptor owner, 1347
setting pipe capacity, 891–892

fcvt(), 656, 657
FD_CLOEXEC constant, 75, 98, 355, 377, 472, 

508, 577, 894, 1110, 1153, 1158, 
1175, 1281, 1356

example of use, 578
FD_CLR(), 1331–1332

prototype, 1332
FD_ISSET(), 1331–1332

example of use, 1336
prototype, 1332

fd_set data type, 64, 1331, 1332, 1344, 
1369

FD_SET(), 1331–1332
example of use, 1335
prototype, 1332

FD_SETSIZE constant, 1332
FD_ZERO(), 1331–1332

example of use, 1335
prototype, 1332

fdatasync(), 240–241, 242, 244, 426, 
673, 1032

prototype, 240
fdisk command, 254
fdopen(), 248–249, 892, 906

prototype, 248
fdopendir(), 15, 353

prototype, 353
feature test macro, 61–63
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feenableexcept(), 391
Fellinger, P., xxxix, xl
Fenner, B., 1421, 1444
fexecve(), 15, 426, 571

prototype, 571
FF0 constant, 1302
FF1 constant, 1302
FFDLY constant, 1302
fflush(), 239, 244, 538

prototype, 239
fg shell command, 715

diagram, 717
fgetxattr(), 315

prototype, 315
FIBMAP constant, 255
FIFO, 282, 392, 882, 883, 886, 906–918. 

See also pipe
creating dual pipeline with tee(1), 

diagram, 908
deadlock during open by two 

processes, diagram, 917
open() semantics, 907, 915–916
poll() on, 1342
read() semantics, 917–918
select() on, 1342
write() semantics, 918

fifo_seqnum.h, 911
fifo_seqnum_client.c, 914
fifo_seqnum_server.c, 912, 920
file, 27

appending output to, 92
blocks allocated to, 282
compression, 306
control operations, 92
creating, 76
creating exclusively, 76, 90–92
deleting, 346, 352
descriptor. See file descriptor
holes in, 83, 259, 283
lease, 615, 800, 1135, 1142
lock. See file lock
mapping. See file mapping
maximum size of, 258
offset. See file offset
on-disk structure

diagram, 258
opening, 72–79
optimal I/O block size, 283
randomly accessing, 81–86
reading, 79–80
renaming, 348–349
resource limit on size, 761
retrieving metadata, 279–285
sharing of open file by parent and 

child, 517–520

size, 282
synchronous updates, 264, 267, 307
temporary, 108–109
timestamps. See file timestamps
truncating, 103
truncation on open(), 77
type, 27, 95, 256, 281

diagram, 281
writing, 80

file access mode, 72, 75, 93, 95
File Alteration Monitor (FAM), 375
file capabilities, 799, 803–804, 1440

effective, 799, 802
inheritable, 799, 803
permitted, 799, 802

file creation flags, 75
file descriptor, 30, 69, 94, 530, 603, 613

closed on process termination, 533
diagram, 95, 520
duplicating, 96–98
multiplexing, 1327, 1330–1346
passing via UNIX domain socket, 1284
for POSIX shared memory object, 1108
ready, 1327
refers to same open file in forked 

child, 517
relationship to open file, 94–96
resource limit on number of open, 762

file descriptor set, 64, 1331
file hole, 83, 259, 283
file I/O, 29

advising kernel about access 
patterns, 244

benchmarking, 236
buffering, 233–250

diagram, 244
large files, 104–107
performing at a specified offset, 98–99
scatter-gather I/O, 99–102
speed, 235, 236, 242

file lease, 615, 800, 1135, 1142
file lock, 533, 881, 882, 884, 886, 

1117–1144
advisory, 1119, 1137
comparison of semantics of flock() and 

fcntl(), 1136–1137
deadlock, 1128–1129
with fcntl(), 614, 1124–1137

semantics of lock inheritance and 
release, 1136–1137

with flock(), 614, 1119–1124
limitations, 1123–1124
semantics of lock inheritance and 

release, 1122–1123
limits, 1135–1136
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LinuxThreads nonconformance, 691
mandatory, 265, 293, 1119, 1137–1140
priority of queued lock requests, 1137
speed, 1135–1136
starvation, 1137

file mapping, 35, 882, 886, 1017, 
1024–1031

diagram, 1025
private, 1018, 1024–1025
shared, 1019, 1025–1029

file mode creation mask (umask), 301–303, 
328, 351, 604, 613, 790, 907, 923, 
1060, 1065, 1091, 1110, 1174

file offset, 81, 94, 613
changing, 81

file ownership, 29, 281, 291–294, 800
changing, 291–294
of new files, 291

file permissions, 29, 281, 282, 294–299, 800
changing, 303–304
diagram, 281
permission-checking algorithm, 

297–299
file status flags, open, 75, 93–94, 95, 96, 

518, 613
file system, 22, 254–256

busy, 270
diagram, 27, 255
mount point, 261

diagram, 262
mounting, 264–269

at multiple mount points, 271
retrieving information about mounted, 

276–277
stacking multiple mounts, 271–272
unmounting, 269–270

file timestamps, 257, 283, 285–287
changing, 286, 287–290
last access time, 74, 76–77, 257, 264, 

265, 266, 267, 283, 285, 286, 287, 
289, 305, 306

last modification time, 257, 283, 285, 
286, 287

last status change time, 257, 283, 
285, 286

nanosecond precision, 287
file tree walking, 358–363
file_perms.c, 296
file_perms.h, 296
file_type_stats.c, 1429
file-based mapping. See file mapping
filename, 28, 341

maximum length, 214, 340
fileno(), 248

prototype, 248

filePermStr(), 295–296
code of implementation, 296
example of use, 284, 303

file-system group ID, 171–172, 178, 
298, 615

Filesystem in Userspace (FUSE), 255, 267
file-system user ID, 171–172, 178, 615, 800

effect on process capabilities, 807
filter, 31, 899
FIN control bit (TCP), 1267
FIN_WAIT1 state (TCP), 1269
FIN_WAIT2 state (TCP), 1269
finger command, 154
FIOCLEX constant, 577
FIOGETOWN constant, 1350
FIONCLEX constant, 577
FIONREAD constant, 381, 892, 1153, 1291
FIOSETOWN constant, 1350
FIPS 151-1, 12
FIPS 151-2, 12
Fletcher, G., xl
flistxattr(), 316

prototype, 316
floating-point environment, 615, 620
floating-point exception (error message). 

See SIGFPE signal
flock structure, 1124–1126

definition, 1124
example of use, 1130

flock(), 1119–1122, 1147, 1435
example of use, 1121
interrupted by signal handler, 444
prototype, 1119

flow control (TCP), 1192
Floyd (1994), 1267, 1439
Floyd, S., 1194, 1439
FLUSHO constant, 1303
footprint.c, 522
FOPEN_MAX constant, 215
fopen64(), 105
For portability comment in function 

prototypes, 67
foreground process group, 39, 700, 708

diagram, 701, 717
signaled on terminal window size 

change, 1319–1320
terminal-generated signals and, 1290

Forero Cuervo, A., xl
fork bomb, 793
fork handler, 609, 687
fork(), 31, 426, 513, 515–522, 589, 609, 

690, 1430
copy-on-write semantics, 521
diagram, 515
effect on process attributes, 612–615
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fork(), continued
example of use, 516, 517, 519, 526, 543, 

554, 582, 587, 770, 900, 1387
file descriptors and, 96, 517–520
glibc wrapper invokes clone(), 609
memory semantics, 520–521
prototype, 516
RLIMIT_NPROC resource limit and, 763
scheduling of parent and child after, 525
speed, 610
stdio buffers and, 537–538
threads and, 686

fork_file_sharing.c, 518
fork_sig_sync.c, 528
fork_stdio_buf.c, 537
fork_whos_on_first.c, 526
format-string attack, 780
Fox, B., 25
fpathconf(), 217–218, 425, 426

example of use, 218
prototype, 217

FPE_FLTDIV constant, 441
FPE_FLTINV constant, 441
FPE_FLTOVF constant, 441
FPE_FLTRES constant, 441
FPE_FLTUND constant, 441
FPE_INTDIV constant, 441
FPE_INTOVF constant, 441
FPE_SUB constant, 441
FQDN (fully qualified domain 

name), 1210
fragmentation of free disk space, 257
Franke (2002), 638, 1439
Franke, H., 1439
Free Software Foundation, 5
free(), 140–142, 144, 423

example of use, 143
implementation, 144–146

diagram, 145
prototype, 141

free_and_sbrk.c, 142
freeaddrinfo(), 1217

example of use, 1222
prototype, 1217

FreeBSD, 7, 1442
fremovexattr(), 286, 316

prototype, 316
Frisch (2002), 616, 818, 1439
Frisch, A., 1439
FS_APPEND_FL constant, 305, 306
FS_COMPR_FL constant, 305, 306
FS_DIRSYNC_FL constant, 265, 305, 306, 307
FS_IMMUTABLE_FL constant, 305, 306, 307
FS_IOC_GETFLAGS constant, 308
FS_IOC_SETFLAGS constant, 308

FS_JOURNAL_DATA_FL constant, 305
FS_JOURNAL_FL constant, 306
FS_NOATIME_FL constant, 77, 265, 305, 306
FS_NODUMP_FL constant, 305, 307
FS_NOTAIL_FL constant, 305, 307
FS_SECRM_FL constant, 305, 307
FS_SYNC_FL constant, 305, 307
FS_TOPDIR_FL constant, 305, 307
FS_UNRM_FL constant, 305, 307
fsblkcnt_t data type, 64, 276
fsck command, 260, 263
fsetxattr(), 286, 314–315

prototype, 314
fsfilcnt_t data type, 64, 276
fstab file format, 263
fstat(), 279–283, 426, 907, 1110

example of use, 1023, 1113
prototype, 279

fstatat(), 365, 426
fstatfs(), 277
fstatvfs(), 276–277

prototype, 276
fsync(), 240–241, 242, 244, 265, 426, 

673, 1240
prototype, 240

ftok(), 925–927, 936
prototype, 925
example of use, 930

ftruncate(), 103, 286, 426, 800, 1139
example of use, 1111, 1112
prototype, 103
use with POSIX shared memory 

object, 1110
fts_open(), 358
FTW structure, 360

definition, 360
example of use, 360

ftw(), 16, 358, 657
FTW_ACTIONRETVAL constant, 362
FTW_CHDIR constant, 359
FTW_CONTINUE constant, 362
FTW_D constant, 359
FTW_DEPTH constant, 359
FTW_DNR constant, 359
FTW_DP constant, 359
FTW_F constant, 359
FTW_MOUNT constant, 359
FTW_NS constant, 359
FTW_PHYS constant, 359, 360
FTW_SKIP_SIBLINGS constant, 363
FTW_SKIP_SUBTREE constant, 363
FTW_SL constant, 359, 360
FTW_SLN constant, 360
FTW_STOP constant, 363
fully qualified domain name (FQDN), 1210
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FUSE (Filesystem in Userspace), 255, 267
fuser command, 342
futex (fast user space mutex), 605, 607, 

638, 1438, 1439
futex(), 638, 1090

interrupted by signal, 444
interrupted by stop signal, 445

FUTEX_WAIT constant, 444, 445
futimens(), 15, 286, 426
futimes(), 15, 286, 288–289, 426

prototype, 289

G
gai_strerror(), 1217–1218

prototype, 1218
Gallmeister (1995), 222, 512, 751, 1087, 

1327, 1439
Gallmeister, B.O., 1439
Gamin, 375
Gammo (2004), 1374, 1439
Gammo, L., 1439
Gancarz (2003), 1422, 1439
Gancarz, M., 1439
Garfinkel (2003), 20, 795, 1439
Garfinkel, S., 1439
gather output, 102
gcore (gdb) command, 448, 1430
gcvt(), 656, 657
gdb program, 1442
General Public License (GPL), 5
get_current_dir_name(), 364
get_num.c, 59
get_num.h, 59
get_robust_list(), 801
get_thread_area(), 692
getaddrinfo(), 1205, 1213–1217

diagram, 1215
example of use, 1221, 1224, 1228, 1229
prototype, 1213

GETALL constant, 971, 972
example of use, 974

getc_unlocked(), 657
getchar_unlocked(), 657
getconf command, 215
getcontext(), 442
getcwd(), 363–364

prototype, 363
getdate(), 196, 657
getdate_r(), 196
getdents(), 352
getdomainname(), 230
getdtablesize(), 215
getegid(), 172–173, 426

prototype, 173

getenv(), 127–128, 657
example of use, 1392
prototype, 127

geteuid(),172–173, 426
prototype, 173

getfacl command, 325
getfattr command, 312
getfsent(), 263
getgid(),172–173, 426

prototype, 173
getgrent(), 161, 657
getgrgid(),158–159, 657

example of use, 160
prototype, 158

getgrgid_r(), 158, 658
getgrnam(), 158–159, 657

example of use, 160
prototype, 158

getgrnam_r(), 158, 658
getgroups(), 179, 426

example of use, 183
prototype, 179

gethostbyaddr(), 16, 656, 657, 1205, 
1231–1232

prototype, 1231
gethostbyname(), 16, 656, 657, 1205, 

1231–1232,
example of use, 1233
prototype, 1231

gethostbyname_r(), 658
gethostent(), 657
gethostname(), 230
getInt(), 58–59

code of implementation, 60–61
prototype, 58

getitimer(), 16, 481
example of use, 483
prototype, 481

getlogin(), 657, 825, 826
prototype, 825

getlogin_r(), 658, 825
getLong(), 58–59

code of implementation, 60
prototype, 58

getmntent(), 263
getmsg(), 673
getnameinfo(), 1205, 1218–1219

example of use, 1230
prototype, 1218

GETNCNT constant, 972
example of use, 974

getnetbyaddr(), 657
getnetbyname(), 657
getnetent(), 657
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getopt(), 657, 1405–1411
example of use, 1409
prototype, 1406

getopt_long(), 1411
getpagesize(), 215
getpass(), 164, 166

example of use, 165
prototype, 164

getpeername(), 426, 1263–1264
example of use, 1265
prototype, 1263

getpgid(), 704
getpgrp(), 426, 701–702, 704

example of use, 706, 720
prototype, 701

GETPID constant, 972
example of use, 974

getpid(), 114, 426, 604, 690
prototype, 114

getpmsg(), 673
getppid(), 115, 426, 553, 608, 690

prototype, 115
getpriority(), 735–736

example of use, 737
prototype, 735

getprotobyname(), 657
getprotobynumber(), 657
getprotoent(), 657
getpwent(), 161, 657

prototype, 161
getpwnam(), 157–158, 657

example of use, 160, 165
prototype, 157

getpwnam_r(), 158, 658
getpwuid(),157–158, 657

example of use, 159
prototype, 157

getpwuid_r(), 158, 658
getresgid(), 176–177

prototype, 177
getresuid(), 176–177

example of use, 182
prototype, 177

getrlimit(), 755–757, 759
example of use, 758
prototype, 756

getrusage(), 560, 619, 691, 694, 
753–755, 765

prototype, 753
getservbyname(), 657, 1205, 1234

prototype, 1234
getservbyname_r(), 658
getservbyport(), 657, 1205, 1234–1235

prototype, 1234
getservent(), 657

getsid(), 704–705
example of use, 706, 720
prototype, 704

getsockname(), 426, 1263–1264
example of use, 1265
prototype, 1263

getsockopt(), 426, 1278–1279
prototype, 1278

getspent(), 161–162
prototype, 161

getspnam(), 161–162
example of use, 165
prototype, 161

gettext API, 202
gettid(), 226, 497, 605, 625, 749, 1355
gettimeofday(), 16, 186–187

diagram, 188
example of use, 192, 482, 490
prototype, 186

getty command, 820
getuid(),172–173, 426

prototype, 173
getutent_r(), 658, 823
getutid_r(), 658, 823
getutline_r(), 658, 823
getutxent(), 657, 822

example of use, 824
prototype, 822

getutxid(), 657, 822–823
prototype, 822

getutxline(), 657, 822–823
prototype, 822

GETVAL constant, 971, 972
getwd(), 364
getxattr(), 315, 329, 345

example of use, 318
prototype, 315

GETZCNT constant, 972
example of use, 974

GID (group ID), 26, 64, 153, 156
gid_t data type, 64, 157, 158, 159, 173, 

174, 175, 177, 178, 179, 280, 292, 
330, 927

Gilligan, S., 1194
glibc. See GNU C library
globbing, 903
Gloger, W., xxxvii
Gmelch, T., xl
gmtime(), 189, 657

diagram, 188
example of use, 192
prototype, 189

gmtime_r(), 189, 658
GNU C library, 47–48

determining version, 47–48
manual, 1421
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GNU project, 5–6, 1422
GNU/Linux, 6
gnu_get_libc_version(), 48

prototype, 48
Göllesch, N., xxxix
Gont (2008), 1235, 1439
Gont (2009a), 1235, 1439
Gont (2009b), 1283, 1439
Gont, F., xxxvii, 1439
Goodheart (1994), 20, 24, 250, 278, 419, 

530, 936, 1044, 1440
Goodheart, B., 1440
Goralski (2009), 1235, 1440
Goralski, W., 1440
Gorman (2004), 138, 1440
Gorman, M., xxxix, 1440
GPL (General Public License), 5
grantpt(), 1380–1381

example of use, 1384
prototype, 1381

Gratzl, C., xxxix, xl
group file, 155–156

retrieving records from, 158–160
group ID, 26, 64, 153, 156
group structure, 159

definition, 159
example of use, 160

groupIdFromName(), 159
code of implementation, 160

groupNameFromId(), 159
code of implementation, 160

groups command, 155
Grünbacher (2003), 337, 1440
Grünbacher, A., xxxviii, 337, 1440
Gutmann (1996), 307, 1440
Gutmann, P., 1440

H
h_errno variable, 1231
Haig, B., xl
Hallyn (2007), 814, 1440
Hallyn, S., xxxix, 1437, 1440
handle, 331
Handley, M., 1194
handling_SIGTSTP.c, 724
Harbison (2002), xxxii, 30, 1440
Harbison, S.P., 1440
hard link. See link
hard realtime, 738
HARD_MSGMAX constant, 1086
Hartinger, M., xxxix, xl
Hauben, R., 20
hcreate(), 657
hdestroy(), 657

heap, 31, 116, 612
Heasman, J., 1437
Hellwig, C., xxxviii
Henderson, R., xxxix
Herbert (2004), 1235, 1440
Herbert, T.F., 1440
herror(), 1232–1233

prototype, 1233
hex-string notation (IPv6 address), 1188
high-resolution timers, 485
Hinden, R., 1194
Hoffman, R., xli
home directory, 26, 154
HOME environment variable, 34, 154
host byte order, 1198
host ID, 1186
hostent structure, 1232

definition, 1232
example of use, 1233

hostname, 1204
canonical, 1210, 1216

hostname command, 230
Howard, M., xl
HP-UX, 5
hsearch(), 657
hstrerror(), 1232–1233

prototype, 1233
htonl(), 1199

prototype, 1199
htons(), 1199

prototype, 1199
Hubicka (2003), 837, 1440
Hubicka, J., 1440
huge page, 999
HUPCL constant, 1303
HURD, 6, 1443
HZ constant, 205

I
i_fcntl_locking.c, 1130
i6d_ucase.h, 1207
i6d_ucase_cl.c, 1209
i6d_ucase_sv.c, 1208
I18N, 200
IA-64, 10, 1442
IANA (Internet Assigned Numbers 

Authority), 1189
ICANON constant, 1296, 1297, 1303, 

1305, 1307
example of use, 1310, 1311

ICMP (Internet Control Message 
Protocol), 1181

ICRNL constant, 1296, 1297, 1298, 1302
example of use, 1310, 1311

û
û
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id_echo.h, 1240
id_echo_cl.c, 1242
id_echo_sv.c, 1241
id_t data type, 64, 550, 735
idshow.c, 182
IEEE (Institute of Electrical and 

Electronic Engineers), 11
IETF (Internet Engineering Task 

Force), 1193
IEXTEN constant, 1296, 1297, 1298, 1299, 

1303, 1305, 1307
example of use, 1311

IFS environment variable, 581, 791
IGMP (Internet Group Management 

Protocol), 1181
IGNBRK constant, 1302, 1304

example of use, 1311
IGNCR constant, 1296, 1297, 1302

example of use, 1311
ignore_pending_sig.c, 1429
IGNPAR constant, 1302, 1305
ILL_BADSTK constant, 441
ILL_COPROC constant, 441
ILL_ILLADR constant, 441
ILL_ILLOPC constant, 441
ILL_ILLOPN constant, 441
ILL_ILLTRP constant, 441
ILL_PRVOPC constant, 441
ILL_PRVREG constant, 441
IMAXBEL constant, 1302, 1305
IN_ACCESS constant, 378
in_addr structure, 1202, 1231, 1232
in_addr_t data type, 64, 1202
IN_ALL_EVENTS constant, 378
IN_ATTRIB constant, 378, 379
IN_CLOEXEC constant, 377
IN_CLOSE constant, 378
IN_CLOSE_NOWRITE constant, 378
IN_CLOSE_WRITE constant, 378
IN_CREATE constant, 378
IN_DELETE constant, 378, 379
IN_DELETE_SELF constant, 378, 379
IN_DONT_FOLLOW constant, 378, 379
IN_IGNORED constant, 378, 380, 381
IN_ISDIR constant, 378, 380
IN_MASK_ADD constant, 378, 379
IN_MODIFY constant, 378
IN_MOVE constant, 378
IN_MOVE_SELF constant, 378, 379
IN_MOVED_FROM constant, 378, 379, 381
IN_MOVED_TO constant, 378, 379, 381
IN_NONBLOCK constant, 377
IN_ONESHOT constant, 378, 379, 380
IN_ONLYDIR constant, 378, 379
IN_OPEN constant, 378

in_port_t data type, 64, 1202, 1203
IN_Q_OVERFLOW constant, 378, 385
IN_UNMOUNT constant, 378, 381
in6_addr structure, 1202, 1203, 1232
in6addr_any variable, 1203
IN6ADDR_ANY_INIT constant, 1203
in6addr_loopback variable, 1203
IN6ADDR_LOOPBACK_INIT constant, 1203
INADDR_ANY constant, 1187
INADDR_LOOPBACK constant, 1187
INET_ADDRSTRLEN constant, 1206
inet_aton(), 1204, 1230–1231

prototype, 1231
inet_ntoa(), 657, 1204, 1231

prototype, 1231
inet_ntop(), 1205, 1206

example of use, 1208, 1234
prototype, 1206

inet_pton(), 1205, 1206
example of use, 1209
prototype, 1206

inet_sockets.c, 1228
inet_sockets.h, 1226
INET6_ADDRSTRLEN constant, 1206
inetAddressStr(), 1227

code of implementation, 1230
example of use, 1265
prototype, 1227

inetBind(), 1227
code of implementation, 1230
example of use, 1241
prototype, 1227

inetConnect(), 1226
code of implementation, 1228
example of use, 1242, 1258, 1265
prototype, 1226

inetd (Internet superserver daemon), 768, 
1247–1251

inetListen(), 1226–1227
code of implementation, 1230
example of use, 1245, 1265
prototype, 1226

info documents, 1421
init process, 33, 115, 402, 768, 805, 

815, 820
adopts orphaned processes, 553
cleans up utmp file during system 

boot, 826
sends SIGTERM to children on system 

shutdown, 772
sent SIGPWR on power failure, 392
signals and, 402
updates login accounting files, 820

init_module(), 801
INIT_PROCESS constant, 820, 821, 822
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initgroups(), 179–180, 800
prototype, 179

initial thread, 622
initialized data segment, 116, 117, 118, 

1019, 1025
initSemAvailable(), 989–990

code of implementation, 990
example of use, 1004

initSemInUse(), 989–990
code of implementation, 990
example of use, 1004

INLCR constant, 1296, 1302
example of use, 1311

ino_t data type, 64, 280, 353
i-node, 95, 256–259

diagram, 95, 258, 340
i-node flag, 304–308
i-node number, 64, 256, 281, 341
i-node table, 256, 340
inotify (file system event notification)

read() interrupted by signal 
handler, 444

read() interrupted by stop signal, 445
inotify (notification of file-system events), 

375–385
inotify_add_watch(), 376, 377

example of use, 383
prototype, 377

inotify_event structure, 379–381
definition, 379
diagram, 380
example of use, 382

inotify_init(), 376–377
example of use, 383
prototype, 376

inotify_init1(), 377
inotify_rm_watch(), 376, 378

prototype, 378
INPCK constant, 1302, 1305

example of use, 1311
Institute of Electrical and Electronic 

Engineers (IEEE), 11
int32_t data type, 472, 593, 819
International Standards Organization 

(ISO), 11
internationalization, 200
internet, 1179
Internet Assigned Numbers Authority 

(IANA), 1189
Internet Control Message Protocol 

(ICMP), 1181
Internet Engineering Task Force 

(IETF), 1193
Internet Group Management Protocol 

(IGMP), 1181

Internet protocol (IP). See IP
Internet Society, 1193
Internet superserver daemon (inetd), 768, 

1247–1251
Internet Systems Consortium, 1210
interpreter, 572
interpreter script, 572–575
interprocess communication (IPC), 37, 

877–887
performance, 887
persistence of IPC objects, 886
taxonomy of facilities, diagram, 878

interrupt character, 392, 1296, 1297
interruptible sleep state, 451
interval timer, 479–485, 614

scheduling and accuracy, 485
intmax_t data type, 66
intquit.c, 401
INTR terminal special character, 1296, 

1297, 1303, 1305
invalid memory reference, 393
I/O

asynchronous I/O, POSIX, 613, 
1327, 1347

buffering. See buffering of file I/O
direct, 246–248
event, 1327
file. See file I/O
large file, 76, 104–107
memory-mapped, 1019, 1026–1027
multiplexed, 1327, 1330–1346
nonblocking, 77, 103–104, 915–917, 

1326, 1330
signal-driven, 75, 95, 1327, 

1346–1355, 1367
synchronous, 241–243

io_getevents(), interrupted by signal 
handler, 444

ioctl(), 72, 86, 308, 1293, 1319
example of use, 1320, 1387
interrupted by signal handler, 443
prototype, 86

ioperm(), 801
iopl(), 801
IOPRIO_CLASS_RT constant, 801
ioprio_set(), 801
IOV_MAX constant, 100
iovec structure, 99–100, 102

definition, 99
example of use, 101

IP (Internet protocol), 1184–1186, 
1193, 1439

address, 1186–1188
datagram, 1184

duplication of, 1185
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IP (Internet protocol), continued
diagram, 1181
fragmentation, 1185, 1440
header, 1185

checksum, 1185
minimum reassembly buffer size, 1185
unreliability, 1185

IPC. See interprocess communication
ipc(), 922
IPC_CREAT constant, 924, 925, 932, 938, 

969, 998
example of use, 939

IPC_EXCL constant, 924, 925, 928, 932, 938, 
969, 999

example of use, 940
IPC_INFO constant, 936, 951, 992, 1015
IPC_NOWAIT constant, 941, 943, 979

example of use, 942, 946, 983
ipc_perm structure, 927–928, 948, 972, 1012

definition, 927
IPC_PRIVATE constant, 925, 928

example of use, 939, 960
IPC_RMID constant, 801, 924, 929, 947, 

971, 1011
example of use, 948

IPC_SET constant, 801, 927, 928, 929, 947, 
948, 949, 971, 973, 1011, 1013

example of use, 927, 950
IPC_STAT constant, 927, 929, 947, 971, 1011

example of use, 927, 950, 974, 975
IPCMNI constant, 951, 992, 1015
ipcrm command, 934
ipcs command, 934, 952
IPPROTO_SCTP constant, 1286
IPv4, 1184

address, 1186–1187
loopback address, 1187
socket address, 1202
wildcard address, 1187

IPv4-mapped IPv6 address, 1188
diagram, 1188

IPv5, 1184
IPv6, 1184, 1194

address, 1188
loopback address, 1188, 1203
socket address, 1202
wildcard address, 1188, 1203

IS_ADDR_STR_LEN constant, 1227
is_echo_cl.c, 1258, 1287
is_echo_inetd_sv.c, 1251
is_echo_sv.c, 1244, 1252
is_echo_v2_sv.c, 1435
is_seqnum.h, 1220
is_seqnum_cl.c, 1224
is_seqnum_sv.c, 1221

is_seqnum_v2.h, 1435
is_seqnum_v2_cl.c, 1435
is_seqnum_v2_sv.c, 1435
isalpha(), 202
isatty(), 1321

example of use, 720
prototype, 1321

ISIG constant, 1296, 1297, 1298, 1299, 1303
example of use, 1310, 1311

ISO (International Standards 
Organization), 11

ISO/IEC 9899:1990, 11
ISO/IEC 9899:1999, 11
ISO/IEC 9945:2002, 13
ISO/IEC 9945-1:1990, 11
ISO/IEC 9945-1:1996, 12
ISO/IEC 9945-2:1993, 12
ISTRIP constant, 1302

example of use, 1311
iterative resolution (DNS), 1211
iterative server, 912, 1239–1242
ITIMER_PROF constant, 480
ITIMER_REAL constant, 480

example of use, 484
ITIMER_VIRTUAL constant, 480
itimerspec structure, 498, 499, 508, 509

definition, 498
itimerspec_from_str.c, 502
itimerspecFromStr(), 502

code of implementation, 502–503
itimerval structure, 480, 481

definition, 480
IUCLC constant, 1302, 1303, 1305
IUTF8 constant, 1302, 1305
IXANY constant, 1299, 1302
IXOFF constant, 1296, 1298, 1299, 1302
IXON constant, 1296, 1298, 1302

example of use, 1311

J
Jacobsen, V., 1194
Jaeger, A., xxxviii
jail() (BSD), 368
Java Native Interface (JNI), 837, 1441
JFS file system, 261

i-node flag, 304–308
jiffy, 205–206
Jinmei, T., 1194
JNI ( Java Native Interface), 837, 1441
job. See process group
job control, 39, 221, 714–725

diagram, 717
implementation, 717–718
shell commands, 714–717
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job_mon.c, 719
job-control signal, 717

handling within applications, 722–725
jobs shell command, 715
Johnson (2005), 1440
Johnson, M.K., 1440
Johnson, R., 1438
Johnson, S., 4
Jolitz, L.G., 7
Jolitz, W.F., 7
Jones, R., xxxviii
Josey (2004), 20, 222, 1440
Josey, A., xxxix, 1440
journaling file system, 260–261
Joy, W.N., 4, 25, 1442
jumbogram, 1185

K
K&R C, 10
Kahabka, T., xl
Kara, J., xl
Kegel, D., 1374
Kegel, K., xxxix
Kent (1987), 1186, 1440
Kent, A., 1440
kernel, 21

configuration, 1417
source code, 1424

kernel mode, 23, 44
kernel scheduling entity (KSE), 603, 687
kernel space, 23
kernel stack, 44, 122
kernel thread, 241, 608, 768
Kernighan (1988), xxxii, 10, 11, 30, 1440
Kernighan, B.W., 1437, 1440
kexec_load(), 801
key_t data type, 64, 925, 927, 938, 969, 998
KEYCTL_CHOWN constant, 801
KEYCTL_SETPERM constant, 801
KILL terminal special character, 1296, 

1298, 1303, 1304, 1305, 1307
kill(), 401–403, 426, 439, 441, 458, 800

example of use, 405, 413
prototype, 402

killable sleep state, 451
killpg(), 405, 458

prototype, 405
Kirkwood, M., 1439
Kleen, A., xxxviii
Kleikamp, D., xl
klogctl(), 776
klogd daemon, 776

diagram, 775
Kopparapu (2002), 1247, 1440

Kopparapu, C., 1440
Korn shell (ksh), 25
Korn, D., 25
Korrel, K., xl
Kozierok (2005), 1235, 1441
Kozierok, C.M., 1441
kqueue API (BSD), 375, 1328, 1441
Kroah-Hartman (2003), 253, 1441
Kroah-Hartman, G., 1438, 1441
KSE (kernel scheduling entity), 603, 687
ksh (Korn shell), 25
Kumar (2008), 307, 1441
Kumar, A., 1441
kupdated kernel thread, 241, 1032
Kuznetsov, A., 1443

L
L_ctermid constant, 708
L_INCR constant, 82
L_SET constant, 82
L_XTND constant, 82
l64a(), 657
Landers, M., xxxviii, xl
LANG environment variable, 203
large file I/O, 76, 104–107
Large File Summit (LFS), 104
large_file.c, 105
last access time, file timestamp, 74, 76–77, 

257, 264, 265, 266, 267, 283, 285, 
286, 287, 289, 305, 306

last command, 817
last modification time, file timestamp, 

257, 283, 285, 286, 287
last status change time, file timestamp, 

257, 283, 285, 286
LAST_ACK state (TCP), 1270
lastcomm command, 591
lastlog command, 830
lastlog file, 830

example of use, 831
lastlog structure, 830

definition, 830
example of use, 831

Lawyer, D., 1322
lazy swap reservation, 1038
LC_ADDRESS locale category, 202
LC_ALL environment variable, 203
LC_ALL locale category, 203
LC_COLLATE environment variable, 203
LC_COLLATE locale category, 202
LC_CTYPE environment variable, 203
LC_CTYPE locale category, 202
LC_IDENTIFICATION locale category, 202
LC_MEASUREMENT locale category, 202
LC_MESSAGES environment variable, 203
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LC_MESSAGES locale category, 202
LC_MONETARY environment variable, 203
LC_MONETARY locale category, 202
LC_NAME locale category, 202
LC_NUMERIC environment variable, 203
LC_NUMERIC locale category, 202
LC_PAPER locale category, 202
LC_TELEPHONE locale category, 202
LC_TIME environment variable, 203
LC_TIME locale category, 202
lchown(), 286, 292–293, 345

prototype, 292
ld command, 833
LD_ASSUME_KERNEL environment variable, 695
LD_BIND_NOW environment variable, 861
LD_DEBUG environment variable, 874–875
LD_DEBUG_OUTPUT environment variable, 875
LD_LIBRARY_PATH environment variable, 

840, 853, 854
LD_PRELOAD environment variable, 873
LD_RUN_PATH environment variable, 851
ldconfig command, 848–849
ldd command, 843
lease, file, 615, 800, 1135, 1142
least privilege, 784
Leffler, S.J., 1442
LEGACY (SUSv3 specification), 15
Lemon (2001), 1328, 1441
Lemon (2002), 1185, 1441
Lemon, J., 1441
Leroy, X., 689
level-triggered notification, 1329–1330
Levine (2000), 857, 1441
Levine, J., 1441
Lewine (1991), 222, 1441
Lewine, D., 1441
Lezcano, D., 1437
LFS (Large File Summit), 104
lgamma(), 657
lgammaf(), 657
lgammal(), 657
lgetxattr(), 315, 345

prototype, 315
Liang (1999), 837, 1441
Liang, S., 1441
libcap package, 807
libcap-ng package, 808
Libenzi, D., xxxix
Libes (1989), 20, 1441
Libes, D., 1441
libevent library, 1328
library function, 46

error handling, 50
Libtool program, 857
limit C shell command, 448

Lindner, F., 1437
link, 27, 257, 339–342

creating, 344–346
diagram, 343
removing, 346–348

link count (file), 281, 341
link editing, 840
link(), 286, 344–346, 426, 1145

prototype, 344
linkat(), 365, 426
linker, 833, 1441
linking, 840
Linux

distributions, 10
hardware ports, 10
history, 5–10, 1443
kernel, 6–7

mailing list, 1423
version numbering, 8–9

programming-related newsgroups, 1423
standards conformance, 18

Linux Documentation Project, 1422
Linux Foundation, 18
Linux Standard Base (LSB), 19
LinuxThreads, 457, 592, 603, 604, 609, 

687, 688, 689–692, 695
Pthreads nonconformances, 690

Linux/x86-32, 5
Lions (1996), 24, 1441
Lions, J., 1441
list_files.c, 356, 373
list_files_readdir_r.c, 1429
LISTEN state (TCP), 1269
listen(), 426, 1152, 1156–1157

diagram, 1156
example of use, 1168, 1222, 1229
prototype, 1156

listxattr(), 316, 345
example of use, 318
prototype, 316

little-endian byte order, 1198
diagram, 1198

Liu, C., 1437
LKML (Linux kernel mailing list), 1423
llistxattr(), 316, 345

prototype, 316
ln command, 341
LNEXT terminal special character, 1296, 

1298, 1305, 1307
locale, 200–204, 615

specifying to a program, 203–204
locale command, 203
localeconv(), 202, 657
localhost, 1187
locality of reference, 118
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localization, 200
localtime(), 189, 198, 657

diagram, 188
example of use, 192, 195, 199
prototype, 189

localtime_r(), 189, 658
lock (file). See file lock
LOCK_EX constant, 1120

example of use, 1121
LOCK_NB constant, 1119, 1120

example of use, 1121
LOCK_SH constant, 1120

example of use, 1121
LOCK_UN constant, 1120
lockf(), 673, 1127

interrupted by signal handler, 444
lockRegion(), 1133

code of implementation, 1134
lockRegionWait(), 1133

code of implementation, 1134
LOG_ALERT constant, 779
LOG_AUTH constant, 778, 779
LOG_AUTHPRIV constant, 778, 779
LOG_CONS constant, 777
LOG_CRIT constant, 779
LOG_CRON constant, 779
LOG_DAEMON constant, 779
LOG_DEBUG constant, 779
LOG_EMERG constant, 779
LOG_ERR constant, 779
LOG_FTP constant, 778, 779
LOG_INFO constant, 779
LOG_KERN constant, 779
LOG_LOCAL* constants, 779
LOG_LPR constant, 779
LOG_MAIL constant, 779
LOG_MASK(), 781
LOG_NDELAY constant, 778
LOG_NEWS constant, 779
LOG_NOTICE constant, 779
LOG_NOWAIT constant, 778
LOG_ODELAY constant, 778
LOG_PERROR constant, 778
LOG_PID constant, 778
LOG_SYSLOG constant, 778, 779
LOG_UPTO(), 781
LOG_USER constant, 779
LOG_UUCP constant, 779
LOG_WARNING constant, 779
logger command, 780
logical block, 255
login accounting, 817–832
login name, 26, 153, 154

retrieving with getlogin(), 825
login session, 700, 825

login shell, 24, 26, 154
login(), 827
LOGIN_NAME_MAX constant, 214
LOGIN_PROCESS constant, 820, 821, 822
LOGNAME environment variable, 825
logout(), 827
logrotate program, 772
logwtmp(), 827
Lokier, J., xxxviii
London, T., 4
longjmp(), 131–133, 135, 151, 360, 1426

example of use, 134, 136, 432
handling of signal mask, 429
incorrect use of, 135
prototype, 132

longjmp.c, 134
lookup_dcookie(), 801
loopback address (IP), 1187
Love (2010), 46, 210, 250, 278, 530, 751, 

1422, 1441
Love, R., xxxix, 1441
lrand48(), 657
lremovexattr(), 286, 316, 345

prototype, 316
lsattr command, 305
LSB (Linux Standard Base), 19
lseek(), 30, 81–83, 96, 257, 426

diagram, 82
example of use, 85, 519
prototype, 81

lseek64(), 105
lsetxattr(), 286, 314–315, 345

prototype, 314
lsof command, 342
lstat(), 279–283, 345, 426

example of use, 285, 370
prototype, 279

ltrace command, 1403
Lu (1995), 857, 1441
Lu, H.J., xxxix, 1441
lutimes(), 286, 288–289, 345

prototype, 289
lvalue, 53

M
Mach, 6
MADV_DOFORK constant, 1055
MADV_DONTFORK constant, 612, 1055
MADV_DONTNEED constant, 1055
MADV_HWPOISON constant, 1055
MADV_MERGEABLE constant, 1055
MADV_NORMAL constant, 1054
MADV_RANDOM constant, 1054
MADV_REMOVE constant, 1055
MADV_SEQUENTIAL constant, 1055
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MADV_SOFT_OFFLINE constant, 1055
MADV_UNMERGEABLE constant, 1055
MADV_WILLNEED constant, 764, 1055
madvise(), 1054–1055

prototype, 1054
RLIMIT_RSS resource limit and, 764

madvise_dontneed.c, 1434
magic SysRq key, 1300
Mahdavi, J., 1194
main thread, 622
major(), 281

example of use, 284
make program, 1442
make_zombie.c, 554, 562
makecontext(), 442
mallinfo(), 147
malloc debugging library, 147
malloc(), 140–142, 423, 1035

debugging, 146–147
example of use, 143
implementation, 144–146

diagram, 145
prototype, 141

MALLOC_CHECK_ environment variable, 146
MALLOC_TRACE environment variable, 146
mallopt(), 147, 1035
mandatory file lock, 265, 293, 1119, 1138
Mane-Wheoki, J., xl
Mann (2003), 1250, 1442
Mann, S., 1442
manual pages, 1419–1421
MAP_ANON constant, 1034
MAP_ANONYMOUS constant, 1033, 1034

example of use, 1036
MAP_FAILED constant, 1020, 1037
MAP_FIXED constant, 1033, 1040–1041, 1049
MAP_HUGETLB constant, 800, 1033
MAP_LOCKED constant, 1033, 1048
MAP_NORESERVE constant, 612, 999, 1033, 

1038–1040
MAP_POPULATE constant, 1033
MAP_PRIVATE constant, 1009, 1018, 

1021, 1033
example of use, 1023

MAP_SHARED constant, 1009, 1021, 1031, 
1033, 1139

example of use, 1029, 1036
MAP_UNINITIALIZED constant, 1033, 1034
mapped file. See file mapping
Margolin, B., xxxviii
Marshall, P., xxxix, xl
marshalling, 1200
Mason, C., xxxix
Mathis, M., 1194
Matloff (2008), 393, 1442

Matloff, N., 1442
Matz, M., xxxix
max(), code of implementation, 51
MAX_CANON constant, 1291
MAX_INPUT constant, 1291
maximum segment lifetime (MSL), 

TCP, 1274
Maximum Transmission Unit (MTU), 

1182, 1185
Maxwell (1999), 24, 46, 419, 936, 994, 1442
Maxwell, S., 1442
mbind(), 801
McCann, J., 1194
McGrath, R., 47
McGraw, G., 1445
mcheck(), 146
McKusick (1984), 276, 1442
McKusick (1996), 8, 20, 1044
McKusick (1999), 20, 1442
McKusick (2005), 20, 1442
McKusick, M.K., 1442
MCL_CURRENT constant, 1051
MCL_FUTURE constant, 761, 1051
Mecklenburg (2005), 431, 1442
Mecklenburg, R., 1442
mem_segments.c, 117
memalign(), 149–150

example of use, 248
prototype, 149

memlock.c, 1052
memory footprint, 121

controlling with fork() plus wait(), 521
memory leak, 146
memory locking, 612, 800, 1012, 1033, 

1047–1051
locks removed on process 

termination, 533
resource limit on, 761

memory management, 22
memory mapping, 35, 225, 612, 

1017–1044. See also mmap()
anonymous. See anonymous mapping
creating, 1020–1023
file-based. See file mapping
nonlinear, 1041–1043
private, 35, 1018, 1021
remapping, 1037–1038
removed on process termination, 533
shared, 35, 1018, 1021
synchronizing, 1031–1032
unmapping, 1023–1024

memory protection, 1020
changing, 1045–1047
interaction with file access mode, 

1030–1031
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memory residence, 1051–1054
memory usage (advising patterns of), 

1054–1055
memory-based semaphore. See POSIX 

semaphore, unnamed
memory-mapped file. See file mapping
memory-mapped I/O, 1019, 1026–1027
message queue descriptor. See POSIX 

message queue, descriptor
message queue. See POSIX message 

queue; System V message queue
metadata, 239
migrate_pages(), 801
Miller, R., 4
Mills (1992), 205, 1442
Mills, D.L., 1442
MIN terminal setting, 1307
min(), code of implementation, 51
mincore(), 1051–1052

example of use, 1053
prototype, 1051

mingetty command, 820
Minix, 6, 1422
minor(), 281

example of use, 284
MINSIGSTKSZ constant, 435
Mitchell, E.L., 1442
mkdir(), 286, 350–351, 426

example of use, 302
prototype, 350

mkdirat(), 365, 426
mkdtemp(), 15, 351
mkfifo(), 286, 426, 907

example of use, 913
prototype, 907

mkfifoat(), 365, 426
mkfs command, 254
mknod command, 252
mknod(), 252, 286, 426, 800, 907
mknodat(), 365, 426
mkstemp(), 108–109, 791

example of use, 518
prototype, 108

mkswap command, 254
mktemp(), 109
mktime(), 190, 198

diagram, 188
example of use, 192
prototype, 190

mlock(), 800, 1048, 1049–1050
example of use, 1053
prototype, 1049
RLIMIT_MEMLOCK resource limit and, 761

mlockall(), 761, 800, 1048, 1050–1051
prototype, 1050
RLIMIT_MEMLOCK resource limit and, 761

mmap(), 286, 761, 1020–1023, 1058, 1139. 
See also memory mapping

compared with other shared memory 
APIs, 1115–1116

diagram, 1025, 1029, 1030
example of use, 1023, 1029, 1036, 1111, 

1112, 1113
prototype, 1020
RLIMIT_AS resource limit and, 760
RLIMIT_MEMLOCK resource limit and, 761

MMAP_THRESHOLD constant, 1035
mmap64(), 105
mmcat.c, 1022
mmcopy.c, 1434
MNT_DETACH constant, 270, 272
MNT_EXPIRE constant, 270
MNT_FORCE constant, 270
Mochel (2005), 253, 1442
Mochel, P., 1442
mode_t data type, 64, 72, 78, 280, 301, 

303, 350, 365, 907, 1064, 1090, 
1109, 1146

modify_env.c, 131
Mogul, J.C., 1193, 1440
Molnar, I., 689
Mosberger (2002), 10, 1442
Mosberger, D., 1442
mount command, 169, 263, 267
mount namespace, 225, 261, 263, 607
mount point, 225, 261, 263, 264

diagram, 262
mount(), 246–267, 607, 801

example of use, 269
prototype, 264

move_pages(), 801
MPOL_MF_MOVE_ALL constant, 801
mprobe(), 146
mprotect(), 1022, 1045–1046

example of use, 1047
prototype, 1046

mq_attr structure, 1064, 1068, 1070, 1072
definition, 1068
example of use, 1069, 1071

mq_close(), 1058, 1064, 1066
prototype, 1066

mq_getattr(), 1058, 1064, 1070–1071
example of use, 1071
prototype, 1070

mq_notify(), 1058, 1064, 1078–1079
example of use, 1081, 1083
prototype, 1078

mq_notify_sig.c, 1080
mq_notify_sigwaitinfo.c, 1434
mq_notify_thread.c, 1082
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mq_open(), 1058, 1064–1065
example of use, 1070
prototype, 1064
RLIMIT_MSGQUEUE resource limit and, 762

MQ_OPEN_MAX constant, 1085
MQ_PRIO_MAX constant, 1073, 1085
mq_receive(), 673, 1058, 1064, 1074–1075

example of use, 1077
interrupted by signal handler, 444
prototype, 1075

mq_send(), 673, 1058, 1064, 1073
example of use, 1074
interrupted by signal handler, 444
prototype, 1073

mq_setattr(), 1058, 1064, 1072
prototype, 1072
example of use, 1072

mq_timedreceive(), 673, 1077
interrupted by signal handler, 444
prototype, 1077

mq_timedsend(), 673, 1077
interrupted by signal handler, 444
prototype, 1077

mq_unlink(), 1058, 1064, 1066
example of use, 1067
prototype, 1066

mqd_t data type, 64, 882, 1058, 1059, 
1064, 1065, 1066, 1070, 1072, 
1073, 1075, 1077, 1078, 1083

mrand48(), 657
mremap(), 761, 1037–1038

prototype, 1037
RLIMIT_AS resource limit and, 760

MREMAP_FIXED constant, 1037
MREMAP_MAYMOVE constant, 1037
MS_ASYNC constant, 1032
MS_BIND constant, 264, 265, 266, 272
MS_DIRSYNC constant, 264, 265, 306
MS_INVALIDATE constant, 1032
MS_MANDLOCK constant, 264, 265, 1138
MS_MOVE constant, 264, 265
MS_NOATIME constant, 77, 264, 265, 272
MS_NODEV constant, 264, 266, 272
MS_NODIRATIME constant, 264, 266, 272
MS_NOEXEC constant, 264, 266, 272, 564
MS_NOSUID constant, 264, 266, 272
MS_PRIVATE constant, 267
MS_RDONLY constant, 264, 266, 272
MS_REC constant, 264, 266, 273
MS_RELATIME constant, 264, 266, 272
MS_REMOUNT constant, 264, 266
MS_SHARED constant, 267
MS_SLAVE constant, 267
MS_STRICTATIME constant, 264, 267

MS_SYNC constant, 1032
example of use, 1029

MS_SYNCHRONOUS constant, 264, 267
MS_UNBINDABLE constant, 267
MSG_DONTWAIT constant, 1259, 1260
MSG_EXCEPT constant, 944

example of use, 946
MSG_INFO constant, 952

example of use, 953
MSG_MORE constant, 1260, 1263
MSG_NOERROR constant, 943, 944

example of use, 946
MSG_NOSIGNAL constant, 1260
MSG_OOB constant, 1259, 1260
MSG_PEEK constant, 1259
MSG_R constant, 923
MSG_STAT constant, 952

example of use, 953
MSG_TRUNC constant, 1161
MSG_W constant, 923
MSG_WAITALL constant, 1259
msgctl(), 922, 947

example of use, 948, 950, 953, 959, 961
prototype, 947

msgget(), 922, 938, 950
example of use, 940, 958, 960
prototype, 938

msginfo structure, 951, 952
example of use, 953

msglen_t data type, 64, 948
MSGMAX limit, 950, 951
MSGMNB limit, 949, 950, 951
MSGMNI limit, 950, 951
MSGPOOL limit, 950
msgqnum_t data type, 65, 948
msgrcv(), 673, 922, 943–944, 947, 948, 949

example of use, 946, 959, 961
interrupted by signal handler, 444
interrupted by stop signal, 445
prototype, 943

msgsnd(), 673, 922, 940–941, 947, 948, 
949, 950

example of use, 942, 958, 960
interrupted by signal handler, 444
interrupted by stop signal, 445
prototype, 941

MSGTQL limit, 950
MSL (maximum segment lifetime), 

TCP, 1274
msqid_ds structure, 922, 947, 948–949, 950

definition, 948
example of use, 949

msync(), 286, 673, 1022, 1024, 1031–1032
example of use, 1029
prototype, 1031
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mtrace(), 146
MTU (Maximum Transmission Unit), 

1182, 1185
Mui, L., 1444
multi_descriptors.c, 1426
multi_SIGCHLD.c, 557
multi_wait.c, 543
MULTICS, 2
multihomed host, 1180, 1187, 1220
multiplexed I/O, 1327, 1330–1346
munlock(), 1049–1050

prototype, 1049
munlockall(), 1050–1051

prototype, 1050
munmap(), 1022, 1023–1024, 1058

example of use, 1036
prototype, 1023

muntrace(), 146
mutex, 614, 631–642, 881

attributes, 640
deadlock, 639

diagram, 639
destroying, 640
initializing, 639–640
locking, 636, 637–638
performance, 638
statically allocated, 635
type, 640–642
unlocking, 636
used with a condition variable, 646

mutual exclusion, 634

N
N_TTY constant, 1292, 1294
NAME_MAX constant, 214, 215
named daemon, 1210
named semaphore. See POSIX 

semaphore, named
nanosleep(), 488–489, 673

example of use, 490
interrupted by signal handler, 444
interrupted by stop signal, 445
prototype, 488

Native POSIX Thread Library (NPTL). 
See NPTL

NCCS constant, 1292
necho.c, 123
NetBSD, 7
netstat command, 1182, 1275–1276
network byte order, 1198–1199
Network File System (NFS), Linux 

implementation, 254
network ID, 1186
network layer, 1184–1186

diagram, 1181

network mask, 1186
Network Time Protocol (NTP), 204, 

205, 1442
networking protocol, 1180
Neville-Neil, G.V., 1442
new_intr.c, 1301
NEW_TIME constant, 820, 822
newgrp command, 155, 156
newline character, 30, 1298
Next Generation POSIX Threads 

(NGPT), 689
NeXTStep, 5
nfds_t data type, 65, 1337
NFS (Network File System), Linux 

implementation, 254
nftw(), 358–360, 657

example of use, 361
prototype, 358

nftw_dir_tree.c, 360
NGPT (Next Generation POSIX 

Threads), 689
NGROUPS_MAX constant, 179, 214
NI_DGRAM constant, 1218
NI_MAXHOST constant, 1218
NI_MAXSERV constant, 1218
NI_NAMEREQD constant, 1219
NI_NOFQDN constant, 1219
NI_NUMERICHOST constant, 1219
NI_NUMERICSERV constant, 1219
nice command, 735
nice value, 614, 733–737, 801

diagram, 734
LinuxThreads nonconformance, 691
NPTL nonconformance, 693
resource limit, 762

nice(), 735, 801
RLIMIT_NICE resource limit and, 762

NL terminal special character, 1296, 1298, 
1302, 1303, 1307

nl_langinfo(), 657
NL0 constant, 1302
NL1 constant, 1302
NLDLY constant, 1302
nlink_t data type, 65, 280
nm command, 844
no_echo.c, 1306
NOFLSH constant, 1303, 1305, 1307
nohup command, 710
nonblocking I/O, 77, 103–104, 915–917, 

1326, 1330
noncanonical mode (terminal I/O), 1290, 

1307–1309
nonlocal goto, 131–137
nonprivileged (unprivileged) process, 33
nonreentrant function, 116, 423
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nonreentrant.c, 424
Nordmark, E., 1194
NPTL (Native POSIX Threads Library), 

457, 592, 600, 603, 606, 607, 609, 
668, 682, 687, 688, 689, 692–694, 
696, 987

Pthreads nonconformances, 693
NSIG constant, 408
ntohl(), 1199

prototype, 1199
ntohs(), 1199

prototype, 1199
NTP (Network Time Protocol), 204, 

205, 1442
NULL pointer, casting inside variadic 

function call, 1413–1415
null signal, 403, 458
numbers-and-dots notation (IPv4 

address), 1231
NX (no execute) protection (x86-32), 

793, 1022

O
O_ACCMODE constant, 93
O_APPEND constant, 74, 75, 92, 93, 96, 

110, 306
example of use, 519

O_ASYNC constant, 74, 75, 93, 1281, 1347. 
See also signal-driven I/O

example of use, 1349
O_CLOEXEC constant, 74, 75, 98, 894
O_CREAT constant, 74, 76, 90, 107, 1059, 

1065, 1109, 1145, 1146
example of use, 71, 84

O_DIRECT constant, 74, 76, 93, 246
example of use, 248

O_DIRECTORY constant, 74, 76
O_DSYNC constant, 74, 76, 243
O_EXCL constant, 74, 76, 90, 109, 791, 1059, 

1065, 1109, 1145
O_FSYNC constant, 242
O_LARGEFILE constant, 74, 76, 93, 105
O_NDELAY constant, 104
O_NOATIME constant, 74, 76, 93, 265, 800
O_NOCTTY constant, 74, 77, 706, 707, 

768, 1380
O_NOFOLLOW constant, 74, 77
O_NONBLOCK constant, 74, 77, 93, 96, 

103–104, 377, 472, 508, 894, 
915–918, 1065, 1068, 1071, 1072, 
1073, 1075, 1139, 1153, 1158, 
1175, 1254, 1260, 1281, 1308, 
1326, 1330, 1347. See also 
nonblocking I/O

example of use, 917, 1349, 1372

O_RDONLY constant, 73, 74, 1060, 1065, 1109
example of use, 71

O_RDWR constant, 73, 74, 1060, 1065, 
1109, 1380

example of use, 84
O_RSYNC constant, 243
O_SYNC constant, 74, 77, 93, 241, 250, 267

performance impact, 242
O_TRUNC constant, 74, 77, 1109, 1139, 1146

example of use, 71
O_WRONLY constant, 73, 74, 1060, 1065

example of use, 71
objdump command, 844
object library, 834
OCRNL constant, 1296, 1302
OFDEL constant, 1302, 1303
off_t data type, 65, 66, 81, 82, 98, 102, 103, 

104, 106, 244, 280, 757, 759, 
1020, 1125, 1261

casting in printf() calls, 107
off64_t data type, 105
offsetof(), 357
OFILL constant, 1302, 1303
OLCUC constant, 1302, 1303
OLD_TIME constant, 820, 822
on_exit(), 532, 535–536, 866

example of use, 537
prototype, 535

one_time_init.c, 1431
ONLCR constant, 1296, 1298, 1302
ONLRET constant, 1296, 1302
ONOCR constant, 1296, 1302
OOM killer, 1039
opaque (data type), 621
open file description, 94

diagram, 95
open file status flags, 75, 93–94, 95, 96, 

518, 613
open file table, 94
Open Group, The, 13
Open Software Foundation (OSF), 13
Open Source Development Laboratory 

(OSDL), 18
open(), 70, 72–78, 96, 286, 345, 426, 673, 

801, 1139, 1142, 1145, 1146
directories and, 76
example of use, 71, 73, 84, 302
FIFOs and, 916
interrupted by signal handler, 444
prototype, 72
returns lowest available file 

descriptor, 73
RLIMIT_NOFILE resource limit and, 762
symbolic links and, 77

OPEN_MAX constant, 214, 215
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open64(), 105
openat(), 15, 365–366, 426, 674

prototype, 365
OpenBSD, 7
opendir(), 345, 352, 355

example of use, 356
prototype, 352

openlog(), 777–779
example of use, 780
prototype, 777

openpty(), 1386
operating system, 21, 1438, 1444
oplock (opportunistic lock), 1142
OPOST constant, 1296, 1298, 1302, 1305

example of use, 1311
opportunistic lock, 1142
optarg variable, 1406
opterr variable, 1406
optind variable, 1406
optopt variable, 1406
O’Reilly, T., 1444
ORIGIN (in rpath list), 853
Orlov block-allocation strategy, 307, 1438
orphan.c, 1430
orphaned process, 553
orphaned process group, 533, 725–730

diagram, 726
terminal read() and, 730
terminal write() and, 730

orphaned_pgrp_SIGHUP.c, 728
OSDL (Open Source Development 

Laboratory), 18
OSF (Open Software Foundation), 13
OSF/1, 4
ouch.c, 399
out-of-band data, 394, 1259, 1260, 1283, 

1288, 1331, 1343

P
P_ALL constant, 550
P_PGID constant, 550
P_PID constant, 550
packet mode (pseudoterminal), 1342, 1389
Padhye, J., 1194
page (virtual memory), 119
page fault, 119
page frame, 119

diagram, 120
page size

determining at run time, 214
on various hardware architectures, 119

page table, 224, 879
diagram, 120, 521, 1026

paged memory management unit 
(PMMU), 120

Pai, R., 1445
PARENB constant, 1303, 1305
parent directory, 27
parent process, 31, 513, 515, 553

signaled on death of child, 555
parent process ID, 32, 114–115, 608, 613
Pariag, D., 1439
parity (terminal I/O), 1305
PARMRK constant, 1302, 1305

example of use, 1311
PARODD constant, 1303, 1305
partial write, 80, 891, 1254
Partridge, C., 1194, 1444
PASC (Portable Applications Standards 

Committee), 11
passive close (TCP), 1272
passive open (socket), 1155
passive socket, 1156
passwd command, 169
passwd structure, 157

definition, 157
example of use, 159

password encryption, 162–166
password file, 153–155

retrieving records from, 157–158, 160
PATH environment variable, 34, 567, 

568–570, 791
path MTU, 1185
PATH_MAX constant, 214, 215, 350
pathconf(), 217–218, 345, 425, 426

prototype, 217
pathname, 28

absolute, 29, 367
maximum length of, 214
parsing, 370–372
relative, 29, 363
resolving, 369–370

pause(), 418, 426, 673
example of use, 401
prototype, 418

Paxson, V., 1194
pclose(), 902–903, 919

example of use, 905
prototype, 902

pdflush kernel thread, 241, 768, 1032
PDP-11, 2, 3, 391
Peach, J., xxxix
Peek (2001), xxxii, 1442
Peek, J., 1442
Peikari (2004), 795, 1442
Peikari, C., 1442
PENDIN constant, 1303
perror(), 49–50

prototype, 49
persistence, 886
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personality(), 1334
PGID (process group ID), 39, 613, 

699, 705
Phillips, M., xxxix
physical block, 253
PID (process ID), 32, 114, 604, 608, 

613, 705
pid_t data type, 65, 114, 115, 402, 405, 

438, 458, 493, 496, 516, 523, 542, 
544, 552, 599, 605, 699, 700, 701, 
702, 704, 705, 708, 741, 742, 744, 
747, 749, 750, 819, 948, 1012, 
1125, 1354, 1385

Piggin, N., xxxix
pipe, 3, 214, 282, 392, 882, 883, 886, 

889–906
atomicity of write(), 891
bidirectional, 890
capacity, 891
closing unused file descriptors, 894
connecting filters with, 899–902
creating, 892
diagram, 879, 890
poll() on, 1342
read() semantics, 917–918
select() on, 1342
to a shell command, 902–906
stdio buffering and, 906
used for process synchronization, 

897–899
write() semantics, 918

pipe(), 286, 426, 801, 892, 1175
diagram, 892
example of use, 896, 898, 900
prototype, 892
RLIMIT_NOFILE resource limit and, 762

PIPE_BUF constant, 214, 891, 918, 
1343, 1351

pipe_ls_wc.c, 900
pipe_sync.c, 897
pipe2(), 894
pivot_root(), 345, 801
Plauger (1992), 30, 1442
Plauger, P.J., 1442
Pluzhnikov, P., xxxix
PMMU (paged memory management 

unit), 120
pmsg_create.c, 1069
pmsg_getattr.c, 1071
pmsg_receive.c, 1076
pmsg_send.c, 1074
pmsg_unlink.c, 1066
Podolsky, M., 1194
poll, 1326

poll(), 426, 673, 1337–1339, 1389, 1439
comparison with select(), 1344–1345
example of use, 1341
interrupted by signal handler, 444
interrupted by stop signal, 445
performance, 1365
problems with, 1346
prototype, 1337

POLL_ERR constant, 441, 1353
POLL_HUP constant, 441, 1343, 1353
POLL_IN constant, 440, 441, 1353
POLL_MSG constant, 440, 441, 1353
POLL_OUT constant, 440, 441, 1353
poll_pipes.c, 1340
POLL_PRI constant, 441, 1353
Pollard, J., xl
POLLERR constant, 1337, 1338, 1342, 

1343, 1353
pollfd structure, 1337–1338

definition, 1337
POLLHUP constant, 1337, 1338, 1342, 

1343, 1353
POLLIN constant, 1337, 1338, 1342, 

1343, 1353
POLLMSG constant, 1337, 1338, 1353
POLLNVAL constant, 1337, 1338, 1339
Pollock, W., xli
POLLOUT constant, 1337, 1338, 1342, 

1343, 1353
POLLPRI constant, 1337, 1338, 1343, 

1353, 1389
POLLRDBAND constant, 1337, 1338
POLLRDHUP constant, 1337, 1338, 1339, 1343
POLLRDNORM constant, 1337, 1338, 1353
POLLWRBAND constant, 1337, 1338, 1353
POLLWRNORM constant, 1337, 1338, 1353
popen(), 902–903, 919

avoid in privileged programs, 788
diagram, 902
example of use, 905
prototype, 902

popen_glob.c, 904
port number, 64, 1188–1189

ephemeral, 1189, 1224, 1263
privileged, 800, 1189
registered, 1189
well-known, 1189

portability, xxxiv, 10, 61–68, 211, 1420
source code vs. binary, 19

Portable Application Standards 
Committee (PASC), 11

portable filename character set, 28
Portable Operating System Interface 

(POSIX), 11
position-independent code, 837, 838
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POSIX, 11
POSIX 1003.1-2001, 13
POSIX asynchronous I/O, 613, 1327, 1347
POSIX clock, 491–493

obtaining clock ID for process or 
thread, 493

retrieving value of, 491–492
setting value of, 492

POSIX conformance, 14
POSIX file locking, 1124
POSIX IPC, 885, 1057–1062

compared with System V IPC, 
1061–1062

object
creating, 1059–1060
deleting, 1060–1061
listing, 1061
name, 1058–1059
permissions, 1060
persistence, 1060–1061

portability, 884, 1061
POSIX message queue, 614, 882, 883, 

886, 1063–1088
attributes, 1068–1072

modifying, 1072
retrieving, 1070–1071

closed on process termination, 533
closing, 1066
compared with System V message 

queue, 1086–1087
creating, 1064–1065
descriptor, 64, 1065

relationship to open message queue, 
1067–1068

limits, 1085–1086
Linux-specific features, 1083–1085
message notification, 1077–1083

via a signal, 1079–1081
via a thread, 1082–1083

opening, 1064
priority of messages, 1073
receiving messages, 1074–1077

with timeout, 1077
resource limit on bytes allocated for 

queues, 761
sending messages, 1073–1074

with timeout, 1077
unlinking, 1066–1067

POSIX semaphore, 1089–1105
closed on process termination, 533
compared with System V semaphore, 

1103–1104
limits, 1104–1105
named, 614, 882, 886, 1089, 1090–1093

closing, 1093

initializing, 1091
opening, 1090–1091
unlinking, 1093

post (increment) operation, 1096–1097
process-shared, 1100
retrieving current value, 1097
thread-shared, 1100
unnamed, 614, 882, 886, 1089, 

1099–1103
destroying, 1102
initializing, 1100–1101

wait (decrement) operation, 1094–1096
POSIX shared memory, 275, 614, 882, 

886, 1107–1116
compared with other shared memory 

APIs, 1115–1116
creating, 1108, 1109–1111
removing, 1114

POSIX thread, 614, 617–697, 1438. See 
also thread

POSIX timer, 495–507, 614
arming, 498–499
creating, 495–497
deleting, 499
disarming, 498–499
notification via a signal, 499–503
notification via a thread, 504–507
retrieving current value, 499
timer overrun, 502, 503–504, 505

POSIX.1, 11, 17, 1442
POSIX.1-2001, 13, 17
POSIX.1-2008, 17
POSIX.1b, 12, 17, 41, 61, 456, 491, 495, 

738, 1057
POSIX.1c, 12, 17, 61, 620
POSIX.1d, 12, 17, 1077, 1096
POSIX.1e, 319, 337, 798, 1369
POSIX.1g, 12, 16, 17, 1149
POSIX.1j, 12, 17
POSIX.2, 12, 17
POSIX.2c, 319, 337
POSIX.4, 12, 1439
POSIX_ARG_MAX constant, 124
POSIX_FADV_DONTNEED constant, 245, 1032
POSIX_FADV_NOREUSE constant, 245
POSIX_FADV_NORMAL constant, 245
POSIX_FADV_RANDOM constant, 245
POSIX_FADV_SEQUENTIAL constant, 245
POSIX_FADV_WILLNEED constant, 245, 1055
posix_fadvise(), 244–246, 1032

prototype, 244
posix_fallocate(), 83
POSIX_MADV_DONTNEED constant, 1055
POSIX_MADV_NORMAL constant, 1055
POSIX_MADV_RANDOM constant, 1055
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POSIX_MADV_SEQUENTIAL constant, 1055
POSIX_MADV_WILLNEED constant, 1055
posix_madvise(), 1055
posix_memalign(), 149–150

example of use, 150
prototype, 149

posix_openpt(), 1380–1381
example of use, 1384
prototype, 1380

posix_spawn(), 514
posix_trace_event(), 426
POSIXLY_CORRECT environment variable, 1410
Postel, J., 1193, 1194
Potthoff, K.J., xxxix
PPID (parent process ID), 32, 114–115, 

608, 613
ppoll(), 1370

interrupted by signal handler, 444
PR_CAPBSET_DROP constant, 806
PR_CAPBSET_READ constant, 806
PR_GET_SECUREBITS constant, 812
PR_SET_DUMPABLE constant, 449, 615
PR_SET_KEEPCAPS constant, 813, 816
PR_SET_NAME constant, 615
PR_SET_PDEATHSIG constant, 553, 615
prctl(), 449, 553, 806, 813
pread(), 98–99, 286, 673

prototype, 98
preadv(), 102, 286

prototype, 102
preforked server, 1246
prethreaded server, 1246
print_rlimit.c, 758
print_rusage.c, 1432
print_wait_status.c, 546
printenv command, 126
printf()

buffering. See buffering of file I/O
use within signal handlers, 427–428

printk() (kernel function), 776
printPendingSigs(), 408

code of implementation, 409
printSigMask(), 408

code of implementation, 409
printSigset(), 408

code of implementation, 409
printWaitStatus(), 546

code of implementation, 546–547
PRIO_PGRP constant, 735
PRIO_PROCESS constant, 735
PRIO_USER constant, 735
private, copy-on-write mapping, 1018
privileged process, 33, 168
privileged program, 783. See also process 

capabilities

process, 22, 31, 113
accounting. See process accounting
capabilities. See process capabilities
checking for existence of, 403–404
controlling memory footprint with 

fork() plus wait(), 521
CPU affinity, 615, 748–750
creating, 31, 515–525
credentials, 167–184

passing via socket, 1284–1285
current working directory, 29, 225, 

363–365, 604, 613
exit status, 32, 545
ID, 32, 114, 604, 608, 613, 705
memory layout, 31, 115–118

diagram, 119, 1007
memory policy, 615
mount namespace, 225, 261, 263, 607
nice value (priority). See nice value
priority. See realtime scheduling, 

priority
privileged, 33, 168
realtime scheduling. See realtime 

scheduling
resource limit. See resource limit
resource limit on number of, 763
resource usage, 552, 614, 753–755
root directory, 225, 367–368, 604, 613
setting as owner of a file descriptor, 

1347, 1350–1351
signal mask, 38, 388, 410, 578, 613, 683
speed of creation, 610–612
system-wide limit on number of, 763
termination, 32, 531–533

abnormal, 389, 433, 441, 531
normal, 531
from signal handler, 549–550

termination status, 32, 513, 531, 545
umask, 301–303, 328, 351, 604, 613, 

790, 907, 923, 1060, 1065, 1091, 
1110, 1174

unprivileged, 33
process accounting, 591–598, 801

Version 3, 597–598
process capabilities, 33, 615, 798–799

changing, 807–808
effect on, when changing process 

user IDs, 806–807
effective, 799, 802, 807
inheritable, 799, 803, 807
permitted, 798, 802, 807
transformation during exec(), 805

process group, 39, 699, 701–704
background. See background process 

group
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changing capabilities of all 
processes in, 815

changing membership of, 702
creating, 702
diagram, 701
foreground. See foreground process 

group
leader, 39, 699, 702, 705
lifetime, 699
orphaned. See orphaned process group
sending signal to, 402, 405
setting as owner of a file descriptor, 

1347, 1350–1351
waiting on member of, 544, 550

process group ID, 39, 613, 699, 705
process ID, 32, 114, 604, 608, 613, 705
process scheduling, 22. See also realtime 

scheduling
process time, 40, 185, 206–209, 614

resource limit on, 761
process_time.c, 208
procfs_pidmax.c, 228
procfs_user_exe.c, 1428
prod_condvar.c, 645
prod_no_condvar.c, 642
program, 30, 113

executing, 32, 563–571
program break, 116, 139–140

adjusting, 139–140
program counter, 133
program termination routine (exit 

handler), 532, 533–537, 615
program_invocation_name variable, 124
program_invocation_short_name 

variable, 124
PROT_EXEC constant, 1020, 1021, 1030
PROT_NONE constant, 1020, 1021
PROT_READ constant, 1020, 1021, 1030

example of use, 1023, 1029
PROT_WRITE constant, 1020, 1021, 1030

example of use, 1029
protocol stack (TCP/IP), 1181
Provos, N., 1328
pselect(), 426, 673, 1369

example of use, 1370
interrupted by signal handler, 444
prototype, 1369

psem_create.c, 1092
psem_getvalue.c, 1098
psem_post.c, 1097
psem_timedwait.c, 1434
psem_unlink.c, 1094
psem_wait.c, 1095
pset_bind(), 748
pseudoheader (TCP), 1267

pseudoterminal, 39, 1375–1399
BSD, 1379, 1395–1397
device pair, 1376
diagram, 1377, 1378
I/O, 1388–1389
master, 1376

opening, 1380–1381, 1383–1384
master clone device, 1381
packet mode, 1342, 1389
poll() on, 1342
select() on, 1342
slave, 1376

changing ownership and 
permissions of, 1381, 1396

obtaining name of, 1382
opening, 1383
unlocking, 1382

terminal attributes, 1394
UNIX 98, 1379, 1380
window size, 1394

PSH control bit (TCP), 1267
pshm_create.c, 1110
pshm_read.c, 1113
pshm_unlink.c, 1114
pshm_write.c, 1112
psiginfo(), 440
psignal(), 15, 406

prototype, 406
pstree command, 115
pt_chown program, 784, 1381, 1396
pthread_atfork(), 687
pthread_attr_destroy(), 628
pthread_attr_init(), 628
pthread_attr_setdetachstate(), 628
pthread_attr_setstack(), 681
pthread_attr_t data type, 497, 620, 622, 

623, 628, 1079
pthread_cancel(), 671–672, 680

example of use, 675, 679
prototype, 671

PTHREAD_CANCEL_ASYNCHRONOUS constant, 
672, 680

PTHREAD_CANCEL_DEFERRED constant, 672
PTHREAD_CANCEL_DISABLE constant, 672
PTHREAD_CANCEL_ENABLE constant, 672
PTHREAD_CANCELED constant, 622, 674

example of use, 675, 679
pthread_cleanup_pop(), 676–677

example of use, 678
prototype, 676

pthread_cleanup_push(), 676–677
example of use, 678
prototype, 676

pthread_cond_broadcast(), 643–644
prototype, 644
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pthread_cond_destroy(), 652
prototype, 652

pthread_cond_init(), 651–652
prototype, 651

PTHREAD_COND_INITIALIZER constant, 643
pthread_cond_signal(), 643–644

example of use, 645, 650
prototype, 644

pthread_cond_t data type, 620, 643, 644, 
645, 651, 652

pthread_cond_timedwait(), 644–645, 673
interrupted by signal handler, 444
prototype, 645

pthread_cond_wait(), 643–644, 673, 683
example of use, 647, 651
interrupted by signal handler, 444
prototype, 644

pthread_condattr_t data type, 620, 651
pthread_create(), 622–623

example of use, 627, 628, 650, 675, 679
prototype, 622

pthread_detach(), 627–628
example of use, 627
prototype, 627

pthread_equal(), 624–625, 1431
prototype, 624

pthread_exit(), 623–624
prototype, 623

pthread_getcpuclockid(), 493, 496
prototype, 493

pthread_getspecific(), 662–663
example of use, 667
prototype, 662

pthread_join(), 606, 607, 625–626, 673, 
674, 1431

example of use, 627, 651, 675, 679
prototype, 625

pthread_key_create(), 661–662
example of use, 666
prototype, 661

pthread_key_t data type, 620, 661, 662, 
PTHREAD_KEYS_MAX constant, 668
pthread_kill(), 683, 684, 690

prototype, 684
PTHREAD_MUTEX_DEFAULT constant, 641
pthread_mutex_destroy(), 640

prototype, 640
PTHREAD_MUTEX_ERRORCHECK constant, 641
pthread_mutex_init(), 639–640

example of use, 642
prototype, 639

PTHREAD_MUTEX_INITIALIZER constant, 635, 
640, 641

pthread_mutex_lock(), 635–636, 683
example of use, 636, 647, 650

interrupted by signal handler, 444
prototype, 636

PTHREAD_MUTEX_NORMAL constant, 641
PTHREAD_MUTEX_RECURSIVE constant, 641
pthread_mutex_t data type, 620, 635, 636, 

639, 640, 644, 645
pthread_mutex_timedlock(), 637

interrupted by signal handler, 444
pthread_mutex_trylock(), 637, 639

interrupted by signal handler, 444
pthread_mutex_unlock(), 635–636

example of use, 637, 651
prototype, 636

pthread_mutexattr_destroy(), 642
pthread_mutexattr_init(), 641
pthread_mutexattr_settype(), 642
pthread_mutexattr_t data type, 620, 639, 640
pthread_once(), 658–659

example of use, 667
prototype, 658

PTHREAD_ONCE_INIT constant, 659
pthread_once_t data type, 620, 658
pthread_self(), 624

example of use, 627
prototype, 624

pthread_setcancelstate(), 672, 680
prototype, 672

pthread_setcanceltype(), 672–673, 680
prototype, 672

pthread_setspecific(), 662–663
example of use, 667
prototype, 662

pthread_sigmask(), 683, 684
prototype, 684

pthread_sigqueue(), 683, 685
prototype, 685

pthread_t data type, 493, 605, 620, 622, 
623, 624, 625, 627, 671, 684, 685

pthread_testcancel(), 673, 675–676
prototype, 676

Pthreads, 617
ptmr_null_evp.c, 1429
ptmr_sigev_signal.c, 500
ptmr_sigev_thread.c, 506
ptrace(), 394, 545, 608, 801
ptrdiff_t data type, 65
ptsname(), 657, 1380, 1382

example of use, 1384
prototype, 1382

ptsname_r(), 658, 1383
pty, 1376
pty_fork.c, 1386
pty_master_open.c, 1384
pty_master_open_bsd.c, 1396
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ptyFork(), 1385–1386
code of implementation, 1386–1388
example of use, 1392
prototype, 1385

ptyMasterOpen(), 1383, 1396
code of implementation, 1384, 1396–1397
example of use, 1387
prototype, 1383

putc_unlocked(), 657
putchar_unlocked(), 657
putenv(), 128, 130, 657

example of use, 131
prototype, 128

putmsg(), 673
putpmsg(), 673
pututxline(), 657, 826

example of use, 829
prototype, 826

pwrite(), 98–99, 286, 673
prototype, 98

pwritev(), 102, 286
prototype, 102

Q
quantum, 733
Quartermann (1993), 20, 1442
Quartermann, J.S., 1442
quit character, 1296, 1298
QUIT terminal special character, 1296, 

1298, 1303, 1305
quotactl(), 345, 801

R
R_OK constant, 299
race condition, 90–92, 465, 525–527, 897, 

975, 1118, 1368
time-of-check, time-of-use, 790

Rago, S.A., 1421, 1444
raise(), 404, 426, 441, 458

example of use, 720, 724
prototype, 404

Ramakrishnan, K., 1194
Ramey, C., 25
Rampp, F., xxxix
rand(), 657
rand_r(), 658
Randow, D., xl
raw I/O, 246–248
raw mode (terminal I/O), 1309–1316
raw socket, 1184
rdwrn.c, 1255
read permission, 29, 282, 294, 297

read(), 70, 79–80, 286, 426, 673, 1138
example of use, 71, 85, 487
FIFO, 918
interrupted by signal handler, 443
pipe, 918
prototype, 79
terminal input

by background job, 394
canonical mode, 1307
noncanonical mode, 1307–1309
by orphaned process group, 730

read_line.c, 1201
read_line_buf.c, 1435
read_line_buf.h, 1435
readahead(), 245, 1055
readdir(), 286, 353–354, 657

example of use, 356
prototype, 353

readdir_r(), 357, 658
prototype, 357

readelf command, 844
readLine(), 1200–1202

code of implementation, 1201
example of use, 1222, 1225
prototype, 1200

readlink(), 345, 349–350, 426
example of use, 370
prototype, 350

readlinkat(), 365, 426
readn(), 1254

code of implementation, 1255
prototype, 1254

readv(), 99–100, 286, 673
example of use, 101
interrupted by signal handler, 443
prototype, 99

read-write offset. See file offset
ready file descriptor, 1327
real group ID, 32, 167, 172, 173, 175, 

177, 613
real time, 40, 185
real user ID, 32, 167, 172, 173, 175, 177
real_timer.c, 482
realloc(), 148–149, 1038

example of use, 149
prototype, 148

realpath(), 369
example of use, 370
prototype, 369

realtime, 41
realtime scheduling, 737–747, 801

FIFO policy (SCHED_FIFO), 740
policy, 614, 738

changing, 741–744
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realtime scheduling, continued
priority, 614, 738, 740

changing, 741–744
relinquishing CPU, 747
resource limit for CPU time, 764
resource limit for priority, 764
round-robin policy (SCHED_RR), 739
round-robin time slice, 747

realtime signal, 214, 221, 388, 456–463
handling, 460–463
limit on number queued, 457, 764
sending, 458–460
used by LinuxThreads, 690
used by NPTL, 693

reboot(), 801
receiving TCP, 1191
record lock. See file lock
recursive bind mount, 273–274
recursive resolution, DNS, 1211
recv(), 426, 673, 1259–1260

interrupted by signal handler, 444
prototype, 1259

recvfrom(), 426, 673, 1160–1161
diagram, 1160
example of use, 1172, 1173, 1208, 

1209, 1241
interrupted by signal handler, 444
prototype, 1161

recvmmsg(), 1284
recvmsg(), 426, 673, 1284

interrupted by signal handler, 444
reentrancy, 556
reentrant function, 422–425, 622, 657
region_locking.c, 1134
regionIsLocked(), 1134

code of implementation, 1134–1135
regular file, 27, 282

poll() on, 1342
select() on, 1342

Reiser, J., xxxix, 4
Reiserfs file system, 260

i-node flag, 304–308
tail packing, 260, 307

relative pathname, 29, 363
releaseSem(), 989–991

code of implementation, 991
example of use, 1004, 1005

reliable signal, 390
relocation (of symbols), 837
remap_file_pages(), 1041–1043

prototype, 1041
remove(), 286, 345, 352

prototype, 352
removexattr(), 286, 316, 345

prototype, 316

rename(), 286, 300, 345, 348–349, 426, 800
prototype, 348

renameat(), 365, 426
renice command, 735
REPRINT terminal special character, 

1296, 1298, 1305, 1307
Request for Comments (RFC), 1179, 

1193–1194. See also individual 
RFC entries

reserved blocks (file system), 277, 801
reserved port, 1189
reserveSem(), 989–990

code of implementation, 990
example of use, 1004, 1005

resident set, 119
resource limit on size of, 763

resource limit, 34, 614, 755–764, 801
details of specific limits, 760–764
LinuxThreads nonconformance, 691
NPTL nonconformance, 694
unrepresentable, 759–760

resource usage, 552, 614, 753–755
Ressler, S., 1441
retransmission timeout (RTO), 1191
rewinddir(), 354

prototype, 354
RFC (Request For Comments), 1179, 

1193–1194
RFC 768, 1194
RFC 791, 1193
RFC 793, 1194, 1270, 1283
RFC 862, 1240
RFC 950, 1193
RFC 993, 1267
RFC 1014, 1200
RFC 1122, 1194, 1274
RFC 1123, 1194
RFC 1305, 1442
RFC 1323, 1194
RFC 1819, 1184
RFC 2018, 1194
RFC 2460, 1194, 1203
RFC 2581, 1194
RFC 2861, 1194
RFC 2883, 1194
RFC 2988, 1194
RFC 3168, 1194, 1267
RFC 3257, 1286
RFC 3286, 1286
RFC 3390, 1194
RFC 3493, 1194, 1203, 1213
RFC 3513, 1194
RFC 3542, 1194
RFC 3697, 1203
RFC 4007, 1203
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RFC 4219, 1188
RFC 4291, 1203
RFC 4336, 1286
RFC 4340, 1286
RFC 4960, 1286
RFC Editor, 1193
Richarte, G., 1437
Ritchie (1974), 3, 1443
Ritchie (1984), 20, 1442
Ritchie, D.M., 2, 4, 1440, 1442, 1443
RLIM_INFINITY constant, 736, 756
RLIM_SAVED_CUR constant, 759
RLIM_SAVED_MAX constant, 759
rlim_t data type, 65, 756, 759–760

casting in printf() calls, 757
rlimit structure, 756

definition, 756
example of use, 758

RLIMIT_AS resource limit, 757, 760, 1039
RLIMIT_CORE resource limit, 448, 757, 

760, 789
RLIMIT_CPU resource limit, 395, 746, 757, 761
RLIMIT_DATA resource limit, 140, 757, 761
RLIMIT_FSIZE resource limit, 80, 395, 448, 

757, 760, 761
RLIMIT_MEMLOCK resource limit, 757, 761, 

1012, 1048–1049, 1051
RLIMIT_MSGQUEUE resource limit, 757, 

761, 1086
RLIMIT_NICE resource limit, 736, 757, 762
RLIMIT_NOFILE resource limit, 78, 217, 

757, 762
RLIMIT_NPROC resource limit, 217, 516, 757, 

763, 801
example of use, 759

rlimit_nproc.c, 758
RLIMIT_RSS resource limit, 757, 763
RLIMIT_RTPRIO resource limit, 743, 757, 764
RLIMIT_RTTIME resource limit, 746, 757, 764
RLIMIT_SIGPENDING resource limit, 458, 

757, 764
RLIMIT_STACK resource limit, 124, 217, 434, 

436, 682, 757, 764, 793, 1006
rmdir(), 286, 300, 345, 351, 426, 800

prototype, 351
Robbins (2003), 630, 1327, 1443
Robbins, K.A., 1443
Robbins, S., 1443
Robins, A.V., xxxix, xl
Rochkind (1985), xxxv, 1421, 1443
Rochkind (2004), xxxv, 837, 1421, 1443
Rochkind, M.J., 1443
Romanow, J., 1194
root directory, 27, 340

of a process, 225, 367–368, 604, 613

root name server, 1211
root user, 26
Rosen (2005), 6, 1443
Rosen, L., 1443
Rothwell, S., xxxix
round-robin time-sharing, 733
router, 1180
RST control bit (TCP), 1267
rt_tgsigqueueinfo(), 685
RTLD_DEEPBIND constant, 862
RTLD_DEFAULT constant, 864
RTLD_GLOBAL constant, 861, 862, 864
RTLD_LAZY constant, 861
RTLD_LOCAL constant, 861
RTLD_NEXT constant, 864
RTLD_NODELETE constant, 861
RTLD_NOLOAD constant, 862
RTLD_NOW constant, 861
RTO (retransmission timeout), 1191
RTS/CTS flow control, 1299
RTSIG_MAX constant, 214, 457
Rubini, A., 1438
Rudoff, A.M., 1421, 1444
RUN_LVL constant, 820, 822
run-time linker (dynamic linker), 36, 839
rusage structure, 552, 753, 754–755

definition, 754
rusage.c, 1432
RUSAGE_CHILDREN constant, 560, 754, 

755, 765
RUSAGE_SELF constant, 754
RUSAGE_THREAD constant, 754
rusage_wait.c, 1432
Rusling, D., 255
Russell, R., 1439

S
S_IFBLK constant, 282
S_IFCHR constant, 282
S_IFDIR constant, 282
S_IFIFO constant, 282, 907
S_IFLNK constant, 282
S_IFMT constant, 281
S_IFREG constant, 282
S_IFSOCK constant, 282, 1166
S_IRGRP constant, 295
S_IROTH constant, 295
S_IRUSR constant, 295
S_IRWXG constant, 295
S_IRWXO constant, 295
S_IRWXU constant, 295
S_ISBLK(), 282
S_ISCHR(), 282
S_ISDIR(), 282
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S_ISFIFO(), 282
S_ISGID constant, 295, 351
S_ISLNK(), 282
S_ISREG(), 282
S_ISSOCK(), 282
S_ISUID constant, 295, 351
S_ISVTX constant, 295, 300, 351
S_IWGRP constant, 295
S_IWOTH constant, 295
S_IWUSR constant, 295
S_IXGRP constant, 295
S_IXOTH constant, 295
S_IXUSR constant, 295
sa command, 591
sa_family_t data type, 65, 1154, 1165, 

1202, 1203, 1204
SA_NOCLDSTOP constant, 417
SA_NOCLDWAIT constant, 417, 560
SA_NODEFER constant, 417, 427, 455

example of use, 455
SA_NOMASK constant, 417
SA_ONESHOT constant, 417
SA_ONSTACK constant, 417, 578

example of use, 437
SA_RESETHAND constant, 417, 454

example of use, 455
SA_RESTART constant, 417, 443, 486, 941, 944

example of use, 455, 486
SA_SIGINFO constant, 417, 437–442, 458, 

1352, 1353
example of use, 463, 501

Salus (1994), 3, 20, 1443
Salus (2008), 20, 1443
Salus, P.H., 1443
Salzman, P.J., 1442
Santos, J., 1441
Sarolahti (2002), 1236, 1443
Sarolahti, P., 1443
Sastry, N., 1438
saved set-group-ID, 170, 173, 177, 613
saved set-user-ID, 170, 173, 177, 613
saved-text bit. See sticky permission bit
sbrk(), 140, 761

example of use, 142
prototype, 140
RLIMIT_AS resource limit and, 760
RLIMIT_DATA resource limit and, 761

Scalmazzi, C., xl
scandir(), 354
scatter input, 100
scatter-gather I/O, 99–102
SCHED_BATCH constant, 740, 742
SCHED_FIFO constant, 739, 740, 742, 801
sched_get_priority_max(), 740–741

prototype, 741

sched_get_priority_min(), 740–741
prototype, 741

sched_getaffinity(), 750
prototype, 750

sched_getparam(), 744
example of use, 745
prototype, 744

sched_getscheduler(), 744–745
example of use, 745
prototype, 744

SCHED_IDLE constant, 740, 742
SCHED_OTHER constant, 738, 742
sched_param structure, 741–742, 744

definition, 741
SCHED_RESET_ON_FORK constant, 615, 746, 801
SCHED_RR constant, 739, 742, 801
sched_rr_get_interval(), 747

prototype, 747
sched_set.c, 743
sched_setaffinity(), 749, 801

prototype, 749
sched_setparam(), 742, 801

prototype, 742
RLIMIT_RTPRIO resource limit and, 764

sched_setscheduler(), 741–742, 801
example of use, 743
prototype, 741
RLIMIT_NICE resource limit and, 762
RLIMIT_RTPRIO resource limit and, 764

sched_view.c, 745
sched_yield(), 747

prototype, 747
Schimmel (1994), 748, 1443
Schimmel, C., 1443
Schröder, M., xxxix
Schüpbach, W.M.M., xl
Schwaiger, M., xxxix
Schwartz, A., 1439
scm_cred_recv.c, 1285
scm_cred_send.c, 1285
SCM_CREDENTIALS constant, 800, 801
scm_rights_recv.c, 1284
scm_rights_send.c, 1284
screen command, 1379
script, 572
script program

diagram, 1390
implementation, 1390–1394

script.c, 1392
SCTP (Stream Control Transmission 

Protocol), 1285, 1444
search permission, 29
SECBIT_KEEP_CAPS constant, 615, 812, 

813, 816
SECBIT_KEEP_CAPS_LOCKED constant, 812
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SECBIT_NO_SETUID_FIXUP constant, 812, 813
SECBIT_NO_SETUID_FIXUP_LOCKED constant, 812
SECBIT_NOROOT constant, 812, 816
SECBIT_NOROOT_LOCKED constant, 812
secure programming, 783–796, 1437, 1445
Secure Sockets Layer (SSL), 1190
securebits flags, 615, 801, 812–813
SEEK_CUR constant, 82, 1126
SEEK_END constant, 82, 1126
seek_io.c, 84
SEEK_SET constant, 82, 1126
segment (virtual memory), 115
segmentation fault (error message). See 

SIGSEGV signal
SEGV_ACCERR constant, 441
SEGV_MAPERR constant, 441
select(), 426, 673, 1331–1334, 1389, 1439

comparison with poll(), 1344–1345
example of use, 1335, 1393
interrupted by signal handler, 444
performance, 1365
problems with, 1346
prototype, 1331

select_mq.c, 1436
self_pipe.c, 1371
self-pipe trick, 1370–1372
SEM_A constant, 923
sem_close(), 1058, 1093

prototype, 1093
sem_destroy(), 1058, 1102–1103

prototype, 1103
SEM_FAILED constant, 1090, 1091
sem_getvalue(), 1058, 1097

example of use, 1098
prototype, 1097

SEM_INFO constant, 952, 993
sem_init(), 1058, 1100–1101

example of use, 1102
prototype, 1100

SEM_NSEMS_MAX constant, 1104
sem_open(), 1058, 1090–1091

example of use, 1093
prototype, 1090

sem_post(), 426, 1058, 1096
example of use, 1097, 1102
prototype, 1096

SEM_R constant, 923
SEM_STAT constant, 952
sem_t data type, 882, 1058, 1059, 1090, 

1091, 1093, 1094, 1095, 1096, 
1097, 1099, 1100, 1101, 1103

sem_timedwait(), 673, 1095–1096
interrupted by signal handler, 444
interrupted by stop signal, 445
prototype, 1096

sem_trywait(), 1095
prototype, 1095

SEM_UNDO constant, 986–988
example of use, 983, 990

sem_unlink(), 1058, 1093
example of use, 1094
prototype, 1093

SEM_VALUE_MAX constant, 1105
sem_wait(), 673, 1058, 1094–1095

example of use, 1095, 1101
interrupted by signal handler, 444
interrupted by stop signal, 445
prototype, 1094

semadj value (System V semaphore undo 
value), 533, 607, 614, 619, 691, 
693, 986–988, 991

SEMAEM limit, 991, 992
semaphore, 881. See also POSIX 

semaphore; System V semaphore
sembuf structure, 978, 979, 980

definition, 979
example of use, 981

semctl(), 922, 969–972
example of use, 974, 975, 977, 990, 1004
prototype, 969

semget(), 922, 969, 991
example of use, 977, 1003, 1005
prototype, 969

semid_ds structure, 922, 970, 971, 
972–973, 976

definition, 972
example of use, 973

seminfo structure, 970, 992, 993
SEMMNI limit, 991, 992
SEMMNS limit, 991, 992
SEMMNU limit, 991
SEMMSL limit, 991, 992
semncnt value, 972, 974, 985
semop(), 922, 971, 972, 973, 978–980, 991

example of use, 977, 981, 983, 990
interrupted by signal handler, 444
interrupted by stop signal, 445
prototype, 978

SEMOPM limit, 991, 992
sempid value, 972, 985
semtimedop(), 980

interrupted by signal handler, 444
interrupted by stop signal, 445
prototype, 980

SEMUME limit, 991
semun union, 969, 970

definition, 970
example of use, 973, 974, 976, 977

semun.h, 970
SEMVMX limit, 988, 991, 992
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semzcnt value, 972, 974, 985
send(), 426, 673, 1259–1260

interrupted by signal handler, 444
prototype, 1259

sendfile(), 286, 1260–1263
diagram, 1261
prototype, 1261

sendfile.c, 1435
sending TCP, 1191
sendip command, 1184
sendmmsg(), 1284
sendmsg(), 426, 673, 1284

interrupted by signal handler, 444
sendto(), 426, 673, 1160–1161

diagram, 1160
example of use, 1172, 1173, 1208, 

1209, 1241
interrupted by signal handler, 444
prototype, 1161

servent structure, 1234
definition, 1234

server, 40
affinity, 1247
design, 1239–1252
farm, 1247
load balancing, 1247
pool, 1246

service name, 1204, 1212
session, 39, 700, 704–706

diagram, 701
leader, 39, 700, 705

session ID, 39, 613, 700, 705, 819
set_mempolicy(), 615
set_thread_area(), 607, 692
SETALL constant, 971, 972, 973, 987

example of use, 975
setbuf(), 238, 532

prototype, 238
setbuffer(), 238

prototype, 238
setcontext(), 442
setdomainname(), 229, 801
setegid(), 174–175, 181, 785, 800

prototype, 174
setenv C shell command, 125
setenv(), 128–130, 657, 1426

example of use, 131
prototype, 128

setenv.c, 1426
seteuid(), 174–175, 181, 784, 801

prototype, 174
setfacl command, 326
setfattr command, 312
setfsgid(), 178, 181, 800

example of use, 182
prototype, 178

setfsuid(), 178, 181, 801
example of use, 182
prototype, 178

set-GID bit. See set-group-ID permission bit
set-GID program. See set-group-ID program
setgid(), 173–174, 181, 426, 786, 800

prototype, 173
setgrent(), 161, 657
set-group-ID permission bit, 168, 291, 

292, 294, 295, 300, 304, 351, 564, 
788, 800, 1138, 1432

propagated from parent directory to 
new subdirectory, 351

set-group-ID program, 146, 147, 168–170, 
266, 564, 569, 581, 615, 784, 854, 
874, 875

core dump files and, 449
dropping and reacquiring 

privileges, 784
dropping privileges permanently, 785

setgroups(), 179–180, 181, 800
prototype, 179

sethostname(), 229, 801
setitimer(), 16, 390, 392, 395, 479–481, 485, 

486, 488, 691, 694
example of use, 484
prototype, 480

setjmp(),131–135
example of use, 134, 136, 433
handling of signal mask, 429
prototype, 132
restrictions on use of, 134–135

setjmp_vars.c, 136
setkey(), 657
setlocale(), 203

example of use, 199
prototype, 203

setlogmask(), 780–781
prototype, 781

setpgid(), 426, 691, 693, 702–704
example of use, 703, 711, 713
prototype, 702

setpgrp(), 704
setpriority(), 691, 735–736, 801

example of use, 737
prototype, 735

setpwent(), 160–161, 657
prototype, 161

setregid(), 175–176, 181, 800
prototype, 175

setresgid(), 177–178, 181, 800
prototype, 177

setresuid(), 177–178, 181, 801
prototype, 177
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setreuid(), 175–176, 181, 786, 801
prototype, 175

setrlimit(), 755–757, 801
example of use, 759
prototype, 756

setrlimit64(), 105
setsid(), 426, 691, 693, 705, 768, 1377

example of use, 706, 770, 1387
prototype, 705

setsockopt(), 426, 1278–1279
example of use, 1222
prototype, 1278

setspent(), 161
prototype, 161

settimeofday(), 204–205, 801
diagram, 188
prototype, 204

set-UID bit. See set-user-ID permission bit
set-UID program. See set-user-ID program
setuid(),173–174, 181, 426, 801

prototype, 173
set-user-ID permission bit, 168, 292, 294, 

295, 300, 564, 788, 800, 1432
set-user-ID program, 33, 129, 146, 147, 

168–170, 266, 564, 569, 581, 615, 
690, 718, 784, 854, 874, 875

core dump files and, 449
dropping and reacquiring 

privileges, 784
dropping privileges permanently, 785

set-user-ID-root program, 169, 783
setutxent(), 657, 821

example of use, 824, 829
prototype, 821

SETVAL constant, 971, 972, 973, 987
example of use, 990

setvbuf(), 237–238, 532
prototype, 237

setxattr(), 286, 314–315, 329, 345
prototype, 314

Seventh Edition UNIX, 3
SFD_CLOEXEC constant, 472
SFD_NONBLOCK constant, 472
sh (Bourne shell), 25
shadow group file, 156
shadow password file, 155

retrieving records from, 161–162, 
164–165

shared library, 35, 1439
compared with static library, 856
compatibility, 850
controlling symbol visibility, 867–870
creating, 837–838, 841–842

diagram, 842
dependency tree, 860

dynamic dependency list, 839
dynamic loading, 859–867
––export–dynamic linker option, 867
finalization (destructor) function, 

872–873
finding at run time, 854
initialization (constructor) function, 

872–873
installing, 847–849
interdependencies

diagram, 852
linker name, 845, 846
loading run-time, diagram, 843
major version, 844
minor version, 844
names, 846–848

diagram, 846
overview, 836–837
preloading, 873–874
real name, 840, 846
–rpath linker option, 851–854
soname, 840–843, 846–847
symbol resolution at run time, 854–856
upgrading, 850–851
using, 839–840
versions and naming conventions, 

844–847
shared memory, 880. See also 

memory mapping; 
POSIX shared memory; 
System V shared memory

shared object. See shared library
shared subtree, 267, 1445
shell, 24–25
shell command execution, 579–582
SHELL environment variable, 125, 154

example of use, 1392
shell layers, 1300
shell script, 25
SHM_DEST constant, 1013
SHM_HUGETLB constant, 800, 999
SHM_INFO constant, 952, 1015
shm_info structure, 1015
SHM_LOCK constant, 800, 1012, 1048, 1050
SHM_LOCKED constant, 1013
SHM_NORESERVE constant, 999
shm_open(), 801, 1058, 1109–1110

example of use, 1111, 1112, 1113
prototype, 1109
RLIMIT_NOFILE resource limit and, 762

SHM_R constant, 923
SHM_RDONLY constant, 1000, 1001
SHM_REMAP constant, 1000, 1001
SHM_RND constant, 999, 1001
SHM_STAT constant, 952
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shm_unlink(), 1058, 1114
example of use, 1114
prototype, 1114

SHM_UNLOCK constant, 800, 1012
SHM_W constant, 923
SHMALL limit, 1014, 1015
shmat(), 922, 999–1001, 1013, 1014

example of use, 1004, 1005
prototype, 999
RLIMIT_AS resource limit and, 760

shmatt_t data type, 65, 1012, 1014
shmctl(), 922, 1011–1012

example of use, 1004
prototype, 1011
RLIMIT_MEMLOCK resource limit and, 761

shmdt(), 922, 1000–1001, 1013, 1014
example of use, 1004, 1005
prototype, 1001

shmget(), 922, 998–999, 1014
example of use, 1004, 1005
prototype, 998

shmid_ds structure, 922, 1011, 1012–1013
definition, 1012

shminfo structure, 1015
SHMLBA constant, 999, 1001
SHMMAX limit, 1014, 1015
SHMMIN limit, 1014
SHMMNI limit, 1014, 1015
SHMSEG limit, 1014
show_time.c, 199
Shukla, A., 1439
SHUT_RD constant, 1256, 1273
SHUT_RDWR constant, 1256, 1273
SHUT_WR constant, 1256, 1273

example of use, 1258
shutdown(), 426, 1256–1257

example of use, 1258
prototype, 1256
on TCP socket, 1273

SI_ASYNCIO constant, 441
SI_KERNEL constant, 440, 441
SI_MESGQ constant, 441, 1079
SI_QUEUE constant, 441, 460

example of use, 462
SI_SIGIO constant, 440, 441
SI_TIMER constant, 441, 500
SI_TKILL constant, 441
SI_USER constant, 441

example of use, 462
SID (session ID), 39, 613, 700, 705, 819
SIG_ATOMIC_MAX constant, 428
SIG_ATOMIC_MIN constant, 428
sig_atomic_t data type, 65, 428

example of use, 432, 466, 774
SIG_BLOCK constant, 410

example of use, 409, 411

SIG_DFL constant, 398, 412, 416, 578
SIG_ERR constant, 397, 398, 456

example of use, 399, 455
SIG_HOLD constant, 475
SIG_IGN constant, 398, 412, 416, 419, 578
sig_receiver.c, 414, 419
sig_sender.c, 412
SIG_SETMASK constant, 410

example of use, 411, 415
sig_speed_sigsuspend.c, 478
SIG_UNBLOCK constant, 410
SIGABRT signal, 390, 392, 396, 433
sigaction structure, 416–417, 437–438

definition, 416, 437
example of use, 425, 433

sigaction(), 416–417, 426, 604
example of use, 433, 437, 452, 455, 

463, 587
prototype, 416

sigaddset(), 407, 426
example of use, 411, 466
prototype, 407

SIGALRM signal, 390, 396, 480, 484, 486, 488
example of use, 483, 487

sigaltstack(), 417, 434–435, 578, 691, 693
example of use, 437
prototype, 434

sigandset(), 408
prototype, 408

sigblock(), 476–477
prototype, 476

SIGBUS signal, 390, 396, 439, 440, 441, 453, 
683, 1021, 1030

correct handling of, 452
diagram, 1030

SIGCHLD signal, 390, 391, 396, 440, 441, 
514, 545, 551, 555–561, 583, 590, 
605, 609, 697, 717, 755, 1431

change of disposition across exec(), 578
contrasted with System V SIGCLD, 561
delivery for resumed children, 559
delivery for stopped children, 559
designing handler for, 556
diagram, 515
disabling generation for stopped child 

processes, 417
example of use, 558
handling, 555–559
ignoring, 559–561

SIGCLD signal, 391, 561
SIGCONT signal, 391, 396, 450, 489, 544, 

545, 546, 550, 559, 717, 718, 
720, 727

diagram, 717
establishing handler for, 478
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example of use, 728
sent to foreground process group 

when controlling process 
terminates, 707, 712–714

sent to orphaned process group 
containing stopped processes, 
533, 727

sigdelset(), 407, 426
example of use, 463
prototype, 407

sigemptyset(), 407, 426
example of use, 411, 415, 466
prototype, 407

SIGEMT signal, 391, 396, 397, 453
SIGEV_NONE constant, 496, 1079
SIGEV_SIGNAL constant, 496, 497, 

499–503, 1079
example of use, 501, 1081

SIGEV_THREAD constant, 496, 497, 
504–507, 1079

example of use, 507, 1083
SIGEV_THREAD_ID constant, 496, 497
sigevent structure, 495, 496–497, 

1078–1079
definition, 496, 1079
example of use, 501, 506, 1080, 1082

sigfillset(), 407, 426
example of use, 415, 463
prototype, 407

SIGFPE signal, 391, 396, 439, 440, 441, 
453, 683

correct handling of, 452
sighandler_t data type, 398
sighold(), 475

prototype, 475
SIGHUP signal, 39, 391, 396, 451, 700, 706, 

709–714, 725–729, 772–775
example of use, 711, 713, 728, 774
handling by job-control shells, 710–712
sent on closure of master side of 

pseudoterminal, 1388
sent on terminal disconnect, 709
sent to foreground process group 

when controlling process 
terminates, 533, 707, 712–714

sent to orphaned process group 
containing stopped processes, 
533, 727

sent when master side of 
pseudoterminal is closed, 709

stopped shell background jobs and, 710
used to reinitialize daemon, 772–775

sigignore(), 475–476
prototype, 475

SIGILL signal, 391, 396, 439, 440, 441, 
453, 683

correct handling of, 452
SIGINFO signal, 391, 1299
siginfo_t structure, 65, 437, 438–442, 460, 

468, 471, 472, 499–500, 550, 
551–552, 1079, 1353–1354

definition, 438
example of use, 462, 470, 500, 552

SIGINT signal, 392, 396, 451, 583, 700, 720, 
725, 1296, 1297, 1302, 1304

example of use, 399, 401
siginterrupt(), 16, 419, 444–445

prototype, 445
siginterrupt.c, 1429
SIGIO signal, 392, 396, 397, 440, 441, 1347
SIGIOT signal, 392
sigisemptyset(), 408

prototype, 408
sigismember(), 407, 426

example of use, 409
prototype, 407

SIGKILL signal, 392, 393, 396, 411, 450, 
761, 764, 772, 1040

disposition can’t be changed, 450
siglongjmp(), 151, 429–430, 452

example of use, 432
prototype, 430

SIGLOST signal, 392
sigmask(), 476–477

prototype, 476
sigmask_longjmp.c, 432
signal, 37, 387–478

accepting, 468
asynchronous generation, 453
blocked, 38, 388, 389
blocking, 410–411
broadcast, 402
BSD API, 476–477
caught, 389
default action, 389, 390–397
delivery, 388

diagram, 399, 454
order when multiple signals 

pending, 454
disposition, 389, 613

changing, 397–398, 416–417
of pending signal, 412

default, 389
generation, 388
handler. See signal handler
hardware-generated, 452
ignored, 389, 398
job-control, 717
LinuxThreads nonconformances, 690
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signal, continued
list of all signals, 390–397
mask, 38, 388, 410, 578, 613, 683
names (descriptions), 406
pending, 38, 388, 389, 411–415, 578, 

613, 683
permission required for sending, 

402–403, 800
diagram, 403

queuing, 412–414, 422, 456, 457
reading via a file descriptor, 471–474
realtime. See realtime signal
reliable, 390, 455
semantics in multithreaded process, 

682–683
sending, 401–405
synchronous generation, 453
System V API, 475–476
timing and order of delivery, 

453–454, 464
unreliable, 454
used for IPC, 474
used for synchronization, 527–529
waiting for, 418, 464–471

signal catcher. See signal handler
signal handler, 38, 389, 398–401, 421–446

design, 422–428
diagram, 399, 454
employing printf() in example 

programs, 427
invocation in multithreaded process, 683
terminating, 428–433
terminating process from, 549–550
use of errno within, 427
use of global variables within, 428
use of nonlocal goto within, 429–433

signal mask, 38, 388, 410, 578, 613, 683
signal set, 65, 406–409. See also sigset_t 

data type
signal stack, alternate, 65, 434–437, 578, 

613, 683, 691, 693, 764
signal(), 397–398, 426, 604

code of implementation, 455
example of use, 399, 401, 415
obsolete in favor of sigaction(), 456
portability problems, 454–456
prototype, 397
System V, 475

signal.c, 455
signal_functions.c, 408
signal-driven I/O, 75, 95, 1327, 

1346–1355, 1367
signalfd(), 471–472

example of use, 473
prototype, 471

signalfd_siginfo structure, 472
definition, 472
example of use, 473

signalfd_sigval.c, 473
sigorset(), 408

prototype, 408
sigpause(), 426, 475–477, 673, 674

prototype (BSD), 476
prototype (System V), 475

sigpending(), 411–412, 426, 683
example of use, 409, 415
prototype, 411

SIGPIPE signal, 392, 396, 683, 895, 903, 
912, 918, 1159, 1220, 1256, 1260

example of use, 913
SIGPOLL signal, 392, 441
sigprocmask(), 410–411, 426, 684

example of use, 409, 411, 415, 466, 
473, 587

prototype, 410
SIGPROF signal, 392, 396, 480
SIGPWR signal, 391, 392, 396
sigqueue(), 426, 439, 441, 458–460, 800

example of use, 459
prototype, 458
RLIMIT_SIGPENDING resource limit 

and, 764
SIGQUEUE_MAX constant, 214, 457
SIGQUIT signal, 393, 396, 451, 583, 700, 

725, 1296, 1298
example of use, 401

sigrelse(), 475
prototype, 475

SIGRTMAX constant, 457
SIGRTMIN constant, 457
SIGSEGV signal, 120, 140, 146, 151, 

393, 396, 439, 440, 441, 453, 
523, 683, 764, 1000, 1021, 1030, 
1046, 1051

correct handling of, 452
delivering on an alternate signal stack, 

434–435
diagram, 1029, 1030
example of use, 437

sigset(), 426, 475
prototype, 475

sigset_t data type, 65, 407, 408, 410, 411, 
416, 437, 465, 468, 471, 684, 
685, 1369

example of use, 411, 415, 463, 464
sigsetjmp(), 429–430

example of use, 433
prototype, 430

sigsetmask(), 476–477
prototype, 476
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SIGSTKFLT signal, 393, 396
SIGSTKSZ constant, 435

example of use, 437
SIGSTOP signal, 393, 396, 411, 445, 450, 

716, 717, 790
diagram, 717
disposition can’t be changed, 450

sigsuspend(), 426, 465, 673
example of use, 467
prototype, 465

SIGSYS signal, 393, 396
SIGTERM signal, 393, 396, 772
sigtimedwait(), 471, 673

interrupted by stop signal, 445
prototype, 471

SIGTRAP signal, 394, 396, 442
SIGTSTP signal, 394, 396, 445, 450, 451, 

700, 715, 717, 720, 725, 790, 
1296, 1299, 1312

diagram, 717
example of use, 724, 1313, 1315
handling within applications, 722
orphaned process group and, 730

SIGTTIN signal, 394, 396, 445, 450, 451, 
717, 718, 725

diagram, 717
orphaned process group and, 730

SIGTTOU signal, 394, 396, 445, 450, 451, 
717, 718, 725, 1293, 1303

diagram, 717
orphaned process group and, 730

SIGUNUSED signal, 394
SIGURG signal, 394, 396, 397, 1283
SIGUSR1 signal, 394, 396

used by LinuxThreads, 690
SIGUSR2 signal, 395, 396

used by LinuxThreads, 690
sigval union, 459, 496, 1078
sigval_t data type, 459
sigvec structure, 476

definition, 476
sigvec(), 476

prototype, 476
SIGVTALRM signal, 395, 396, 480
sigwait(), 685–686, 673

prototype, 685
sigwaitinfo(), 468, 673

example of use, 470
interrupted by stop signal, 445
prototype, 468

SIGWINCH signal, 395, 396, 1319, 1320, 1395
example of use, 1320

SIGXCPU signal, 395, 396, 746, 761, 764
SIGXFSZ signal, 395, 396, 761
simple_pipe.c, 896

simple_system.c, 582
simple_thread.c, 626
single directory hierarchy, diagram, 27
Single UNIX Specification (SUS), 13

version 2 (SUSv2), 13, 17
version 3 (SUSv3), 13–15, 17, 1440

Technical Corrigenda, 14
version 4 (SUSv4), 15–17

SIOCGPGRP constant, 1350
SIOCSPGRP constant, 1350
size command, 116
size_t data type, 65, 66, 79, 80, 98, 99, 141, 

148, 149, 150, 179, 193, 237, 238, 
314, 315, 316, 350, 363, 435, 749, 
750, 941, 943, 998, 1012, 1020, 
1023, 1031, 1037, 1041, 1046, 
1049, 1051, 1054, 1073, 1075, 
1077, 1161, 1200, 1206, 1214, 
1218, 1254, 1259, 1261

sleep(), 426, 487–488, 673
interrupted by signal handler, 444
prototype, 488

sleeping, 487–494
high-resolution, 488–491, 493–494

sliding window (TCP), 1192
slow-start algorithm (TCP), 1193, 1194
Smith, M., xli
Snader (2000), 1235, 1275, 1443
Snader, J.C., xl, 1443
SO_RCVBUF constant, 1192
SO_REUSEADDR constant, 1220, 1279–1281

example of use, 1222, 1229, 1281
SO_SNDBUF constant, 1171
SO_TYPE constant, 1279
SOCK_CLOEXEC constant, 1153, 1158, 1175
SOCK_DGRAM constant, 1152

example of use, 1172, 1208
SOCK_NONBLOCK constant, 1153, 1158, 1175
SOCK_RAW constant, 1153, 1184
SOCK_SEQPACKET constant, 1285
SOCK_STREAM constant, 1151

example of use, 1168, 1169, 1173, 1209, 
1221, 1224

sockaddr structure, 1153, 1154–1155, 1157, 
1158, 1161

definition, 1154
sockaddr_in structure, 1151, 1202

definition, 1202
sockaddr_in6 structure, 1151, 1202–1203

definition, 1203
example of use, 1208, 1209

sockaddr_storage structure, 1204
definition, 1204
example of use, 1221, 1241
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sockaddr_un structure, 1151, 1165–1166
definition, 1165
example of use, 1168, 1176

sockatmark(), 426
socket, 282, 392, 883, 1149–1163

abstract binding, 1175
accepting a connection, 1157
active, 1155
active close (TCP), 1272
address structure, 1154
asynchronous error, 1254, 1351, 1352
binding to an address, 1153
broadcasting, 800, 1282
connecting to peer, 1158
connection termination, 1159
connectionless, 1152
connection-oriented, 1152
creating, 1153
datagram, 1152, 1159–1162

sending and receiving, 1160
domain, 1150
half-close, 1256
identified by 4-tuple, 1280
Internet domain, 882, 886, 1150, 

1197–1237
address structure, 1202–1204
maximum datagram size, 1190

I/O system calls, 1259–1260
listening for connections, 1156
local, 1152
multicasting, 800, 1282
options, 1278–1279
out-of-band data, 394, 1259, 1260, 

1283, 1288, 1331, 1343
pair, 1174
partial reads and writes, 1254–1255
passing credentials via, 800, 801, 

1284–1285
passing file descriptor via, 1284
passive, 1155
passive close (TCP), 1272
peer, 1152
pending connection, 1156
poll() on, 1343
port number. See port number
raw, 800, 1184
receive buffer, 1276

diagram, 1190
remote, 1152
select() on, 1343
send buffer, 1276

diagram, 1190
sequenced-packet, 1285
stream, 1151, 1155–1159

I/O, 1159

type, 1151
UNIX domain, 882, 884, 886, 1150, 

1165–1177
address structure, 1165–1167
maximum datagram size, 1171
socket permissions, 1174

socket(), 426, 801, 1150, 1152, 1153
diagram, 1156, 1160
example of use, 1166, 1169, 1172, 1173, 

1208, 1209, 1221, 1224, 1228
prototype, 1153
RLIMIT_NOFILE resource limit and, 762

socketcall(), 1152
socketpair(), 426, 1174–1175

prototype, 1175
socklen_t data type, 65, 1153, 1154, 

1157, 1158, 1161, 1218, 1231, 
1263, 1278

socknames.c, 1265
soft link. See symbolic link
soft realtime, 738
software clock, 205–206
SOL_SOCKET constant, 1278
Solaris, 4
SOMAXCONN constant, 1157
soname, shared library, 840–843, 846–847
source code (of example programs), xli
Spafford, G., 1439
sparse array, 1038
spawn, 514
Spec 1170, 13, 17
speed_t data type, 65, 1292, 1316, 1317
splice(), 1262
Spraul, M., xxxix
spurious readiness notification, 1330
spurious wake-up, 648
spwd structure, 161, 162

definition, 162
example of use, 164, 810

SS_DISABLE constant, 435
SS_ONSTACK constant, 435
ssh program, 1378
ssize_t data type, 65, 66, 79, 80, 98, 99, 

102, 315, 316, 350, 943, 1075, 
1077, 1161, 1259, 1261

SSL (Secure Sockets Layer), 1190
stack, 31, 116, 121–122, 612, 764, 1051

diagram, 122
direction of growth, 121
resource limit on size of, 764
unwinding, 133

stack crashing, 792
stack frame, 116, 121–122, 133, 151
stack pointer, 121, 133, 150
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stack_t data type, 65, 434, 435
example of use, 436

Stallman, R.M., 5, 6, 11, 20, 1445
standard error, 30
standard input, 30
standard output, 30
START terminal special character, 1296, 

1298, 1319
stat structure, 279, 280–283

definition, 280
example of use, 284

stat(), 106, 279–283, 325, 345, 426, 
907, 1428

example of use, 285, 303
prototype, 279

stat64 structure, 105
stat64(), 105
statfs(), 277, 345
static (used to control symbol 

visibility), 867
static library, 35, 834–836

use in preference to a shared library, 856
static linking, 840
statically allocated variable, 116

function reentrancy and, 423
STATUS terminal special character, 1299
statvfs structure, 276–277

definition, 276
statvfs(), 276–277, 345

prototype, 276
stderr variable, 30, 70
STDERR_FILENO constant, 70
stdin variable, 30, 70
STDIN_FILENO constant, 70
stdio buffers, 237–239

diagram, 244
fork() and, 537–538

stdio library, 30
mixing use with I/O system calls, 248

stdout variable, 30, 70
STDOUT_FILENO constant, 70
Steele, G.L., 1440
Stevens (1992), 1322, 1421, 1443, 1444
Stevens (1994), 1190, 1210, 1235, 1256, 

1267, 1268, 1272, 1443
Stevens (1996), 1282, 1444
Stevens (1998), 1443
Stevens (1999), 20, 975, 1087, 1105, 1108, 

1143, 1146, 1421, 1443
Stevens (2004), 1151, 1162, 1184, 1188, 

1203, 1210, 1213, 1246, 1254, 
1270, 1272, 1275, 1278, 1279, 
1282, 1283, 1285, 1286, 1328, 
1330, 1374, 1421, 1444

Stevens (2005), 20, 30, 222, 487, 527, 
561, 731, 821, 1118, 1146, 1383, 
1421, 1444

Stevens, D.L., 1438
Stevens, W.R., xl, 1194, 1421, 1443, 

1444, 1445
Stewart (2001), 1286, 1444
Stewart, R.R., 1444
sticky permission bit, 294, 295, 300, 800

acting as restricted deletion flag, 300
user extended attributes and, 313

STICKY_TIMEOUTS constant, 1334
stime(), 204, 801

diagram, 188
St. Laurent (2004), 6, 1443
St. Laurent, A.M., 1443
Stone (2000), 1190, 1444
Stone, J., 1444
stop signal, 450
STOP terminal special character, 1296, 

1298, 1299, 1319
strace command, 394, 1401–1403
Strang (1986), 1290, 1444
Strang (1988), 1289, 1444
Strang, J., 1442, 1444
strcoll(), 202
Stream Control Transmission Protocol 

(SCTP), 1285, 1444
stream pipe, 890, 1175
STREAM_MAX constant, 214, 215
STREAMS (System V), 86, 237, 1338
strerror(), 50, 657

prototype, 50
strerror.c, 664
strerror_r(), 658
strerror_test.c, 665
strerror_tls.c, 669
strerror_tsd.c, 666
strftime(), 193, 194, 198, 203

diagram, 188
example of use, 195, 197, 199
prototype, 193

strip command, 834
strlcpy(), 793
strncpy(), 793
Strongman, K., xl
strptime(), 195–196

diagram, 188
example of use, 197
prototype, 195

strsignal(), 15, 406, 656
example of use, 409
prototype, 406

strtime.c, 197
strtok(), 657
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strtok_r(), 658
strxfrm(), 202
stty command, 1294–1295
su command, 169
subnet, 1179
subnet broadcast address, 1187
subnet mask, 1187

diagram, 1187
subnetted address (IP), 1187, 1193
Suisted, R., xl
Sun Microsystems, 4
SunOS, 4
superblock, 256
superuser, 26
supplementary group IDs, 33, 172, 

178–180, 613
SUS. See Single UNIX Specification (SUS)
suseconds_t data type, 65, 186, 480, 1333
SUSP terminal special character, 1296, 

1299, 1303, 1305
suspend character, 394, 1296, 1299
SV_INTERRUPT constant (BSD), 476
SVID (System V Interface Definition), 

17, 62
svmsg_chqbytes.c, 949
svmsg_create.c, 938
svmsg_demo_server.c, 930
svmsg_file.h, 956
svmsg_file_client.c, 960
svmsg_file_server.c, 957
svmsg_info.c, 952
svmsg_ls.c, 953
svmsg_receive.c, 945
svmsg_rm.c, 947
svmsg_send.c, 941
SVR4 (System V Release 4), 4, 17, 1440
svsem_bad_init.c, 976
svsem_create.c, 984
svsem_demo.c, 968
svsem_good_init.c, 977
svsem_info.c, 993
svsem_mon.c, 973
svsem_op.c, 982
svsem_rm.c, 985
svsem_setall.c, 974
svshm_attach.c, 1007
svshm_create.c, 1007
svshm_info.c, 1015
svshm_mon.c, 1434
svshm_rm.c, 1007
svshm_xfr.h, 1002
svshm_xfr_reader.c, 1005
svshm_xfr_writer.c, 1003
swap area, 119, 254
swap space overcommitting, 1038–1040

swapcontext(), 442
swapoff(), 254, 345, 801
swapon(), 254, 345, 801
Sweet, M., 1322
Swift, J., 1198
Swigg, T., xxxix
SWTCH terminal special character, 1300
symbol relocation, 837
symbol versioning, 870–872
symbolic link, 28, 77, 282, 342–344

changing ownership of, 292
creating, 342, 349
dangling, 28, 342, 349, 360
diagram, 343
following (dereferencing), 28
interpretation by system calls, 344
permissions and ownership, 344
reading contents of, 349
representation in file system, 342

symlink(), 286, 349, 426
prototype, 349

SYMLINK_MAX constant, 350
symlinkat(), 365, 426
SYN control bit (TCP), 1267
SYN_RECV state (TCP), 1269
SYN_SENT state (TCP), 1269
sync(), 241, 242, 1032

prototype, 241
sync_file_range(), 241, 1027
synchronized I/O completion, 239
synchronized I/O data integrity 

completion, 240
synchronized I/O file integrity 

completion, 240
synchronous I/O, 241–243
SYN-flooding, 1185, 1441
sys_siglist array, 406
sysconf(), 215–216, 425, 426

example of use, 216
prototype, 215

sysfs file system, 252, 1442
syslog logging facility, 775–782
syslog(), 776, 779–780

diagram, 775
example of use, 780, 1241, 1244, 

1245, 1251
prototype, 779

syslog(2) system call, 776, 801
syslogd daemon, 776

diagram, 775
system call, 23, 43–46

diagram, 46
error handling, 48–50
interrupted by signal handler, 442–445
interrupted by stop signal plus 

SIGCONT, 445
1498 INDEX



restarting, 442–445
setting timeout on, 486–487

system clock, updating, 204–205
system CPU time, 40, 206
system data types, 63–66

casting in printf() calls, 66
system limits, SUSv3, 212–215

indeterminate limits, 219
retrieving, 215–217

file-related limits, 217–218
system options, SUSv3, 219–221

retrieving, 215–217
file-related options, 217–218

system programming, xxxi
System V, 4
System V Interface Definition (SVID), 

17, 62
System V IPC, 921–936

algorithm employed by get calls, 
931–933

compared with POSIX IPC, 1061–1062
control operations, 924
design problems, 884
identifier, 923, 931
key, 64, 923, 925–927
limits, 935–936
object

associated data structure, 927–929
diagram, 932

creating, 923–924
deleting, 924
listing, 934–935
permissions, 800, 927–929
persistence, 924
re-creating after server crash, 930
removing, 934

portability, 884, 1061
System V message queue, 882, 883, 886, 

937–964
associated data structure, 948–950
compared with POSIX message 

queue,1086–1087
control operations, 947
creating, 938–940
deleting, 947
disadvantages, 961–962
limits, 950–951
messages, 940

receiving, 943–946
nonblocking, 943

sending, 940–942
nonblocking, 941

use in client-server applications, 
953–961

System V Release 4 (SVR4), 4, 17, 1440

System V semaphore, 882, 886, 965–995
adjustment on process termination, 533
associated data structure, 972–973
compared with POSIX semaphore, 

1103–1104
control operations, 969–972
creating, 969
deleting, 971
disadvantages, 993
initialization, 971, 974, 975–978
limits, 991–993
order of handling of multiple blocked 

operations, 986
performing operations on, 978–983
starvation, 986
undo value (semadj), 533, 607, 614, 619, 

691, 693, 986–988, 991
System V shared memory, 614, 882, 886, 

997–1016
associated data structure, 1012–1014
attaching, 999
compared with other shared memory 

APIs, 1115–1116
control operations, 1011–1012
creating, 998–999
deleting, 1011
detaching, 1000

on process termination, 533
limits, 1014–1015
location in process virtual memory, 

1006–1009
locking into memory, 1012
storing pointers in, 1010

system(), 582–588, 656, 673
avoid in privileged programs, 788
code of implementation, 582–583, 

586–587
diagram, 584
example of use, 581
implementation, 582–588
prototype, 579

system.c, 586
sysv_signal(), 456

prototype, 456

T
t_ prefix (in names of example 

programs), 100
t_chown.c, 293
t_clock_nanosleep.c, 1429
t_clone.c, 601
t_dirbasename.c, 371
t_execl.c, 571
t_execle.c, 570
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t_execlp.c, 570
t_execve.c, 566
t_flock.c, 1121
t_fork.c, 517
t_fpathconf.c, 218
t_ftok.c, 1433
t_gethostbyname.c, 1233
t_getopt.c, 1408
t_getservbyname.c, 1235
t_kill.c, 405
t_mmap.c, 1028
t_mount.c, 268
t_mprotect.c, 1046
t_nanosleep.c, 490
t_readv.c, 101
t_sched_getaffinity.c, 750
t_sched_setaffinity.c, 750
t_select.c, 1334
t_setpriority.c, 736
t_setsid.c, 706
t_sigaltstack.c, 436
t_sigqueue.c, 459, 461
t_sigsuspend.c, 466
t_sigwaitinfo.c, 470
t_stat.c, 284
t_statfs.c, 277
t_statvfs.c, 277
t_sysconf.c, 216
t_syslog.c, 1432
t_system.c, 581
t_umask.c, 302
t_uname.c, 230
t_unlink.c, 347
t_utimes.c, 288
t_vfork.c, 524
TAB0 constant, 1302
TAB1 constant, 1302
TAB2 constant, 1302
TAB3 constant, 1302, 1303
TABDLY constant, 1302, 1303
Tanenbaum (2002), 1235, 1444
Tanenbaum (2006), 24, 1422, 1444
Tanenbaum (2007), 24, 138, 278, 630, 

1147, 1444
Tanenbaum, A.S., 6, 1444
TASK_INTERRUPTIBLE process state, 451
TASK_KILLABLE process state, 451
TASK_UNINTERRUPTIBLE process state, 451
TASK_UNMAPPED_BASE constant, 1006
Taylor, I.L., 1444
tcdrain(), 426, 673, 718, 727, 1293, 

1316–1317
prototype, 1318

tcflag_t data type, 65, 1292

tcflow(), 426, 718, 727, 1293, 1316–1317
prototype, 1318

tcflush(), 426, 718, 727, 1293, 1316–1318
prototype, 1318

tcgetattr(), 426, 1291–1292
example of use, 1301, 1306, 1310, 1311, 

1313, 1314, 1392
prototype, 1291

tcgetpgrp(), 426, 708–709
example of use, 713, 720
prototype, 708

tcgetsid(), 706
TCIFLUSH constant, 1318
TCIOFF constant, 1319
TCIOFLUSH constant, 1318
TCION constant, 1319
TCOFLUSH constant, 1318
TCOOFF constant, 1319
TCOON constant, 1319
TCP (Transmission Control Protocol), 

1152, 1190–1193, 1194, 
1266–1275, 1439

acknowledgements, 1191, 1267, 1268
diagram, 1268

checksum, 1267
connection establishment, 1191, 

1270–1272
diagram, 1272

connection termination, 1272–1273
diagram, 1273

delayed ACK, 1191
diagram, 1181
endpoint, 1190
flow control, 1192
initial sequence number, 1192
options, 1268
receiving, 1191
retransmission, 1191, 1194
segment, 1191

format, 1266–1268
sending, 1191
sequence number, 1191, 1266, 1268
state machine, 1269
state transition diagram, 1271
three-way handshake, 1270

diagram, 1272
timeouts, 1191
vs. UDP, 1282–1283
urgent pointer, 1268, 1283
window size, 1192, 1267

TCP_CORK constant, 1262
TCP_NOPUSH constant, 1263
tcpd daemon, 1250
tcpdump command, 1276–1278
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TCP/IP, 1179–1195, 1438, 1440, 1441, 
1443, 1444, 1445

TCSADRAIN constant, 1293
TCSAFLUSH constant, 1293

example of use, 1301, 1311, 1313, 
1314, 1315

TCSANOW constant, 1293
example of use, 1306, 1387

tcsendbreak(), 426, 718, 727, 1293, 
1316–1318

prototype, 1318
tcsetattr(), 426, 718, 727, 1291–1293

example of use, 1301, 1306, 1311, 1313, 
1314, 1315, 1387, 1392

prototype, 1291
tcsetpgrp(), 426, 708–709, 718, 727

prototype, 708
tee command, 87, 908
tee(), 1262
tell(), 82
telldir(), 355
TEMP_FAILURE_RETRY macro, 443
tempnam(), 109
temporary file, 108–109
termcap database, 1289, 1444
terminal, 392, 1289–1323

background process group. See 
background process group

canonical mode, terminal I/O, 1290, 
1305, 1307

disabling echoing of input, 1306
disconnect, 709
flags, 1301–1306
flow control, 1299
foreground process group. See 

foreground process group
generating BREAK condition, 1318
identification, 1321
input queue, 1291

flushing, 1318
line control, 1317–1319
line speed, 1316–1317
noncanonical mode, terminal I/O, 

1290, 1307–1309
obtaining device name associated with 

file descriptor, 1321
output queue, 1291

flushing, 1318
poll() on, 1342
resuming output, 1296, 1319
retrieving and modifying attributes, 

1291–1293
select() on, 1342
special character, 64, 1296–1301

stopping output, 1296, 1319
window size, 395, 1319–1321

termination signal, 599, 605
termination status, process, 32, 513, 

531, 545
terminfo database, 1289, 1444
termios structure, 1291, 1292, 1296, 

1301–1306, 1316
definition, 1292
example of use, 1293, 1301, 1306, 

1310–1311, 1313
test_become_daemon.c, 771
test_tty_functions.c, 1313
text segment, 115, 118, 612, 1019, 1024

sharing between processes, 116, 521
TFD_CLOEXEC constant, 508
TFD_NONBLOCK constant, 508
TFD_TIMER_ABSTIME constant, 508
TGID (thread group ID), 604
tgkill(), 441, 684
Thomas, M., 1194
Thompson, K.L., 2, 4, 1443
Thomson, J., 1194
thread, 38, 225, 617–697

attributes, 623, 628
canceling. See thread cancellation
compared to process, 629
creating, 609, 622–623, 626–627
dealing with asynchronous signals, 685
detached, 627, 628
exec() and, 673, 686
exit() and, 687
fork() and, 673, 686
ID. See thread ID
implementation models, 687–689
interactions with signals, 682–683
joinable, 627
joining, 625–627
Linux implementation, 689–699
maximum number of, 682, 763
memory layout, diagram, 618
one-time initialization, 658–659
return value, 623, 625
sending a signal to, 684
signal mask, 683, 684
stack, 681–682
termination, 623–624

thread cancellation, 671–680
asynchronous cancelability, 680
cancelability state, 672
cancelability type, 672
cancellation point, 673–674
cleanup handler, 676–679
sending cancellation request, 671
testing for, 675
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thread group, 225, 604, 610
diagram, 605

thread group ID, 604
thread group leader, 605

diagram, 605
thread ID (kernel), 605
thread ID (Pthreads), 623, 624

comparing IDs, 624
thread of execution, 422
thread_cancel.c, 674
thread_cleanup.c, 678
thread_incr.c, 632
thread_incr_mutex.c, 636
thread_incr_psem.c, 1101
thread_multijoin.c, 649
thread-local storage, 668–669
thread-safe function, 655
thread-specific data, 659–668

implementation, 662–663
three-way handshake, TCP, 1270

diagram, 1272
TID (thread ID, kernel), 605
Tilk, K., xl
time command, 206
time slice, 733
TIME terminal setting, 1307
time(), 187, 426

diagram, 188
example of use, 192
prototype, 187

time_t data type, 65, 186, 187, 188, 189, 
190, 280, 283, 287, 290, 471, 480, 
488, 498, 747, 830, 948, 972, 
1012, 1333

converting to and from broken-down 
time, 189–190

converting to printable form, 188–189
TIME_WAIT state (TCP), 1269, 

1274–1275
assassination, 1275

timed_read.c, 486
timeout on blocking system call, 486–487
timer

high-resolution, 485
POSIX. See POSIX timer
profiling, 392, 480
real, 390, 480
virtual, 395, 480

timer overrun, 495, 503–504, 505
TIMER_ABSTIME constant, 494, 498
timer_create(), 495–497

example of use, 501, 507
prototype, 495

timer_delete(), 495, 499
prototype, 499

timer_getoverrun(), 426
example of use, 501, 506
prototype, 504

timer_gettime(), 426, 499
prototype, 499

timer_settime(), 426, 495, 498–499
example of use, 501, 507
prototype, 498

timer_t data type, 65, 494, 496, 498, 
499, 504

timerfd timers, 507–511, 615
timerfd_create(), 508

example of use, 511
prototype, 508

timerfd_gettime(), 509
prototype, 509

timerfd_settime(), 508–509
example of use, 511
prototype, 508

times(), 206–207, 210, 426, 560, 619, 691, 
694, 755

example of use, 209
prototype, 206

timespec structure, 289, 290, 471, 488, 491, 
492, 493, 498, 645, 747, 980, 
1077, 1096, 1369

definition, 290, 471, 488, 498, 747
example of use, 290, 490

timeval structure, 186, 188, 204, 205, 288, 
289, 480, 754, 819, 1331, 1333

definition, 186, 480, 1333
timezone, 197–200

specifying to a program, 198–200
timezone structure, 186, 187, 204
timezone variable, 198
TIOCCONS constant, 801
TIOCGPGRP constant, 709
TIOCGSID constant, 706
TIOCGWINSZ constant, 1319, 1392, 1395

example of use, 1320
TIOCNOTTY constant, 692, 707
TIOCPKT constant, 1389
TIOCSCTTY constant, 707, 1385

example of use, 1387
TIOCSPGRP constant, 709
TIOCSWINSZ constant, 1320, 1395

example of use, 1387
tkill(), 441
TLI (Transport Layer Interface), 16
tlpi_hdr.h, 51
tm structure, 188, 189, 190, 191, 193, 

195, 196
definition, 189
example of use, 192
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tmpfile(), 109, 346
prototype, 109

tmpfs file system, 274–275, 1009, 
1090, 1108

tmpnam(), 109, 656
tms structure, 206–207

definition, 206
Todino-Gonguet, G., 1442
top-level domain, 1212
Törring, J.T., xxxix
Torvalds (2001), 20, 1444
Torvalds, L.B., 2, 6, 18, 20, 1444
TOSTOP constant, 394, 716, 718, 1303, 1379
translation look-aside buffer, 527, 

999, 1027
Transmission Control Protocol. See TCP
transport layer, 1188–1193

diagram, 1181
Transport Layer Interface (TLI), 16
TRAP_BRANCH constant, 442
TRAP_BRKPT constant, 442
TRAP_HWBKPT constant, 442
TRAP_TRACE constant, 442
Troan, E.W., 1440
Tromey, T., 1444
Tru64 UNIX, 5
TRUE constant, 51
truncate(), 103, 286, 345, 395, 1139, 1142

prototype, 103
RLIMIT_FSIZE resource limit and, 761

truncate64(), 105
Tsafrir (2008), 786, 787, 795, 1444
Tsafrir, D., 1444
tty, 1289
tty command, 1321
tty group, 169
tty_functions.c, 1310
ttyname(), 657, 1321

example of use, 829
prototype, 1321

ttyname.c, 1436
ttyname_r(), 658, 1321
ttySetCbreak(), 1310

code of implementation, 1310–1311
example of use, 1314, 1349

ttySetRaw(), 1310
code of implementation, 1311
example of use, 1315, 1393

tuple (identifying a socket), 1280
Tweedie, S., xxxix
TZ environment variable, 198
TZDIR environment variable, 198
tzfile file format, 198
tzname variable, 198
tzset(), 198

U
u_int16_t data type, 593, 598
u_int32_t data type, 593, 598
uClibc, 47
ucontext_t data type, 442
ud_ucase.h, 1171
ud_ucase_cl.c, 1173
ud_ucase_sv.c, 1172
udev (user-space device file system 

daemon), 252, 1441
UDP (User Datagram Protocol), 1152, 

1189–1190, 1194
checksum, 1189
datagram size, 1190
diagram, 1181
vs. TCP, 1282–1283

UDP_CORK constant, 1260
ugid_functions.c, 159
UID (user ID), 26, 153
uid_t data type, 65, 157, 173, 174, 175, 

177, 178, 280, 292, 330, 438, 927
uint8_t data type, 1202, 1203
uint16_t data type, 1199
uint32_t data type, 377, 378, 379, 472, 

1199, 1203, 1204, 1357
uintmax_t data type, 66
ulimit command, 448, 755
Ultrix, 4
umask(), 301, 309, 426, 604. See also 

process, umask
example of use, 302
prototype, 301

UML (User-Mode Linux), 789
umount command, 169, 263
umount(), 269–270, 607, 801

prototype, 269
UMOUNT_NOFOLLOW constant, 270
umount2(), 270

prototype, 270
uname(), 229, 426

example of use, 230
prototype, 229

unbuffer.c, 1436
undo value, System V semaphore (semadj), 

533, 607, 614, 619, 691, 693, 
986–988, 991 

uninitialized data segment, 116, 117, 118
uninterruptible sleep state, 451
universality of I/O, 29, 72
UNIX, 1, 1437, 1441, 1444

editions, 3
history, 2–5, 1442, 1443
standards, 10–19

UNIX 03, 14, 17
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UNIX 95, 13, 17
UNIX 98, 13, 17
UNIX International, 13
UNIX System Laboratories, 8
unix_sockets.c, 1435
unix_sockets.h, 1435
unlink(), 109, 286, 300, 345, 346, 426, 800, 

1145, 1146
example of use, 347
prototype, 346

unlinkat(), 365, 426
unlockpt(), 1380, 1382

example of use, 1384
prototype, 1382

unnamed semaphore. See POSIX 
semaphore, unnamed

unprivileged process, 33
UNSAFE comment inside signal 

handler, 428
unset shell command, 125
unsetenv C shell command, 125
unsetenv(), 129, 657, 1426

example of use, 131
prototype, 129

unshare(), 603, 801
unspecified (in standard description), 15
updwtmpx(), 827

example of use, 829
prototype, 827

URG control bit, TCP, 1267, 1283
urgent data (socket), 394, 396, 1267, 1268, 

1283, 1439
urgent mode (TCP), 1283
us_abstract_bind.c, 1176
us_xfr.h, 1167
us_xfr_cl.c, 1169
us_xfr_sv.c, 1168
us_xfr_v2_cl.c, 1435
us_xfr_v2_sv.c, 1435
usageErr(), 53–54

code of implementation, 56
prototype, 54

usageError(), 54
uselib(), 345
user authentication, 162–166
user CPU time, 40, 206
User Datagram Protocol. See UDP
user ID, 26, 153
user mode, 23, 44
user space, 23
user stack, 122
USER_HZ constant, 207
USER_PROCESS constant, 820, 821, 822, 825

userIdFromName(), 159
code of implementation, 159–160

User-Mode Linux (UML), 789
username, 154
userNameFromId(), 159

code of implementation, 159
user-uninitialized data segment, 116
USL (UNIX System Laboratories), 8
usleep(), 673, 674
UT_HOSTSIZE constant, 830
UT_NAMESIZE constant, 830
utimbuf structure, 287

definition, 287
example of use, 288

utime(), 285, 286, 287–288, 345, 426, 800
prototype, 287

UTIME_NOW constant, 290
UTIME_OMIT constant, 290
utimensat(), 15, 286, 289–290, 365, 426

prototype, 289
utimes(), 286, 345, 288, 426

prototype, 288
utmp file, 817

example of use, 828
retrieving information from, 821
updating, 825

UTMP_FILE constant, 818
utmpx structure, 819–820, 822, 825, 

826, 827
definition, 819
example of use, 824, 829

utmpx_login.c, 828
utmpxname(), 823

example of use, 824
prototype, 823

utsname structure, 229
definition, 229
example of use, 230

V
Vahalia (1996), 24, 138, 250, 278, 342, 

630, 919, 1044, 1422, 1444
Vahalia, U., 1444
van der Linden (1994), xxxii, 1444
van der Linden, P., 1444
vanilla kernel, 234
Vargas, B.L., xxxix, xli
Vargas, C.E.K., xli
variadic function, 1413
Vaughan (2000), 857, 1444
Vaughan, G.V., 1444
VDISCARD constant, 1296
VEOF constant, 1296, 1309
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VEOL constant, 1296, 1309
VEOL2 constant, 1296
VERASE constant, 1296
version script (ld), 868–872
vfork(), 16, 523–525, 530, 609

example of use, 524
prototype, 523
RLIMIT_NPROC resource limit and, 763
scheduling of parent and child 

after, 523
speed, 610

vfork_fd_test.c, 1430
VFS (virtual file system), 259

diagram, 259
vhangup(), 801
Viega (2002), 795, 1445
Viega, J., 1445
view_lastlog.c, 831
view_symlink.c, 369
VINTR constant, 1296
Viro (2006), 267, 1445
Viro, A., 1445
virtual address space, 120

diagram, 120
virtual device, 252
virtual file switch, 259
virtual file system (VFS), 259

diagram, 259
virtual memory

resource limit on, 760
unified, 1032

virtual memory management, 22, 
118–121, 1440

virtual server, 789
virtual time, 206
virtualization, 608, 789
VKILL constant, 1296
VLNEXT constant, 1296
VMIN constant, 1307, 1309

example of use, 1311
vmsplice(), 1262
volatile variables, 137
VQUIT constant, 1296
VREPRINT constant, 1296
VSTART constant, 1296
VSTOP constant, 1296
VSUSP constant, 1296
vsyslog(), 777
VT0 constant, 1302
VT1 constant, 1302
VTDLY constant, 1302
VTIME constant, 1307, 1309

example of use, 1311
VWERASE constant, 1296

W
W_OK constant, 299
Wagner, D., 1438, 1444
wait morphing, 647
wait status, 545–547, 580
wait(), 32, 426, 514, 541–542, 673, 690

diagram, 515
example of use, 543, 901
interrupted by signal handler, 443
prototype, 542

wait3(), 552–553, 609, 754
interrupted by signal handler, 443
prototype, 552

wait4(), 552–553, 609, 754
interrupted by signal handler, 443
prototype, 552

waitid(), 550–552, 610, 673
interrupted by signal handler, 443
prototype, 550

waitpid(), 426, 544–545, 609, 673
example of use, 549, 583, 587, 602
interrupted by signal handler, 443
prototype, 544

wall clock time, 185
wall command, 169
Wallach, D.S., 1438
watch descriptor (inotify), 376, 377
Watson (2000), 798, 1445
Watson, R.N.M., 1445
WCONTINUED constant, 544, 545, 550
WCOREDUMP(), 546

example of use, 547
wcrtomb(), 656
wcsrtombs(), 656
wcstombs(), 657
wctomb(), 657
weakly specified (in standard 

description), 15
Weinberger, P.J., 1437
well-known address, 909
WERASE terminal special character, 

1296, 1299, 1305, 1307
WEXITED constant, 550
WEXITSTATUS(), 546

example of use, 547
Wheeler, D., 795, 857
who command, 817
WIFCONTINUED(), 546

example of use, 547
WIFEXITED(), 546

example of use, 547
WIFSIGNALED(), 546

example of use, 547
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WIFSTOPPED(), 546
example of use, 547

wildcard address (IP), 1187
Wilhelm, S., 1442
Williams (2002), 20, 1445
Williams, S., 1445
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